IMM 2025-26 Complex Analysis Exercises 5. Solutions

1. Evaluate T'(—3), T(—1), I‘(_%).

Ty 2 5 _ _ 2t .
[(=3)=-3l(=3)= - =s533V7

F(—%) = —31“(%) =-3 fooo et~ 1/3dt = —4.0623538182792012508358640844635413566 . . . .

2. Let n € N. Show that
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F<1+n> _ 1~3-5-...~(2n—1)\/7?'

Sol.: One has I'(3) = /7. By the functional equation, one has

P+ =3vm  T(3+2)=30(z+1)=35V7

rGg+m =[G +ava=[[(5 2 ve= 122 =l

3. Use Wielandt’s theorem to prove that for Re(z) > 0 one has
1 s z
I'(z) = —, where g(z)=ze"? <1+fe_z/k>,
6= = == I (0 )
where v = limg_, oo (1 + % + % +...—logk) is the Euler-Mascheroni constant.

Sol.: Let’s verify that F'(z) = ﬁ satisfies the assumptions of Wielandt’s theorem.

(a) F(1) =1:
Recall that [],_,(1+4)=2-3-

g(1) = lim,, o0 1 - et Fatsta—losm [T (14 Lye&

.ntl — 4 1. We claim that g(1) = 1. Indeed
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(b) F(z+1) = zF(2).



The above relation follows from g(z) = zg(z + 1).
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(c) F' is bounded on the strip S1 2 = {1 < Re(z) < 2}.
We show that g is bounded by below on S ».

4. Use Wielandt’s theorem to prove the Legendre duplication formula

Ly

['(22) = i22z—1r(z)r(z +5

N
(hint: let w = 2z and consider the function f(w) = 2“T(%)I'(% + 3)).

Sol.: Let’s verify that f(w) satisfies the assumptions of Wielandt’s theorem:
(a) f is clearly holomorphic on {w € C | Re(w) > 0}, since I" and 2% are;

(b) f(w+1) = wf(w):

flw+1) =2 2wr(% + %)r(% r1) =2 2“’1“(% + %)%F(%)
- wzwr(%)r(% + %) = wf(w).

(c) f is bounded on the vertical strip S1o ={w e C : 1 < Re(W) < 2}:

The functions I'(%) and I'(% + 1) are bounded on S . Since also [2¥] = [e?1°8(2)| = efte(w)log(2)

is bounded on Sj 2, the same is true for f.

By Wielandt’s theorem f(w) = f(1)I'(w). Since f(1) = 2I'(3)I'(% + 1) = 2y/7, one obtains

PT(HIT(G + %) _oyaT(w) & T(22) = \/1%222_1F(Z)I’(z + %).



5. Prove that if y > 0, then

/ T
I'(iy)| = | ——.
TGyl ysinh 7y

Sol.: Directly from the definition of I' we see that, for y > 0,

I(—iy) = /000 e~tem1°8(®) (cos(y log(t)) — isin(ylog(t))) dt

and

['(iy) = /000 e~tem198() (cos(y log(t)) + isin(ylog(t))) dt.

In other words, I'(—iy) = I'(iy). Now

D(iy)D(1 = iy) = D(iy)(=iy)T (—iy) = (=iy)[D(iy)|* = sin(miy)

from which we deduce the statement

/ T
Ty =,/ ———.
TGy ysinh Ty

6. Recall that ¢(s) =[], = 1 , for s € C with Re(s) > 1. Compute the logarithmic derivative of

¢ (justify the steps).

Sol.: Let D be a domain in C. If an infinite product [],, f..(2) converges normally on compact sets

fVL(

™

™

of D to the logarithmic derivative f ( ) of f (see Cartan, V.3.2, Thm.2 ).

The infinite product ((s) = Hp prime T=p=+ 1 —, converges normally for s € C with Re(s) > 1. Hence

the logarithmic derivative of ( is given by

log(C(9) = Sk =30 &

where fj,(s) = 1%1)_5 and fp(s) = —%. Hence

log (¢ Z p—* log
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7. Let 2, 3,5, 7, ... be the series of prime numbers. Prove that
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of D to a holomorphic function f(z), then the series ) 7 (zg converges normally on compact sets



Sol.: One has

1 1 1 1 1 6
| e e R e

p prime p 1-%

8. Verify that ((1 —s) = 2' 757 ~5I'(s) cos(%*)((s).
Sol.: The above relation is also equivalent to
C(s) = 2" sin(g)l“(l — $)¢(1—s)
(just substitute s with 1 — s). Recall that the function
Z(s) =T(s/2)m~*/* ((s)

satisfies the functional equation Z(s) = Z(1 — s). This implies

1-s 1—s

D(s/2)m=*/2((s) = I( 5 )™ T ()

and
F( l—s)

() = g™ R =) ()

From Legendre’s duplication formula (cf. Exercise 4) applied to 5%, namely

T(1—s) = \/17?2—51“(1 ~hra- ),

we obtain

Recall that I'(s)['(1 — s) = —"—. Then

sin(mws) *

_ F(l — S) 1 s, _s—3%
) = Fr 5 gy VAT
ERVPRLLG S P C(1—s)=T(1—s) sin(%s) 25 5L ¢(1 — s).

9. Using the analytic continuation given by the formula of the previous exercise, prove that

¢(—1) = —75 and that ((—3) = 135

Sol.: By applying the formula

s

((s) =257t sin(?)F(l —5)((1—s)
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11 T 11 72 1
—1) = = sin(—=)T(2)¢(2) = —=— — = ——
For s = —3, we get
11 3 11 _ 167* -1 -1 1
—3) = —— sin(—)T'(4)¢(4) = —= = 3! By=— 6 — = —.
((=8) = ggasin(= )T = —g 33l g5 Ba= 51 6 35 = 1
We used that on positive even integers m
o (@2m)m
((m) = - 2-m! Bon,

where B,, is the m'" Bernoulli number.
10. Compute ((m), where m is a negative integer.

Sol.: Let m = —2k 4+ 1, with k£ > 1, be a negative odd integer. Then 1 —m = 2k is a positive even

integer. We recover the formula ((—2k + 1) = — B;i’“ using the functional equation of Exercise 8:

((=2k +1) = 27241~ sin( (—2k + 1)L (2k) (2k)

= 27272k cos(—km) (2k — 1)! ¢(2k)

2mi)2k
_ o—2k+1_—2k _ gy L AT
=2 7w " cos(—km) (2k — 1)! 5. (Qk)!BQk
B B
. ok P2k D2k
= cos(—km)i*" (2k — 1)! ol ok

Let m be a negative even integer. We are going to show that {(m) = 0. These are the so called
“trivial zeros” of the ¢ function. Recall that

- ((s) # 0 for Re(s) > 1, by Euler’s product formula;

-I'(s) # 0 for all s € C and I" has poles at the negative integers;

- the function Z(s) := I'(s/2) 7~5/2 ((s) satisfies the functional equation Z(s) = Z(1 — s).

It follows that Z(s) # 0 for Re(s) > 1 and, by the functional equation, Z(s) # 0 for Re(s) < —1.
Then, for Re(s) < —1, one has that ((s) = 0 if and only if s/2 is a pole of I', namely if and only if
s is an even negative integer.



