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Some topological properties in C

It is clear that the function d : CxC — Ry, (21, 29) > d(21, 22) := |21 — 22|, defines a metric.

Therefore, (C,d) is a metric space. Notice that C = R? (i.e., C and R? are homeomorphic)

and the above metric corresponds to the Euclidean metric on R%2. Thus the topological

structure of C is the same as that of R2.

1.1
(2)

Some fundamental point sets in C

Let zp € C and 0 < r < R. Then the set D(zo,7) := {z € C: |z — 2| < r} is the
an open disc, centered at zy with radius 7. In particular, D := {z € C: |z| < 1} is
called the open unit disc. The set A(zp,r, R) :={z € C:r < |z — z| < R} is an open

annulus, centered at zy with an inner radius r and an outer radius R.

Let a,b € R such that @ < b. Then the sets H"(a) := {z € C:Re(z) > a} and
H~(a) :={z € C: Re(z) < a} are, respectively, an open right-half plane and an open
left-half plane. The set T'(a,b) := {2z € C:a < Re(z) < b} is an open vertical strip.

— Analogously, we can define the open upper and open lower half planes, as well as a

horizontal strip, by considering Im(z) in place of Re(z) in the above sets.

Let «, B €] —m, ] such that o < 3. Then the set S(a, 3) := {2z € C: a < Arg(z) < f}

represents an open sector.

Definitions
For € > 0, the e-neighborhood of a point 2y is the open disc D(zg, ).

Let S € C. A point zy € S is said to be an interior point of S if there exists € > 0
such that D(zp,€) C S. Moreover, S is called an open set of C if each point of S is

an interior point.

Example 1.1. (i) If S = {z: |z| < 1}, then each point z with |z| < 1 is an interior
point of S.

(ii)) The annulus A(zp,r, R) :={z2€ C:r < |z — 2| < R}, where zp € Cand 0 < r <

R, is an open set.

A point zg is called an exterior point of a set S C C if there exists € > 0 such that

D(z9,e) NS = (). Moreover, zq is called a boundary point of S if, for every & > 0,
D(z20,e) NS #0 and D(zp,e)N(C\S) #0.
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Notice that a boundary point is neither interior nor exterior. The set of all boundary
points of S is called the boundary of S, and denoted by 0S.

Example 1.2. We have 0D = {z : |z| = 1} and 0A(:,1,2) = {z: |z —i| =1} U{z:
|z —i| = 2}.

(d) The closure of a subset S C C, which is denoted by S, is defined by S = S UJS. A
set S is called a closed set if S = S, or if S C S, i.e., S contains its all boundary

points.

Example 1.3. The set {z : 1 < |z —i| < 2} is neither open nor closed. Moreover,
{z:1<|z—id| <2} ={2:1<|z—i| <2}.

Remark 1.1. The set C is considered as open and closed in C at the same time.

Notice that OC = () and every point z € C is an interior point in C.

(e) A point zy € C is called an accumulation point (or limit point) of a set S C C if,
for every € > 0, (D(z0,¢) \ {20}) NS # 0. The set of all accumulation points of S is
denoted by S’.

1.3 Curves and contours in C

Definition 1.1. Let a,b € R with a < b, and let z,y : [a,b] — R be continuous
functions. Then the subset v = {z = x(t) +iy(t) : t € [a,b]} is called a curve (or
path). If we define the function ¢ : [a,b] — C by ¢(t) = x(t) + iy(t), then the curve
v is the image of the function .

The curve v starts at its initial point p(a) and ends at its terminal point p(b).

The function ¢ is called a parametrization of the curve ~.

Remark 1.2. 1. We conventionally use y(t) (or z(t)) instead of ¢(t), and we write z =
v(t) for t € [a, b] to indicate the parametrization.

2. Every curve can be expressed by several different parametrizations, as different pa-
rameterizations can trace the same geometric path in space. Any parametrization can

be expressed in any form (algebraic, trigonometric, or exponential).

Example 1.4. The curve z(t) = e, t € [0, 7] represents the upper-half unit circle in an

anticlockwise direction. Same curve can be represented by z(t) = €™ ¢ € [0,1], or by

At = —t +iVI— 12,z € [-1,1].
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Definition 1.2. — A curve v : [a,b] — C is said to be simple if it doesn’t intersect
itself, i.e., y(t1) # y(ta) for every ty,ts € [a,b] with ¢; # t5. The curve in Example 1.4
is simple.

— A curve v : [a,b] — C is said to be closed if y(a) = (b).

— A simple closed curve (or Jordan curve) is a curve satisfying v(a) = 7(b) and
v(t1) # y(t2) for every tq,ts €|a, b[ with t; # to.

Example 1.5. The curve z(t) = €", ¢t € [0,2x], which traces the unit circle, is a simple

closed curve.

Definition 1.3. — A curve v : [a,b] — C is said to be smooth if
(i) 4(t) := 2/(t) + iy (t) exists and continuous on [a, b].
(ii) 4(t) # 0 for every t € [a, b].

— A curve v : [a,b] — C is called a contour if there exists a partition a =ty < t; <
-+ < t,, = b such that v is smooth on each [ty,tx11], 0 < k < n — 1. In other words,

a contour is a piecewise smooth curve.

The contour can be built upon a finite sequence of smooth curves {v1,7,...,7,} such
that the terminal point of v, coincides with the initial point of y4,1 for 1 <k <n —1. In
this case, we write v = vy, + 72 + -+ 4+ v,. The curves 71,72, ...,7, are called the smooth
components of the contour «v. The operation “+” between curves is called the concatenation
of curves. If the terminal point of 7; does not equal the initial point ofy,, we leave the sum

~v1 + Y2 undefined.

Example 1.6. The curve

t+2it, 0<t<l1,
t+2, 1<t<2,

is not a smooth curve, because the derivative is not continuous. However, v is a contour,
as vy =1 + Y2, where y1(t) =t + 2it,0 <t < 1, and (t) =t + 2i,0 < t < 1, are smooth

curves.

We generalize the example as follows:

— Let 21,29 € C with z; # z5. The curve £(t) = (1 — t)2z; + tzo, for t € [0, 1], is called
the line segment from z; to zo, and is denoted by [z1, 23] (be aware of the difference of this
notation and the notation of interval). It is clear that a line segment is smooth.

— Let 21,...,2, € C. The curve L = [21, 2] + ...+ [zn_1, 2] is called a polygonal line

from z; to z,. It is clear that a polygonal line is contour.

4
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Remark 1.3. Any point in the complex plane is a curve parameterized by a constant

function. In this case, a point is called a trivial curve.

Homotopic curves. Let D C C be an open subset and 21,20 € D. Consider two curves
1,72 : [a,b] = D (in D) with the same endpoints z; and 2z, (i.e., same initial point and
same terminal point). Then v; and 7, are called homotopic in D (or v, is homotopic to v,

in D), if there exists a continuous function H : [a,b] x [0,1] — D such that
H(t,0) =v(t) and H(t,1) =(t), Vtela,b,

H(a,s) =2z and H(b,s) =2z, Vsel0,1].

The function H is called a homotopy from 7, to ~5 in D. This homotopy is for curves with
the same endpoints.
Consider now two Jordan curves 7y1,7s : [a,b] — D. Then, y; and 75 are called homotopic

in D if there exists a continuous function H : [a,b] x [0,1] — D such that
H(t,0) = 7(t) and H(t,1) =1a(t), Vi€ l[ab],

H(a,s) = H(b,s), Vse][0,1].

This homotopy is for closed curves.

A Jordan curve in D, that is homotopic to a point in D, is said to be null-homotopic in D.

Example 1.7. Let D C C be a convex domain, and let 71,72 : [a,b] — D be two curves
in D with the same endpoints. Then the function H : [a,b] x [0,1] — D, defined by
H(t,s) == (1 —s)71(t) + s72(t), is a homotopy from 7, to v in D.

1.4 Domains in C

Definition 1.4. — An open set S C C is said to be connected if, for every a,b € S,

there exists a polygonal line joining a and b that lies entirely within S.
— An open connected set is called a domain. For example, the open annuli are domains.
— A region is a domain together with some, all, or none of its boundary points. For

example, the set {z:1 < |z —i| < 2} is a region.

Recall that a subset S C C is said to be bounded if there exists M > 0 such that |z| < M
for every z € S. The subset S is unbounded if it is not bounded.


https://en.wikipedia.org/wiki/Convex_set
https://proofwiki.org/wiki/Connected_Open_Subset_of_Euclidean_Space_is_Path-Connected

Theorem 1.1 (Jordan curve theorem). Any simple closed curve (Jordan curve) v in
C divides the complex plane into exactly two disjoint domains. One of these domains
is bounded, called the interior of v and denoted by int(y). The other one is unbounded
and called the exterior of v, and denoted by ext(y). The curve 7 is the boundary of
each domain, i.e., vy = 0int(y) = dext(y).

It is important to be aware of the different uses of the term “interior” (resp. “exterior”).
In a topological context, the interior of a subset S is the set of all interior points, or
equivalently, the largest open set contained in S, and it is denoted by % . Consequently, it
follows that v = (.

Definition 1.5. A domain D C C is said to be simply connected if, for any Jordan

curve 7 lying in D, we have int(y) C D. A domain that is not simply connected is

called multiply connected.

Intuitively, simply connected domains have no holes.

Remark 1.4 (Alternative Definition). A domain D C C is said to be simply connected if
any two curves in D with the same endpoints are homotopic in D (with homotopy of curves
with the same endpoints). Or equivalently, if every Jordan curve is null-homotopic in D
(with homotopy of closed curves). From Example 1.7, we deduce that any convex set is

simply connected.

Definition 1.6 (Positive orientation). A Jordan curve ~ is said to be positively ori-

ented (counterclockwise) if the interior domain lies to the left of an observer tracing

the points of v in the order they are traversed. Otherwise, v is negatively oriented.
— A simple open curve is positively oriented if it’s traced from its initial point to its
terminal point.

— If the orientation of a curve 7 is revered, and the roles of the endpoints are switched,
then the resulting curve is called the opposite curve (or the reversal) of 7, and it is

denoted by —vy. We say: v and — are oppositely oriented.

J

Example 1.8. The circle v;(t) = €, t € [0,27], is positively oriented, while the circle
Yo(t) = e t € [0,27], is negatively oriented. Notice that v, = —7,.
However, the circle v3(t) = e~ ", t € [w/2,57/2], is not the opposite of ;.

Remark 1.5. (a) In Definition 1.6, we assume that curves are non-trivial, because otherwise,
the trivial curves don’t have orientation.
(b) In case of a simple closed curve v that is smooth on [a, b], we say that 7 is positively

oriented (or has the positive orientation) if, for every t € [a,b], there exists ¢ > 0 (small
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enough) such that v(t) + i7/(¢) € int(7y). The vector i7/(¢) is the rotation of the tangent
vector +/(t) by /2, or, turning the direction to the left.

(c) Let I be a contour with the smooth components vy, ..., Y1, Vn, 1.6, ' =9 +---+
Yn-1~+7n- Then the opposite contour —I" is the contour —I' = (—7,,) +(—=Yn—1)+- - -+ (—71).

(d) It is understood that the opposite of a line segment [z, 25|, where z; # zy, is the
segment (29, 21], i.e., —[21, 22] = [22, 21]-

(c) Given a curve 7 : [a,b] — C, its opposite curve —v : [a,b] — C is given by

(=) () =~v(b+a—1t), te]la,bl.

1.5 Riemann sphere and stereographic projection

In the z;7973-space (i.e., R?), the unit sphere S? is called the Riemann sphere, where x-
plane corresponds to the complex plane. For the sake of simplicity, the point (x1,z9,0) in
the zjxo-plane will be denoted as z = x; + ixe. The north pole is the point N(0,0,1) and
the south pole is the point (0,0, —1).

Given z € C, the line passing through the north pole N and the point z intersects the

Riemann sphere at exactly one point X, which is called the stereographic projection of z.

Lemma 1.1. For z € C, the stereographic projection X = (x1,x9,x3), of z, is given by

2Re(2) 2Im(z)

_ 2l - 2] |22 — 1
|22 + 1 |22 +1

|22+ 1

T and T3 =

Conversely, every point X = (x1, 2, x3) € S? \ {N} is the stereographic projection of
a point z € C, where

X1 X2

Re(z) = — and Im(z) = —

Proof. The proof is left as an exercise. n

— Note that the stereographic projection defines a bijection between S? \ { N} and C.

— The stereographic projections of points z with large modulus are close to the north
pole, and as |z| — 400, their projections tend to N. Therefore, we associate with N the
extended complex number “co” (the point at infinity, and written without “+” or “—7),
and call C = CU {o0} the extended complex plane. Note that the point at infinity becomes
unique in this way.

— Now, the stereographic projection defines a bijection between S? and C. Because of

this correspondence, C is often called the Riemann sphere.



Definition 1.7. Let X; and X, be the stereographic projections of z; € C and z3 € C,
respectively. The Euclidean distance between X; and X5 is called the chordal distance

between z; and 2y, and it is denoted by x[21, 22]. That is, x[21, 22] = [| X1 — Xa]|2.

It is clear that 0 < x[z1, 22] < 2 for all z1, 2, € C.

Lemma 1.2. If z1, 29,z € C, then

[ ] 2‘21 — 22’ d [ ] 2

X|21, 22) = and x|z,00] = ——.
\/‘21|2+1\/’22|2+1 \/‘Z|2+1

Proof. The proof is left as an exercise. m

— One can easily check that the chordal distance defines a metric on C.
— A neighborhood of oo is described by {z € C : x[z,00] < p}, where 0 < p < 2, and it

is the set {z € C: |z| >r} =C\ D(0,r), where r = /(4/p?>) — 1 > 0.

2 Complex functions

Let S ¢ C. A function f : S — C, defined on S and taking values in C, is called a
complex single-valued function, or simply, a complex function. For example, f(z) = 22
and f(z) = 1/z are both complex (single-valued) functions defined, respectively, on C and
C\ {0}. In complex analysis, we often encounter objects that, unlike regular functions,
assign several (finite or infinite) values to each variable z. These are known as multi-valued
functions. For example, f(z) = arg(z) is a multi-valued function.

For a complex function f : S — C and for z = x + iy € S, let w = f(z). Then the real
and imaginary parts of w are each real-valued functions of z or, equivalently, of x and y,
and so we customarily write

w = u(z,y) + vz, y), (2.1)

with v and v denoting the real and imaginary parts, respectively, of w. The common
domain of the functions u and v corresponds to the domain of the function f. Thus,
by the cartesian representation of C, complex valued functions of a complex

variable z — f(z) are, in essence, a pair of real functions of two real variables
f:SCcR?— R?
(z,y) = f(z,y) = (u(z,y),v(z,y))

We use the notation: u(z,y) = Re f(z) and v(z,y) = Im f(z). For example,

f(2) =242z = (x +iy)* + 2(x + iy) = (2" — y* + 22) +i (2zy + 2y) .

=u(z,y) =v(z,y)
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Conversely, if a function f is given in the form (2.1), then we can write it in terms of z by

using, e.g., the equations: 3 3

Z+Zz d Z—Z
an =
2 Y=

xrx =

Complex functions as mappings

Iff:9—C,z+— w= f(z), is a complex function, then both z,w € C, and its graph
G(f) ={(z f(2)) : z € S} is a subset of 4-dimensional space. Hence, we cannot use graphs
to study (or, visualize) complex functions. However, complex functions describe mappings
(not necessarily one-to-one) between subsets lying in two copies of the complex plane. Each
point 2y in the z-plane is mapped by a function f to the unique corresponding point wy =
f(20) in the w-plane. We also say: f maps zy to wp. In general, we say f maps a subset S
to its image. For example, the function f(z) = z/(1 + 2?) maps the upper open unit semi

disc to the upper open half plane, see Exercise set 1 (Pb. 1).

Remark 2.1. (1) Complex functions are usually referred to as complex mappings.
(2) The geometric representation of a complex mapping f : S — C consists of two figures:
one representing the domain S in the z-plane, and the other showing the image of f in the

w-plane.

Example 2.1. The image, by the function f(z) = 22, of a vertical line is either a parabola
or the non-positive real axis.

— Let z = zg+iy, where gy € Ris fixed and y € R is arbitrary. Then u+iv := f(xg+iy) =
(wo + 1y)? = 23 — y* + i(2xoy). This is equivalent to

_ 2 2
U =Ty— Y,
v = 2x0Y.

2

v

This system represents the parabola of the equation u = 23 — 12 in the w-plane when
Lo

xo # 0. Otherwise, the system represents the non-positive real axis.

2.1 Limit of a complex function

Definition 2.1. Let S C C and zy € S’. We say that f: S — C has a limit wg € C

as z approaches zg (within 5), if
Ve>0,30 >0,V2€S5:0<|z—2)| <d = |f(z) —wo| <e.

We write lim f(z) = wp.
z2€8




This definition (as in the real case) says that the values f(z) can be made arbitrarily

close to wy when the values of z are chosen sufficiently close to zj.

Remark 2.2. When “z € 5”7 is understood from the context, we can use the notation lim
Z—20
instead of lim .
Z—r20
z€eS
Example 2.2. Let’s show that lim (2% —2) = —2 + 2i.

z—1—1

— We have
22 — 2 — (=24 20)| = |7* — 2i| = |2* + 2i|
=lz—=(1—=49)| x|z4+ (1 —1) (2.2)
<lz= (=0 x (]2 = (1= +2v2).
Therefore, for any € > 0, if we choose > 0 to satisfy 6 < min{l,e/(1 + 2\/5)}, then from

(2.2) we obtain
0<|z—(1-d)|<d = |Z2—2—(-2+20)|<e.

Unlike the real case, there are infinitely many directions from which z can approach z
in the complex plane. For a complex limit to exist, every way by which z approaches z

must yield the same limiting value. The following statements are more practical.

Lemma 2.1. If there are two different curves I'y and T’y passing through zy and
f(2) approaches two distinct values wy and wy as z approaches zy along Ty and Ty,

respectively, then lim f(z) doesn’t exist.
Z—20

Example 2.3. Let’s show that ling (Z/z) doesn’t exist.

zZ—>
— Notice when z approaches 0 along the real axis, then Z/z approaches (equals) 1. How-
ever, when z approaches 0 along the imaginary axis, then Z/z approaches (equals) —1. Thus

lim (Z/z) doesn’t exist.
z—0

Lemma 2.2. Let f(2) = u(x,y) +iv(z,y), 20 = xo + @H0 and wy = a +ib. Then

Iim  w(x,y) = a,
(z,y)—(z0,y0) (@9)
lim f(Z) = Wy <= { and
Z—20
lim  v(z,y) =0.

(z,y)—(20,y0)

It is not difficult to check that the algebraic properties of the “complex” limit are similar

to that of the “real” limit. In the following we mention some of these properties.

10
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Lemma 2.3. If lim fi(2) = ¢; and lim f5(z) = {5, then
Z—r 20

Z—rZ20

lim (fl(Z) SE fg(Z)) = Kl SE 62, lim (fl(Z)fQ(Z>> = 6162, lim fl(Z) = é, (EQ 7& O)
z—20 z—20 z—20 f2(2) 62

Remark 2.3 (Limits involving “c0”). Saying that z approaches the infinity point oo, and
write z — oo, means that |z| — 4+00. We can handle limits involving “c0” by noting that

z — oo if and only if 1/z — 0. In particular, we have

lim f(z) = 00 <= lim L:0 and lim f(z):€<:>lin(1)f(1> = /.
Z—

2—20 2=z f(z) 2—00 z

2.2 Continuity of a complex function

Definition 2.2. Let S C C and z; € S. We say that f : S — C is continuous at zg
if im f(z) = f(20). A function f is said to be continuous on S if it is continuous at
Z—r20

each point of S.

The continuity of a function f at a point zy requires three actions that may not appear

in the definition: (1) Existence of lim f(z), (2) f is defined on zy and (3) The equality
Z—r20

lim f(z) = f(z0).

Z—r20

Example 2.4. The function
22 if 2 #£4
f(z) = ’
=) 0 if z=1,
is defined at zp = 4, and the limit lim f(z) exists and equals —1. However, f(i) = 0 # —1,
zZ—1

and hence f is not continuous at the point 1.

From the properties of limits, we easily obtain the following properties of continuous

functions.

(a) f(2) = u(z,y)+iv(x,y) is continuous at zy = xg+1iyp if and only if u(z,y) and v(x,y)

are both continuous at (xg, yo).

(b) If f and g are continuous at zg, then f+g, fg and f/g (g(z) # 0) are all continuous

at 20-

(c) If f is continuous at zy, and h is a continuous function at f(zg), then the composition

h o f is continuous at zj.

Lee 96, Example 2.5. Let P and Q be complex polynomials (i.e., P,Q € C[z]). Every polynomial

is continuous on C, and therefore, any rational function P/Q is continuous on C\ {z :

Q(z) = 0},

11



Definition 2.3. We say that a complex function f : S — C is uniformly continuous
on S if

Ve > 0,36 > 0,V(21,22) € S%: |21 — 29| <8 = |f(21) — f(2)| <.

J

Example 2.6. Let’s show that f(z) = 2? is uniformly continuous on D(0,7), where r > 0.

— Let € > 0 and 21, 22 € D (be arbitrary). Then

|f(z1) = f(22)| = |zf - Z§| = |21 + 22]|21 — 29
< (Jz1] + |22])]21 — 22|

< 21|z — 2.
It is easy from this to see that by taking 0 = ¢/(2r), we obtain
Ve > 0,30 = 257 > 0,¥21,20 € D(0,7) 1 |21 — 2] <6 = |f(21) — f(22)] <&,
which shows that f is uniformly continuous on D(0,7), r > 0.

Uniform continuity implies continuity, but the inverse is not true as show by the following

example.

Example 2.7. The function f(z) = 1/z is clearly continuous on C \ {0}, while it is not

uniformly continuous there. (Check it!)

Theorem 2.1. Fvery continuous function f on a compact set S is bounded, and is

uniformly continuous there. Moreover, |f| attains its maximum and minimum in S.

Some properties of complex polynomials

The aim of this paragraph is to prove the fundamental theorem of algebra.

Lemma 2.4. If P is a non-constant polynomial with P(0) = 1, then for every e > 0,
there exists £ € D(0,¢) such that |P(£)| < 1.

Proof. (1) Assume first that P(z) = 1+ a,,2™, where m > 1 and a,, # 0. For any € > 0, we
seek £ € D(0, ) such that |14 a,,£™| < 1. To do so, we may choose £ such that a,,£™ = —q,
where 0 < o < 1, meaning & is an m-th root of —a/a,,. Then |1 + a4, ™ =1—a < 1. To
ensure £ € D(0,¢), we need |£| = W < g, or equivalently, & < €™|a,,|. Summarizing,
for any € > 0, let «v satisfy 0 < a < min{1, |a,,|e™}, and choose £ as an m-th root of —a/ay,.
Then || < e and |P(&)| =1+ anf™ =1—a < 1.

12



(2) Now assume P(z) = 1+ a,2™ + -+ + a,2", where m > 1,n > m + 1 and a,a,, # 0.

Here m is the least index for which a,, # 0. We write P(z) in the form
P(z) =1+ a,2"+ R(z2), VzeC,
where R(z) = 2™ (apq1 + -+ +a,2" ™), V2 € C. Let

]\J:min{l7 @] }
|amra| + -+ [an)

Then for 0 < |z| < M, we obtain

[R(2)| < 2™ (lamsa| + - + lan]) < lamll2™, (2.3)

Analogous to Case (1), for every € > 0, let a satisfy 0 < o < min {M, |a,,|e™}, and choose
¢ as an m-th root of —a/a,,. Then || < e and from (2.3) we have |R(§)| < |an||&]™ = a.

Consequently, we obtain

(PO < 1+ an™| +[RE)] =1—a+[RE)] <1
N————

<0

This completes the proof. O

The following result is a consequence of Lemma 2.4.

Lemma 2.5. If P is a non-constant polynomial with P(zy) # 0 for some zy € C,
then for every € > 0, there exists £ € D(zp,€) such that |P(§)| < |P(20)].

Proof. Define the polynomial () by

P(z + z)

, VzeC.

Then Q(0) = 1. Let € > 0 be arbitrary. Then, by Lemma 2.4, there exists £* € D(0, ) such
that |Q(£*)| < 1. Consequently, there exits £ = £* + z5 € D(20, ) such that

[P(E)] = [P(&" + 20)| = [P(20)|Q(E)| < [P(20)]-
This completes the proof. O]

Remark 2.4. These two results don’t apply for non-polynomial functions. For example,
the function f(z) = 1+ |z|* is continuous on C with P(0) = 1. However, |f(z)| > 1 for
every z € C.

Theorem 2.2 (Fundamental Theorem of Algebra). Every non-constant complex poly-

nomial has at least one zero in C.
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Proof. Let P(z) = ap,2™ + @, 12" ' + -+ + a1z + ag, where n > 1 and a,, # 0. For z # 0,

we have

+ -+ — +
Ap 2 Ay 2™ apz"

P(2) = a,2" (1 4 dnt @ a0 ) .

Since the second factor tends to 1 as z — oo, there is an M > 0 for which

Ap—1 a1 Qo
+ -+ I +
A2 Ay 2™ apz"

1
‘1+ > 5 for |z| > M.

Consequently, we obtain

|P(2)| > @M”, for |z| > M.

Clearly, @M" > |P(0)] is equivalent to |z| > {/2|P(0)|/|ay,|. Then, by setting

2|P(0
M*:max{M, o2 ()‘},

|an|

we obtain

P(z)| > [P(0)], for |2| > M. (2.4)

From Theorem 2.1, it follows that |P| attains its minimum in D(0, M*), that is dzg €

D(0, M*) such that
[P(2)] = [P(2)], for [z] < M. (2.5)

In particular, we have |P(0)| > |P(z)|. This with (2.4) yields
P(2)| > [P()], for [ > M. (2.6
Combining (2.5) and (2.6) results in
|P(z)| > |P(20)], VzeC. (2.7)

Assume that P(z9) # 0. Then by Lemma 2.5 there exists £ € C such that |P(£)| < |P(z0)],
which contradicts (2.7). Thus P(z) = 0, which proves the theorem. O

Remark 2.5. By factorization, every complex polynomial P of degree n > 1 has exactly n

zeros (not necessarily distinct). In other words, P can always be written as
P(z)=an(z —21)(2 — 22) - (2 — 2,), VzeC,

where a,, # 0 and z, 2o, ..., z, are the zeros of P.
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2.3 Complex differentiation (Holomorphic functions)

Lec. 07, Throughout this section and the next one, D C C and U C C will always denote, respec-

tively, a domain and an open subset of C, unless otherwise specified.

Definition 2.4. A function f : U — C is said to be C-differentiable at a point 2y € U
if the limit

1Lm M exists,
2—20 _
i z 20

and in this case, we denote it as f'(zg) or %(zg). We refer to this limit as the complex

derivative of f at zp.

By making change of variable h = z — zy, one can write the derivative f’(zy), whenever

it exists, in the form

o) = i [0 W = F )
h#£0

Here h is a complex number, and it belongs to the set D — zy := {z — 29 : z € D}.
Using the (e,0) definition of the limits, one can easily deduce that a function is C-

differentiable at zy if and only if there exists a constant ¢ € C such that
f(zo+h)= f(z) +ch+o(h), as h—0, (2.8)

in which case, the constant c is the derivative of f at zg, that is, ¢ = f/(zo).

The following result is easy to establish.

Lemma 2.6. If f is C-differentiable at zy, then it is continuous at zy.

Remark 2.6. All the real differentiation laws (addition: or linearity, product, quotient,

and composition: or chain rule) still hold for complex differentiation.

We have the following known result.
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Lemma 2.7. Let f,g: U — C be C-differentiable at a point zo € U. Then
(i) Linearity: f+ g is C-differentiable at zo and (f 4+ g)'(20) = f'(20) + ¢'(20).
(ii) Product: fg isC-differentiable at zy and

(f9)'(20) = f'(20)9(20) + f(20)g' (20)-

(iii) Quotient: If g(z0) # 0, then (f/g) is C-differentiable at zy and

/ / L) — f'(20)9(20) — f(20)g'(%0)
(9) & 9(20)? |

(iv) Chain rule: If h : D (f(z2),e) — C, where ¢ > 0, is C-differentiable at f(z),
then h o f is C-differentiable at zy and

(ho f)/ (20) = f/(Zo)h/ (f(20)) -

Example 2.8. (1) Every constant function f is C-differentiable and f’(z) = 0 for every
z e C.

(2) The function f(z) = 2", n € N, is C-differentiable at every z € C. In addition,
f'(z) =nz""1, Vz € C. Indeed, we have for every z € C and h # 0,

—_

h) — R — n—
FEAEm=fE) el =2 R e
h h 0 h—0

il

(3) By the differentiation rules, we deduce that every complex polynomial P(z) = a,,z" +

<o d a1z +ag, 2 € C,n > 1, is C-differentiable at every z € C, and
P(2) = na,z" ' + -+ 2a92 +a;, VzeC.

Example 2.9. The function f(z) = Re(z) is not C-differentiable at all in C.
— Indeed, for z = x + iy € C and h = hy + ihy # 0, we have

fz+h)—flz) (z4+h)—2 M

h hy+ihy  hy +ihy

The limit of (2.9) doesn’t exist as h — 0, since the limit along real axis (he = 0) is 1, and

(2.9)

the limit along imaginary axis (h; = 0) is 0. So, f is not C-differentiable at every z € C.

Definition 2.5 (Holomorphic functions). A function f : U — C is said to be holo-
morphic at a point zy € U if f is C-differentiable at z; and C-differentiable at every
point in some neighborhood of z;. We say that f is holomorphic on U C D if it is

holomorphic at every point z € U.
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A function f : U — C being holomorphic at a point zy € U requires checking two
conditions: (1) f must be C-differentiable at zy, and (2) There exists ¢ > 0 such that
D(zp,e) C U and f is C-differentiable at every z € D(zy,¢).

Example 2.8 shows that every complex polynomial is holomorphic on C, while the func-
tion f(z) = Re(z) (Example 2.9) is not holomorphic on C.

It is clear from the definition that holomorphic functions are C-differentiable. However,
a function being C-differentiable at a point z; doesn’t necessarily mean it is holomorphic at

that point. This is clarified by the following example.

Example 2.10. The function f(z) = |z|* is C-differentiable at 0, but it is not holomorphic
at 0.
— We first have

_ 2
h—0 h h—0 h—0
h£0 h£0 h#£0

So, f is C-differentiable at 0 with f’(0) = 0. However, for every z # 0 and h # 0, we have

feH+h) —fG) e +hP =1 (R - -
% = h =z (h) +h+z. (2.10)

We have seen (Example 2.3) that h/h doesn’t have a limit as h — 0. Hence, limit of (2.10)
doesn’t exist as h — 0, which means that f is not C-differentiable at every z € C\ {0}.

Consequently, the function f(z) = |z|? is not holomorphic at 0.

Definition 2.6. A function that is holomorphic on C is called an entire function. For

example, polynomials are entire functions.

2.3.1 Complex partial derivatives.

Let S C C be any subset. By the homeomorphism C = R?, the sets S and S = {(z,y) €
R? : z +4y € S} C R? can be regarded as representing the same collection of points.
Therefore, in what follows, any subset S of C may also be interpreted as a subset of R2,

and vice-versa. Since any complex function f : U — C can be viewed as a function
f:U—=R?
(z,y) = (ulz,y), v(z,y)),

where u(x,y) = Re f(z) and v(z,y) = Im f(z) for 2 = = + iy, we can naturally introduced

the partial derivatives for complex functions. Indeed, for zy = xg + iy € U, we define the

complex partial derivatives (if they exist) of f at zy by

of f((zo +h) +iyo) — f(xo + iyo) f(z0+h) — f(2)

—(zp) := lim = lim
8x( O) h—0 h h—0 h ’
heR* heR*
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o f(zo+i(yo +1h)) — f(xo + iyo) _ lim f(Zo+ih)—f(Zo).

0 T =0 h h—0 h
Yy hER* heR*

It is easy to see that the above partial derivatives can be written in the form

of _Odu v

%(ZO) = %(xo,yo) + Z%(iﬁo,yo),

Y 5 5 (2.11)
u .Ov

a—y(zo) = a—y(xo,yo) + Za—y(xo,yo%

ou du Ov owv ) L. . .
where — — and — are the usual partial derivatives of real functions of two variables.

dx’ 0y’ O oy
Example 2.11. (1) The function f(z) = Re(z) is not C-differentiable at all in C, but its
partial derivatives exist at every point z € C. Take z = x + iy and h € R*. Then

fetn) i) = f() (@t
h h b0

0 0
which means a—f(z) =1 for every z € C. Similarly, we obtain a—f(z) = 0 for every z € C.
x Yy

(2) The function f(z) = |z|* is C-differentiable at 0 but not holomorphic at all in C.

However, its complex partial derivatives exist at every z € C with
d|z|? d|z|?
|—|:2x and L:2y, Ve=x+1y e C.
ox oy

2.3.2 Cauchy-Riemann equations

Theorem 2.3. If f : U — C is C-differentiable at a point zy € U, then

Fla) = ey = 2 zo) 2.12)

In particular, if f(zx+iy) = u(x,y) +iv(x,y) and 2y = o + 1Yo, then

0 0 0 0
8_1:;(:60’3/0) = 8_7;(%’%) and a_Z(-’ﬂo,yo) = _a_:;(l’oﬂo)- (2.13)

The equations in (2.13), or the second equation in (2.12), are called the Cauchy-Riemann
Equations (CRE). Clearly, the CRE in (2.13) is equivalent to the second equation in (2.12).
Hence, it suffices to prove (2.12).

Proof of Theorem 2.3. The function f being C-differentiable at z; means the quantity
B) —
(2) = lim f(20+ 1) = f(20)

h—0 h
h#£0

exists as the limit exists as h approaches 0. When we take h approaching 0 along the real

axis, i.e., h = h; € R*, we obtain

F(z0) = 2L (z),

X
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and when we take h approaching 0 along the imaginary axis, i.e., h = ihgy, where hy € R*,

we obtain 5
Fz0) = 1)

from which we deduce (2.12). O

Theorem 2.3 provides a necessary conditions for the C-differentiability, which play a role
in detecting the regions where a function is not C-differentiable. For example, we can see
that the function f(z) = Re(z) is not C-differentiable at all in C as %(z) # —ig—i(z) for
every z € C, see Example 2.11(1). Meanwhile, Example 2.11(2) shows that the function

f(z) = |z|* is not C-differentiable at every z # 0. In this example, we have %(0) =0=
—i%(()), and we proved earlier that f is C-differentiable at 0. However, in general, we may

ask the following question.

Question 2.1. If for a function f : U — C, the partial derivatives ?(zg) and %(zo) exist at

r

a point zy € U, and %(Z()) = —ig—i(zo) (i.e., CRE hold), then is f necessarily C-differentiable

at Zo?
The answer would be NO, in general, as shown by the following example.

Example 2.12. Let f be defined as

x|

, if 2 #0,

z
flz) =47
0, if 2=0.

Then the complex partial derivatives exist at 0 and they equal 0, which implies that CRE
hold at 0. However, f is not C-differentiable at 0 as it is not continuous at 0 (take z

approaching 0 along the curve of equation y = z).

Theorem 2.4 below provides sufficient conditions on f for Question 2.1 to hold true. We

first recall the following lemma from the classical real differential calculus.

Lemma 2.8. Let F : U — R, (z,y) — F(z,y), be a function of two real variables
and let (zo,y0) € U. If the partial derivatives O F//0x and O F/dy exist on an open

disc B C U centered at (xo,y0) and are continuous at (zo,yo). Then

oF oF
F(xo + h1,y0 + h2) = F(xo,yo) + h1%(ﬂﬁoyyo) + h2a—y($0, Yo) + R(h),

where (0,0) # h = (hy,h2) € B — (20,40), and R : B — (x9,y0) — R is a continuous
function satisfying lim |R(h)|/||h]|2 = 0.
h—(0,0)
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Proof. Let (z9,y0) € U, B C U be an open disc centered at (zg,yo), and let (0,0) # h =
(hl, hg) € B— (l’o,yo). We have

F(xo+ h1,yo + ha) — F(xo,y0) = F(xo + h1,yo + ha) — F(xo, yo + h2) (2.14)

+ F(x0,y0 + h2) — F(xo, yo)-
Since h # (0,0), we may assume that h; # 0. Define the function ¢ : [zg, 29 + h1] — R by
o(x) = F(x,y0+hy). Existence of 0 F'/ 0z on B implies the existence of ¢’ on some interval
containing [zg, zg + hi1], and hence the continuity of ¢ on [zg, g + h1]. Therefore by the
mean value theorem, we deduce that there exists 6 €]0, 1] such that ¢(zo + h1) — p(x0) =
h1¢'(xo + 0hy), that is,

OF
F(ZEO + hhyo + ]’LQ) — F(IL‘U,yO + hg) = h1%($0 + ehl,yo + hg) (215)

Since the partial 0 F'/ 0 x is continuous at (g, yo), we may write

oOF OF
%(xo + 60hy,y0 + he) = %(anyO) +r1(h),

where 7 : B — (x9,y9) — R is continuous and hh(%lo) r1(h) = 0. Plugging this into (2.15)
—(0,
results in

oF
F(zo+ hi,y0 + ha) — F(xo,yo + h2) = h1%($07 Yo) + hari(h).

By using the same argument, we obtain

oF
F(x0,y0 + h2) — F(z0,%0) = hza—y(%, Yo) + hara(h),

where 79 : B— (9, y9) — R is continuous and li(m )rg(h) = 0. Substituting these equations
h—(0,0

into (2.14) results in

oF oF
F(zo+ hi,yo + ha) — F(x,y0) = h1%($oa Yo) + h2a—y($o7yo) + R(h),

where R(h) = hyri(h) + hera(h), which is clearly continuous on B — (¢, o), and

R(h h h
BN < Iy A2l ) < )]+ ) — 0, a5 1= (0,0
1Rl — [IAll2 [12]]2
This completes the proof of the lemma. n

Remark 2.7. (1) Lemma 2.8 asserts that F' is differentiable (i.e., R?-differentiable) at the

point (o, Yo)-
(2) Using the little-o notation, the function R(h) in Lemma 2.8 can be replaced with o(h).

Theorem 2.4. Let f: U — C be a complex function, and let zy € U. If the partial
derivatives O f/ 0x and O f/ Oy exist on an open disc B C U centered at zy and are
continuous at 2y, and if f satisfies CRE at zy, then f is C-differentiable at zy.

20



Lec. 09
_—

Proof. Let f(x+iy) = u(z,y)+iv(z,y), 20 = xo+iyo and let h = hy +ihy € B — z5. Noting

that u and v satisfy the conditions of Lemma 2.8 on U, we obtain

ou ou
u(xo + hi, yo + ha) = u(wo, yo) + hi5— (20, Y0) + ha=—(x0,40) + 0o(h), h — 0,

ox dy
ov ov
v(zo + hi1,yo + ha) = v(xo, yo) + hla(fﬁo,yo) + hza—y(ifo, Yo) +o(h), h—O0.

By using these two equations together with CRE, we obtain

f(zo+h) = f(z0)  w(xo+ hi,yo + he) — u(zo, yo) n Z-U(% + ha,y0 + he) — v(xo, Yo)
h h h

1 du du ! ov ov
=—|hi— ho— — | h1=— ho— 1
A ( lf)x(x07y0)+ 2ay(9€0;y0)) + 3 ( 1ax($o,yo)+ 2ay($0>yo)> +o(1)
1 du dv i dv ou
= (M%(xo;yo) - h2%($07yo)) ty (M%(Io,yo) + h2a—m(ﬁﬁo,yo)) +o(1)
du v
= %@0, Yo) + Z%(%, Yo) + o(1)
0
_ a_i(z()) +o(1), h 0.
: : . : , of
By letting h — 0, we deduce that f is C-differentiable at zy and f'(2o) = a—(zo). O
x
We have the direct consequence of Theorem 2.4.
Corollary 2.5. Let f: U — C. If the partial derivatives exist and continuous on an
open subset B C U, and if f satisfies CRE at every point z € B, then f is holomorphic
on B.
Corollary 2.6. If f : D — C is holomorphic on the domain D and f'(z) = 0 for
every z € D, then f is constant on D.
The proof of this corollary follows directly from the following equivalences:
0 0 0 0
=0 << v_ oy Y Y20 = u=const. & v = const. <= f = const.

ox —dy  dx  dy
Remark 2.8. (1) Corollary 2.6 is true only in case of D is connected. For example, the
function

1 oifjz <1

2 if|z] > 2
has zero derivative, but it is not constant, as f is defined on a union of two disjoint open
subsets.
(2) If f,g : D — C are two holomorphic functions on a domain D, and if f'(z) = ¢'(z) for
every z € D, then there exists ¢ € C for which f(z) = g(2) + ¢ for every z € D. This is a

simple consequence of Corollary 2.6.
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Remark 2.9 (General Definition). Let S C C be a subset with S # (. A function f : S — C
is said to be C-differentiable on a subset (not necessarily open) K C S if it is C-differentiable
at each point z € K. Moreover, f is said to be holomorphic on K if there exists and open

subset U D K (containing K) and f is holomorphic on U.

Example 2.13. The function f : C — C defined by f(z + iy) = 2* + 32y? — 3z +
i (y® + 32%y — 3y) is C-differentiable on

K ={2€C:Re(z) =0} U{z € C:Im(z) =0}.
However, f is not holomorphic on this K.
Proof. We have f(x + iy) = u(z,y) + iv(x,y), where
u(z,y) = 2° +32y* — 3z and v(z,y) = y* + 32’y — 3y,

and we have

ou Ou

or 3_31 3z2 4+ 3y* -3 6y

v v 62y 322+ 3y? — 3
oxr 0Oy

Clearly all the partial derivatives of u and v are continuous on R?, and therefore, f is C-
differentiable at z = = + 4y if and only if CRE hold at z. Well, we have du/0x = dv/0y on
R2. However, Qu/0y = —dv/0x holds iff zy = 0, i.e., either x = 0 or y = 0. Hence, f is
C-differentiable on

K={2€C:Re(z) =0} U{z€C:Im(z) =0}.

This subset is the “Largest” subset where f is C-differentiable, since there is no other points
where the CRE hold.

The function f is not holomorphic on K. Indeed, take any point zy € K, and take any
neighborhood U of 2y, and we can always find points z; € U \ K, at which the function f
is not C-differentiable (because CRE don’t hold true). O

2.4 Power series (Analytic functions)

A complex power series about a point zy € C is a series of complex functions of the form

ch(z —20)", (2.16)

n>0

where ¢, € C for every integer n > 0, and z is a complex number in a suitable subset of C.

Note that (2.16) is absolutely convergent at zg, and its value (sum) at zo would be ¢ (So,
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it is always possible to find a subset where a power series is well defined). We recall the
following result, which specifies the exact domain in which a given power series absolutely

converges.

Theorem 2.7. For a power series (2.16) there exists a unique R € [0,+00] such
that (2.16) is absolutely convergent for |z — zo| < R (whenever this has meaning) and
divergent for |z — zg| > R. This R is called the radius of convergence of the series
(2.16). The radius of convergence R can be determined by the Cauchy-Hadamard
formula

R = lim inf ;,

n—+oco |cn|

»

with “the convention 1/0 = o0”.

Recall that if (2.16) has the radius of convergence R > 0, then for every r €0, R|,

the series (2.16) is normally convergent in D(zg, 7). Therefore, (2.16) defines a continuous
+o0o

complex function f : D(zy, R) — C defined by f(z) = >_ ¢,(z — 20)" for every z € D(zg, R),
n=0

which called the sum of the power series (2.16) in D(zp, R). Next result reveals the C-

differentiability of f on D(zg, R).

Theorem 2.8. Consider the power series (2.16) with radius of convergence R > 0,
+o0

and let f(z) = > cu(z — 20)" for every z € D(zy, R). Then f is holomorphic on
n=0
D(zo, R) and

“+oo
f(z) = chn(z —20)""Y, Vz € D(z, R). (2.17)

Proof. By the Cauchy-Hadamard formula, the power series > nc,(z —29)" ! (2.17) has the
n>1
radius of convergence

;e 1 . 1
S e Ry P A
Assume without loss of generality that zy = 0, as we can apply the same argument to the
function g(2) = f(z + 29), if 20 # 0. We proceed to prove (2.17). Let z € D(0, R), h € C*
such that z 4+ h € D(0, R). Then

+oo +oo +o0o
_ " — 2n
f(z—kh]z fz) g ne,2" = 5 cn—(z+ l)z S E ne, 2"t (2.18)
n=1 n=0 n=1

Let £ € D(0, R) such that |z| <[], and take h so that |h| < |£] — |z| (particularly we have
|z 4+ h| < |€]). Hence,

z4h)"— 2" — ke .
cn% = leal |D (2 + R)F 2" < ey [€"
k=0
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Since ¢ € D(0, R), it follows that > n|c,||£[*! is convergent, and hence, the first series
n>1

on the right-hand side of (2.18) is uniformly convergent for h in D(0, |{| — |z|). The second
series on the right-hand side is already convergent. Now for given ¢ > 0, there exists an

integer N > 1 such that, for every h € D(0, || — |z|), we have

+00 +o0
R —
Z Cn% — Z ncnzn_l S %
n=N+1 n=N+1
This and (2.18) give, for every h € D(0, |¢] — |z]),
f(z+h (z+h)n -z & e
S 1 — n—1
‘ Z nep2 < Z b — ; Nnep2 + 3
By letting h — 0, we have
N N
h n
ch (z+ N chnz”_l,
n=0 n=1
and consequently, there exists 0 > 0, such that for every h satisfying |h| < min{Jd, |¢| — |z|},
we have v v
R — 27
ch% — chnz”_l < %
n=0 n=1
Thus, for |h| < min{J, || — |z|}, we have
h) — <=
‘f(z 0= JE)§ e| <
n=1
which means that .
f'(z) = Z ne, 2"t (2.19)
n=1
Since this true for every z € D(0, R), it follows that f is holomorphic on D(0, R) and f’ has
the form (2.19). N
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By simple induction, we obtain the following consequence of Theorem 2.8.

Theorem 2.9. Consider the power series (2.16) with radius of convergence R > 0,
+oo

and let f(z) = > colz — 20)" for every z € D(z, R). Then for every integer k > 1,

the function f(k:l) (the (k — 1)th derivative) is holomorphic on D(zo, R) and

“+00

f(k)(z) = Z (ni—!k)!cn(z — 2)" ", Vz e D(x,R).

n=~k

Remark 2.10. From this result, we deduce the following relation between the coefficients

of a power series, and the derivatives of its sum,

, Vn>0.

Definition 2.7 (Analytic functions). Let f : U — C be a complex function, and let
2o € U. We say that f is analytic at zq if there exists r > 0 such that D(zg,r) C U
and f is the sum of a power series about z, that is absolutely convergent in D(zg, 7).

Moreover, we say that f is analytic on U if it is analytic at each point z € U.

“+oo
Example 2.14 (EXERCISE). If a power series > ¢,z" has a radius of convergence R > 0,
n=0
+o00
then its sum f(z) = > ¢,2" is analytic on D(0, R).
n=0

Remarks.

(1) From Theorem 2.8, we see that if f : U — C is analytic at zo € U, then it is holomorphic

at zp. Consequently, if f is analytic on U, then it is holomorphic on U.
Analyticity =—> Holomorphicity.

Analytic functions are typical examples of holomorphic functions. In the following

sections, we will see that holomorphic functions are, in fact, also analytic.
(2) If f is analytic on U, then all its derivatives f*), k > 1, are also analytic on U.

(3) From Remark 2.10, every analytic function f : U — C has, around every £ € U, the

representation

T £(n)
1) =S L8 gn e pie ),

n!

for some R¢ > 0 depending on &, such that D(§, Rg) C U.
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Some properties of analytic functions

A subset Z C D is called discrete in the domain D if it has no accumulation point in D.

Theorem 2.10. Let f : D — C be analytic on the domain D, and let (zx)g>1 C D be
a sequence of distinct complex numbers converging to zg € D. If f(zx) = 0 for every
k>1, then f =0 on D.

TO BE CONTINUED!

3 Elementary functions

3.1 The complex exponential function

Consider the power series

By Cauchy-Hadamard formula we have

R =liminf ¥n! = +o0,

n—-+00
which is the radius of convergence of the above power series, and this means that the function

‘oo 4,

BE(z) = Z%, Vz e C,

n=0

defines an analytic (and hence a holomorphic) function on C, i.e., an entire function.Moreover,

its derivative satisfies

+oo n—1 +to n
, nz z
FE'(z) = E = g o= E(z), VzeC. (3.1)
n=1 n=0

Note that when z = 2 € R, we clearly have E(x) = e*. What can be said about E(iy),
where y € R? In fact, for z = 1y, where y € R, we have

yOr. y o,y p

n>0 n is even n is odd ( )
3.2
(_1)sy2s . (_1)sy25+1 o
= g ~——— 72— = cos(y) + isin(y).
2o T2 o
s>0 s>0
Thus

E(iy) = cos(y) +isin(y), Yy € R. (3.3)
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The next natural question concerns the algebraic form of E(z), but first, we shall prove the

property
E(Zl = 2’2) = E(Zl)E(Zg), VZl, zy € C. (34)

This can be done by using the Cauchy product as follows:

E(zl+zQ):Z 21+2’2 anz()knk

n>0 n>0

)

Plugging z = = + iy into (3.4) and using (3.3), we obtain

E(x +iy) = E(x)E(iy) = €*(cos(y) + isin(y)). (3.5)

From this, one can easily check that F(z) satisfies CRE. In addition, (3.5) shows that
|E(2)] = e®(®) > 0 for any z € C. Hence, E(z) never vanishes.

The restriction of E to the real line is nothing but the real exponential function. We then
define the complex exponential function, denoted by exp(z) or more practical form e* to be
the function E(z) for every z € C. From this definition, we will have the famous Euler’s
formula

e = cos(y) +isin(y), Yy € R.

Hence (3.5) yields
e* = e"(cos(y) +isin(y)), Vz=z+1iyeC.

Note that e* is the unique solution to the differential equation (3.1) with the condition
f0) = 1.

The complex exponential function is periodic of the main period 27i, and we have
PP — o2 — o2y e C, VE € Z.

In contrast to the real case, the complex exp is not injective, and we have
et =e? —= dk €z = 2z + 2kmi.

Exercise 3.1. Solve in C the equation e* = —2.

Solution. By setting z = x 4 iy, the equation is equivalently written as

e*cosy = —2

e’siny =0
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Solving the second equation results in y = kn, k € Z. By substituting this into the first
equation, we obtain e* = (—1)*"12 k € Z, but this is true only when k = 2j + 1, j € Z.
In this case, we obtain x = In2 and y = (2j + 1)m, j € Z. Therefore, the solutions of the
equation are z; =In2 +1i(25 + )7, j € Z. ]

Exercise 3.2. Show that, for every z € C, the sequence {(1 + z/n)”} converges to e?,
neN
that is,
. Z\"
e = lim <1+—> .
n

n—-+o0o

3.2 Trigonometric and hyperbolic functions

Similar to the real case, we define the complex cosine and the complex sine in terms of the
power series’ as follows

2n 22n+1

cos(z) = ;(—1)" (;n)‘ and sin(z) = ;(—1)”m, vz e C.

One can easily check that both of these functions are analytic (and hence holomorphic)
on C, i.e., they are entire functions. By replacing y with z and —z in (3.2), we obtain,

respectively,

e = cos(z) +isin(z) and e = cos(z) —isin(z), Vze€ C.

The first formula is Euler’s formula for complex numbers. From these two formulas, we
obtain the exponential form of cos and sin:
eiz + e—z’z eiz _ e—iz

cos(z) = ———— and sin(z) = 5
i

5 vz e C. (3.6)

The derivatives of cos and sin satisfy

d cos(z)
dz

dsin(z)
dz

= —sin(z) and = —cos(z), VzeC.

By the periodicity of the complex exp, we deduce that cos and sin are periodic of the main
period 27.
Some properties.

All trigonometric identities remain valid for complex numbers. To mention a few

examples,

cos*(z) +sin*(z) =1, VzeC,
cos(z1 £ 2z3) = cos(21) cos(zz) F sin(z1) sin(zg), Vz1, 20 € C,

sin(zy & 23) = sin(21) cos(zg) £ cos(z1) sin(zz), Vzi, 2 € C.
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The sets of zeros of cos and sin are Z(cos) = {g +km: ke Z} and Z(sin) = {km : k € Z},

respectively. Indeed, for example for the zeros of cos, we have
cos(2) =0 = e* = - P =e """ = jz=—iz—in+2kmi, k€ Z = z € Z(cos).

The converse inclusion is obvious. (check it for sin!) Here, we mention the complex

tangent function, which is defined by

tan(z) = :)r;((i;’ Vz € C\ Z(cos).
el +et el — et

Recall that for every t € R, cosh(t) =
deduce for every y € R,

and sinh(t) =

. From (3.6), we

cos(iy) = cosh(y) and sin(iy) = isinh(y).
Consequently, we may apply to show, for every x + iy € C, that

cos(x + iy) = cos(x) cosh(y) — i sin(z) sinh(y),

sin(x 4 iy) = sin(x) cosh(y) + i cos(z) sinh(y).

It follows from that, for every x + iy € C,

| cos(z + y)|* = cos?(z) + sinh*(y),
| sin(z + iy)|? = sin’(z) + sinh?(y).
In particular, cos and sin are not bounded on vertical strips. However, still bounded

on horizontal strips.
Exercise 3.3. Solve in C the equation cos(z) = 2.
Solution. The above equation is equivalently written as e’* 4+ e~** = 4, that is,
(e%)? —4e” +1 = 0.
Clearly, e* solves the w? — 4w + 1 = 0, which has the two real solutions 2 & v/3. Hence,
€7 = 2+ /3. Since 2+ /3 > 0, we can write ¢* = ePCEV3)  which implies that iz =
In(2 £ v/3) + 2kmi, k € Z. Thus z = 2kr —iIn(2 £ v/3), k € Z. We can easily check that

these are the solutions of the equation.

NoOTE. We can use the same method as in Exercise 3.1 . O]
The hyperbolic functions cosh and sinh are now defined by
cosh(z) = cos(iz) and sinh(z) = —isin(iz), Vz e C.

In addition tanh(z) = —itan(iz) for every z € C. Analogously to the trigonometric func-
tions, the hyperbolic identities still hold for complex numbers. For example, cosh?(z) —

sinh?(z) = 1 for every z € C.

Exercise 3.4. Find the algebraic form of cosh and sinh.
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3.3 Complex logarithmic function

In the real case of the exponential function y = €*, x € R, we know that its inverse function
is x = Iny, y > 0. This is well-defined as exp : R —]0, +o0[, exp(z) = €%, is bijective. Let
us now investigate the complex case. To do so, for a given z € C\ {0}, let us solve, for w,

the equation
z=e". (3.7)

Set w = u+1v, where u,v € R don’t vanish at the same time. Then the equation in question

will written as e“e™ = |z|e?, where 6, is an argument of z. Therefore,

e = ||

v=2~0,+2knr, keZl.

The first equation involves real variables only, and solving it for u yields

u=lIn|z|

v=2~0,+2knr, keZl.
From this, we deduce that the solutions of (3.7) are given by
wy = In 2| +1i6, + 2kmi, ke Z.

Note that there are infinitely many solutions of (3.7) for any given z € C\ {0}. Hence, if
we define a multi-valued function to be the “inverse function” to the exponential function,

then it would be analogous to the real logarithmic function.

Definition 3.1 (The complex logarithm). Let z € C\ {0}. The complex logarithm
is a multi-valued function, denoted by log(z), and is defined by

log(z) = In|z| + 0, + 2kmi, k€ Z,

where 6, is an argument of z. This equality indicates that all possible values solving
equation (3.7), for any given nonzero z, are collectively represented by the single

notation log(z). In particular, ¢'°8*) = 2 for any nonzero z.

The equality in the definition also represents all possible values that the multi-valued
function log(z) may assume for a given z # 0. Note that for any z # 0, ¢'°8(*) assumes only
one value, which is z. Hence the expression e°6(*) is a single-values function.

Since 0, = Arg(z) mod (27), we can replace 6, with Arg(z) in Definition 3.1, that is,
the complex logarithm of z € C\ {0} would be defined by

log(z) = In|z| + i Arg(z) + 2kmi, k€ Z.
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Recall that Arg(z) is the principal value of the argument, that is, the value of the argument

that lies within the interval | — 7, 7].

Example 3.1. We have

1
log(i) = In |i| 4+ ¢ Arg(i) + 2kmi = (5 + 2k) i, k€ Z.

Some properties. For z, 21,2, € C\ {0} and for an integer n € Z \ {0}, we have

log(z122) = log(z1) + log(z2).
log(2") = nlog(2).
log(e?) = z + 2kni, k € Z.

3.3.1 The principal value of the complex logarithm

Definition 3.2. The principal value (the principal branch) of the complex logarithm
is a single-valued function, denoted by Log(z) (with uppercase L), and is defined by

Log(z) =In|z| +iArg(z), Vze C\{0}.

In particular, Log(z) = In(z) for every x > 0.

The properties of log(z) do not necessarily work for Log(z). Take for example, z; = z5 =
—1. Then Log(z;) = Log(z2) = Log(—1) = In| — 1| + i Arg(—1) = mi. On the other hand,
we have Log(z121) = Log(1) = In(1) = 0. So, Log(z122) # Log(z1) + Log(z2).

Proposition 3.1. The exponential function f(z) = e* is injective in the strip
S={z€C:—7m<Im(z) <n},

and its inverse is f~1(z) = Log(z) for every z # 0.

J

Proof. The fact that e* is injective in S follows from the properties of the exponential
function (the periodicity of period 27i). From one side we have e°8(*) = 2 for every z # 0.

On the other hand, for every z € S, we have Im(z) €] — 7, 7|, and therefore,
Loge* =Inle?| +iArg(e®) = Re(z) +ilm(z) = 2, VzeS.

This shows that f: S — C\ {0} is bijective, and f~1(z) = Log(z). ]
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Theorem 3.2. The principal branch Log(z) of the complex logarithm is holomorphic
on the slit complex plane C\ {z : Im(z) = 0,Re(z) < 0}, and there we have

dLog(z) 1
dz =z
Proof. The proof will be discussed in the tutorial sessions. m

Exercise 3.5. Determine the domain of holomorphicity of the function f(z) = Log(3z —1).

Solution. From Theorem 3.2, f is holomorphic for 3z —i ¢ {z : Im(z) = 0, Re(z) < 0}. We
have .
Im(3z —i) =0 and Re(3z —i) <0 < Im(z) = 3 and Re(z) <0.

1
Thus f is holomorphic on C\ {Z :Im(z) = 3’ Re(z) < 0}. O

3.3.2 Complex powers

Let « € C and z € C\ {0}. Then z* is, in general, a multi-valued function defined by

@ — exlog(2)  Tp particular, if @ = n € N, then 2" = enlo8(?) = gnlnlzltin Arg(2)+2nkmi _

e In |z|+in Arg(z)

z

nLog(2) which is a single-valued function.

=e
For ay,ay € C and z # 0 we have (as multi-valued functions)

a1
< - k

P zoc1+oz2’ — = Pl 042’ (Zal) — Zkal, =A
Zx2

For 2,29 € C\ {0} and a € C we have
(2122)" = 2725
In general, (2%1)*? # z*1*2. For example

[(_1)2}2 _ (_1>z _ 6ilog(—l) _ 6_(2k+1)7r, ke 27
(_2)21 _ eQilog(fi) _ 6(174k)7r’ Le?Z.
The principal value (the principal branch) of z* is a single-valued function given by

e@oe(z)  For example, the principal value of (—i) is e?°8(=) = ¢™/2, The principal value of
2“ is holomorphic on the slit plane C \ {z : Im(z) = 0,Re(z) < 0}, and there we have

&=
dz

=zt

A particular case of the complex power function is the nth root of a complex number
2z # 0. Let n > 1 be an integer, then the nth root of z # 0 is given by

1 A 2k
zl/”:exp{ njz +1 rg(z)_i_ Wi}, ke Z.
n

n n
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Note that z!/™ is a multi-valued function with exactly n values for each z # 0 corresponding
to the cases k = 0,1,...,n — 1. We say that z'/" is n-valued function. The principal value
of z'/™ is given by Q/mei Are(2) for every z # 0.

By choosing the principal value of z%, the identity (z122)* = 2¢2$ may not hold. Take

1/2 5o pim/2

is e and the principal value of

for example o = 1/2. Then the principal value of (—1)

()/2 is e™/*, However, the principal value of (—i)/2 is e7"™/4 £ 37/4 = (—1)1/2(4)1/2
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4 Complex Integration

4.1 Complex-valued functions of real variable

zee Definition 4.1. Let ¢ : [a,b] — C, where Re(p) and Im(p) are integrable on |a, b].

Then ¢ is integrable on [a, b] and

/j(p(t)dt:/abu(t)dtJri/abv(t)dt.

Remark 4.1. (1) Clearly, the integration of complex-valued functions of real variable is

J

a “linear operator”.

(2) From the fundamental theorem of calculus for the real-valued functions, we easily
deduce the the result: If ¢ : [a,b] — C is integrable, and if there exists a differentiable
function ® : [a,b] — C such that ' = ¢, then

Lemma 4.1 (Triangle inequality). Let ¢ : [a,b] — C be integrable. Then

/abw)dt' < [ letolar

Proof. Since the quantity fab ©(t)dt is complex, we may write it in the polar form, i.e.,

b
/ p(t)dt =pe®, p>>0,0cR.

Therefore,
b
/ e Po(t)dt = p.

The LHS of this equality is real, and hence

/ Re (e “p(t)) dt = p.

a

By making use of the triangle inequality for real-valued functions, we deduce

/abw)dt\ .

4.2 Complex-valued functions of complex variable

b b b
/ Re (e (1)) dt‘ < / Re (e “p(t)) |dt < / lp(t)|dt. O

a

Let v be a smooth curve with initial point &; and terminal point &. For an integer n > 1

define P, = {20, 21, ..., zn} aset of distinct points lying on 7 to be a partition of v if zy = &
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and z, = & and z;_; precedes z;, for every k = 1,... ,n. Denote by u(P,) the mesh size of

the partition P,, defined by

p(P,) = max {length(zk_lzk) ck=1,... ,n} :

Y

where length(zy_12;) is the arc-length along v between z;_; and zj. Clearly
v

lim w(P,)=0.

n——+o0o
Let f : S — C be defined on an open subset S C C. Let v be a smooth curve in S.

Then, a Riemann sum of f corresponding to a partition P, = {29, 21,...,2,} Is any sum

given by
S(f> Pn) = Zf(ck)(zk - Zk71)>
k=1

where ¢, is any point lying on v between z;_; and z;, (may take one of the values zj_1, 21.),

for every k=1,...,n.

Definition 4.2. Let f : S — C be defined on an open subset S, and let v be a smooth
curve in S. We say that f is integrable along ~ if there exists ¢ € C such that for
every ¢ > 0, there exits a partition P, = {29, 21, ..., 2, } of 7, where nETOOMP") =0,
for which |S(f, P,) — ¢| < e. The number ¢ is called the integral (path-integral) of f
along v, and is denoted by
(= / f(z)dz.
v

In this case (f is integrable along 7), we have

n—-+0o

/f(z)dz = lim Zf(zk,l)(zk — 2Zk—1),

where the Riemann sum on the RHS is taken over all partitions P, of ~, and the

points ¢ are replaced with z,_;.

Now, let z = 7(t), t € [a,b], be any parametrization of the curve v, and let P, =
{to,t1,...,t,} be asubdivision of [a, b] corresponding to P, = {29, 21, ..., 2n}, 1.€., 7(tx) = 2k

for every k =0,1,...,n. The Riemann sum S(f, P,) can be “approximated” by

S(Ba) =Y F(v(te)) (b))t = tia),

for sufficiently large n. Notice that this is a Riemannfﬁum for the function f(y(t))y (¢)
he
on the interval [a,b]. From this, we see analogously to t@real case that the continuity is

sufficient for the integrability.
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Definition 4.3. Let f : D — C be continuous on an open subset S. Let 7 be a
smooth curve in S, and let z = y(t), t € [a,b] be any parametrization of 7. Then the
integral of f along ~ is given by

Lf@dz=éﬁwwwwm¢

Remark 4.2. (1) Let I' =9, + 2+ ... + 7, be a contour in D, where v;, j =1,...,s, are

the smooth components of I'. Then we can define the integral along I" by the relation

f=[ ] rf

(2) The integral along v doesn’t depend on the parametrization of . Indeed, if v : [a, ] —
C and 73 : [¢,d] — C are two parametrizations of v, then there exists a strictly increasing
bijection ¥ : [a,b] — [c,d] such that v, (t) = v2(¥(t)), Vt € [a,b]. Hence,

b=y~ 1(d)

[ s as = [0 Framgeow = [ imomoar
=71 (t)

(3) We can directly deduce that the integral along a contour I' is a ”linear operator”. In

addition, the integral along the opposite contour —I" is given by

=k

c
Example 4.1. According to the values of n € Z, BEvaluate the integral fw(z —a)"d z along
the positively oriented circle 7 : |z —a| =7 > 0.

Notation. If I' is a positively oriented closed contour, then we often use the notation 7{
r

for the integral. In addition, when we write, e.g., f , we mean the integral along the
|z—al=r

circle of the equation |z —a| = r.

Recall. Let z = ~(t), t € [a,b], be a parametrization of a smooth curve v. Then the

arclength of v is given by
b
()= [ Wwnae= [laz (4.1)
a ¥

The second inequality follows from d z = «/(¢) d ¢, which yields | d z| = |/(¢)| d ¢ (called: the
arclength measure).
Let I' = v + 72 + ... + 7, be a contour, where v;, j = 1,..., s, are the smooth components

of I'. Then the arclength of I' is given by

(ry =3 t). (4.2)
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Theorem 4.1. Let f : S — C be continuous on an open subset S, and let v be a

s/|f<z>||dz|.

Proof. Let z = ~(t), t € [a,b], be any parametrization of . Then making use of Lemma 4.1

dt] /|f Mrelac= [l o

Corollary 4.2. If under the conditions of Theorem 4.1 we have in addition that
|f(2)| < M for every z € v, then

smooth curve in S. Then

z)dz

results in

z)dz| < Mé(n).

Remark 4.3. Using (4.2), Corollary 4.2 holds true for v as a contour.

Exercise 4.1. Find an upper bound for the modulus of the integral

% ¢ dz.
|z|=4 z+1

Solution. The length of the circle v = {z : |z| = 4} is {(y) = 87. We have

241> 2| —1=4—-1=3 and [e*| =) <elfl = ¢t

z 4 4
‘j{ “ _dz <7{ ‘|dz’ j{ |dz|:87re. O
o= 2 1 \|4Z+1 3 Jizl=1 3

4.2.1 Fundamental Theorem of Integration

Therefore,

Definition 4.4 (Primitive). Let f : S — C be a continuous function on an open
subset S C C. A holomorphic function F': S — C is said to be a primitive of f in S
if F'(z) = f(z) for every z € S.

Theorem 4.3. If f is continuous on an open subset S C C, and if it has a primitive
F in S, then

/f(z) dz=F(z)— F(z), F(z_2)-F(z_1)
r

for every z1, 29 € S and for every contour I' in S joining 21 to zy. In particular, if T’
s a closed contour in S, then
f(z)dz=0.

r
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Proof. Let z1,2z5 € S, and let v be any smooth contour in S joining z; to 2z5. In case of
7 being a contour is an obvious modifications. Consider any parametrization z = ~(t),
t € [a,b], of . Since F is a primitive of f in S, it follows that the function F(v) is a
primitive of F’(y)y" in [a,b]. Then, applying the fundamental theorem of integration for

real variable, we deduce the conclusion of the theorem. O

Remark 4.4. (1) For the real functions, every continuous function has a primitive. This is

not true for complex functions. E.g., the function f(z) = Z in continuous on C, but

2m
]{ zdz = / e "(ie")dt = 2mi # 0.
|z|=1 0

So, from Theorem 4.3, f doesn’t have a primitive in C. Here, f is not holomorphic
(2) One may expect that if f is holomorphic, then it has a primitive. Well, this is not true

in general either. E.g., the function f(z) = 27! is holomorphic on C\ {0}. However,

]{ dz = 2mi # 0.
lz|l=1 %

So, f doesn’t have a primitive in C \ {0}. Here, D is not simply connected

Definition 4.5 (Path-independence). Let f : S — C be continuous on an open subset
S C C. The integral of f is said to be path-independent in S if for any 2z, zo € S and

for every 1,72 two contours in S joining z; to 2o we have

(Alf@)dz:ilzf@)dz

z2
In case of path-independence, the integral will be denoted by / .

z1

Remark 4.5. Not every continuous function has a path-independent integral. E.g., the
function f(z) = z is continuous on C. For —1 and 1, we have two smooth curves joining 1

to —1 defined by

n(t)=e" telo,n] and %)= tel0,n].

/Edz:m' and /Edz:—m'.
Y1 Y2

Theorem 4.3 asserts that if f has a primitive in S, then its integral is path-independent

Then

in S. The following result shows that the converse is also true.

Theorem 4.4. If f : D — C is continuous on a domain D C C, and if its integral is
path-independent in D, then f has a primitive in D.
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Lec. 16, Proof. Let zy € D be fixed, and for any z € D, let v, be a curve in D joining 2y to z (this

is possible by the connectedness of D). Define the function

ﬂaz/ﬂ@&.

As the integral of f is path-independent, it follows that F' : D — C is well-defined. Now,
let h € C\ {0} be sufficiently small such that [z, z + h] C D (This is always possible as D is

open) . Therefore, we have

=P 2 [ n9as- [roae| -5 [ r©as
z+[2,2+h] Yz [z,2+h]
which implies that
F(z+h)— F(z) | F(z+h)—-F(2)  f(2)

A ‘ h ok /[zz—l—h]dg'

1 ’ (4.3)
< o= 1F(&) = f(2)]dg].

’hl [z,2+h]

Given ¢ > 0. Then by the continuity of f at z, there exists § for which | — z| < §
implies |f(€) — f(2)| < e. Let h satisty |h| < §. Then for every £ € [z,z + h] we have
€ —z| < |(z4+ h) — z| = |h| < 0. Hence, from (4.3), we deduce

F(z+h)— F(z)

- f(2)

This shows that

h—0 h
Since z is arbitrary in D, it follows that F' is holomorphic on D, and that F'(z) = f(z) for
every z € D. That is, F' is a primitive of f in D. This completes the proof. n

Corollary 4.5. If f : D — C is continuous on a domain D and fv f(z)dz =0 for

every closed contour v in D, then f has a primitive.

Proof. Let 21,29 € D be any arbitrary two distinct points in D, and let v; and ~» be any
two contours in D joining 2; to zo. Then the contour v = v + (—72) is a closed contour
in D. Therefore,

/Vlf(Z)dz—/wf(Z)dz:/Mf(z)dz—i—/_wf(z)dz:J({f(z)dz:0_

This shows that the integral of f is path-independent in D, and by Theorem 4.4, we deduce
that f has a primitive in D. m
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4.3 Cauchy Integral Theorem and Consequences

Theorem 4.6 (Cauchy-Goursat). Let f : D — C be holomorphic on a simply

connected domain D C C. Then for every Jordan contour v in D we have

éf@ﬂzz&

Idea of the proof. we will divide the proof into three cases:

Case 1. Consider first that v = T is a positively oriented triangle. Divide T into four
inscribed triangles Sy, Ss, S3 and Sy using the midpoints of its sides as in Figure 1. Notice
that the integral along the four triangles reduces to the integral along the original triangle
T, as the integral along the inscribed line segments will cancel out (They're traversed in

opposite orientation). Therefore,

A

N\

Figure 1: Triangles of Goursat

jif(z)dz:z g f(z)dz.

Notice that there must exist one triangle, denoted T}, among S, S3, S3 and S3 that satisfies

%;ﬂ@dz.

f(z)dz
T

= max
1<k<4

f(z)dz
T

éj@ﬂz

Notice also that the perimeter of T3 is ¢(T}) = ¢(T)/2. By repeating the process, and

Then
<4

continue to subdivide T} in the same way, we arrive at a sequence 1,71y, T5,--- ,T,, -+ for

which
]f f(2)dz f(2)dz f(2)dz
T T Tn

and ¢(T,,) = ¢(T)/2". Denote by A, =T, Uint(7},). Then {A,},>1 is a sequence of nested

compact sets, i.e.,

<4 <ol <4 <eee (4.4)

AT DA DA DDA, D+

40



and diam(A,,) < ((T,,) = ((T")/2" — 0 as n — +oo. It follows from the Nested Sets The-

orem that (| A, = {2z} for some zy € D (D is simply connected). Since f is holomorphic
n>1
at zg, it follows that

f(z) = f(20) + ['(20) (2 — 20) + R(2)(z — %), (4.5)

where R(z) — 0 as z — zo. Now, for an arbitrary given ¢ > 0, there exists § > 0 such that
|R(z)| < & whenever |z — zg| < 0. In addition, as diam(A,) — 0 as n — +o00, there exists
no > 1 such that A,, C D(zo,9) for every n > ny. Now, from (4.5), we have

> f(z)dz:f(zo)j{ dz+f’(zo)j{ (z—zo)dz%—j[ R(2)(z — z)d 2

n n n

:7{ R(z)(z — 2zp)d 2.

n

Notice that both functions 1 and (z — 2zp) have primitives, and for that their integrals along
closed contours vanish. In addition, notice that when z € T,,, |z — z9| < diam(7},). Then,

from (4.6) and for n > ny we obtain
< ¢ [R(2)]]z = 20l d ]
Tn

<ediam(7,) ¢ |dz|
Th

f(z)dz

ury”

=ediam(7;,)* < ¢ s

fT F(2)dz

As € > 0 is arbitrary, we deduce that ¢ f(z)dz = 0.

Using this with (4.4) yield
< el(T)>

T
Case 2. If « is a positively oriented closed polygonal line in D, then by triangulation
of the polygonal region enclosed by 7 into finitely many triangles, we can use the previous
case to deduce that ¢ f(z)dz = 0. (check it!)

2
Case 3. Consider now that v is a general Jordan contour in D. We know that the

integral § f(2)dz is the limit of the sums

S(fa Pn) = Z f(zkfl)(zk - qu)

over all the partitions 2, 21, ..., 2, = 2o of v with u(P,) — 0 as n — 400. Then for every
e > 0, there exists §; > 0 and P, a partition of v with u(P,) < d; such that

. (4.7)

DO ™

%f(z)dz—S(f,Pn) <
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Lec. 17
—_—

Let L, be the closed polygonal line whose vertex set is P,,. Choose n sufficiently large so that
w(P,) is sufficiently small in order to ensure that L, C D. Recall that f is continuous on
the compact K,, = L,Uint(L, ), and hence it is uniformly continuous there. Therefore, there
exists 0o > 0 such that |f(z1) — f(22)] <

2€&n> whenever |21 — 23| < 09 and 21,29 € K,,.

Taking § < min{d;, dy} we obtain

‘S(f,Pn)— f(z)dz

<[ - el <5

We know from Case 2 that

b flz)dz =
Thus |S(f, P,)| < /2. Using this w1th 4 7) we deduce that
2)dz| <e.
Since € > 0 is arbitrary, we deduce that f f(2)dz = 0. This completes the proof. n

v

The more practical version of Cauchy-Goursat theorem is as follows: If a function f is

holomorphic on int(v), where v is a Jordan contour, then ¢ f(z)dz = 0.
ol

Example 4.2. Since any polynomial P is an entire function, then for any closed contour
in C we have ¢ P(z)dz = 0.
v

Remark 4.6. (1) From Corollary 4.5, every holomorphic function f in a simply connected
domain D has a primitive in D. Consequently, the integral of f is path-independent.
(2) Cauchy-Goursat theorem is not valid in a domain that is not simply connected. E.g.,
f(z) = 1/z is holomorphic in C\ {0}, and ¢ 1/zdz = 2mi.
2|=1

Procedure in case of multiply-connected domains. Let f: D — C is holomorphic
on D, which has two holes (multiply-connected). Let v be a Jordan contour enclosing
both holes, and let v; and 5 be two Jordan contours, each enclosing one of the two holes
individually.

Let 21 € 7, 22,23 € 71 and 24 € 73. Then make a cut along some curves 7,, ., joining z;
and zy and 7, ., joining z3 and z,, and both lie within int(y). Then f is holomorphic on

the simply connected region

int (7] \ (int() Uint(39) Uz U Yegse, )

Let’s denote by —v1(z2, 23) the arc of v, joining 2o to z3 in the negative orientation of ~;.

Therefore, by Cauchy-Goursat theorem, we obtain

VRNV IRY RS A N I I

v Vz1,22 —71(22,23) V23,24 - —Yzg,za  —71(23,22) V1,29
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Therefore,

NS

We can easily generalize this into a domain with n holes as follows.

Theorem 4.7 (Cauchy theorem for multiply-connected domains). Let v be a Jordan
contour, and let v1,...,7v, be Jordan contours such that int(vy;), j = 1,...,n, are

pairwise disjoint and all are inside int(~y). If f is holomorphic on

n

int(y) \ | int(y;),

Jj=1

then

n

jl{f(z)dz = Z ) dz.

Exercise 4.2. Find the value of the integral

L

Solution. We have 2% + 2z — 3 = (2 — 1)(z + 3). So, the function

Sz + 7

f(Z)222+22_3

is holomorphic on the disc D(2,2)\{1}. By Cauchy theorem for multiply-connected domains

j{z_“ fz)d= = ]{Hl f(z)dz.

we have

By decomposition, we have

Therefore,

3 2
f:]{ d2+]{ dz = 3(27i) + 0 = 6.
a—1j=1 2 — 1 o1j=1 2+ 3

For the second integral, we know that z +— 2/(z + 3) is holomorphic on {|z — 1| < 1}, and
hence by Cauchy-Goursat theorem, its integral along |z — 1| = 1 is 0. O

Theorem 4.8 (Cauchy’s integral formula). Let v be a Jordan contour, and let f be
holomorphic on int(y). Then for every z € int(y), we have

f(z) = ﬁ]{g%da
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Remark 4.7. This formula is valid for Jordan contours only (i.e., simple closed contours).
There is a general formula for any closed contours, which depends on the Winding numbers.

This will be discussed in the upcoming sections.

Example 4.3. we have

12
j{ 25Z—+7dz:j§ <5Z+7)/<z+3)dz:27ri <5Z+7) = 211 (—) = 671.
lo—2=2 2° + 22— 3 |2—2|=2 (2 —1) z+3 /). 4

Exercise 4.3. Find the value of

62
I :7{ dz.
=2 2(2 — 1)

62

2(z—1)
Cauchy’s theorem for multiply-connected domains, we have

Solution. The function f(z) := is holomorphic on {z : |z] < 2} \ {0,1}. By

I= - (z)dz:jl{:le1 f(z)dz—l—]{ f(z)dz,

|z—1|=e2

where €1 and e5 are too small positive numbers. Moreover, by Cauchy’s integral formula we

have . . .
f f(z)dz-f Mdz:Qm (6—) = —2mi,
|2]=e1 |2]=1 z (z—=1)/ .
}1{ f(z)dz:]{ /2 4y = omi (6—) — ermi.
|z—1|=e2 |z—1|=€2 z—1 z =1
Thus [ = 2(e — 1)mi. O
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Lee I8 Proof of Theorem J.8. Let z € int(7), and let r > 0 be sufficiently small so that D(z,7) C

int(y). The function & — f(€)/(€ — z) is holomorphic on int(v) \ {z}. Then by Cauchy

theorem for multiply connected domains, we have

745— ae= § Mag- § Wi § 250 s

|§—z[=r |§—z[=r |§—z[=r

Let us denote by I(r) the first integral on the right-hand side, while the second integral
equals 27i f(2).
Claim. I(r) — 0asr — 0F.

Proof of Clatm. By continuity of f at z, we have for every € > 0 there exists 6 > 0 such
that [f(£) — f(2)| < 5= whenever |{ — 2| < 0. Taking < ¢ yields

s P ag < 2§ ag= e -

lg—z=r lg—zl=r

This proves the Claim. O]

Now, from (4.8) we deduce that

§ I ag—2rige),

which proves the required formula. O]

Corollary 4.9 (Gauss Mean Value Property). Let f : D — C be holomorphic on a
domain D C C. Let z € D and r > 0 such that D(z,r) C D. Then

1 2

f(z) = o~

i0
o /. f(z+re?)do.

Proof. Since f is holomorphic on {£ : |£ — z| < r}, it follows by Cauchy’s integral formula,
f(§)
—>d
f o
|§—z|=r
Using the parametrization & = z + 1%, 0 € [0, 27], we obtain

f(z)zi. QWM( / fz—i—re O

27 Jo rei?
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Next, we proceed to establish Cauchy’s integral formula for the derivatives.

Theorem 4.10. Let vy be a Jordan contour, and let f be continuous on int(vy). Then

the function g : int(y) — C, defined by
I AACS)
o) = § 7% e

is holomorphic on int(vy) and

S .
g(z)—f;(g_z)gdé, vz € int(7).

Proof of Theorem 4.10. Let z € int(y), and let h € C such that z 4+ h € int(y). Then

o=+ h) —g(z) 16
i ‘ff(g—z)(f—z—h)df'

Therefore,

¢l (4.9)

) S wf

2(§—2— 1)
. , d
Now, let d := min |€ — z|. Clearly, |£ — z| > d > 0, for every € . By taking |h| < 5 we
€y
d
obtain [§ —z —h| > |£ — z| — |h| > 2’ for every £ € .

o

Since f is continuous on the compact int(7y), it is then bounded. In particular, there exists

M > 0 such that |f(£)| < M for every £ € . It follows that

7©) M o)
7€|<f—z>2<s—z—h>|‘d5'§d2xgl7£'d§'_ B

Plugging this into (4.9) yields

'gmhzi_g(z)‘?{( dg‘ 2O 0. asnso
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That implies that f is C-differentiable at z € int(vy). Since z is arbitrary in int(7), it follows

that f is holomorphic on int(7), and we have

o .
g(z)_jg(f—zﬂdf’ Vz € int(7). O

One can follow the same proof of Theorem 4.10 to prove the following result.

Theorem 4.11. Let n > 1 be an integer, and let v be a Jordan contour. If f is
continuous on int(7y), then the function g, : int(y) — C, defined by

G
() = P g dé

is holomorphic on int(vy) and

gn(z) = n%{ Wdf, Vz € int(fy).

Proof. Left as an exercise ! m

Note that when f is holomorphic on int(y), then by Cauchy’s integral formula,
11 f() .
=— ¢ —=d v ().
f(z) me;g—z §, Vz€int(y)
In addition, Theorem 4.11 asserts that

f'(z) = % ﬁ ( gf_(&iy d€, Vz€int(y).

Again, Theorem 4.11 asserts that even f’ is holomorphic on int(v), and

f"(z) = L ]{ () d&, Vzeint(y).

mi J, (€ —2)?

Hence, by induction, we clearly have the following result.

Theorem 4.12. If f : D — C is holomorphic on a domain D C C, then all its

derivatives f® | k € N, exist and are holomorphic on D. Moreover, Yk € N, we have

- 2mi — 2)

where v is any Jordan contour in D such that int(y) C D.

B (2) = ﬂf%df, Vz € int(7y), (4.10)

J

Remark 4.8. (1) The formula (4.10) is called the Cauchy’s integral formula for the deriva-
tives.

(2) Let f(2) = u(z,y)+iv(x,y), for z = x+iy € D. If f is holomorphic on D, then both u
and v are differentiable on D. In addition, from Theorem 4.12, we deduce that both u and

v are C*®(D).
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Exercise 4.4. Let f be a holomorphic function on the disc D(0, p), where p > 1. Evaluate

j{ (2+z+l> f(z)dz.
=1 2) 2
2 ) t
/ f(e') cos? <—) dt
; 2
Proof.  (a) We have

jli|:1 (2+z+é) f(Z)dZ:jizlwder &)y,

Then deduce the value of

z z |z|=1 2?
=2mi(2+ 2) f(2) i + 2mif'(2) _
= ori <2f(0) + f’(0)>.

(b) By a suitable parameterization of the positively oriented unit circle, we obtain

?ﬂll (2+z+ %) Mdz: /027r (2+e" +e7) f(fit)(z’e“)dt

z et
2w )
:z'/ (24 2cost) f(e")dt
0 \—/—/
=4 cos?(t/2)

27

=4 f(e') cos? (%) dt.

0

From (a), we deduce that
2w ) t T
f(e™) cos? (§> dt =7f(0)+ §f,<0)' O
0
Exercise 4.5. Let p > 2. Evaluate the integral

z—1
I = ——d=z.
]{Z|:pz3—222 :

Solution. The function z — 32—22 is holomorphic on {z : |z| < p} \ {0,2}. By Cauchy
23— 2z
theorem for multiply connected domains, we have

z—1 z—1
I = d S |
]{dsl 5927 * 7{2_262 5927

where €1, 9 > 0 are sufficiently small. In addition, we have

~1 ~1)/(z -2 — 1\’ —1 —mi
j{ —32 2dz:7§ (2 )/2(2 >dz:27rz' (z ) :2m'< 2) Sl
jol=ex 2~ — 22 j2l=21 z 22/ (2=2)/ =

-1 —1)/22 -1 '
j{ —: 2dz:7{ —<Z )/2 dz:27rz'(z 5 ) -
|z—2|=ep 77 2z |z—2|=e2 (Z - 2) z 2=2 2
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Corollary 4.13 (Cauchy’s inequality). Let f be holomorphic on a domain D, and let

z €D, and r > 0 such that D(z,7) C D. If 3M > 0,|f(&)| < M,¥|Ef=%, then

M
IF™) < B2 vn > 1.
Tn

Proof. By Cauchy’s formula for the derivatives, we have, for n > 1,

|f(n)(z)| < n! ]{ | f(€)] lde| < n!M (27TT>:n!M' -

= or emzlmr |§ — 2| — 2qrntl rn

Theorem 4.14 (Liouville). Let f be entire function (Holomorphic on C). If IM >0
such that |f(2)| < M for every z € C, then f is constant in C.

M

Proof. Let z € C. Then for every r > 0, Cauchy’s inequality yields |f'(z)| < —. By letting
r

r — 400, we get f'(z) = 0. Since z € C is arbitrary, we deduce that f* = 0 and hence f is

constant in C. ]

Exercise 4.6. Let f be an entire function satisfying Re(f(z)) > 0 for every z € C. Show
that f is constant in C.

Solution. Let g(z) = e~/ for all z € C. Since f and e~ are both entire functions, it follows

that ¢ is also an entire function. We have, by using the assumption in the statement,
lg(2)| = ‘e’f(z)| = RUE) <1 vzeC.

By Liouville’s theorem, we get that ¢ must be a constant, say g(z) = K # 0 for every z € C.
Since we have |K| = |g(z)| = e" B/ for every z € C, it follows that Re(f(z)) = —In |K]|
for every z € C, i.e., Re(f(z)) is constant, and as f is entire (Holomorphic on C), we deduce

that f is also constant in C. n
We established in Theorem 2.8 that
Analyticity =—> Holomorphicity.
In the following result, we will prove that

Holomorphicity =—> Analyticity.

Theorem 4.15 (Taylor). Let f: D — C be holomorphic on a domain D C C. Then

f is analytic on D, and for each zy € D, we have

+oo (n) o
fo) =) / <| 0)(z — 2)" Vz € D(z,R),

n

where R = sup {r > 0: D(zp,7) C D}.
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Proof. Let zy € D be arbitrary, and let R = sup {7‘ >0: D(zp,1) C D}. Let z € D(z, R),
and let p > 0 satisfy |z — zo| < p < R. It follows from Cauchy’s integral formula,

(0= ¢ I2ac
|

§—zo0|=p

Recall that for any |w| < 1 we have

I 1—-w" w" _n_l i w" vn > 1
1—w_1—w+1—w_j:0w+1—w’ =t
Since z_zo = |z—pzo| < 1, it follows that
— 20
I 1
E—z (£—2)—(2—2)
1
E—x F*0
! §— 20
1 L (z—zo)j (z—zo> 1
E—z20 \ g\~ 2 §—2) {_27%
§— 2o
n—1 ;
_ (z — 20)? <z—zo) 1
2w \en) 7=
From this we obtain that
IR f(8) —2\" [
/() %;< =)’ 7{ (5_20>j+1d€ 2mi ja{ (5—20) f—zdf
1 e |€=z20l=p {—Z(()|)p (4.11)
_niszo j L z—2\" f(&
_; 7! (Z_Zo)+27ri 7{ (5—20) £—zd€'
|€—z0l=p
> " F©)
L zZ— 20
Fal2) '_K?{ (s—zO) e -0
—Z0|=p

It is left as an exercise that R, (z) — 0 as n — 4o0o. as This with (4.11) show that f(z)
is written as a power series about z. Since z is arbitrary on D(zg, R), it follows that f is
analytic at 2o, with the obtained Taylor’s expansion in D(zg, R). Therefore, as z is arbitrary

in D, f is analytic on D, with the obtained Taylor’s expansion. O]

20



A C-differentiability and R?-differentiability

Complex linear mapping. A complex function f : C — C that satisfies f(z + 2/) =
f(z)+ f() and f(az) = af(z) for every z, 2/, a € C, is called a complex linear mapping (or,
C-linear mapping!). Notice, in particular, that constant functions are not linear mappings.
One can also see that if f is a linear mapping, then f(0) = 0 and f(z) # 0 for every z € C*.

The functions f(z) = cz, where ¢ € C*, are C-linear mappings. Conversely, every C-
linear mapping f : C — C must satisfy, for every z € C, f(z) = f(1-2) = f(1) - z, which
is of the form f(z) = cz with ¢ = f(1) € C*. Thus, the only C-linear mappings are the
complex functions of the form f(z) = cz, where ¢ € C.

Analogously to the real linear mappings (or, R%-linear mapping), C-linear mappings can

be represented by matrices. In fact, by letting ¢ = a+ib € C and z = x + iy € C, we obtain
cz = (a+ib)(x +iy) = (ax — by) + i(bx + ay).
Now, using the cartesian representation of complex numbers, and then using the matrix

gl

From this formula, we can deduce that every C-linear mapping is also R2-linear mapping.

form, we can write
ar — by
bxr + ay

CZ =

However, not every R2-linear mapping is C-linear, as show by the following example.

Example A.1. Consider the R?-linear mapping f : R? — R? given in the matrix form

-1 -

By setting z = = + iy and using the relations x = (z + 2)/2 and y = (2 — 2)/(2i), we may

r+y

r+y

write f is its complex form
fE)=@+y)+ilz+y)=1+i)(z+y) =2z+1iz.
This shows that f cannot be C-linear. Simply note that f(i) =i+ 1#i—1=1f(1).

Summarizing the discussion above we can state that the R2-linear mapping represented

-]

is C-linear if and only if « = § and g = —~.

by the matrix

L If there is no ambiguity, we may simply refer to a complex linear mapping as a linear mapping.

o1



R2-differentiable functions. Let U C R? be an open subset, and let xo € U. Recall that
a function f : U — R? is R%-differentiable at x, if there exists an R2-linear mapping 7" such

that
i 1G04 1) = £(x0) = (W)

h—(0,0) ||h|2
h#(0,0)

exists.

Equivalently, we say that f is R?-differentiable at x, if and only if there exist «, 3,7, € R

for which

a f3

f(xo+h) = f(x0) + 5 h+o(|[hl[2), as [[hfs = 0.

: o u(x) :
By setting xq = and f(x) = , we obtain
Yo VX

ou ov
%(XO) %(Xo)

v 0 du. . Ov ’
a—y(xo) 8—y(X0)

which is the Jacobean matrix of f at the point xg.

TO BE CONTINUED!
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