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A C-differentiability and R2-differentiability 51

1 Some topological properties in C
Lec. 01−−−−→ It is clear that the function d : C×C → R+, (z1, z2) 7→ d(z1, z2) := |z1−z2|, defines a metric.

Therefore, (C, d) is a metric space. Notice that C ∼= R2 (i.e., C and R2 are homeomorphic)

and the above metric corresponds to the Euclidean metric on R2. Thus the topological

structure of C is the same as that of R2.

1.1 Some fundamental point sets in C

(a) Let z0 ∈ C and 0 < r < R. Then the set D(z0, r) := {z ∈ C : |z − z0| < r} is the

an open disc, centered at z0 with radius r. In particular, D := {z ∈ C : |z| < 1} is

called the open unit disc. The set A(z0, r, R) := {z ∈ C : r < |z − z0| < R} is an open

annulus, centered at z0 with an inner radius r and an outer radius R.

(b) Let a, b ∈ R such that a < b. Then the sets H+(a) := {z ∈ C : Re(z) > a} and

H−(a) := {z ∈ C : Re(z) < a} are, respectively, an open right-half plane and an open

left-half plane. The set T (a, b) := {z ∈ C : a < Re(z) < b} is an open vertical strip.

– Analogously, we can define the open upper and open lower half planes, as well as a

horizontal strip, by considering Im(z) in place of Re(z) in the above sets.

(c) Let α, β ∈]−π, π] such that α < β. Then the set S(α, β) := {z ∈ C : α < Arg(z) < β}
represents an open sector.

1.2 Definitions

(a) For ε > 0, the ε-neighborhood of a point z0 is the open disc D(z0, ε).

(b) Let S ⊂ C. A point z0 ∈ S is said to be an interior point of S if there exists ε > 0

such that D(z0, ε) ⊂ S. Moreover, S is called an open set of C if each point of S is

an interior point.

Example 1.1. (i) If S = {z : |z| ≤ 1}, then each point z with |z| < 1 is an interior

point of S.

(ii) The annulus A(z0, r, R) := {z ∈ C : r < |z − z0| < R}, where z0 ∈ C and 0 < r <

R, is an open set.

(c) A point z0 is called an exterior point of a set S ⊂ C if there exists ε > 0 such that

D(z0, ε) ∩ S = ∅. Moreover, z0 is called a boundary point of S if, for every ε > 0,

D(z0, ε) ∩ S ̸= ∅ and D(z0, ε) ∩ (C \ S) ̸= ∅.
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Notice that a boundary point is neither interior nor exterior. The set of all boundary

points of S is called the boundary of S, and denoted by ∂S.

Example 1.2. We have ∂D = {z : |z| = 1} and ∂A(i, 1, 2) = {z : |z − i| = 1} ∪ {z :

|z − i| = 2}.

(d) The closure of a subset S ⊂ C, which is denoted by S, is defined by S = S ∪ ∂S. A

set S is called a closed set if S = S, or if ∂S ⊂ S, i.e., S contains its all boundary

points.

Example 1.3. The set {z : 1 < |z − i| ≤ 2} is neither open nor closed. Moreover,

{z : 1 < |z − i| ≤ 2} = {z : 1 ≤ |z − i| ≤ 2}.

Remark 1.1. The set C is considered as open and closed in C at the same time.

Notice that ∂C = ∅ and every point z ∈ C is an interior point in C.

(e) A point z0 ∈ C is called an accumulation point (or limit point) of a set S ⊂ C if,

for every ε > 0, (D(z0, ε) \ {z0}) ∩ S ̸= ∅. The set of all accumulation points of S is

denoted by S ′.

1.3 Curves and contours in C

Definition 1.1. Let a, b ∈ R with a < b, and let x, y : [a, b] → R be continuous

functions. Then the subset γ = {z = x(t) + iy(t) : t ∈ [a, b]} is called a curve (or

path). If we define the function φ : [a, b] → C by φ(t) = x(t) + iy(t), then the curve

γ is the image of the function φ.

The curve γ starts at its initial point φ(a) and ends at its terminal point φ(b).

The function φ is called a parametrization of the curve γ.

Remark 1.2. 1. We conventionally use γ(t) (or z(t)) instead of φ(t), and we write z =

γ(t) for t ∈ [a, b] to indicate the parametrization.

2. Every curve can be expressed by several different parametrizations, as different pa-

rameterizations can trace the same geometric path in space. Any parametrization can

be expressed in any form (algebraic, trigonometric, or exponential).

Example 1.4. The curve z(t) = eit, t ∈ [0, π] represents the upper-half unit circle in an

anticlockwise direction. Same curve can be represented by z(t) = eiπt, t ∈ [0, 1], or by

z(t) = −t+ i
√

1 − t2, x ∈ [−1, 1].
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Definition 1.2. – A curve γ : [a, b] → C is said to be simple if it doesn’t intersect

itself, i.e., γ(t1) ̸= γ(t2) for every t1, t2 ∈ [a, b] with t1 ̸= t2. The curve in Example 1.4

is simple.

– A curve γ : [a, b] → C is said to be closed if γ(a) = γ(b).

– A simple closed curve (or Jordan curve) is a curve satisfying γ(a) = γ(b) and

γ(t1) ̸= γ(t2) for every t1, t2 ∈]a, b[ with t1 ̸= t2.

Example 1.5. The curve z(t) = eit, t ∈ [0, 2π], which traces the unit circle, is a simple

closed curve.

Definition 1.3. – A curve γ : [a, b] → C is said to be smooth if

(i) γ̇(t) := x′(t) + iy′(t) exists and continuous on [a, b].

(ii) γ̇(t) ̸= 0 for every t ∈ [a, b].

– A curve γ : [a, b] → C is called a contour if there exists a partition a = t0 < t1 <

· · · < tn = b such that γ is smooth on each [tk, tk+1], 0 ≤ k ≤ n− 1. In other words,

a contour is a piecewise smooth curve.

The contour can be built upon a finite sequence of smooth curves {γ1, γ2, . . . , γn} such

that the terminal point of γk coincides with the initial point of γk+1 for 1 ≤ k ≤ n− 1. In

this case, we write γ = γ1 + γ2 + · · · + γn. The curves γ1, γ2, . . . , γn are called the smooth

components of the contour γ. The operation “+” between curves is called the concatenation

of curves. If the terminal point of γ1 does not equal the initial point ofγ2, we leave the sum

γ1 + γ2 undefined.

Example 1.6.
Lec. 02−−−−→ The curve

γ(t) =

t+ 2it, 0 ≤ t ≤ 1,

t+ 2i, 1 ≤ t ≤ 2,

is not a smooth curve, because the derivative is not continuous. However, γ is a contour,

as γ = γ1 + γ2, where γ1(t) = t + 2it, 0 ≤ t ≤ 1, and γ2(t) = t + 2i, 0 ≤ t ≤ 1, are smooth

curves.

We generalize the example as follows:

– Let z1, z2 ∈ C with z1 ̸= z2. The curve ℓ(t) = (1 − t)z1 + tz2, for t ∈ [0, 1], is called

the line segment from z1 to z2, and is denoted by [z1, z2] (be aware of the difference of this

notation and the notation of interval). It is clear that a line segment is smooth.

– Let z1, . . . , zn ∈ C. The curve L = [z1, z2] + . . . + [zn−1, zn] is called a polygonal line

from z1 to zn. It is clear that a polygonal line is contour.
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Remark 1.3. Any point in the complex plane is a curve parameterized by a constant

function. In this case, a point is called a trivial curve.

Homotopic curves. Let D ⊂ C be an open subset and z1, z2 ∈ D. Consider two curves

γ1, γ2 : [a, b] → D (in D) with the same endpoints z1 and z2 (i.e., same initial point and

same terminal point). Then γ1 and γ2 are called homotopic in D (or γ1 is homotopic to γ2

in D), if there exists a continuous function H : [a, b] × [0, 1] → D such that

H(t, 0) = γ1(t) and H(t, 1) = γ2(t), ∀t ∈ [a, b],

H(a, s) = z1 and H(b, s) = z2, ∀s ∈ [0, 1].

The function H is called a homotopy from γ1 to γ2 in D. This homotopy is for curves with

the same endpoints.

Consider now two Jordan curves γ1, γ2 : [a, b] → D. Then, γ1 and γ2 are called homotopic

in D if there exists a continuous function H : [a, b] × [0, 1] → D such that

H(t, 0) = γ1(t) and H(t, 1) = γ2(t), ∀t ∈ [a, b],

H(a, s) = H(b, s), ∀s ∈ [0, 1].

This homotopy is for closed curves.

A Jordan curve in D, that is homotopic to a point in D, is said to be null-homotopic in D.

Example 1.7. Let D ⊂ C be a convex domain, and let γ1, γ2 : [a, b] → D be two curves

in D with the same endpoints. Then the function H : [a, b] × [0, 1] → D, defined by

H(t, s) := (1 − s)γ1(t) + sγ2(t), is a homotopy from γ1 to γ2 in D.

1.4 Domains in C

Definition 1.4. – An open set S ⊂ C is said to be connected if, for every a, b ∈ S,

there exists a polygonal line joining a and b that lies entirely within S.

– An open connected set is called a domain. For example, the open annuli are domains.

– A region is a domain together with some, all, or none of its boundary points. For

example, the set {z : 1 ≤ |z − i| < 2} is a region.

Lec. 03−−−−→ Recall that a subset S ⊂ C is said to be bounded if there exists M > 0 such that |z| ≤M

for every z ∈ S. The subset S is unbounded if it is not bounded.

5

https://en.wikipedia.org/wiki/Convex_set
https://proofwiki.org/wiki/Connected_Open_Subset_of_Euclidean_Space_is_Path-Connected


Theorem 1.1 (Jordan curve theorem). Any simple closed curve (Jordan curve) γ in

C divides the complex plane into exactly two disjoint domains. One of these domains

is bounded, called the interior of γ and denoted by int(γ). The other one is unbounded

and called the exterior of γ, and denoted by ext(γ). The curve γ is the boundary of

each domain, i.e., γ = ∂ int(γ) = ∂ ext(γ).

It is important to be aware of the different uses of the term “interior” (resp. “exterior”).

In a topological context, the interior of a subset S is the set of all interior points, or

equivalently, the largest open set contained in S, and it is denoted by
◦
S. Consequently, it

follows that
◦
γ = ∅.

Definition 1.5. A domain D ⊂ C is said to be simply connected if, for any Jordan

curve γ lying in D, we have int(γ) ⊂ D. A domain that is not simply connected is

called multiply connected.

Intuitively, simply connected domains have no holes.

Remark 1.4 (Alternative Definition). A domain D ⊂ C is said to be simply connected if

any two curves in D with the same endpoints are homotopic in D (with homotopy of curves

with the same endpoints). Or equivalently, if every Jordan curve is null-homotopic in D

(with homotopy of closed curves). From Example 1.7, we deduce that any convex set is

simply connected.

Definition 1.6 (Positive orientation). A Jordan curve γ is said to be positively ori-

ented (counterclockwise) if the interior domain lies to the left of an observer tracing

the points of γ in the order they are traversed. Otherwise, γ is negatively oriented.

– A simple open curve is positively oriented if it’s traced from its initial point to its

terminal point.

– If the orientation of a curve γ is revered, and the roles of the endpoints are switched,

then the resulting curve is called the opposite curve (or the reversal) of γ, and it is

denoted by −γ. We say: γ and −γ are oppositely oriented.

Example 1.8. The circle γ1(t) = eit, t ∈ [0, 2π], is positively oriented, while the circle

γ2(t) = e−it, t ∈ [0, 2π], is negatively oriented. Notice that γ1 = −γ2.
However, the circle γ3(t) = e−it, t ∈ [π/2, 5π/2], is not the opposite of γ1.

Remark 1.5. (a) In Definition 1.6, we assume that curves are non-trivial, because otherwise,

the trivial curves don’t have orientation.

(b) In case of a simple closed curve γ that is smooth on [a, b], we say that γ is positively

oriented (or has the positive orientation) if, for every t ∈ [a, b], there exists ε > 0 (small
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enough) such that γ(t) + εiγ′(t) ∈ int(γ). The vector iγ′(t) is the rotation of the tangent

vector γ′(t) by π/2, or, turning the direction to the left.

(c) Let Γ be a contour with the smooth components γ1, . . . , γn−1, γn, i.e., Γ = γ1 + · · ·+

γn−1+γn. Then the opposite contour −Γ is the contour −Γ = (−γn)+(−γn−1)+· · ·+(−γ1).

(d) It is understood that the opposite of a line segment [z1, z2], where z1 ̸= z2, is the

segment [z2, z1], i.e., −[z1, z2] = [z2, z1].

(c) Given a curve γ : [a, b] → C, its opposite curve −γ : [a, b] → C is given by

(−γ)(t) = γ(b+ a− t), t ∈ [a, b].

1.5 Riemann sphere and stereographic projection

Lec. 04−−−−→ In the x1x2x3-space (i.e., R3), the unit sphere S2 is called the Riemann sphere, where x1x2-

plane corresponds to the complex plane. For the sake of simplicity, the point (x1, x2, 0) in

the x1x2-plane will be denoted as z = x1 + ix2. The north pole is the point N(0, 0, 1) and

the south pole is the point (0, 0,−1).

Given z ∈ C, the line passing through the north pole N and the point z intersects the

Riemann sphere at exactly one point X, which is called the stereographic projection of z.

Lemma 1.1. For z ∈ C, the stereographic projection X = (x1, x2, x3), of z, is given by

x1 =
2 Re(z)

|z|2 + 1
, x2 =

2 Im(z)

|z|2 + 1
and x3 =

|z|2 − 1

|z|2 + 1
.

Conversely, every point X = (x1, x2, x3) ∈ S2 \ {N} is the stereographic projection of

a point z ∈ C, where

Re(z) =
x1

1 − x3
and Im(z) =

x2
1 − x3

.

Proof. The proof is left as an exercise.

– Note that the stereographic projection defines a bijection between S2 \ {N} and C.

– The stereographic projections of points z with large modulus are close to the north

pole, and as |z| → +∞, their projections tend to N . Therefore, we associate with N the

extended complex number “∞” (the point at infinity, and written without “+” or “−”),

and call Ĉ = C∪{∞} the extended complex plane. Note that the point at infinity becomes

unique in this way.

– Now, the stereographic projection defines a bijection between S2 and Ĉ. Because of

this correspondence, Ĉ is often called the Riemann sphere.
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Definition 1.7. Let X1 and X2 be the stereographic projections of z1 ∈ C and z2 ∈ C,

respectively. The Euclidean distance between X1 and X2 is called the chordal distance

between z1 and z2, and it is denoted by χ[z1, z2]. That is, χ[z1, z2] = ∥X1 −X2∥2.

It is clear that 0 ≤ χ[z1, z2] ≤ 2 for all z1, z2 ∈ C.

Lemma 1.2. If z1, z2, z ∈ C, then

χ[z1, z2] =
2|z1 − z2|√

|z1|2 + 1
√

|z2|2 + 1
and χ[z,∞] =

2√
|z|2 + 1

.

Proof. The proof is left as an exercise.

– One can easily check that the chordal distance defines a metric on C.

– A neighborhood of ∞ is described by {z ∈ C : χ[z,∞] < ρ}, where 0 < ρ < 2, and it

is the set {z ∈ C : |z| > r} = C \D(0, r), where r =
√

(4/ρ2) − 1 > 0.

2 Complex functions

Let S ⊂ C. A function f : S → C, defined on S and taking values in C, is called a

complex single-valued function, or simply, a complex function. For example, f(z) = z2

and f(z) = 1/z are both complex (single-valued) functions defined, respectively, on C and

C \ {0}. In complex analysis, we often encounter objects that, unlike regular functions,

assign several (finite or infinite) values to each variable z. These are known as multi-valued

functions. For example, f(z) = arg(z) is a multi-valued function.

For a complex function f : S → C and for z = x + iy ∈ S, let w = f(z). Then the real

and imaginary parts of w are each real-valued functions of z or, equivalently, of x and y,

and so we customarily write

w = u(x, y) + iv(x, y), (2.1)

with u and v denoting the real and imaginary parts, respectively, of w. The common

domain of the functions u and v corresponds to the domain of the function f . Thus,

by the cartesian representation of C, complex valued functions of a complex

variable z 7→ f(z) are, in essence, a pair of real functions of two real variables

f : S ⊂ R2 → R2

(x, y) 7→ f(x, y) = (u(x, y), v(x, y))

We use the notation: u(x, y) = Re f(z) and v(x, y) = Im f(z). For example,

f(z) := z2 + 2z = (x+ iy)2 + 2(x+ iy) =
(
x2 − y2 + 2x

)︸ ︷︷ ︸
=u(x,y)

+i (2xy + 2y)︸ ︷︷ ︸
=v(x,y)

.
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Conversely, if a function f is given in the form (2.1), then we can write it in terms of z by

using, e.g., the equations:

x =
z + z

2
and y =

z − z

2i
.

Complex functions as mappings

Lec. 05−−−−→ If f : S → C, z 7→ w = f(z), is a complex function, then both z, w ∈ C, and its graph

G(f) = {(z, f(z)) : z ∈ S} is a subset of 4-dimensional space. Hence, we cannot use graphs

to study (or, visualize) complex functions. However, complex functions describe mappings

(not necessarily one-to-one) between subsets lying in two copies of the complex plane. Each

point z0 in the z-plane is mapped by a function f to the unique corresponding point w0 =

f(z0) in the w-plane. We also say: f maps z0 to w0. In general, we say f maps a subset S

to its image. For example, the function f(z) = z/(1 + z2) maps the upper open unit semi

disc to the upper open half plane, see Exercise set 1 (Pb. 1).

Remark 2.1. (1) Complex functions are usually referred to as complex mappings.

(2) The geometric representation of a complex mapping f : S → C consists of two figures:

one representing the domain S in the z-plane, and the other showing the image of f in the

w-plane.

Example 2.1. The image, by the function f(z) = z2, of a vertical line is either a parabola

or the non-positive real axis.

−→ Let z = x0+iy, where x0 ∈ R is fixed and y ∈ R is arbitrary. Then u+iv := f(x0+iy) =

(x0 + iy)2 = x20 − y2 + i(2x0y). This is equivalent tou = x20 − y2,

v = 2x0y.

This system represents the parabola of the equation u = x20 −
v2

4x20
in the w-plane when

x0 ̸= 0. Otherwise, the system represents the non-positive real axis.

2.1 Limit of a complex function

Definition 2.1. Let S ⊂ C and z0 ∈ S ′. We say that f : S → C has a limit w0 ∈ C
as z approaches z0 (within S), if

∀ε > 0,∃δ > 0,∀z ∈ S : 0 < |z − z0| < δ =⇒ |f(z) − w0| < ε.

We write lim
z→z0
z∈S

f(z) = w0.
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This definition (as in the real case) says that the values f(z) can be made arbitrarily

close to w0 when the values of z are chosen sufficiently close to z0.

Remark 2.2. When “z ∈ S” is understood from the context, we can use the notation lim
z→z0

instead of lim
z→z0
z∈S

.

Example 2.2. Let’s show that lim
z→1−i

(z2 − 2) = −2 + 2i.

−→ We have

|z2 − 2 − (−2 + 2i)| = |z2 − 2i| = |z2 + 2i|

= |z − (1 − i)| × |z + (1 − i)|

≤ |z − (1 − i)| ×
(
|z − (1 − i)| + 2

√
2
)
.

(2.2)

Therefore, for any ε > 0, if we choose δ > 0 to satisfy δ < min{1, ε/(1 + 2
√

2)}, then from

(2.2) we obtain

0 < |z − (1 − i)| < δ =⇒ |z2 − 2 − (−2 + 2i)| < ε.

Unlike the real case, there are infinitely many directions from which z can approach z0

in the complex plane. For a complex limit to exist, every way by which z approaches z0

must yield the same limiting value. The following statements are more practical.

Lemma 2.1. If there are two different curves Γ1 and Γ2 passing through z0 and

f(z) approaches two distinct values w1 and w2 as z approaches z0 along Γ1 and Γ2,

respectively, then lim
z→z0

f(z) doesn’t exist.

Example 2.3. Let’s show that lim
z→0

(z/z) doesn’t exist.

−→ Notice when z approaches 0 along the real axis, then z/z approaches (equals) 1. How-

ever, when z approaches 0 along the imaginary axis, then z/z approaches (equals) −1. Thus

lim
z→0

(z/z) doesn’t exist.

Lemma 2.2. Let f(z) = u(x, y) + iv(x, y), z0 = x0 + iy + 0 and w0 = a+ ib. Then

lim
z→z0

f(z) = w0 ⇐⇒


lim

(x,y)→(x0,y0)
u(x, y) = a,

and

lim
(x,y)→(x0,y0)

v(x, y) = b.

It is not difficult to check that the algebraic properties of the “complex” limit are similar

to that of the “real” limit. In the following we mention some of these properties.
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Lemma 2.3. If lim
z→z0

f1(z) = ℓ1 and lim
z→z0

f2(z) = ℓ2, then

lim
z→z0

(f1(z) ± f2(z)) = ℓ1 ± ℓ2, lim
z→z0

(f1(z)f2(z)) = ℓ1ℓ2, lim
z→z0

f1(z)

f2(z)
=
ℓ1
ℓ2
, (ℓ2 ̸= 0).

Remark 2.3 (Limits involving “∞”). Saying that z approaches the infinity point ∞, and

write z → ∞, means that |z| → +∞. We can handle limits involving “∞” by noting that

z → ∞ if and only if 1/z → 0. In particular, we have

lim
z→z0

f(z) = ∞ ⇐⇒ lim
z→z0

1

f(z)
= 0 and lim

z→∞
f(z) = ℓ⇐⇒ lim

z→0
f

(
1

z

)
= ℓ.

2.2 Continuity of a complex function

Definition 2.2. Let S ⊂ C and z0 ∈ S. We say that f : S → C is continuous at z0

if lim
z→z0

f(z) = f(z0). A function f is said to be continuous on S if it is continuous at

each point of S.

The continuity of a function f at a point z0 requires three actions that may not appear

in the definition: (1) Existence of lim
z→z0

f(z), (2) f is defined on z0 and (3) The equality

lim
z→z0

f(z) = f(z0).

Example 2.4. The function

f(z) =

{
z2 if z ̸= i,

0 if z = i,

is defined at z0 = i, and the limit lim
z→i

f(z) exists and equals −1. However, f(i) = 0 ̸= −1,

and hence f is not continuous at the point i.

From the properties of limits, we easily obtain the following properties of continuous

functions.

(a) f(z) = u(x, y)+ iv(x, y) is continuous at z0 = x0 + iy0 if and only if u(x, y) and v(x, y)

are both continuous at (x0, y0).

(b) If f and g are continuous at z0, then f ± g, fg and f/g (g(z0) ̸= 0) are all continuous

at z0.

(c) If f is continuous at z0, and h is a continuous function at f(z0), then the composition

h ◦ f is continuous at z0.

Example 2.5.
Lec. 06−−−−→ Let P and Q be complex polynomials (i.e., P,Q ∈ C[z]). Every polynomial

is continuous on C, and therefore, any rational function P/Q is continuous on C \ {z :

Q(z) = 0}.
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Definition 2.3. We say that a complex function f : S → C is uniformly continuous

on S if

∀ε > 0,∃δ > 0,∀(z1, z2) ∈ S2 : |z1 − z2| < δ =⇒ |f(z1) − f(z2)| < ε.

Example 2.6. Let’s show that f(z) = z2 is uniformly continuous on D(0, r), where r > 0.

−→ Let ε > 0 and z1, z2 ∈ D (be arbitrary). Then

|f(z1) − f(z2)| = |z21 − z22 | = |z1 + z2||z1 − z2|

≤ (|z1| + |z2|)|z1 − z2|

< 2r|z1 − z2|.

It is easy from this to see that by taking δ = ε/(2r), we obtain

∀ε > 0,∃δ =
ε

2r
> 0,∀z1, z2 ∈ D(0, r) : |z1 − z2| < δ =⇒ |f(z1) − f(z2)| < ε,

which shows that f is uniformly continuous on D(0, r), r > 0.

Uniform continuity implies continuity, but the inverse is not true as show by the following

example.

Example 2.7. The function f(z) = 1/z is clearly continuous on C \ {0}, while it is not

uniformly continuous there. (Check it!)

Theorem 2.1. Every continuous function f on a compact set S is bounded, and is

uniformly continuous there. Moreover, |f | attains its maximum and minimum in S.

Some properties of complex polynomials

The aim of this paragraph is to prove the fundamental theorem of algebra.

Lemma 2.4. If P is a non-constant polynomial with P (0) = 1, then for every ε > 0,

there exists ξ ∈ D(0, ε) such that |P (ξ)| < 1.

Proof. (1) Assume first that P (z) = 1 +amz
m, where m ≥ 1 and am ̸= 0. For any ε > 0, we

seek ξ ∈ D(0, ε) such that |1+amξ
m| < 1. To do so, we may choose ξ such that amξ

m = −α,

where 0 < α < 1, meaning ξ is an m-th root of −α/am. Then |1 + amξ
m| = 1 − α < 1. To

ensure ξ ∈ D(0, ε), we need |ξ| = m
√
α/|am| < ε, or equivalently, α < εm|am|. Summarizing,

for any ε > 0, let α satisfy 0 < α < min{1, |am|εm}, and choose ξ as an m-th root of −α/am.

Then |ξ| < ε and |P (ξ)| = |1 + amξ
m| = 1 − α < 1.

12



(2) Now assume P (z) = 1 + amz
m + · · · + anz

n, where m ≥ 1, n ≥ m + 1 and anam ̸= 0.

Here m is the least index for which am ̸= 0. We write P (z) in the form

P (z) = 1 + amz
m +R(z), ∀z ∈ C,

where R(z) = zm+1 (am+1 + · · · + anz
n−m−1), ∀z ∈ C. Let

M = min

{
1,

|am|
|am+1| + · · · + |an|

}
.

Then for 0 < |z| < M , we obtain

|R(z)| < |z|m+1 (|am+1| + · · · + |an|) < |am||z|m, (2.3)

Analogous to Case (1), for every ε > 0, let α satisfy 0 < α < min {M, |am|εm}, and choose

ξ as an m-th root of −α/am. Then |ξ| < ε and from (2.3) we have |R(ξ)| < |am||ξ|m = α.

Consequently, we obtain

|P (ξ)| ≤ |1 + amξ
m| + |R(ξ)| = 1−α + |R(ξ)|︸ ︷︷ ︸

<0

< 1

This completes the proof.

The following result is a consequence of Lemma 2.4.

Lemma 2.5. If P is a non-constant polynomial with P (z0) ̸= 0 for some z0 ∈ C,
then for every ε > 0, there exists ξ ∈ D(z0, ε) such that |P (ξ)| < |P (z0)|.

Proof. Define the polynomial Q by

Q(z) =
P (z + z0)

P (z0)
, ∀z ∈ C.

Then Q(0) = 1. Let ε > 0 be arbitrary. Then, by Lemma 2.4, there exists ξ∗ ∈ D(0, ε) such

that |Q(ξ∗)| < 1. Consequently, there exits ξ = ξ∗ + z0 ∈ D(z0, ε) such that

|P (ξ)| = |P (ξ∗ + z0)| = |P (z0)||Q(ξ∗)| < |P (z0)|.

This completes the proof.

Remark 2.4. These two results don’t apply for non-polynomial functions. For example,

the function f(z) = 1 + |z|2 is continuous on C with P (0) = 1. However, |f(z)| ≥ 1 for

every z ∈ C.

Theorem 2.2 (Fundamental Theorem of Algebra). Every non-constant complex poly-

nomial has at least one zero in C.
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Proof. Let P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0, where n ≥ 1 and an ̸= 0. For z ̸= 0,

we have

P (z) = anz
n

(
1 +

an−1

anz
+ · · · +

a1
anzn−1

+
a0
anzn

)
.

Since the second factor tends to 1 as z → ∞, there is an M > 0 for which∣∣∣∣1 +
an−1

anz
+ · · · +

a1
anzn−1

+
a0
anzn

∣∣∣∣ > 1

2
, for |z| ≥M.

Consequently, we obtain

|P (z)| ≥ |an|
2

|z|n, for |z| ≥M.

Clearly,
|an|
2

|z|n ≥ |P (0)| is equivalent to |z| ≥ n
√

2|P (0)|/|an|. Then, by setting

M∗ = max

{
M, n

√
2|P (0)|
|an|

}
,

we obtain

|P (z)| ≥ |P (0)|, for |z| ≥M∗. (2.4)

From Theorem 2.1, it follows that |P | attains its minimum in D(0,M∗), that is ∃z0 ∈
D(0,M∗) such that

|P (z)| ≥ |P (z0)|, for |z| ≤M∗. (2.5)

In particular, we have |P (0)| ≥ |P (z0)|. This with (2.4) yields

|P (z)| ≥ |P (z0)|, for |z| ≥M∗. (2.6)

Combining (2.5) and (2.6) results in

|P (z)| ≥ |P (z0)|, ∀z ∈ C. (2.7)

Assume that P (z0) ̸= 0. Then by Lemma 2.5 there exists ξ ∈ C such that |P (ξ)| < |P (z0)|,
which contradicts (2.7). Thus P (z0) = 0, which proves the theorem.

Remark 2.5. By factorization, every complex polynomial P of degree n ≥ 1 has exactly n

zeros (not necessarily distinct). In other words, P can always be written as

P (z) = an(z − z1)(z − z2) · · · (z − zn), ∀z ∈ C,

where an ̸= 0 and z1, z2, . . . , zn are the zeros of P .
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2.3 Complex differentiation (Holomorphic functions)

Lec. 07−−−−→ Throughout this section and the next one, D ⊂ C and U ⊂ C will always denote, respec-

tively, a domain and an open subset of C, unless otherwise specified.

Definition 2.4. A function f : U → C is said to be C-differentiable at a point z0 ∈ U

if the limit

lim
z→z0
z ̸=z0

f(z) − f(z0)

z − z0
exists,

and in this case, we denote it as f ′(z0) or df
dz

(z0). We refer to this limit as the complex

derivative of f at z0.

By making change of variable h = z − z0, one can write the derivative f ′(z0), whenever

it exists, in the form

f ′(z0) = lim
h→0
h̸=0

f(z0 + h) − f(z0)

h
.

Here h is a complex number, and it belongs to the set D − z0 := {z − z0 : z ∈ D}.

Using the (ε, δ) definition of the limits, one can easily deduce that a function is C-

differentiable at z0 if and only if there exists a constant c ∈ C such that

f(z0 + h) = f(z0) + ch+ o(h), as h→ 0, (2.8)

in which case, the constant c is the derivative of f at z0, that is, c = f ′(z0).

The following result is easy to establish.

Lemma 2.6. If f is C-differentiable at z0, then it is continuous at z0.

Remark 2.6. All the real differentiation laws (addition: or linearity, product, quotient,

and composition: or chain rule) still hold for complex differentiation.

We have the following known result.
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Lemma 2.7. Let f, g : U → C be C-differentiable at a point z0 ∈ U . Then

(i) Linearity: f + g is C-differentiable at z0 and (f + g)′(z0) = f ′(z0) + g′(z0).

(ii) Product: fg isC-differentiable at z0 and

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0).

(iii) Quotient: If g(z0) ̸= 0, then (f/g) is C-differentiable at z0 and(
f

g

)′

(z0) =
f ′(z0)g(z0) − f(z0)g

′(z0)

g(z0)2
.

(iv) Chain rule: If h : D (f(z0), ε) → C, where ε > 0, is C-differentiable at f(z0),

then h ◦ f is C-differentiable at z0 and

(h ◦ f)′ (z0) = f ′(z0)h
′ (f(z0)) .

Example 2.8. (1) Every constant function f is C-differentiable and f ′(z) = 0 for every

z ∈ C.

(2) The function f(z) = zn, n ∈ N, is C-differentiable at every z ∈ C. In addition,

f ′(z) = nzn−1, ∀z ∈ C. Indeed, we have for every z ∈ C and h ̸= 0,

f(z + h) − f(z)

h
=

(z + h)n − zn

h
=

n−1∑
k=0

(z + h)kzn−k−1 −→
h→0

nzn−1.

(3) By the differentiation rules, we deduce that every complex polynomial P (z) = anz
n +

· · · + a1z + a0, z ∈ C, n ≥ 1, is C-differentiable at every z ∈ C, and

P ′(z) = nanz
n−1 + · · · + 2a2z + a1, ∀z ∈ C.

Example 2.9. The function f(z) = Re(z) is not C-differentiable at all in C.

−→ Indeed, for z = x+ iy ∈ C and h = h1 + ih2 ̸= 0, we have

f(z + h) − f(z)

h
=

(x+ h1) − x

h1 + ih2
=

h1
h1 + ih2

. (2.9)

The limit of (2.9) doesn’t exist as h → 0, since the limit along real axis (h2 = 0) is 1, and

the limit along imaginary axis (h1 = 0) is 0. So, f is not C-differentiable at every z ∈ C.

Definition 2.5 (Holomorphic functions). A function f : U → C is said to be holo-

morphic at a point z0 ∈ U if f is C-differentiable at z0 and C-differentiable at every

point in some neighborhood of z0. We say that f is holomorphic on U ⊂ D if it is

holomorphic at every point z ∈ U .
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A function f : U → C being holomorphic at a point z0 ∈ U requires checking two

conditions: (1) f must be C-differentiable at z0, and (2) There exists ε > 0 such that

D(z0, ε) ⊂ U and f is C-differentiable at every z ∈ D(z0, ε).

Example 2.8 shows that every complex polynomial is holomorphic on C, while the func-

tion f(z) = Re(z) (Example 2.9) is not holomorphic on C.

It is clear from the definition that holomorphic functions are C-differentiable. However,

a function being C-differentiable at a point z0 doesn’t necessarily mean it is holomorphic at

that point. This is clarified by the following example.

Example 2.10. The function f(z) = |z|2 is C-differentiable at 0, but it is not holomorphic

at 0.

−→ We first have

lim
h→0
h̸=0

f(h) − f(0)

h
= lim

h→0
h̸=0

|h|2

h
= lim

h→0
h̸=0

h = 0.

So, f is C-differentiable at 0 with f ′(0) = 0. However, for every z ̸= 0 and h ̸= 0, we have

f(z + h) − f(z)

h
=

|z + h|2 − |z|2

h
= z

(
h

h

)
+ h+ z. (2.10)

We have seen (Example 2.3) that h/h doesn’t have a limit as h→ 0. Hence, limit of (2.10)

doesn’t exist as h → 0, which means that f is not C-differentiable at every z ∈ C \ {0}.

Consequently, the function f(z) = |z|2 is not holomorphic at 0.

Definition 2.6. A function that is holomorphic on C is called an entire function. For

example, polynomials are entire functions.

2.3.1 Complex partial derivatives.

Let S ⊂ C be any subset. By the homeomorphism C ∼= R2, the sets S and S̃ := {(x, y) ∈
R2 : x + iy ∈ S} ⊂ R2 can be regarded as representing the same collection of points.

Therefore, in what follows, any subset S of C may also be interpreted as a subset of R2,

and vice-versa. Since any complex function f : U → C can be viewed as a function

f : U → R2

(x, y) 7→ (u(x, y), v(x, y)),

where u(x, y) = Re f(z) and v(x, y) = Im f(z) for z = x + iy, we can naturally introduced

the partial derivatives for complex functions. Indeed, for z0 = x0 + iy0 ∈ U , we define the

complex partial derivatives (if they exist) of f at z0 by

∂ f

∂ x
(z0) := lim

h→0
h∈R∗

f((x0 + h) + iy0) − f(x0 + iy0)

h
= lim

h→0
h∈R∗

f(z0 + h) − f(z0)

h
,
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∂ f

∂ y
(z0) := lim

h→0
h∈R∗

f(x0 + i(y0 + h)) − f(x0 + iy0)

h
= lim

h→0
h∈R∗

f(z0 + i h) − f(z0)

h
.

It is easy to see that the above partial derivatives can be written in the form

∂ f

∂ x
(z0) =

∂ u

∂ x
(x0, y0) + i

∂ v

∂ x
(x0, y0),

∂ f

∂ y
(z0) =

∂ u

∂ y
(x0, y0) + i

∂ v

∂ y
(x0, y0),

(2.11)

where
∂ u

∂ x
,
∂ u

∂ y
,
∂ v

∂ x
and

∂ v

∂ y
are the usual partial derivatives of real functions of two variables.

Example 2.11. (1) The function f(z) = Re(z) is not C-differentiable at all in C, but its

partial derivatives exist at every point z ∈ C. Take z = x+ iy and h ∈ R∗. Then

f((x+ h) + iy) − f(z)

h
=

(x+ h) − x

h
= 1 −→

h→0
1,

which means
∂ f

∂ x
(z) = 1 for every z ∈ C. Similarly, we obtain

∂ f

∂ y
(z) = 0 for every z ∈ C.

(2) The function f(z) = |z|2 is C-differentiable at 0 but not holomorphic at all in C.

However, its complex partial derivatives exist at every z ∈ C with

∂ |z|2

∂ x
= 2x and

∂ |z|2

∂ y
= 2y, ∀z = x+ iy ∈ C.

2.3.2 Cauchy-Riemann equations

Lec. 08−−−−→ Theorem 2.3. If f : U → C is C-differentiable at a point z0 ∈ U , then

f ′(z0) =
∂ f

∂ x
(z0) = −i∂ f

∂ y
(z0). (2.12)

In particular, if f(x+ iy) = u(x, y) + iv(x, y) and z0 = x0 + iy0, then

∂ u

∂ x
(x0, y0) =

∂ v

∂ y
(x0, y0) and

∂ u

∂ y
(x0, y0) = −∂ v

∂ x
(x0, y0). (2.13)

The equations in (2.13), or the second equation in (2.12), are called the Cauchy-Riemann

Equations (CRE). Clearly, the CRE in (2.13) is equivalent to the second equation in (2.12).

Hence, it suffices to prove (2.12).

Proof of Theorem 2.3. The function f being C-differentiable at z0 means the quantity

f ′(z0) = lim
h→0
h̸=0

f(z0 + h) − f(z0)

h

exists as the limit exists as h approaches 0. When we take h approaching 0 along the real

axis, i.e., h = h1 ∈ R∗, we obtain

f ′(z0) =
∂ f

∂ x
(z0),
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and when we take h approaching 0 along the imaginary axis, i.e., h = ih2, where h2 ∈ R∗,

we obtain

f ′(z0) =
1

i

∂ f

∂ y
(z0),

from which we deduce (2.12).

Theorem 2.3 provides a necessary conditions for the C-differentiability, which play a role

in detecting the regions where a function is not C-differentiable. For example, we can see

that the function f(z) = Re(z) is not C-differentiable at all in C as ∂ f
∂ x

(z) ̸= −i∂ f
∂ y

(z) for

every z ∈ C, see Example 2.11(1). Meanwhile, Example 2.11(2) shows that the function

f(z) = |z|2 is not C-differentiable at every z ̸= 0. In this example, we have ∂ f
∂ x

(0) = 0 =

−i∂ f
∂ y

(0), and we proved earlier that f is C-differentiable at 0. However, in general, we may

ask the following question.

Question 2.1. If for a function f : U → C, the partial derivatives ∂f
∂x

(z0) and ∂f
∂y

(z0) exist at

a point z0 ∈ U , and ∂f
∂x

(z0) = −i∂f
∂y

(z0) (i.e., CRE hold), then is f necessarily C-differentiable

at z0?

The answer would be NO, in general, as shown by the following example.

Example 2.12. Let f be defined as

f(z) =


z

z
− z

z
, if z ̸= 0,

0, if z = 0.

Then the complex partial derivatives exist at 0 and they equal 0, which implies that CRE

hold at 0. However, f is not C-differentiable at 0 as it is not continuous at 0 (take z

approaching 0 along the curve of equation y = x).

Theorem 2.4 below provides sufficient conditions on f for Question 2.1 to hold true. We

first recall the following lemma from the classical real differential calculus.

Lemma 2.8. Let F : U → R, (x, y) 7→ F (x, y), be a function of two real variables

and let (x0, y0) ∈ U . If the partial derivatives ∂ F/ ∂ x and ∂ F/ ∂ y exist on an open

disc B ⊂ U centered at (x0, y0) and are continuous at (x0, y0). Then

F (x0 + h1, y0 + h2) = F (x0, y0) + h1
∂ F

∂ x
(x0, y0) + h2

∂ F

∂ y
(x0, y0) +R(h),

where (0, 0) ̸= h = (h1, h2) ∈ B − (x0, y0), and R : B − (x0, y0) → R is a continuous

function satisfying lim
h→(0,0)

|R(h)|/∥h∥2 = 0.
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Proof. Let (x0, y0) ∈ U , B ⊂ U be an open disc centered at (x0, y0), and let (0, 0) ̸= h =

(h1, h2) ∈ B − (x0, y0). We have

F (x0 + h1, y0 + h2) − F (x0, y0) = F (x0 + h1, y0 + h2) − F (x0, y0 + h2)

+ F (x0, y0 + h2) − F (x0, y0).
(2.14)

Since h ̸= (0, 0), we may assume that h1 ̸= 0. Define the function φ : [x0, x0 + h1] → R by

φ(x) = F (x, y0 +h2). Existence of ∂ F/ ∂ x on B implies the existence of φ′ on some interval

containing [x0, x0 + h1], and hence the continuity of φ on [x0, x0 + h1]. Therefore,by the

mean value theorem, we deduce that there exists θ ∈]0, 1[ such that φ(x0 + h1) − φ(x0) =

h1φ
′(x0 + θh1), that is,

F (x0 + h1, y0 + h2) − F (x0, y0 + h2) = h1
∂ F

∂ x
(x0 + θh1, y0 + h2). (2.15)

Since the partial ∂ F/ ∂ x is continuous at (x0, y0), we may write

∂ F

∂ x
(x0 + θh1, y0 + h2) =

∂ F

∂ x
(x0, y0) + r1(h),

where r1 : B − (x0, y0) → R is continuous and lim
h→(0,0)

r1(h) = 0. Plugging this into (2.15)

results in

F (x0 + h1, y0 + h2) − F (x0, y0 + h2) = h1
∂ F

∂ x
(x0, y0) + h1r1(h).

By using the same argument, we obtain

F (x0, y0 + h2) − F (x0, y0) = h2
∂ F

∂ y
(x0, y0) + h2r2(h),

where r2 : B−(x0, y0) → R is continuous and lim
h→(0,0)

r2(h) = 0. Substituting these equations

into (2.14) results in

F (x0 + h1, y0 + h2) − F (x0, y0) = h1
∂ F

∂ x
(x0, y0) + h2

∂ F

∂ y
(x0, y0) +R(h),

where R(h) = h1r1(h) + h2r2(h), which is clearly continuous on B − (x0, y0), and

|R(h)|
∥h∥2

≤ |h1|
∥h∥2

|r1(h)| +
|h2|
∥h∥2

|r2(h)| ≤ |r1(h)| + |r2(h)| −→ 0, as h→ (0, 0).

This completes the proof of the lemma.

Remark 2.7. (1) Lemma 2.8 asserts that F is differentiable (i.e., R2-differentiable) at the

point (x0, y0).

(2) Using the little-o notation, the function R(h) in Lemma 2.8 can be replaced with o(h).

Theorem 2.4. Let f : U → C be a complex function, and let z0 ∈ U . If the partial

derivatives ∂ f/ ∂ x and ∂ f/ ∂ y exist on an open disc B ⊂ U centered at z0 and are

continuous at z0, and if f satisfies CRE at z0, then f is C-differentiable at z0.

20



Proof. Let f(x+ iy) = u(x, y)+ iv(x, y), z0 = x0 + iy0 and let h = h1 + ih2 ∈ B−z0. Noting

that u and v satisfy the conditions of Lemma 2.8 on U , we obtain

u(x0 + h1, y0 + h2) = u(x0, y0) + h1
∂ u

∂ x
(x0, y0) + h2

∂ u

∂ y
(x0, y0) + o(h), h→ 0,

v(x0 + h1, y0 + h2) = v(x0, y0) + h1
∂ v

∂ x
(x0, y0) + h2

∂ v

∂ y
(x0, y0) + o(h), h→ 0.

By using these two equations together with CRE, we obtain

f(z0 + h) − f(z0)

h
=
u(x0 + h1, y0 + h2) − u(x0, y0)

h
+ i

v(x0 + h1, y0 + h2) − v(x0, y0)

h

=
1

h

(
h1
∂ u

∂ x
(x0, y0) + h2

∂ u

∂ y
(x0, y0)

)
+
i

h

(
h1
∂ v

∂ x
(x0, y0) + h2

∂ v

∂ y
(x0, y0)

)
+ o(1)

=
1

h

(
h1
∂ u

∂ x
(x0, y0) − h2

∂ v

∂ x
(x0, y0)

)
+
i

h

(
h1
∂ v

∂ x
(x0, y0) + h2

∂ u

∂ x
(x0, y0)

)
+ o(1)

=
∂ u

∂ x
(x0, y0) + i

∂ v

∂ x
(x0, y0) + o(1)

=
∂ f

∂ x
(z0) + o(1), h→ 0.

By letting h→ 0, we deduce that f is C-differentiable at z0 and f ′(z0) =
∂ f

∂ x
(z0).

Lec. 09−−−−→ We have the direct consequence of Theorem 2.4.

Corollary 2.5. Let f : U → C. If the partial derivatives exist and continuous on an

open subset B ⊂ U , and if f satisfies CRE at every point z ∈ B, then f is holomorphic

on B.

Corollary 2.6. If f : D → C is holomorphic on the domain D and f ′(z) = 0 for

every z ∈ D, then f is constant on D.

The proof of this corollary follows directly from the following equivalences:

f ′ ≡ 0 ⇐⇒ ∂ u

∂ x
=
∂ u

∂ y
=
∂ v

∂ x
=
∂ v

∂ y
= 0 ⇐⇒ u ≡ const. & v ≡ const. ⇐⇒ f ≡ const.

Remark 2.8. (1) Corollary 2.6 is true only in case of D is connected. For example, the

function

f(z) =

1 if |z| < 1

2 if |z| > 2

has zero derivative, but it is not constant, as f is defined on a union of two disjoint open

subsets.

(2) If f, g : D → C are two holomorphic functions on a domain D, and if f ′(z) = g′(z) for

every z ∈ D, then there exists c ∈ C for which f(z) = g(z) + c for every z ∈ D. This is a

simple consequence of Corollary 2.6.
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Remark 2.9 (General Definition). Let S ⊂ C be a subset with
◦
S ̸= ∅. A function f : S → C

is said to be C-differentiable on a subset (not necessarily open) K ⊂ S if it is C-differentiable

at each point z ∈ K. Moreover, f is said to be holomorphic on K if there exists and open

subset U ⊃ K (containing K) and f is holomorphic on U .

Example 2.13. The function f : C → C defined by f(x + iy) = x3 + 3xy2 − 3x +

i (y3 + 3x2y − 3y) is C-differentiable on

K = {z ∈ C : Re(z) = 0} ∪ {z ∈ C : Im(z) = 0}.

However, f is not holomorphic on this K.

Proof. We have f(x+ iy) = u(x, y) + iv(x, y), where

u(x, y) = x3 + 3xy2 − 3x and v(x, y) = y3 + 3x2y − 3y,

and we have 
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

 =


3x2 + 3y2 − 3 6xy

6xy 3x2 + 3y2 − 3

 .
Clearly all the partial derivatives of u and v are continuous on R2, and therefore, f is C-

differentiable at z = x+ iy if and only if CRE hold at z. Well, we have ∂u/∂x = ∂v/∂y on

R2. However, ∂u/∂y = −∂v/∂x holds iff xy = 0, i.e., either x = 0 or y = 0. Hence, f is

C-differentiable on

K = {z ∈ C : Re(z) = 0} ∪ {z ∈ C : Im(z) = 0}.

This subset is the “Largest” subset where f is C-differentiable, since there is no other points

where the CRE hold.

The function f is not holomorphic on K. Indeed, take any point z0 ∈ K, and take any

neighborhood U of z0, and we can always find points z1 ∈ U \K, at which the function f

is not C-differentiable (because CRE don’t hold true).

2.4 Power series (Analytic functions)

A complex power series about a point z0 ∈ C is a series of complex functions of the form∑
n≥0

cn(z − z0)
n, (2.16)

where cn ∈ C for every integer n ≥ 0, and z is a complex number in a suitable subset of C.

Note that (2.16) is absolutely convergent at z0, and its value (sum) at z0 would be c0 (So,
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it is always possible to find a subset where a power series is well defined). We recall the

following result, which specifies the exact domain in which a given power series absolutely

converges.

Theorem 2.7. For a power series (2.16) there exists a unique R ∈ [0,+∞] such

that (2.16) is absolutely convergent for |z− z0| < R (whenever this has meaning) and

divergent for |z − z0| > R. This R is called the radius of convergence of the series

(2.16). The radius of convergence R can be determined by the Cauchy-Hadamard

formula

R = lim inf
n→+∞

1
n
√
|cn|

,

with “the convention 1/0 = ∞”.

Recall that if (2.16) has the radius of convergence R > 0, then for every r ∈]0, R[,

the series (2.16) is normally convergent in D(z0, r). Therefore, (2.16) defines a continuous

complex function f : D(z0, R) → C defined by f(z) =
+∞∑
n=0

cn(z−z0)n for every z ∈ D(z0, R),

which called the sum of the power series (2.16) in D(z0, R). Next result reveals the C-

differentiability of f on D(z0, R).

Theorem 2.8. Consider the power series (2.16) with radius of convergence R > 0,

and let f(z) =
+∞∑
n=0

cn(z − z0)
n for every z ∈ D(z0, R). Then f is holomorphic on

D(z0, R) and

f ′(z) =
+∞∑
n=1

ncn(z − z0)
n−1, ∀z ∈ D(z0, R). (2.17)

Proof.
Lec. 10−−−−→ By the Cauchy-Hadamard formula, the power series

∑
n≥1

ncn(z−z0)n−1 (2.17) has the

radius of convergence

R′ = lim inf
n→+∞

1
n
√
n|cn|

= lim inf
n→+∞

1
n
√
|cn|

= R.

Assume without loss of generality that z0 = 0, as we can apply the same argument to the

function g(z) = f(z + z0), if z0 ̸= 0. We proceed to prove (2.17). Let z ∈ D(0, R), h ∈ C∗

such that z + h ∈ D(0, R). Then

f(z + h) − f(z)

h
−

+∞∑
n=1

ncnz
n−1 =

+∞∑
n=0

cn
(z + h)n − zn

h
−

+∞∑
n=1

ncnz
n−1. (2.18)

Let ξ ∈ D(0, R) such that |z| < |ξ|, and take h so that |h| ≤ |ξ| − |z| (particularly we have

|z + h| ≤ |ξ|). Hence,∣∣∣∣cn (z + h)n − zn

h

∣∣∣∣ = |cn|

∣∣∣∣∣
n−1∑
k=0

(z + h)kzn−k−1

∣∣∣∣∣ ≤ n|cn||ξ|n−1.
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Since ξ ∈ D(0, R), it follows that
∑
n≥1

n|cn||ξ|n−1 is convergent, and hence, the first series

on the right-hand side of (2.18) is uniformly convergent for h in D(0, |ξ| − |z|). The second

series on the right-hand side is already convergent. Now for given ε > 0, there exists an

integer N ≥ 1 such that, for every h ∈ D(0, |ξ| − |z|), we have∣∣∣∣∣
+∞∑

n=N+1

cn
(z + h)n − zn

h
−

+∞∑
n=N+1

ncnz
n−1

∣∣∣∣∣ ≤ ε

2
.

This and (2.18) give, for every h ∈ D(0, |ξ| − |z|),∣∣∣∣∣f(z + h) − f(z)

h
−

+∞∑
n=1

ncnz
n−1

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
n=0

cn
(z + h)n − zn

h
−

N∑
n=1

ncnz
n−1

∣∣∣∣∣+
ε

2
.

By letting h→ 0, we have

N∑
n=0

cn
(z + h)n − zn

h
−→

N∑
n=1

ncnz
n−1,

and consequently, there exists δ > 0, such that for every h satisfying |h| < min{δ, |ξ| − |z|},

we have ∣∣∣∣∣
N∑
n=0

cn
(z + h)n − zn

h
−

N∑
n=1

ncnz
n−1

∣∣∣∣∣ < ε

2
.

Thus, for |h| < min{δ, |ξ| − |z|}, we have∣∣∣∣∣f(z + h) − f(z)

h
−

+∞∑
n=1

ncnz
n−1

∣∣∣∣∣ < ε.

which means that

f ′(z) =
+∞∑
n=1

ncnz
n−1. (2.19)

Since this true for every z ∈ D(0, R), it follows that f is holomorphic on D(0, R) and f ′ has

the form (2.19).
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By simple induction, we obtain the following consequence of Theorem 2.8.

Theorem 2.9. Consider the power series (2.16) with radius of convergence R > 0,

and let f(z) =
+∞∑
n=0

cn(z − z0)
n for every z ∈ D(z0, R). Then for every integer k ≥ 1,

the function f (k−1) (the (k − 1)th derivative) is holomorphic on D(z0, R) and

f (k)(z) =
+∞∑
n=k

n!

(n− k)!
cn(z − z0)

n−k, ∀z ∈ D(z0, R).

Remark 2.10. From this result, we deduce the following relation between the coefficients

of a power series, and the derivatives of its sum,

cn =
f (n)(z0)

n!
, ∀n ≥ 0.

Definition 2.7 (Analytic functions). Let f : U → C be a complex function, and let

z0 ∈ U . We say that f is analytic at z0 if there exists r > 0 such that D(z0, r) ⊂ U

and f is the sum of a power series about z0 that is absolutely convergent in D(z0, r).

Moreover, we say that f is analytic on U if it is analytic at each point z ∈ U .

Example 2.14 (Exercise). If a power series
+∞∑
n=0

cnz
n has a radius of convergence R > 0,

then its sum f(z) =
+∞∑
n=0

cnz
n is analytic on D(0, R).

Remarks.

(1) From Theorem 2.8, we see that if f : U → C is analytic at z0 ∈ U , then it is holomorphic

at z0. Consequently, if f is analytic on U , then it is holomorphic on U .

Analyticity =⇒ Holomorphicity.

Analytic functions are typical examples of holomorphic functions. In the following

sections, we will see that holomorphic functions are, in fact, also analytic.

(2) If f is analytic on U , then all its derivatives f (k), k ≥ 1, are also analytic on U .

(3) From Remark 2.10, every analytic function f : U → C has, around every ξ ∈ U , the

representation

f(z) =
+∞∑
n=0

f (n)(ξ)

n!
(z − ξ)n, z ∈ D(ξ, Rξ),

for some Rξ > 0 depending on ξ, such that D(ξ, Rξ) ⊂ U .
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Some properties of analytic functions

A subset Z ⊂ D is called discrete in the domain D if it has no accumulation point in D.

Theorem 2.10. Let f : D → C be analytic on the domain D, and let (zk)k≥1 ⊂ D be

a sequence of distinct complex numbers converging to z0 ∈ D. If f(zk) = 0 for every

k ≥ 1, then f = 0 on D.

Lec. 11−−−−→ TO BE CONTINUED!

3 Elementary functions

Lec. 12−−−−→ 3.1 The complex exponential function

Consider the power series ∑
n≥0

zn

n!
.

By Cauchy-Hadamard formula we have

R = lim inf
n→+∞

n
√
n! = +∞,

which is the radius of convergence of the above power series, and this means that the function

E(z) =
+∞∑
n=0

zn

n!
, ∀z ∈ C,

defines an analytic (and hence a holomorphic) function on C, i.e., an entire function.Moreover,

its derivative satisfies

E ′(z) =
+∞∑
n=1

nzn−1

n!
=

+∞∑
n=0

zn

n!
= E(z), ∀z ∈ C. (3.1)

Note that when z = x ∈ R, we clearly have E(x) = ex. What can be said about E(iy),

where y ∈ R? In fact, for z = iy, where y ∈ R, we have∑
n≥0

(iy)n

n!
=

∑
n is even

(iy)n

n!
+
∑

n is odd

(iy)n

n!

=
∑
n=2s
s≥0

(−1)sy2s

(2s)!
+ i

∑
n=2s+1
s≥0

(−1)sy2s+1

(2s+ 1)!
= cos(y) + i sin(y).

(3.2)

Thus

E(iy) = cos(y) + i sin(y), ∀y ∈ R. (3.3)
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The next natural question concerns the algebraic form of E(z), but first, we shall prove the

property

E(z1 + z2) = E(z1)E(z2), ∀z1, z2 ∈ C. (3.4)

This can be done by using the Cauchy product as follows:

E(z1 + z2) =
∑
n≥0

(z1 + z2)
n

n!
=
∑
n≥0

1

n!

n∑
k=0

(
n

k

)
zk1z

n−k
2

=
∑
n≥0

n∑
k=0

(
zk1
k!

)(
zn−k2

(n− k)!

)

=

(∑
n≥0

zn1
n!

)(∑
n≥0

zn2
n!

)
= E(z1)E(z2).

Plugging z = x+ iy into (3.4) and using (3.3), we obtain

E(x+ iy) = E(x)E(iy) = ex(cos(y) + i sin(y)). (3.5)

From this, one can easily check that E(z) satisfies CRE. In addition, (3.5) shows that

|E(z)| = eRe(z) > 0 for any z ∈ C. Hence, E(z) never vanishes.

The restriction of E to the real line is nothing but the real exponential function. We then

define the complex exponential function, denoted by exp(z) or more practical form ez to be

the function E(z) for every z ∈ C. From this definition, we will have the famous Euler’s

formula

eiy = cos(y) + i sin(y), ∀y ∈ R.

Hence (3.5) yields

ez = ex(cos(y) + i sin(y)), ∀z = x+ iy ∈ C.

Note that ez is the unique solution to the differential equation (3.1) with the condition

f(0) = 1.

The complex exponential function is periodic of the main period 2πi, and we have

ez+2kπi = eze2kπi = ez, ∀z ∈ C, ∀k ∈ Z.

In contrast to the real case, the complex exp is not injective, and we have

ez1 = ez2 =⇒ ∃k ∈ Z : z1 = z2 + 2kπi.

Exercise 3.1. Solve in C the equation ez = −2.

Solution. By setting z = x+ iy, the equation is equivalently written asex cos y = −2

ex sin y = 0
.
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Solving the second equation results in y = kπ, k ∈ Z. By substituting this into the first

equation, we obtain ex = (−1)k+12, k ∈ Z, but this is true only when k = 2j + 1, j ∈ Z.

In this case, we obtain x = ln 2 and y = (2j + 1)π, j ∈ Z. Therefore, the solutions of the

equation are zj = ln 2 + i(2j + 1)π, j ∈ Z.

Exercise 3.2. Show that, for every z ∈ C, the sequence
{

(1 + z/n)n
}
n∈N

converges to ez,

that is,

ez = lim
n→+∞

(
1 +

z

n

)n
.

3.2 Trigonometric and hyperbolic functions

Similar to the real case, we define the complex cosine and the complex sine in terms of the

power series’ as follows

cos(z) =
∑
n≥0

(−1)n
z2n

(2n)!
and sin(z) =

∑
n≥0

(−1)n
z2n+1

(2n+ 1)!
, ∀z ∈ C.

One can easily check that both of these functions are analytic (and hence holomorphic)

on C, i.e., they are entire functions. By replacing y with z and −z in (3.2), we obtain,

respectively,

eiz = cos(z) + i sin(z) and e−iz = cos(z) − i sin(z), ∀z ∈ C.

The first formula is Euler’s formula for complex numbers. From these two formulas, we

obtain the exponential form of cos and sin:

cos(z) =
eiz + e−iz

2
and sin(z) =

eiz − e−iz

2i
, ∀z ∈ C. (3.6)

The derivatives of cos and sin satisfy

d cos(z)

dz
= − sin(z) and

d sin(z)

dz
= − cos(z), ∀z ∈ C.

By the periodicity of the complex exp, we deduce that cos and sin are periodic of the main

period 2π.

Some properties.

P1 All trigonometric identities remain valid for complex numbers. To mention a few

examples,

cos2(z) + sin2(z) = 1, ∀z ∈ C,

cos(z1 ± z2) = cos(z1) cos(z2) ∓ sin(z1) sin(z2), ∀z1, z2 ∈ C,

sin(z1 ± z2) = sin(z1) cos(z2) ± cos(z1) sin(z2), ∀z1, z2 ∈ C.
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P2 The sets of zeros of cos and sin are Z(cos) =
{π

2
+ kπ : k ∈ Z

}
and Z(sin) = {kπ : k ∈ Z},

respectively. Indeed, for example for the zeros of cos, we have

cos(z) = 0 =⇒ eiz = −e−iz = e−iz−iπ =⇒ iz = −iz−iπ+2kπi, k ∈ Z =⇒ z ∈ Z(cos).

The converse inclusion is obvious. (check it for sin!) Here, we mention the complex

tangent function, which is defined by

tan(z) =
sin(z)

cos(z)
, ∀z ∈ C \ Z(cos).

P3 Recall that for every t ∈ R, cosh(t) =
et + e−t

2
and sinh(t) =

et − e−t

2
. From (3.6), we

deduce for every y ∈ R,

cos(iy) = cosh(y) and sin(iy) = i sinh(y).

Consequently, we may apply P1 to show, for every x+ iy ∈ C, that

cos(x+ iy) = cos(x) cosh(y) − i sin(x) sinh(y),

sin(x+ iy) = sin(x) cosh(y) + i cos(x) sinh(y).

P4 It follows from P3 that, for every x+ iy ∈ C,

| cos(x+ iy)|2 = cos2(x) + sinh2(y),

| sin(x+ iy)|2 = sin2(x) + sinh2(y).

In particular, cos and sin are not bounded on vertical strips. However, still bounded

on horizontal strips.

Exercise 3.3. Solve in C the equation cos(z) = 2.

Solution. The above equation is equivalently written as eiz + e−iz = 4, that is,

(eiz)2 − 4eiz + 1 = 0.

Clearly, eiz solves the w2 − 4w + 1 = 0, which has the two real solutions 2 ±
√

3. Hence,

eiz = 2 ±
√

3. Since 2 ±
√

3 > 0, we can write eiz = eln(2±
√
3), which implies that iz =

ln(2 ±
√

3) + 2kπi, k ∈ Z. Thus z = 2kπ − i ln(2 ±
√

3), k ∈ Z. We can easily check that

these are the solutions of the equation.

Note. We can use the same method as in Exercise 3.1 .

The hyperbolic functions cosh and sinh are now defined by

cosh(z) = cos(iz) and sinh(z) = −i sin(iz), ∀z ∈ C.

In addition tanh(z) = −i tan(iz) for every z ∈ C. Analogously to the trigonometric func-

tions, the hyperbolic identities still hold for complex numbers. For example, cosh2(z) −
sinh2(z) = 1 for every z ∈ C.

Exercise 3.4. Find the algebraic form of cosh and sinh.
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3.3 Complex logarithmic function

Lec. 13−−−−→ In the real case of the exponential function y = ex, x ∈ R, we know that its inverse function

is x = ln y, y > 0. This is well-defined as exp : R →]0,+∞[, exp(x) = ex, is bijective. Let

us now investigate the complex case. To do so, for a given z ∈ C \ {0}, let us solve, for w,

the equation

z = ew. (3.7)

Set w = u+iv, where u, v ∈ R don’t vanish at the same time. Then the equation in question

will written as eueiv = |z|eiθz , where θz is an argument of z. Therefore,eu = |z|

v = θz + 2kπ, k ∈ Z.

The first equation involves real variables only, and solving it for u yieldsu = ln |z|

v = θz + 2kπ, k ∈ Z.

From this, we deduce that the solutions of (3.7) are given by

wk = ln |z| + iθz + 2kπi, k ∈ Z.

Note that there are infinitely many solutions of (3.7) for any given z ∈ C \ {0}. Hence, if

we define a multi-valued function to be the “inverse function” to the exponential function,

then it would be analogous to the real logarithmic function.

Definition 3.1 (The complex logarithm). Let z ∈ C \ {0}. The complex logarithm

is a multi-valued function, denoted by log(z), and is defined by

log(z) = ln |z| + iθz + 2kπi, k ∈ Z,

where θz is an argument of z. This equality indicates that all possible values solving

equation (3.7), for any given nonzero z, are collectively represented by the single

notation log(z). In particular, elog(z) = z for any nonzero z.

The equality in the definition also represents all possible values that the multi-valued

function log(z) may assume for a given z ̸= 0. Note that for any z ̸= 0, elog(z) assumes only

one value, which is z. Hence the expression elog(z) is a single-values function.

Since θz ≡ Arg(z) mod (2π), we can replace θz with Arg(z) in Definition 3.1, that is,

the complex logarithm of z ∈ C \ {0} would be defined by

log(z) = ln |z| + iArg(z) + 2kπi, k ∈ Z.
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Recall that Arg(z) is the principal value of the argument, that is, the value of the argument

that lies within the interval ] − π, π].

Example 3.1. We have

log(i) = ln |i| + iArg(i) + 2kπi =

(
1

2
+ 2k

)
πi, k ∈ Z.

Some properties. For z, z1, z2 ∈ C \ {0} and for an integer n ∈ Z \ {0}, we have

L1 log(z1z2) = log(z1) + log(z2).

L2 log(zn) = n log(z).

L3 log(ez) = z + 2kπi, k ∈ Z.

3.3.1 The principal value of the complex logarithm

Definition 3.2. The principal value (the principal branch) of the complex logarithm

is a single-valued function, denoted by Log(z) (with uppercase L), and is defined by

Log(z) = ln |z| + iArg(z), ∀z ∈ C \ {0}.

In particular, Log(x) = ln(x) for every x > 0.

The properties of log(z) do not necessarily work for Log(z). Take for example, z1 = z2 =

−1. Then Log(z1) = Log(z2) = Log(−1) = ln | − 1| + iArg(−1) = πi. On the other hand,

we have Log(z1z1) = Log(1) = ln(1) = 0. So, Log(z1z2) ̸= Log(z1) + Log(z2).

Proposition 3.1. The exponential function f(z) = ez is injective in the strip

S = {z ∈ C : −π < Im(z) ≤ π} ,

and its inverse is f−1(z) = Log(z) for every z ̸= 0.

Proof. The fact that ez is injective in S follows from the properties of the exponential

function (the periodicity of period 2πi). From one side we have eLog(z) = z, for every z ̸= 0.

On the other hand, for every z ∈ S, we have Im(z) ∈] − π, π], and therefore,

Log ez = ln |ez| + iArg(ez) = Re(z) + i Im(z) = z, ∀z ∈ S.

This shows that f : S → C \ {0} is bijective, and f−1(z) = Log(z).
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Theorem 3.2. The principal branch Log(z) of the complex logarithm is holomorphic

on the slit complex plane C \ {z : Im(z) = 0,Re(z) ≤ 0}, and there we have

dLog(z)

dz
=

1

z
.

Proof. The proof will be discussed in the tutorial sessions.

Exercise 3.5. Determine the domain of holomorphicity of the function f(z) = Log(3z− i).

Solution. From Theorem 3.2, f is holomorphic for 3z − i /∈ {z : Im(z) = 0,Re(z) ≤ 0}. We

have

Im(3z − i) = 0 and Re(3z − i) ≤ 0 ⇐⇒ Im(z) =
1

3
and Re(z) ≤ 0.

Thus f is holomorphic on C \
{
z : Im(z) =

1

3
,Re(z) ≤ 0

}
.

3.3.2 Complex powers

Let α ∈ C and z ∈ C \ {0}. Then zα is, in general, a multi-valued function defined by

zα = eα log(z). In particular, if α = n ∈ N, then zn = en log(z) = en ln |z|+inArg(z)+2nkπi =

en ln |z|+inArg(z) = enLog(z), which is a single-valued function.

For α1, α2 ∈ C and z ̸= 0 we have (as multi-valued functions)

zα1zα2 = zα1+α2 ,
zα1

zα2
= zα1−α2 , (zα1)k = zkα1 , k ∈ Z.

For z1, z2 ∈ C \ {0} and α ∈ C we have

(z1z2)
α = zα1 z

α
2 .

In general, (zα1)α2 ̸= zα1α2 . For example[
(−i)2

]i
= (−1)i = ei log(−1) = e−(2k+1)π, k ∈ Z,

(−i)2i = e2i log(−i) = e(1−4k)π, k ∈ Z.

The principal value (the principal branch) of zα is a single-valued function given by

eαLog(z). For example, the principal value of (−i)i is eiLog(−i) = eπ/2. The principal value of

zα is holomorphic on the slit plane C \ {z : Im(z) = 0,Re(z) ≤ 0}, and there we have

dzα

dz
= αzα−1.

A particular case of the complex power function is the nth root of a complex number

z ̸= 0. Let n ≥ 1 be an integer, then the nth root of z ̸= 0 is given by

z1/n = exp

{
ln |z|
n

+ i
Arg(z)

n
+

2kπ

n
i

}
, k ∈ Z.
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Note that z1/n is a multi-valued function with exactly n values for each z ̸= 0 corresponding

to the cases k = 0, 1, . . . , n− 1. We say that z1/n is n-valued function. The principal value

of z1/n is given by n
√
|z|eiArg(z) for every z ̸= 0.

By choosing the principal value of zα, the identity (z1z2)
α = zα1 z

α
2 may not hold. Take

for example α = 1/2. Then the principal value of (−1)1/2 is eiπ/2 and the principal value of

(i)1/2 is eiπ/4. However, the principal value of (−i)1/2 is e−iπ/4 ̸= e3iπ/4 = (−1)1/2(i)1/2 .
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4 Complex Integration

4.1 Complex-valued functions of real variable

Lec. 14−−−−→ Definition 4.1. Let φ : [a, b] → C, where Re(φ) and Im(φ) are integrable on [a, b].

Then φ is integrable on [a, b] and∫ b

a

φ(t) d t =

∫ b

a

u(t) d t+ i

∫ b

a

v(t) d t.

Remark 4.1. (1) Clearly, the integration of complex-valued functions of real variable is

a “linear operator”.

(2) From the fundamental theorem of calculus for the real-valued functions, we easily

deduce the the result: If φ : [a, b] → C is integrable, and if there exists a differentiable

function Φ : [a, b] → C such that Φ′ = φ, then∫ b

a

φ(t) d t = Φ(b) − Φ(a).

Lemma 4.1 (Triangle inequality). Let φ : [a, b] → C be integrable. Then∣∣∣∣∫ b

a

φ(t) d t

∣∣∣∣ ≤ ∫ b

a

|φ(t)| d t.

Proof. Since the quantity
∫ b
a
φ(t) d t is complex, we may write it in the polar form, i.e.,∫ b

a

φ(t) d t = ρeiθ, ρ >≥ 0, θ ∈ R.

Therefore, ∫ b

a

e−iθφ(t) d t = ρ.

The LHS of this equality is real, and hence∫ b

a

Re
(
e−iθφ(t)

)
d t = ρ.

By making use of the triangle inequality for real-valued functions, we deduce∣∣∣∣∫ b

a

φ(t) d t

∣∣∣∣ = ρ =

∣∣∣∣∫ b

a

Re
(
e−iθφ(t)

)
d t

∣∣∣∣ ≤ ∫ b

a

∣∣Re
(
e−iθφ(t)

)∣∣ d t ≤ ∫ b

a

|φ(t)| d t.

4.2 Complex-valued functions of complex variable

Let γ be a smooth curve with initial point ξ1 and terminal point ξ2. For an integer n ≥ 1

define Pn = {z0, z1, . . . , zn} a set of distinct points lying on γ to be a partition of γ if z0 = ξ1
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and zn = ξ2 and zk−1 precedes zk for every k = 1, . . . , n. Denote by µ(Pn) the mesh size of

the partition Pn, defined by

µ(Pn) = max

{
length

γ
(zk−1zk) : k = 1, . . . , n

}
,

where length
γ

(zk−1zk) is the arc-length along γ between zk−1 and zk. Clearly

lim
n→+∞

µ(Pn) = 0.

Let f : S → C be defined on an open subset S ⊂ C. Let γ be a smooth curve in S.

Then, a Riemann sum of f corresponding to a partition Pn = {z0, z1, . . . , zn} is any sum

given by

S(f, Pn) =
n∑
k=1

f(ck)(zk − zk−1),

where ck is any point lying on γ between zk−1 and zk (may take one of the values zk−1, zk),

for every k = 1, . . . , n.

Definition 4.2. Let f : S → C be defined on an open subset S, and let γ be a smooth

curve in S. We say that f is integrable along γ if there exists ℓ ∈ C such that for

every ε > 0, there exits a partition Pn = {z0, z1, . . . , zn} of γ, where lim
n→+∞

µ(Pn) = 0,

for which |S(f, Pn) − ℓ| < ε. The number ℓ is called the integral (path-integral) of f

along γ, and is denoted by

ℓ =

∫
γ

f(z) d z.

In this case (f is integrable along γ), we have∫
γ

f(z) d z = lim
n→+∞

n∑
k=1

f(zk−1)(zk − zk−1),

where the Riemann sum on the RHS is taken over all partitions Pn of γ, and the

points ck are replaced with zk−1.

Now, let z = γ(t), t ∈ [a, b], be any parametrization of the curve γ, and let P̃n =

{t0, t1, . . . , tn} be a subdivision of [a, b] corresponding to Pn = {z0, z1, . . . , zn}, i.e., γ(tk) = zk

for every k = 0, 1, . . . , n. The Riemann sum S(f, Pn) can be “approximated” by

S̃(P̃n) =
n∑
k=1

f(γ(tk−1))γ
′(tk−1)(tk − tk−1),

for sufficiently large n. Notice that this is a Riemann sum for the function f(γ(t))γ′(t)

on the interval [a, b]. From this, we see analogously to te real case that the continuity is

sufficient for the integrability.
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Definition 4.3. Let f : D → C be continuous on an open subset S. Let γ be a

smooth curve in S, and let z = γ(t), t ∈ [a, b] be any parametrization of γ. Then the

integral of f along γ is given by∫
γ

f(z) d z =

∫ b

a

f(γ(t))γ′(t) d t.

Remark 4.2. (1) Let Γ = γ1 + γ2 + . . .+ γs be a contour in D, where γj, j = 1, . . . , s, are

the smooth components of Γ. Then we can define the integral along Γ by the relation∫
Γ

=

∫
γ1

+

∫
γ2

+ · · · +

∫
γs

.

(2) The integral along γ doesn’t depend on the parametrization of γ. Indeed, if γ1 : [a, b] →
C and γ2 : [c, d] → C are two parametrizations of γ, then there exists a strictly increasing

bijection ψ : [a, b] → [c, d] such that γ1(t) = γ2(ψ(t)), ∀t ∈ [a, b]. Hence,∫ d

c

f(γ2(s))γ
′
2(s) d s

s=ψ(t)
=

∫ b=ψ−1(d)

a=ψ−1(c)

f(γ1(t)) γ
′
2(ψ(t))ψ′(t)︸ ︷︷ ︸

=γ′1(t)

d t =

∫ b

a

f(γ1(t))γ
′
1(t) d t.

(3) We can directly deduce that the integral along a contour Γ is a ”linear operator”. In

addition, the integral along the opposite contour −Γ is given by∫
−Γ

= −
∫
Γ

.

Example 4.1. According to the values of n ∈ Z, Evaluate the integral
∫
γ
(z − a)n d z along

the positively oriented circle γ : |z − a| = r > 0.

Lec. 15−−−−→ Notation. If Γ is a positively oriented closed contour, then we often use the notation

∮
Γ

for the integral. In addition, when we write, e.g.,

∮
|z−a|=r

, we mean the integral along the

circle of the equation |z − a| = r.

Recall. Let z = γ(t), t ∈ [a, b], be a parametrization of a smooth curve γ. Then the

arclength of γ is given by

ℓ(γ) =

∫ b

a

|γ′(t)| d t =

∫
γ

| d z|. (4.1)

The second inequality follows from d z = γ′(t) d t, which yields | d z| = |γ′(t)| d t (called: the

arclength measure).

Let Γ = γ1 + γ2 + . . .+ γs be a contour, where γj, j = 1, . . . , s, are the smooth components

of Γ. Then the arclength of Γ is given by

ℓ(Γ) =
s∑
j=1

ℓ(γj). (4.2)
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Theorem 4.1. Let f : S → C be continuous on an open subset S, and let γ be a

smooth curve in S. Then ∣∣∣∣∫
γ

f(z) d z

∣∣∣∣ ≤ ∫
γ

|f(z)|| d z|.

Proof. Let z = γ(t), t ∈ [a, b], be any parametrization of γ. Then making use of Lemma 4.1

results in ∣∣∣∣∫
γ

f(z)

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t) d t

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))||γ′(t)| d t =

∫
γ

|f(z)|| d z|.

Corollary 4.2. If under the conditions of Theorem 4.1 we have in addition that

|f(z)| ≤M for every z ∈ γ, then∣∣∣∣∫
γ

f(z) d z

∣∣∣∣ ≤Mℓ(γ).

Remark 4.3. Using (4.2), Corollary 4.2 holds true for γ as a contour.

Exercise 4.1. Find an upper bound for the modulus of the integral∮
|z|=4

ez

z + 1
d z.

Solution. The length of the circle γ = {z : |z| = 4} is ℓ(γ) = 8π. We have

|z + 1| ≥ |z| − 1 = 4 − 1 = 3 and |ez| = eRe(z) ≤ e|z| = e4.

Therefore, ∣∣∣∣∮
|z|=4

ez

z + 1
d z

∣∣∣∣ ≤ ∮
|z|=4

∣∣∣∣ ez

z + 1

∣∣∣∣ | d z| ≤ e4

3

∮
|z|=4

| d z| =
8πe4

3
.

4.2.1 Fundamental Theorem of Integration

Definition 4.4 (Primitive). Let f : S → C be a continuous function on an open

subset S ⊂ C. A holomorphic function F : S → C is said to be a primitive of f in S

if F ′(z) = f(z) for every z ∈ S.

Theorem 4.3. If f is continuous on an open subset S ⊂ C, and if it has a primitive

F in S, then ∫
Γ

f(z) d z = F (z1) − F (z2),

for every z1, z2 ∈ S and for every contour Γ in S joining z1 to z2. In particular, if Γ

is a closed contour in S, then ∫
Γ

f(z) d z = 0.
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Proof. Let z1, z2 ∈ S, and let γ be any smooth contour in S joining z1 to z2. In case of

γ being a contour is an obvious modifications. Consider any parametrization z = γ(t),

t ∈ [a, b], of γ. Since F is a primitive of f in S, it follows that the function F (γ) is a

primitive of F ′(γ)γ′ in [a, b]. Then, applying the fundamental theorem of integration for

real variable, we deduce the conclusion of the theorem.

Remark 4.4. (1) For the real functions, every continuous function has a primitive. This is

not true for complex functions. E.g., the function f(z) = z in continuous on C, but∮
|z|=1

z d z =

∫ 2π

0

e−it(ieit) d t = 2πi ̸= 0.

So, from Theorem 4.3, f doesn’t have a primitive in C. Here, f is not holomorphic

(2) One may expect that if f is holomorphic, then it has a primitive. Well, this is not true

in general either. E.g., the function f(z) = z−1 is holomorphic on C \ {0}. However,∮
|z|=1

d z

z
= 2πi ̸= 0.

So, f doesn’t have a primitive in C \ {0}. Here, D is not simply connected

Definition 4.5 (Path-independence). Let f : S → C be continuous on an open subset

S ⊂ C. The integral of f is said to be path-independent in S if for any z1, z2 ∈ S and

for every γ1, γ2 two contours in S joining z1 to z2 we have∫
γ1

f(z) d z =

∫
γ2

f(z) d z.

In case of path-independence, the integral will be denoted by

∫ z2

z1

.

Remark 4.5. Not every continuous function has a path-independent integral. E.g., the

function f(z) = z is continuous on C. For −1 and 1, we have two smooth curves joining 1

to −1 defined by

γ1(t) = eit, t ∈ [0, π] and γ2(t) = e−it, t ∈ [0, π].

Then ∫
γ1

z d z = πi and

∫
γ2

z d z = −πi.

Theorem 4.3 asserts that if f has a primitive in S, then its integral is path-independent

in S. The following result shows that the converse is also true.

Theorem 4.4. If f : D → C is continuous on a domain D ⊂ C, and if its integral is

path-independent in D, then f has a primitive in D.
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Proof.
Lec. 16−−−−→ Let z0 ∈ D be fixed, and for any z ∈ D, let γz be a curve in D joining z0 to z (this

is possible by the connectedness of D). Define the function

F (z) =

∫
γz

f(ξ) d ξ.

As the integral of f is path-independent, it follows that F : D → C is well-defined. Now,

let h ∈ C \ {0} be sufficiently small such that [z, z + h] ⊂ D (This is always possible as D is

open) . Therefore, we have

F (z + h) − F (z)

h
=

1

h

 ∫
γz+[z,z+h]

f(ξ) d ξ −
∫
γz

f(ξ) d ξ

 =
1

h

∫
[z,z+h]

f(ξ) d ξ,

which implies that∣∣∣∣F (z + h) − F (z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣F (z + h) − F (z)

h
− f(z)

h

∫
[z,z+h]

d ξ

∣∣∣∣
≤ 1

|h|

∫
[z,z+h]

|f(ξ) − f(z)|| d ξ|.
(4.3)

Given ε > 0. Then by the continuity of f at z, there exists δ for which |ξ − z| < δ

implies |f(ξ) − f(z)| < ε. Let h satisfy |h| < δ. Then for every ξ ∈ [z, z + h] we have

|ξ − z| ≤ |(z + h) − z| = |h| < δ. Hence, from (4.3), we deduce∣∣∣∣F (z + h) − F (z)

h
− f(z)

∣∣∣∣ ≤ ε

|h|
ℓ([z, z + h]) = ε.

This shows that

lim
h→0

F (z + h) − F (z)

h
= f(z).

Since z is arbitrary in D, it follows that F is holomorphic on D, and that F ′(z) = f(z) for

every z ∈ D. That is, F is a primitive of f in D. This completes the proof.

Corollary 4.5. If f : D → C is continuous on a domain D and
∮
γ
f(z) d z = 0 for

every closed contour γ in D, then f has a primitive.

Proof. Let z1, z2 ∈ D be any arbitrary two distinct points in D, and let γ1 and γ2 be any

two contours in D joining z1 to z2. Then the contour γ = γ1 + (−γ2) is a closed contour

in D. Therefore,∫
γ1

f(z) d z −
∫
γ2

f(z) d z =

∫
γ1

f(z) d z +

∫
−γ2

f(z) d z =

∮
γ

f(z) d z = 0.

This shows that the integral of f is path-independent in D, and by Theorem 4.4, we deduce

that f has a primitive in D.
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4.3 Cauchy Integral Theorem and Consequences

Theorem 4.6 (Cauchy-Goursat). Let f : D → C be holomorphic on a simply

connected domain D ⊂ C. Then for every Jordan contour γ in D we have∮
γ

f(z) d z = 0.

Idea of the proof. we will divide the proof into three cases:

Case 1. Consider first that γ = T is a positively oriented triangle. Divide T into four

inscribed triangles S1, S2, S3 and S4 using the midpoints of its sides as in Figure 1. Notice

that the integral along the four triangles reduces to the integral along the original triangle

T , as the integral along the inscribed line segments will cancel out (They’re traversed in

opposite orientation). Therefore,

Figure 1: Triangles of Goursat

∮
T

f(z) d z =
4∑

k=1

∮
Sk

f(z) d z.

Notice that there must exist one triangle, denoted T1, among S1, S2, S3 and S3 that satisfies∣∣∣∣∮
T1

f(z) d z

∣∣∣∣ = max
1≤k≤4

∣∣∣∣∮
Sk

f(z) d z

∣∣∣∣ .
Then ∣∣∣∣∮

T

f(z) d z

∣∣∣∣ ≤ 4

∣∣∣∣∮
T1

f(z) d z

∣∣∣∣ .
Notice also that the perimeter of T1 is ℓ(T1) = ℓ(T )/2. By repeating the process, and

continue to subdivide T1 in the same way, we arrive at a sequence T, T1, T2, · · · , Tn, · · · for

which ∣∣∣∣∮
T

f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣∮
T1

f(z)dz

∣∣∣∣ ≤ · · · ≤ 4n
∣∣∣∣∮
Tn

f(z)dz

∣∣∣∣ ≤ · · · , (4.4)

and ℓ(Tn) = ℓ(T )/2n. Denote by ∆n = Tn ∪ int(Tn). Then {∆n}n≥1 is a sequence of nested

compact sets, i.e.,

∆1 ⊃ ∆2 ⊃ ∆3 ⊃ · · · ⊃ ∆n ⊃ · · ·
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and diam(∆n) ≤ ℓ(Tn) = ℓ(T )/2n −→ 0 as n → +∞. It follows from the Nested Sets The-

orem that
⋂
n≥1

∆n = {z0} for some z0 ∈ D (D is simply connected). Since f is holomorphic

at z0, it follows that

f(z) = f(z0) + f ′(z0)(z − z0) +R(z)(z − z0), (4.5)

where R(z) −→ 0 as z → z0. Now, for an arbitrary given ε > 0, there exists δ > 0 such that

|R(z)| < ε whenever |z − z0| < δ. In addition, as diam(∆n) → 0 as n → +∞, there exists

n0 ≥ 1 such that ∆n ⊂ D(z0, δ) for every n ≥ n0. Now, from (4.5), we have∮
Tn

f(z) d z = f(z0)

∮
Tn

d z︸ ︷︷ ︸
=0

+f ′(z0)

∮
Tn

(z − z0) d z︸ ︷︷ ︸
=0

+

∮
Tn

R(z)(z − z0) d z

=

∮
Tn

R(z)(z − z0) d z.

(4.6)

Notice that both functions 1 and (z− z0) have primitives, and for that their integrals along

closed contours vanish. In addition, notice that when z ∈ Tn, |z − z0| ≤ diam(Tn). Then,

from (4.6) and for n ≥ n0 we obtain∣∣∣∣∮
Tn

f(z) d z

∣∣∣∣ ≤ ∮
Tn

|R(z)||z − z0|| d z|

≤ ε diam(Tn)

∮
Tn

| d z|

= ε diam(Tn)2 ≤ ε
ℓ(T )2

4n
.

Using this with (4.4) yield ∣∣∣∣∮
T

f(z)dz

∣∣∣∣ ≤ εℓ(T )2.

As ε > 0 is arbitrary, we deduce that
∮
T

f(z)dz = 0.

Case 2. If γ is a positively oriented closed polygonal line in D, then by triangulation

of the polygonal region enclosed by γ into finitely many triangles, we can use the previous

case to deduce that
∮
γ

f(z) d z = 0. (check it!)

Case 3. Consider now that γ is a general Jordan contour in D. We know that the

integral
∮
γ
f(z) d z is the limit of the sums

S(f, Pn) =
n∑
k=1

f(zk−1)(zk − zk−1)

over all the partitions z0, z1, . . . , zn = z0 of γ with µ(Pn) −→ 0 as n→ +∞. Then for every

ε > 0, there exists δ1 > 0 and Pn a partition of γ with µ(Pn) < δ1 such that∣∣∣∣∮
γ

f(z) d z − S(f, Pn)

∣∣∣∣ < ε

2
. (4.7)
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Let Ln be the closed polygonal line whose vertex set is Pn. Choose n sufficiently large so that

µ(Pn) is sufficiently small in order to ensure that Ln ⊂ D. Recall that f is continuous on

the compact Kn =  Ln∪ int(Ln), and hence it is uniformly continuous there. Therefore, there

exists δ2 > 0 such that |f(z1) − f(z2)| <
ε

2ℓ(Ln)
whenever |z1 − z2| < δ2 and z1, z2 ∈ Kn.

Taking δ < min{δ1, δ2} we obtain∣∣∣∣S(f, Pn) −
∮
Ln

f(z) d z

∣∣∣∣ ≤ n∑
k=1

∫
[zk−1,zk]

|f (zk−1) − f(z)| |dz| < ε

2
.

We know from Case 2 that ∮
Ln

f(z) d z = 0.

Thus |S(f, Pn)| < ε/2. Using this with (4.7) we deduce that∣∣∣∣∮
γ

f(z) d z

∣∣∣∣ < ε.

Since ε > 0 is arbitrary, we deduce that
∮
γ

f(z) d z = 0. This completes the proof.

Lec. 17−−−−→ The more practical version of Cauchy-Goursat theorem is as follows: If a function f is

holomorphic on int(γ), where γ is a Jordan contour, then
∮
γ

f(z) d z = 0.

Example 4.2. Since any polynomial P is an entire function, then for any closed contour

in C we have
∮
γ

P (z) d z = 0.

Remark 4.6. (1) From Corollary 4.5, every holomorphic function f in a simply connected

domain D has a primitive in D. Consequently, the integral of f is path-independent.

(2) Cauchy-Goursat theorem is not valid in a domain that is not simply connected. E.g.,

f(z) = 1/z is holomorphic in C \ {0}, and
∮

|z|=1

1/z d z = 2πi.

Procedure in case of multiply-connected domains. Let f : D → C is holomorphic

on D, which has two holes (multiply-connected). Let γ be a Jordan contour enclosing

both holes, and let γ1 and γ2 be two Jordan contours, each enclosing one of the two holes

individually.

Let z1 ∈ γ, z2, z3 ∈ γ1 and z4 ∈ γ3. Then make a cut along some curves γz1,z2 joining z1

and z2 and γz3,z4 joining z3 and z4, and both lie within int(γ). Then f is holomorphic on

the simply connected region

int (γ) \
(

int(γ1) ∪ int(γ2) ∪ γz1,z2 ∪ γz3,z4
)
.

Let’s denote by −γ1(z2, z3) the arc of γ1 joining z2 to z3 in the negative orientation of γ1.

Therefore, by Cauchy-Goursat theorem, we obtain∮
γ

+

∫
γz1,z2

+

∫
−γ1(z2,z3)

+

∫
γz3,z4

+

∮
−γ2

+

∫
−γz3,z4

+

∫
−γ1(z3,z2)

+

∫
−γz1,z2

= 0
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Therefore, ∮
γ

=

∮
γ1

+

∮
γ2

.

We can easily generalize this into a domain with n holes as follows.

Theorem 4.7 (Cauchy theorem for multiply-connected domains). Let γ be a Jordan

contour, and let γ1, . . . , γn be Jordan contours such that int(γj), j = 1, . . . , n, are

pairwise disjoint and all are inside int(γ). If f is holomorphic on

int(γ) \
n⋃
j=1

int(γj),

then ∮
γ

f(z) d z =
n∑
j=1

∮
γj

f(z) d z.

Exercise 4.2. Find the value of the integral

I =

∮
|z−2|=2

5z + 7

z2 + 2z − 3
d z.

Solution. We have z2 + 2z − 3 = (z − 1)(z + 3). So, the function

f(z) =
5z + 7

z2 + 2z − 3

is holomorphic on the disc D(2, 2)\{1}. By Cauchy theorem for multiply-connected domains

we have ∮
|z−2|=2

f(z) d z =

∮
|z−1|=1

f(z) d z.

By decomposition, we have

f(z) =
3

z − 1
+

2

z + 3
.

Therefore,

I =

∮
|z−1|=1

3

z − 1
d z +

∮
|z−1|=1

2

z + 3
d z = 3(2πi) + 0 = 6πi.

For the second integral, we know that z 7→ 2/(z + 3) is holomorphic on {|z − 1| ≤ 1}, and

hence by Cauchy-Goursat theorem, its integral along |z − 1| = 1 is 0.

Theorem 4.8 (Cauchy’s integral formula). Let γ be a Jordan contour, and let f be

holomorphic on int(γ). Then for every z ∈ int(γ), we have

f(z) =
1

2πi

∮
γ

f(ξ)

ξ − z
d ξ.
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Remark 4.7. This formula is valid for Jordan contours only (i.e., simple closed contours).

There is a general formula for any closed contours, which depends on the Winding numbers.

This will be discussed in the upcoming sections.

Example 4.3. we have∮
|z−2|=2

5z + 7

z2 + 2z − 3
d z =

∮
|z−2|=2

(5z + 7)/(z + 3)

(z − 1)
d z = 2πi

(
5z + 7

z + 3

)
z=1

= 2πi

(
12

4

)
= 6πi.

Exercise 4.3. Find the value of

I =

∮
|z|=2

ez

z(z − 1)
d z.

Solution. The function f(z) :=
ez

z(z − 1)
is holomorphic on {z : |z| ≤ 2} \ {0, 1}. By

Cauchy’s theorem for multiply-connected domains, we have

I =

∮
|z|=2

f(z) d z =

∮
|z|=ε1

f(z) d z +

∮
|z−1|=ε2

f(z) d z,

where ε1 and ε2 are too small positive numbers. Moreover, by Cauchy’s integral formula we

have ∮
|z|=ε1

f(z) d z =

∮
|z|=ε1

ez/(z − 1)

z
d z = 2πi

(
ez

(z − 1)

)
z=0

= −2πi,∮
|z−1|=ε2

f(z) d z =

∮
|z−1|=ε2

ez/z

z − 1
d z = 2πi

(
ez

z

)
z=1

= 2eπi.

Thus I = 2(e− 1)πi.

γ

γ1 γ2

0 1
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Proof of Theorem 4.8.
Lec. 18−−−−→ Let z ∈ int(γ), and let r > 0 be sufficiently small so that D(z, r) ⊂

int(γ). The function ξ 7→ f(ξ)/(ξ − z) is holomorphic on int(γ) \ {z}. Then by Cauchy

theorem for multiply connected domains, we have∮
γ

f(ξ)

ξ − z
d ξ =

∮
|ξ−z|=r

f(ξ)

ξ − z
d ξ =

∮
|ξ−z|=r

f(ξ) − f(z)

ξ − z
d ξ + f(z)

∮
|ξ−z|=r

d ξ

ξ − z
. (4.8)

Let us denote by I(r) the first integral on the right-hand side, while the second integral

equals 2πif(z).

Claim. I(r) −→ 0 as r → 0+.

Proof of Claim. By continuity of f at z, we have for every ε > 0 there exists δ > 0 such

that |f(ξ) − f(z)| < ε
2π

whenever |ξ − z| < δ. Taking r < δ yields

|I(r)| ≤
∮

|ξ−z|=r

|f(ξ) − f(z)|
|ξ − z|

| d ξ| ≤ ε

2πr

∮
|ξ−z|=r

| d ξ| =
ε

2πr
(2πr) = ε.

This proves the Claim.

Now, from (4.8) we deduce that∮
γ

f(ξ)

ξ − z
d ξ = 2πif(z),

which proves the required formula.

Corollary 4.9 (Gauss Mean Value Property). Let f : D → C be holomorphic on a

domain D ⊂ C. Let z ∈ D and r > 0 such that D(z, r) ⊂ D. Then

f(z) =
1

2π

∫ 2π

0

f(z + reiθ) d θ.

Proof. Since f is holomorphic on {ξ : |ξ − z| ≤ r}, it follows by Cauchy’s integral formula,

f(z) =
1

2πi

∮
|ξ−z|=r

f(ξ)

ξ − z
d ξ.

Using the parametrization ξ = z + riθ, θ ∈ [0, 2π], we obtain

f(z) =
1

2πi

∫ 2π

0

f(z + reiθ)

reiθ
(ireiθ) d θ =

1

2π

∫ 2π

0

f(z + reiθ) d θ.
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Next, we proceed to establish Cauchy’s integral formula for the derivatives.

Theorem 4.10. Let γ be a Jordan contour, and let f be continuous on int(γ). Then

the function g : int(γ) → C, defined by

g(z) =

∮
γ

f(ξ)

ξ − z
d ξ,

is holomorphic on int(γ) and

g′(z) =

∮
γ

f(ξ)

(ξ − z)2
d ξ, ∀z ∈ int(γ).

Proof of Theorem 4.10. Let z ∈ int(γ), and let h ∈ C such that z + h ∈ int(γ). Then

g(z + h) − g(z)

h
=

∮
γ

f(ξ)

(ξ − z)(ξ − z − h)
d ξ.

Therefore, ∣∣∣∣g(z + h) − g(z)

h
−
∮
γ

f(ξ)

(ξ − z)2
d ξ

∣∣∣∣ ≤ |h|
∮
γ

|f(ξ)|
|(ξ − z)2(ξ − z − h)|

| d ξ|. (4.9)

Now, let d := min
ξ∈γ

|ξ − z|. Clearly, |ξ − z| ≥ d > 0, for every ξ ∈ γ. By taking |h| < d

2
, we

obtain |ξ − z − h| ≥ |ξ − z| − |h| ≥ d

2
, for every ξ ∈ γ.

γ

z

d

Since f is continuous on the compact int(γ), it is then bounded. In particular, there exists

M > 0 such that |f(ξ)| ≤M for every ξ ∈ γ. It follows that∮
γ

|f(ξ)|
|(ξ − z)2(ξ − z − h)|

| d ξ| ≤ M

d2 × d

2

∮
γ

| d ξ| =
2Mℓ(γ)

d3
.

Plugging this into (4.9) yields∣∣∣∣g(z + h) − g(z)

h
−
∮
γ

f(ξ)

(ξ − z)2
d ξ

∣∣∣∣ ≤ 2Mℓ(γ)

d3
· |h| −→ 0, as h→ 0.
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That implies that f is C-differentiable at z ∈ int(γ). Since z is arbitrary in int(γ), it follows

that f is holomorphic on int(γ), and we have

g′(z) =

∮
γ

f(ξ)

(ξ − z)2
d ξ, ∀z ∈ int(γ).

One can follow the same proof of Theorem 4.10 to prove the following result.

Theorem 4.11. Let n ≥ 1 be an integer, and let γ be a Jordan contour. If f is

continuous on int(γ), then the function gn : int(γ) → C, defined by

gn(z) =

∮
γ

f(ξ)

(ξ − z)n
d ξ,

is holomorphic on int(γ) and

gn(z) = n

∮
γ

f(ξ)

(ξ − z)n+1
d ξ, ∀z ∈ int(γ).

Proof. Left as an exercise !

Note that when f is holomorphic on int(γ), then by Cauchy’s integral formula,

f(z) =
1

2πi

∮
γ

f(ξ)

ξ − z
d ξ, ∀z ∈ int(γ).

In addition, Theorem 4.11 asserts that

f ′(z) =
1

2πi

∮
γ

f(ξ)

(ξ − z)2
d ξ, ∀z ∈ int(γ).

Again, Theorem 4.11 asserts that even f ′ is holomorphic on int(γ), and

f ′′(z) =
1

πi

∮
γ

f(ξ)

(ξ − z)3
d ξ, ∀z ∈ int(γ).

Hence, by induction, we clearly have the following result.

Theorem 4.12. If f : D → C is holomorphic on a domain D ⊂ C, then all its

derivatives f (k), k ∈ N, exist and are holomorphic on D. Moreover, ∀k ∈ N, we have

f (k)(z) =
k!

2πi

∮
γ

f(ξ)

(ξ − z)k+1
d ξ, ∀z ∈ int(γ), (4.10)

where γ is any Jordan contour in D such that int(γ) ⊂ D.

Remark 4.8. (1) The formula (4.10) is called the Cauchy’s integral formula for the deriva-

tives.

(2) Let f(z) = u(x, y) + iv(x, y), for z = x+ iy ∈ D. If f is holomorphic on D, then both u

and v are differentiable on D. In addition, from Theorem 4.12, we deduce that both u and

v are C∞(D).
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Exercise 4.4. Let f be a holomorphic function on the disc D(0, ρ), where ρ > 1. Evaluate∮
|z|=1

(
2 + z +

1

z

)
f(z)

z
d z.

Then deduce the value of ∫ 2π

0

f(eit) cos2
(
t

2

)
d t

Proof. (a) We have∮
|z|=1

(
2 + z +

1

z

)
f(z)

z
d z =

∮
|z|=1

(2 + z) f(z)

z
d z +

∮
|z|=1

f(z)

z2
d z

= 2πi(2 + z)f(z)
∣∣∣
z=0

+ 2πif ′(z)
∣∣∣
z=0

= 2πi
(

2f(0) + f ′(0)
)
.

(b) By a suitable parameterization of the positively oriented unit circle, we obtain∮
|z|=1

(
2 + z +

1

z

)
f(z)

z
d z =

∫ 2π

0

(
2 + eit + e−it

) f(eit)

eit
(ieit) d t

= i

∫ 2π

0

(2 + 2 cos t)︸ ︷︷ ︸
=4 cos2(t/2)

f(eit) d t

= 4i

∫ 2π

0

f(eit) cos2
(
t

2

)
d t.

From (a), we deduce that∫ 2π

0

f(eit) cos2
(
t

2

)
d t = πf(0) +

π

2
f ′(0).

Exercise 4.5. Let ρ > 2. Evaluate the integral

I =

∮
|z|=ρ

z − 1

z3 − 2z2
d z.

Solution. The function z 7→ z − 1

z3 − 2z2
is holomorphic on {z : |z| ≤ ρ} \ {0, 2}. By Cauchy

theorem for multiply connected domains, we have

I =

∮
|z|=ε1

z − 1

z3 − 2z2
d z +

∮
|z−2|=ε2

z − 1

z3 − 2z2
d z,

where ε1, ε2 > 0 are sufficiently small. In addition, we have∮
|z|=ε1

z − 1

z3 − 2z2
d z =

∮
|z|=ε1

(z − 1)/(z − 2)

z2
d z = 2πi

(
z − 1

z − 2

)′

z=0

= 2πi

(
−1

(z − 2)2

)
z=0

=
−πi

2
,

∮
|z−2|=ε2

z − 1

z3 − 2z2
d z =

∮
|z−2|=ε2

(z − 1)/z2

(z − 2)
d z = 2πi

(
z − 1

z2

)
z=2

=
πi

2
.

Thus I=0 .
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Corollary 4.13 (Cauchy’s inequality).
Lec. 19−−−−→ Let f be holomorphic on a domain D, and let

z ∈ D, and r > 0 such that D(z, r) ⊂ D. If ∃M > 0, |f(ξ)| ≤M, ∀|ξ| = r, then

|f (n)(z)| ≤ n!M

rn
, ∀n ≥ 1.

Proof. By Cauchy’s formula for the derivatives, we have, for n ≥ 1,

|f (n)(z)| ≤ n!

2π

∮
|ξ−z|=r

|f(ξ)|
|ξ − z|n+1

| d ξ| ≤ n!M

2πrn+1
(2πr) =

n!M

rn
.

Theorem 4.14 (Liouville). Let f be entire function (Holomorphic on C). If ∃M > 0

such that |f(z)| ≤M for every z ∈ C, then f is constant in C.

Proof. Let z ∈ C. Then for every r > 0, Cauchy’s inequality yields |f ′(z)| ≤ M

r
. By letting

r → +∞, we get f ′(z) = 0. Since z ∈ C is arbitrary, we deduce that f ′ ≡ 0 and hence f is

constant in C.

Exercise 4.6. Let f be an entire function satisfying Re(f(z)) ≥ 0 for every z ∈ C. Show

that f is constant in C.

Solution. Let g(z) = e−f(z) for all z ∈ C. Since f and e−z are both entire functions, it follows

that g is also an entire function. We have, by using the assumption in the statement,

|g(z)| =
∣∣e−f(z)∣∣ = e−Re(f(z)) ≤ 1, ∀z ∈ C.

By Liouville’s theorem, we get that g must be a constant, say g(z) = K ̸= 0 for every z ∈ C.

Since we have |K| = |g(z)| = e−Re(f(z)) for every z ∈ C, it follows that Re(f(z)) = − ln |K|
for every z ∈ C, i.e., Re(f(z)) is constant, and as f is entire (Holomorphic on C), we deduce

that f is also constant in C.

We established in Theorem 2.8 that

Analyticity =⇒ Holomorphicity.

In the following result, we will prove that

Holomorphicity =⇒ Analyticity.

Theorem 4.15 (Taylor). Let f : D → C be holomorphic on a domain D ⊂ C. Then
f is analytic on D, and for each z0 ∈ D, we have

f(z) =
+∞∑
n=0

f (n)(z0)

n!
(z − z0)

n, ∀z ∈ D(z0, R),

where R = sup
{
r > 0 : D(z0, r) ⊂ D

}
.
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Proof. Let z0 ∈ D be arbitrary, and let R = sup
{
r > 0 : D(z0, r) ⊂ D

}
. Let z ∈ D(z0, R),

and let ρ > 0 satisfy |z − z0| < ρ < R. It follows from Cauchy’s integral formula,

f(z) =
1

2πi

∮
|ξ−z0|=ρ

f(ξ)

ξ − z
d ξ.

Recall that for any |w| < 1 we have

1

1 − w
=

1 − wn

1 − w
+

wn

1 − w
=

n−1∑
j=0

wj +
wn

1 − w
, ∀n ≥ 1.

Since

∣∣∣∣z − z0
ξ − z0

∣∣∣∣ =
|z − z0|

ρ
< 1, it follows that

1

ξ − z
=

1

(ξ − z0) − (z − z0)

=
1

ξ − z0
· 1

1 − z − z0
ξ − z0

=
1

ξ − z0

n−1∑
j=0

(
z − z0
ξ − z0

)j
+

(
z − z0
ξ − z0

)n
1

1 − z − z0
ξ − z0


=

n−1∑
j=0

(z − z0)
j

(ξ − z0)j+1
+

(
z − z0
ξ − z0

)n
1

ξ − z
.

From this we obtain that

f(z) =
1

2πi

n−1∑
j=0

(z − z0)
j

∮
|ξ−z0|=ρ

f(ξ)

(ξ − z0)j+1
d ξ +

1

2πi

∮
|ξ−z0|=ρ

(
z − z0
ξ − z0

)n
f(ξ)

ξ − z
d ξ

=
n−1∑
j=1

f (j)(z0)

j!
(z − z0)

j +
1

2πi

∮
|ξ−z0|=ρ

(
z − z0
ξ − z0

)n
f(ξ)

ξ − z
d ξ.

(4.11)

Set

Rn(z) :=

∮
|ξ−z0|=ρ

(
z − z0
ξ − z0

)n
f(ξ)

ξ − z
d ξ.

It is left as an exercise that Rn(z) → 0 as n → +∞. as This with (4.11) show that f(z)

is written as a power series about z0. Since z is arbitrary on D(z0, R), it follows that f is

analytic at z0, with the obtained Taylor’s expansion in D(z0, R). Therefore, as z0 is arbitrary

in D, f is analytic on D, with the obtained Taylor’s expansion.
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A C-differentiability and R2-differentiability

Complex linear mapping. A complex function f : C → C that satisfies f(z + z′) =

f(z)+f(z′) and f(az) = af(z) for every z, z′, a ∈ C, is called a complex linear mapping (or,

C-linear mapping1). Notice, in particular, that constant functions are not linear mappings.

One can also see that if f is a linear mapping, then f(0) = 0 and f(z) ̸= 0 for every z ∈ C∗.

The functions f(z) = cz, where c ∈ C∗, are C-linear mappings. Conversely, every C-

linear mapping f : C → C must satisfy, for every z ∈ C, f(z) = f(1 · z) = f(1) · z, which

is of the form f(z) = cz with c = f(1) ∈ C∗. Thus, the only C-linear mappings are the

complex functions of the form f(z) = cz, where c ∈ C.

Analogously to the real linear mappings (or, R2-linear mapping), C-linear mappings can

be represented by matrices. In fact, by letting c = a+ ib ∈ C and z = x+ iy ∈ C, we obtain

cz = (a+ ib)(x+ iy) = (ax− by) + i(bx+ ay).

Now, using the cartesian representation of complex numbers, and then using the matrix

form, we can write

cz =

[
ax− by

bx+ ay

]
=

[
a −b
b a

][
x

y

]
.

From this formula, we can deduce that every C-linear mapping is also R2-linear mapping.

However, not every R2-linear mapping is C-linear, as show by the following example.

Example A.1. Consider the R2-linear mapping f : R2 → R2 given in the matrix form

f

[
x

y

]
=

[
1 1

1 1

][
x

y

]
=

[
x+ y

x+ y

]
.

By setting z = x + iy and using the relations x = (z + z)/2 and y = (z − z)/(2i), we may

write f is its complex form

f(z) = (x+ y) + i(x+ y) = (1 + i)(x+ y) = z + iz.

This shows that f cannot be C-linear. Simply note that f(i) = i+ 1 ̸= i− 1 = if(1).

Summarizing the discussion above we can state that the R2-linear mapping represented

by the matrix [
α β

γ δ

]
is C-linear if and only if α = δ and β = −γ.

1 If there is no ambiguity, we may simply refer to a complex linear mapping as a linear mapping.

51



R2-differentiable functions. Let U ⊂ R2 be an open subset, and let x0 ∈ U . Recall that

a function f : U → R2 is R2-differentiable at x0 if there exists an R2-linear mapping T such

that

lim
h→(0,0)
h ̸=(0,0)

∥f(x0 + h) − f(x0) − T (h)∥2
∥h∥2

exists.

Equivalently, we say that f is R2-differentiable at x0 if and only if there exist α, β, γ, δ ∈ R
for which

f(x0 + h) = f(x0) +

[
α β

γ δ

]
h + o(∥h∥2), as ∥h∥2 → 0.

By setting x0 =

[
x0

y0

]
and f(x) =

[
u(x)

v(x)

]
, we obtain

[
α β

γ δ

]
=


∂ u

∂ x
(x0)

∂ v

∂ x
(x0)

∂ u

∂ y
(x0)

∂ v

∂ y
(x0)

 ,
which is the Jacobean matrix of f at the point x0.

TO BE CONTINUED!
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