IMM 2025-26 Complex Analysis Exercises 4.  Solutions.

1. (a) Show that C* and A* are not biholomorphic;
(b) Show that A* is not biholomorphic to an annulus A={z€ C |0 <r < |z| < 1}.

If you are curious, a proof that two annuli A, ;1 = {0 <r < |z| <1} and As;1 ={0 < s <|z| <1}
are biholomorphic if and only if r = s can be found in Greene-Krantz, Thm.7.9.1, p.240.

Sol.: (a) Suppose that there exists a biholomorphism f: C* — A*. Then f oexp: C — A* would
define a bounded entire holomorphic map. This is impossible by Liouville’s theorem.

(b) Suppose that there exists a bihomolorphism f: A* — A. By the same arguments used in the
previous case, z = 0 is necessarily a removable singularity for f and f extends to a holomorphic
map f: A — A. On the other hand, by topological reasons (A is simply connected, while A is not),
the image f (A) is properly contained in A. Contradiction.

Alternatively one could use the fact that the automorphism groups of Aut(C*), Aut(A*) and
Aut(A) are non-isomorphic.

o Aut(C*) ={z+—az, ac C*}U{z— a/z, a € C*}.

Let f:C* — C* be a biholomorphism. Then neither z = 0 nor co can be essential singularities
of f, otherwise injectivity would fail by Casorati-Weierstrass’ theorem.

If z = 0 is a removable singularity, then 0 +— 0 and f extends to an automorphism of C. Namely,
it is a degree 1 polynomial of the form f(z) = az, with a € C*.

If z = 0 is a pole, then lim,_,o|f(2)] = co. In this case 1/f extends to an automorphism on C
mapping 0 to 0. Namely ﬁ = az, for a € C*. Equivalently f(z) = a/z, for a € C*.

Alternatively: Since f has no essential singularities, then either 0 and oo are both removable
singularities or they are both poles. In the first case, f extends to an automorphism of the Riemann
sphere f:52 — $2 mapping 0 — 0 and oo — oco. Namely f(z) = az, with a € C*. In the second
case, f extends to an automorphism of the Riemann sphere mapping 0 — oo and oo — 0. Namely,
f(z) =a/z, with a € C*.

o Aut(A*) = {z+— €z, 0 € R}.

Let f: A* — A* be a biholomorphism. Then z = 0 is necessarily a removable singularity of f and
f extends to an automorphism of A, mapping 0 ~ 0. Hence f(z) = ¢z, with § € R.

o Aut(A) contains {z — €z, § € R} U {z > e'r/z}.
Infinite series of holomorphic and meromorphic functions.

2. Let D be a domain in C. Prove that if the series of holomorphic functions ), gi(z) converges
normally on A C D, then it converges uniformly on A C D.

Sol.: By assumption the series converges normally, i.e. >, ||gx|la < oo, where ||gi||a = sup,c 4 [9x(2)]-
Then for all z € A and N > M one has

N

M N N N
|ng(z) - ng(z)\ < Z lgx(2)| < Z sup |gr(2)] < Z llgklla =0, for N, M — oo.
k=1 k=1 k=M k= Z€A k=M

Hence the sequence of the partial sums of the series is uniformly Cauchy and the series converges
uniformly on A C D.

3. Show that the series ), -, 2—3 converges uniformly on the unit disc.
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Sol.: For all z € A one has

2" < 1
2| S
Hence
DI P
— — < 00
n2| — n?2 ’
n>1 n>1

which implies that the series > -, sz converges absolutely and uniformly on A.

4. (a) Show that —z Z)Q =300 k2*7 for z € A, and that 4=, k
b) Show that log(l — 2) = — Y oo i,forzEA.
( ) k=1 "k

Sol.: (a) We know that the geometric series ), 2% converges uniformly on compact sets in A to

the sum ?lz Then, by Weierstarss theorem, the uniform holds true also for the derivatives:

su) oy (%) =t

k>0 k>1

L1 we obtain the identity

1
Zk 1)2:4'

k>1 2

In particular, for z =

|

(b) By Exercises 5 and 6 in Sheet 3, the uniform convergence holds true for the primitives with
value 0 at z = 0:

and

5. Show that >
orders.

n=1 Gon)Z +n)2 defines a meromorphic function on C. Determine its poles and their

Sol.: The n'" term of the series f,(z) = ﬁ on Cis a meromorphic function on C with a pole
of order 2 at z = —n.
Fix R > 0. Then for n > R the functions f,, are holomorphic on {z € C : |z| < R}. Since

1
(z+n)?

1o 1
T n—lAP T In = R

the series

(e.0]
Z z+n

n:R

Z |n—R\2




converges uniformly to a holomorphic function on D(0, R) and Y ~%, fn(z) defines a meromorphic
function therein. By taking R larger and larger, we conclude that the original series converges locally
uniformly and defines a meromorphic function on C with poles of order 2 at all integers n > 1.
This last statement follows from the fact that the poles of the functions f,, are pairwise disjoint.

6. Show that Y -, ﬁ defines a meromorphic function on C. Determine its poles and their
orders.

Sol.: The n'" term of the series f,(z) = ﬁ is a meromorphic function on C with poles of order
1 at 4+in, with residue ﬁ and %, respectively.

Fix R > 0. Then for all n > R, the functions f,, are holomorphic on D(0, R). In addition, one has
1

22 4 n?

< 1

which implies that the series » . p ﬁ converges uniformly to a holomorphic function on
D(0, R). It follows that the series ), -, ﬁ converges uniformly to a meromorphic function
on D(0,R). By taking R larger and larger, we conclude that the original series converges locally
uniformly and defines a meromorphic function on C with poles of order 1 at +in, for all n > 1.

This last statement follows from the fact that the poles of the functions f,, are pairwise disjoint.

7. Show that g(z) = ( )2 converges uniformly to 0 for |[Im(z)| — oo.

sin 7wz

Sol.: For z = x + iy, one has the following estimate, independent of x:

|2 2 2 2
. - .2 2 2 . 2 ) . 2 — . 2 :
sinmz sin® mx cosh” my + cos? mx sinh” 7y sin” 7x + sinh” 7y — sinh” 7y
Hence 9
lim || =0,
|ly|—oo I SINTZ
uniformly with respect to x.
2 2
. ™ 1 : 1 1 1 _ x?
8. Compute lim, o (%) — 2z and lim.,0 >, 5 =z — 2= Deduce that dons177 = 6

Sol.: From the Taylor expansion sinmz = 7z — %71‘323 + ... we obtain

T2 m ! 1 S S
(' ) - 13,3 — 2 12,2 =atgte()
sinmz Tz — T2 + ... z 1—g7rz + ... z 3

. T 2 1 T
lim ( ) = —.

z—0 \sinmz 22 3

and

On the other hand, from the identity ( z )2 = Y nez (z—#)? and the fact that the function

sinmz
1 1 - .
Y onez e=mz — 7= is holomorphic around 0, we deduce

. 1 1 . 1 1
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Conclusion:

%:22% and Z%:ﬁ/&

n>1 n>1

9. Show that ), ., ﬁ converges normally to a meromorphic function. Locate the poles and

find the corresponding principal parts of the function.

Sol.: For n € Zg, the n' term of the series f,,(2) = 15 is a meromorphic function on C with
poles of order 1 at n, na, na, where « is a third root of unity, and principal parts given by

a b c
, , —, for some a, b, c € C,
z—n'  z—na  z-—na

respectively. For n = 0, the function fy(z) = Z%, has a pole of order 3 at z = 0, with principal part
equal to Z%, Now the arguments are similar to the ones used in Exercises 5 and 6. Fix R > 0.
Then for all |n| > R, the functions f,, are holomorphic on D(0, R) and on D(0, R) the following
estimate holds .

23 3

o1
= Inf> = R3[

Hence the series E|n|> R ﬁ converges uniformly to a holomorphic function on D(0, R) and the

series ) .z ﬁ converges uniformly to a meromorphic function on D(0, R). We conclude that
the original series converges locally uniformly and defines a meromorphic function f on C with
poles of order 1 at n, na, na, for all n # 0 and a pole of order 3 at z = 0. The principal parts of f
at the poles coincide with the principal parts of the functions f,.

10. Find a meromorphic function f:C — C with simple poles at the positive integers with
residue 1.

Sol.: We construct f as the sum of a converging series of meromorphic functions f,, for n > 1,

each with a simple pole of residue 1 at n. Since the series > -, —L_ does not converge, we take

z—n

S fu(), with fu(z) = —— + -

zZ—n n
n>1

Next we show that the above series converges locally uniformly on C to a meromorphic function
with the required properties.
Fix R > 0. For all n > R, the functions f,, are holomorphic on the disk D(0, R). Moreover, on
D(0, R) one has

R
n? —nR

z

9

n(z —n)

which implies that . 5 fn(2) converges uniformly to a holomorphic function on D(0, R) and
Y n>1 fn(2) converges uniformly to a meromorphic function on D(0, R). By taking R larger and
larger, we conclude that the original series defines a meromorphic function on C with poles of order
1 and residue 1 at all integers n > 1.



Infinite products of holomorphic functions.

11. Prove that the infinite product Hj aj, where a; = % for every j, does not converge.

Sol.: The partial products H;L:1 % = 2% tend to 0, for n — oo. This contradicts the definition of a
converging infinite product, for which the above limit of the partial products has to be # 0.

12. Prove that [[;2, (1— %) = 1.
Sol.: One has
ﬁ L\ _qpntl opyr-ol_34 N N4l 12 N-1
" n2 =11 n 11 n 23 N—-1 N 23 N
n=2 n=2 n=2
IN+1 1
=_-=T- for N .
B N 2, or — 0

13. Prove that for |z| < 1 one has

1
1—2

1+2) 14+ 22)(1+2N1+28) ... =

Sol.: One has
A+2)1+2)=1+2+224+2% (1+2)Q+2DA+2Y)=1424+22+83 424+ 25420427,

A4+2)1+2)A+2)1+28) . (1422 ) = 142422425 + 24 4.+ T2 42

Hence for £ — oo we get the sum of the geometric series

1
1—2z

(L+2)(1+2) 1+ 291+ 28)... (1+22) —

14. Prove that
[ee]
H (1 + E) e~/
n=1 n
converges absolutely and uniformly on every compact set.

Sol.: Let a,, = —n and p,, = 1. Since

[e’e) 2
Z<R> <o VYR>0,
n

n=1
by the convergence criterion of Thm.8.2.2 in Greene-Krantz, the infinite product

[ee]

[T+ %)ez/”

n=1



converges absolutely and uniformly on all C. It defines an entire holomorphic function with simple
zeros at negative integers n € Z g, and no other zeros.

15. Construct an entire function on C with simple zeros at n?, for n > 0, and no other zeros.

Sol.: Let a,, = n? and p, = 0. Since

o0

Z%«n, VR >0,
n

by the convergence criterion of Thm.8.2.2 in Greene-Krantz, the infinite product

10~

n=

—

converges absolutely and uniformly on all C. Then
o2

defines an entire holomorphic function with simple zeros at n?, for n > 0, and no other zeros.

16. Construct an entire function that has simple zeros on the positive real axis at the points \/n,
for n > 1, double zeros on the imaginary axis at the points +i+/n, for n > 1, and no other
Z€eros.

Sol.: An entire function that has simple zeros on the positive real axis at the points /n, for n > 1

is given by
ﬂ@zll(rfj>eﬁ+%ﬁfﬂkw?
n

n>1

This can be seen by applying the convergence criterion of Thm.8.2.2 in Greene-Krantz with a,, = /n
and p, = 3 for all n.

An entire function that has double zeros on the imaginary axis at the points +iy/n, for n > 1 is
given by

2 3 2 z 1 z 2 1 z 3 2
g(”:II((l‘m)“ﬁ(”“”)> ((”Zﬂe e 3“”)

2\ 2
e
n
n>1
This can be seen by applying the convergence criterion of Thm.8.2.2 in Greene-Krantz with a,, =
+iy/n and p,, = 3 for all n.

Now the function

F(z) = f(2)g(2)

is an entire function with the required zeros, and no other zeros.



