
IMM 2025-26 Complex Analysis Exercises 5. Solutions

1. Evaluate Γ(− 1
2 ), Γ(− 7

2 ), Γ(− 1
3 ).

Sol.: From Γ( 1
2 ) =

√
π and the functional equation Γ(x+ 1) = xΓ(x) we have

Γ(− 1
2 ) = −2Γ( 1

2 ) = −2
√
π;

Γ(− 7
2 ) = − 2

7Γ(− 5
2 ) = . . . = 24

7·5·3·1
√
π;

Γ(− 1
3 ) = −3Γ( 2

3 ) = −3
∫∞
0
e−tt−1/3dt = −4.0623538182792012508358640844635413566 . . . .

2. Let n ∈ N. Show that

Γ

(
1

2
+ n

)
=

1 · 3 · 5 · . . . · (2n− 1)

2n
√
π .

Sol.: One has Γ( 1
2 ) =

√
π. By the functional equation, one has

Γ( 1
2 + 1) = 1

2

√
π, Γ( 1

2 + 2) = 3
2Γ( 1

2 + 1) = 3
2
1
2

√
π . . .

Γ(
1

2
+ n) =

n∏
j=1

(
1

2
+ j)
√
π =

n∏
j=1

(
1 + 2j

2
)
√
π =

1 · 3 · 5 · (2n− 1)

2n
√
π.

3. Use Wielandt’s theorem to prove that for Re(z) > 0 one has

Γ(z) =
1

g(z)
, where g(z) = zeγz

∞∏
k=1

(
(1 +

z

k
)e−z/k

)
,

where γ = limk→∞(1 + 1
2 + 1

3 + . . .− log k) is the Euler-Mascheroni constant.

Sol.: Let’s verify that F (z) = 1
g(z) satisfies the assumptions of Wielandt’s theorem.

(a) F (1) = 1:

Recall that
∏n
k=1(1 + 1

k ) = 2 · 32 ·
4
3 . . . ·

n+1
n = n+ 1. We claim that g(1) = 1. Indeed

g(1) = limn→∞ 1 · e1+ 1
2+

1
3+...−log(n)

∏n
k=1(1 + 1

k )e
−1
k

= lim
n→∞

e1+
1
2+

1
3+...−log(n)−1−

1
2−

1
3−...

n∏
k=1

(1 +
1

k
)

= limn→∞
n+1
n = 1.

(b) F (z + 1) = zF (z).
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The above relation follows from g(z) = zg(z + 1).

g(z)

g(z + 1)
= lim
n→∞

ze(1+
1
2+...−log(n))z

∏n
k=1(1 + z

k )e−z/k

(z + 1)e(1+
1
2+...−log(n))(z+1)

∏n
k=1(1 + (z+1)

k )e−(z+1)/k

= lim
n→∞

z

z + 1

e(1+
1
2+...−log(n)−1−

1
2−...)z

∏n
k=1(1 + z

k )

e(1+
1
2+...−log(n)−1−

1
2−...)(z+1)

∏n
k=1(1 + (z+1)

k )

= lim
n→∞

z

z + 1

e− log(n)z

e− log(n)(z+1)

n∏
k=1

(1 +
z

k
)

(
1 +

(z + 1)

k

)−1

= lim
n→∞

z

z + 1
n

n∏
k=1

k + z

k

k

k + 1 + z
= lim
n→∞

n
z

z + 1

1 + z

n+ 1 + z

= lim
n→∞

zn

n+ 1 + z
= z.

(c) F is bounded on the strip S1,2 = {1 ≤ Re(z) ≤ 2}.
We show that g is bounded by below on S1,2.

4. Use Wielandt’s theorem to prove the Legendre duplication formula

Γ(2z) =
1√
π

22z−1Γ(z)Γ(z +
1

2
).

(hint: let w = 2z and consider the function f(w) = 2wΓ(w2 )Γ(w2 + 1
2 )).

Sol.: Let’s verify that f(w) satisfies the assumptions of Wielandt’s theorem:

(a) f is clearly holomorphic on {w ∈ C | Re(w) > 0}, since Γ and 2w are;

(b) f(w + 1) = wf(w):

f(w + 1) = 2 · 2wΓ(
w

2
+

1

2
)Γ(

w

2
+ 1) = 2 · 2wΓ(

w

2
+

1

2
)
w

2
Γ(
w

2
)

= w2wΓ(
w

2
)Γ(

w

2
+

1

2
) = wf(w).

(c) f is bounded on the vertical strip S1,2 = {w ∈ C : 1 ≤ Re(W ) ≤ 2}:
The functions Γ(w2 ) and Γ(w2 + 1

2 ) are bounded on S1,2. Since also |2w| = |ew log(2)| = eRe(w) log(2)

is bounded on S1,2, the same is true for f .

By Wielandt’s theorem f(w) = f(1)Γ(w). Since f(1) = 2Γ(1
2 )Γ(w2 + 1

2 ) = 2
√
π, one obtains

2wΓ(
w

2
)Γ(

w

2
+

1

2
) = 2

√
πΓ(w) ⇔ Γ(2z) =

1√
π

22z−1Γ(z)Γ(z +
1

2
).
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5. Prove that if y > 0, then

|Γ(iy)| =
√

π

y sinhπy
.

Sol.: Directly from the definition of Γ we see that, for y > 0,

Γ(−iy) =

∫ ∞
0

e−te− log(t) (cos(y log(t))− i sin(y log(t))) dt

and

Γ(iy) =

∫ ∞
0

e−te− log(t) (cos(y log(t)) + i sin(y log(t))) dt.

In other words, Γ(−iy) = Γ(iy). Now

Γ(iy)Γ(1− iy) = Γ(iy)(−iy)Γ(−iy) = (−iy)|Γ(iy)|2 =
π

sin(πiy)
=

π

i sinh(πy)
,

from which we deduce the statement

|Γ(iy)| =
√

π

y sinhπy
.

6. Recall that ζ(s) =
∏
p

1
1− 1

ps
, for s ∈ C with Re(s) > 1. Compute the logarithmic derivative of

ζ (justify the steps).

Sol.: Let D be a domain in C. If an infinite product
∏
n fn(z) converges normally on compact sets

of D to a holomorphic function f(z), then the series
∑
n
f ′n(z)
fn(z)

converges normally on compact sets

of D to the logarithmic derivative f ′(z)
f(z) of f (see Cartan, V.3.2, Thm.2 ).

The infinite product ζ(s) =
∏
p prime

1
1−p−s , converges normally for s ∈ C with Re(s) > 1. Hence

the logarithmic derivative of ζ is given by

log(ζ(s))′ =
ζ(s)′

ζ(s)
=
∑
p

fp(s)
′

fp(s)
,

where fp(s) = 1
1−p−s and fp(s)

′ = −p
−s log(p)
(1−p−s)2 . Hence

log(ζ(s))′ = −
∑
p

p−s log(p)

1− p−s
.

7. Let 2, 3, 5, 7, . . . be the series of prime numbers. Prove that

(1− 1

22
)(1− 1

32
)(1− 1

52
)(1− 1

72
) . . . =

6

π2
.
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Sol.: One has ∏
p prime

1− 1

p2
=
∏
p

1
1

1− 1
p2

=
1∏

p
1

1− 1
p2

=
1

ζ(2)
=

1∑
n≥1

1
n2

=
6

π2
,

since
∑
n≥1

1
n2 = π2/6.

8. Verify that ζ(1− s) = 21−sπ−sΓ(s) cos(πs2 )ζ(s).

Sol.: The above relation is also equivalent to

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s)

(just substitute s with 1− s). Recall that the function

Z(s) := Γ(s/2)π−s/2 ζ(s)

satisfies the functional equation Z(s) = Z(1− s). This implies

Γ(s/2)π−s/2 ζ(s) = Γ(
1− s

2
)π−

1−s
2 ζ(1− s)

and

ζ(s) =
Γ( 1−s

2 )

Γ(s/2)
πs−

1
2 ζ(1− s). (∗)

From Legendre’s duplication formula (cf. Exercise 4) applied to 1−s
2 , namely

Γ(1− s) =
1√
π

2−s Γ(
1− s

2
)Γ(1− s

2
),

we obtain

Γ(
1− s

2
) =

Γ(1− s)
Γ(1− s

2 )

√
π 2s.

Recall that Γ(s)Γ(1− s) = π
sin(πs) . Then

ζ(s) =
Γ(1− s)
Γ(1− s

2 )

1

Γ(s/2)

√
π 2s πs−

1
2 ζ(1− s)

= Γ(1− s)
sin(πs2 )

π
2s πs ζ(1− s) = Γ(1− s) sin(

πs

2
) 2s πs−1 ζ(1− s).

9. Using the analytic continuation given by the formula of the previous exercise, prove that
ζ(−1) = − 1

12 and that ζ(−3) = 1
120 .

Sol.: By applying the formula

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s)
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for s = −1, we get

ζ(−1) =
1

2

1

π2
sin(−π

2
)Γ(2)ζ(2) = −1

2

1

π2

π2

6
= − 1

12
.

For s = −3, we get

ζ(−3) =
1

23
1

π4
sin(−3π

2
)Γ(4)ζ(4) = −1

8

1

π4
3!

16π4

2 · 24
B4 =

−1

24
· 6 · −1

30
=

1

120
.

We used that on positive even integers m

ζ(m) = − (2πi)m

2 ·m!
Bm,

where Bm is the mth Bernoulli number.

10. Compute ζ(m), where m is a negative integer.

Sol.: Let m = −2k + 1, with k ≥ 1, be a negative odd integer. Then 1−m = 2k is a positive even
integer. We recover the formula ζ(−2k + 1) = −B2k

2k using the functional equation of Exercise 8:

ζ(−2k + 1) = 2−2k+1π−2k sin(
π

2
(−2k + 1))Γ(2k)ζ(2k)

= 2−2k+1π−2k cos(−kπ) (2k − 1)! ζ(2k)

= 2−2k+1π−2k cos(−kπ) (2k − 1)! · − 2πi)2k

2 · (2k)!
B2k

= cos(−kπ) i2k (2k − 1)! · − B2k

(2k)!
= −B2k

2k
.

Let m be a negative even integer. We are going to show that ζ(m) = 0. These are the so called
“trivial zeros” of the ζ function. Recall that
- ζ(s) 6= 0 for Re(s) > 1, by Euler’s product formula;
- Γ(s) 6= 0 for all s ∈ C and Γ has poles at the negative integers;
- the function Z(s) := Γ(s/2)π−s/2 ζ(s) satisfies the functional equation Z(s) = Z(1− s).
It follows that Z(s) 6= 0 for Re(s) > 1 and, by the functional equation, Z(s) 6= 0 for Re(s) < −1.
Then, for Re(s) < −1, one has that ζ(s) = 0 if and only if s/2 is a pole of Γ, namely if and only if
s is an even negative integer.
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