
IMM 2025-26 Complex Analysis Exercises 4. Solutions.

1. (a) Show that C∗ and ∆∗ are not biholomorphic;
(b) Show that ∆∗ is not biholomorphic to an annulus A = {z ∈ C | 0 < r < |z| < 1}.

If you are curious, a proof that two annuli Ar,1 = {0 < r < |z| < 1} and As,1 = {0 < s < |z| < 1}
are biholomorphic if and only if r = s can be found in Greene-Krantz, Thm.7.9.1, p.240.

Sol.: (a) Suppose that there exists a biholomorphism f :C∗ → ∆∗. Then f ◦ exp:C → ∆∗ would
define a bounded entire holomorphic map. This is impossible by Liouville’s theorem.

(b) Suppose that there exists a bihomolorphism f : ∆∗ → A. By the same arguments used in the
previous case, z = 0 is necessarily a removable singularity for f and f extends to a holomorphic
map f̃ : ∆→ A. On the other hand, by topological reasons (∆ is simply connected, while A is not),
the image f̃(∆) is properly contained in A. Contradiction.

Alternatively one could use the fact that the automorphism groups of Aut(C∗), Aut(∆∗) and
Aut(A) are non-isomorphic.

• Aut(C∗) = {z 7→ az, a ∈ C∗} ∪ {z 7→ a/z, a ∈ C∗}.
Let f :C∗ → C∗ be a biholomorphism. Then neither z = 0 nor ∞ can be essential singularities
of f , otherwise injectivity would fail by Casorati-Weierstrass’ theorem.
If z = 0 is a removable singularity, then 0 7→ 0 and f extends to an automorphism of C. Namely,
it is a degree 1 polynomial of the form f(z) = az, with a ∈ C∗.
If z = 0 is a pole, then limz→0 |f(z)| = ∞. In this case 1/f extends to an automorphism on C
mapping 0 to 0. Namely 1

f(z) = az, for a ∈ C∗. Equivalently f(z) = a/z, for a ∈ C∗.

Alternatively: Since f has no essential singularities, then either 0 and ∞ are both removable
singularities or they are both poles. In the first case, f extends to an automorphism of the Riemann
sphere f̃ :S2 → S2 mapping 0 7→ 0 and ∞ 7→ ∞. Namely f(z) = az, with a ∈ C∗. In the second
case, f extends to an automorphism of the Riemann sphere mapping 0 7→ ∞ and ∞ 7→ 0. Namely,
f(z) = a/z, with a ∈ C∗.

• Aut(∆∗) = {z 7→ eiθz, θ ∈ R}.
Let f : ∆∗ → ∆∗ be a biholomorphism. Then z = 0 is necessarily a removable singularity of f and
f extends to an automorphism of ∆, mapping 0 7→ 0. Hence f(z) = eiθz, with θ ∈ R.

• Aut(A) contains {z 7→ eiθz, θ ∈ R} ∪ {z 7→ eiθr/z}.

Infinite series of holomorphic and meromorphic functions.

2. Let D be a domain in C. Prove that if the series of holomorphic functions
∑
k gk(z) converges

normally on A ⊂ D, then it converges uniformly on A ⊂ D.

Sol.: By assumption the series converges normally, i.e.
∑
k ‖gk‖A <∞, where ‖gk‖A = supz∈A |gk(z)|.

Then for all z ∈ A and N > M one has

|
N∑
k=1

gk(z)−
M∑
k=1

gk(z)| ≤
N∑

k=M

|gk(z)| ≤
N∑

k=M

sup
z∈A
|gk(z)| ≤

N∑
k=M

‖gk‖A → 0, for N,M →∞.

Hence the sequence of the partial sums of the series is uniformly Cauchy and the series converges
uniformly on A ⊂ D.

3. Show that the series
∑
n≥1

zn

n2 converges uniformly on the unit disc.
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Sol.: For all z ∈ ∆ one has ∣∣∣∣znn2
∣∣∣∣ ≤ 1

n2
.

Hence ∑
n≥1

∣∣∣∣znn2
∣∣∣∣ ≤∑

n≥1

1

n2
<∞,

which implies that the series
∑
n≥1

zn

n2 converges absolutely and uniformly on ∆.

4. (a) Show that 1
(1−z)2 =

∑∞
k=1 kz

k−1, for z ∈ ∆, and that 4 =
∑
k k

1
2k−1 .

(b) Show that log(1− z) = −
∑∞
k=1

zk

k , for z ∈ ∆.

Sol.: (a) We know that the geometric series
∑
k≥0 z

k converges uniformly on compact sets in ∆ to

the sum 1
1−z . Then, by Weierstarss theorem, the uniform holds true also for the derivatives:

∑
k≥0

zk

′ =
∑
k≥1

kzk−1 −→
(

1

1− z

)′
=

1

(1− z)2
.

In particular, for z = 1
2 , we obtain the identity

∑
k≥1

k
1

2k−1
=

1

(1− 1
2 )2

= 4.

(b) By Exercises 5 and 6 in Sheet 3, the uniform convergence holds true for the primitives with
value 0 at z = 0: ∫

1

1− z
= − log(1− z) =

∫ ∑
k≥0

zk =

∞∑
k=1

zk

k

and

log(1− z) = −
∞∑
k=1

zk

k
.

5. Show that
∑∞
n=1

1
(z+n)2 defines a meromorphic function on C. Determine its poles and their

orders.

Sol.: The nth term of the series fn(z) = 1
(z+n)2 on Cis a meromorphic function on C with a pole

of order 2 at z = −n.
Fix R > 0. Then for n > R the functions fn are holomorphic on {z ∈ C : |z| ≤ R}. Since∣∣∣∣ 1

(z + n)2

∣∣∣∣ ≤ 1

|n− |z||2
≤ 1

|n−R|2
,

the series ∣∣∣∣∣
∞∑
n=R

1

(z + n)2

∣∣∣∣∣ ≤
∞∑
n=R

1

|n−R|2
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converges uniformly to a holomorphic function on D(0, R) and
∑∞
n≥1 fn(z) defines a meromorphic

function therein. By takingR larger and larger, we conclude that the original series converges locally
uniformly and defines a meromorphic function on C with poles of order 2 at all integers n ≥ 1.
This last statement follows from the fact that the poles of the functions fn are pairwise disjoint.

6. Show that
∑∞
n=1

1
z2+n2 defines a meromorphic function on C. Determine its poles and their

orders.

Sol.: The nth term of the series fn(z) = 1
z2+n2 is a meromorphic function on C with poles of order

1 at ±in, with residue 1
2in and −1

2in , respectively.
Fix R > 0. Then for all n > R, the functions fn are holomorphic on D(0, R). In addition, one has∣∣∣∣ 1

z2 + n2

∣∣∣∣ ≤ 1

|R2 − n2|
,

which implies that the series
∑
n>R

1
z2+n2 converges uniformly to a holomorphic function on

D(0, R). It follows that the series
∑
n≥1

1
z2+n2 converges uniformly to a meromorphic function

on D(0, R). By taking R larger and larger, we conclude that the original series converges locally
uniformly and defines a meromorphic function on C with poles of order 1 at ±in, for all n ≥ 1.
This last statement follows from the fact that the poles of the functions fn are pairwise disjoint.

7. Show that g(z) =
(

π
sinπz

)2
converges uniformly to 0 for |Im(z)| → ∞.

Sol.: For z = x+ iy, one has the following estimate, independent of x:∣∣∣ π

sinπz

∣∣∣2 =
π2

sin2 πx cosh2 πy + cos2 πx sinh2 πy
=

π2

sin2 πx+ sinh2 πy
≤ π2

sinh2 πy
.

Hence

lim
|y|→∞

∣∣∣ π

sinπz

∣∣∣2 = 0,

uniformly with respect to x.

8. Compute limz→0

(
π

sinπz

)2 − 1
z2 and limz→0

∑
n∈Z

1
(z−n)2 −

1
z2 . Deduce that

∑
n≥1

1
n2 = π2

6 .

Sol.: From the Taylor expansion sinπz = πz − 1
6π

3z3 + . . . we obtain

( π

sinπz

)2
=

(
π

πz − 1
6π

3z3 + . . .

)2

=
1

z2

(
1

1− 1
6π

2z2 + . . .

)2

=
1

z2
+
π2

3
+ z2(. . .)

and

lim
z→0

( π

sinπz

)2
− 1

z2
=
π2

3
.

On the other hand, from the identity
(

π
sinπz

)2
=
∑
n∈Z

1
(z−n)2 and the fact that the function∑

n∈Z
1

(z−n)2 −
1
z2 is holomorphic around 0, we deduce

lim
z→0

∑
n∈Z

1

(z − n)2
− 1

z2
= 2 lim

z→0

∑
n≥1

1

(z − n)2
=
∑
n≥1

1

n2
.
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Conclusion:
π2

3
= 2

∑
n≥1

1

n2
and

∑
n≥1

1

n2
= π2/6.

9. Show that
∑
n∈Z

1
(z3−n3) converges normally to a meromorphic function. Locate the poles and

find the corresponding principal parts of the function.

Sol.: For n ∈ Z6=0, the nth term of the series fn(z) = 1
z3−n3 is a meromorphic function on C with

poles of order 1 at n, nα, nᾱ, where α is a third root of unity, and principal parts given by

a

z − n
,

b

z − nα
,

c

z − nᾱ
, for some a, b, c ∈ C,

respectively. For n = 0, the function f0(z) = 1
z3 has a pole of order 3 at z = 0, with principal part

equal to 1
z3 . Now the arguments are similar to the ones used in Exercises 5 and 6. Fix R > 0.

Then for all |n| > R, the functions fn are holomorphic on D(0, R) and on D(0, R) the following
estimate holds ∣∣∣∣ 1

z3 − n3

∣∣∣∣ ≤ 1

||n|3 −R3|
.

Hence the series
∑
|n|>R

1
z3−n3 converges uniformly to a holomorphic function on D(0, R) and the

series
∑
n∈Z

1
z3−n3 converges uniformly to a meromorphic function on D(0, R). We conclude that

the original series converges locally uniformly and defines a meromorphic function f on C with
poles of order 1 at n, nα, nᾱ, for all n 6= 0 and a pole of order 3 at z = 0. The principal parts of f
at the poles coincide with the principal parts of the functions fn.

10. Find a meromorphic function f :C → C with simple poles at the positive integers with
residue 1.

Sol.: We construct f as the sum of a converging series of meromorphic functions fn, for n ≥ 1,
each with a simple pole of residue 1 at n. Since the series

∑
n≥1

1
z−n does not converge, we take

∑
n≥1

fn(z), with fn(z) =
1

z − n
+

1

n
.

Next we show that the above series converges locally uniformly on C to a meromorphic function
with the required properties.
Fix R > 0. For all n > R, the functions fn are holomorphic on the disk D(0, R). Moreover, on
D(0, R) one has ∣∣∣∣ z

n(z − n)

∣∣∣∣ ≤ ∣∣∣∣ R

n2 − nR

∣∣∣∣ ,
which implies that

∑
n>R fn(z) converges uniformly to a holomorphic function on D(0, R) and∑

n≥1 fn(z) converges uniformly to a meromorphic function on D(0, R). By taking R larger and
larger, we conclude that the original series defines a meromorphic function on C with poles of order
1 and residue 1 at all integers n ≥ 1.
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Infinite products of holomorphic functions.

11. Prove that the infinite product
∏
j aj , where aj = 1

2 for every j, does not converge.

Sol.: The partial products
∏n
j=1

1
2 = 1

2n tend to 0, for n→∞. This contradicts the definition of a
converging infinite product, for which the above limit of the partial products has to be 6= 0.

12. Prove that
∏∞
n=2

(
1− 1

n2

)
= 1

2 .

Sol.: One has

N∏
n=2

(
1− 1

n2

)
=

N∏
n=2

n+ 1

n
·
N∏
n=2

n− 1

n
=

3

2

4

3
. . .

N

N − 1

N + 1

N
· 1

2

2

3
. . .

N − 1

N

=
1

2

N + 1

N
→ 1

2
, for N →∞.

13. Prove that for |z| < 1 one has

(1 + z)(1 + z2)(1 + z4)(1 + z8) . . . =
1

1− z
.

Sol.: One has

(1 + z)(1 + z2) = 1 + z+ z2 + z3, (1 + z)(1 + z2)(1 + z4) = 1 + z+ z2 + z3 + z4 + z5 + z6 + z7, . . .

(1 + z)(1 + z2)(1 + z4)(1 + z8) . . . (1 + z2
k

) = 1 + z + z2 + z3 + z4 + . . .+ z1+2+...+2k .

Hence for k →∞ we get the sum of the geometric series

(1 + z)(1 + z2)(1 + z4)(1 + z8) . . . (1 + z2
k

) −→ 1

1− z
.

14. Prove that
∞∏
n=1

(
1 +

z

n

)
e−z/n

converges absolutely and uniformly on every compact set.

Sol.: Let an = −n and pn ≡ 1. Since

∞∑
n=1

(
R

n

)2

<∞ ∀R > 0,

by the convergence criterion of Thm.8.2.2 in Greene-Krantz, the infinite product

∞∏
n=1

(1 +
z

n
)ez/n
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converges absolutely and uniformly on all C. It defines an entire holomorphic function with simple
zeros at negative integers n ∈ Z<0, and no other zeros.

15. Construct an entire function on C with simple zeros at n2, for n ≥ 0, and no other zeros.

Sol.: Let an = n2 and pn ≡ 0. Since

∞∑
n=1

R

n2
<∞, ∀R > 0,

by the convergence criterion of Thm.8.2.2 in Greene-Krantz, the infinite product

∞∏
n=1

(1− z

n2
)

converges absolutely and uniformly on all C. Then

z

∞∏
n=1

(1− z

n2
)

defines an entire holomorphic function with simple zeros at n2, for n ≥ 0, and no other zeros.

16. Construct an entire function that has simple zeros on the positive real axis at the points
√
n,

for n ≥ 1, double zeros on the imaginary axis at the points ±i
√
n, for n ≥ 1, and no other

zeros.

Sol.: An entire function that has simple zeros on the positive real axis at the points
√
n, for n ≥ 1

is given by

f(z) =
∏
n≥1

(
1− z√

n

)
e

z√
n
+ 1

2 (
z√
n
)2+ 1

3 (
z√
n
)3
.

This can be seen by applying the convergence criterion of Thm.8.2.2 in Greene-Krantz with an =
√
n

and pn = 3 for all n.

An entire function that has double zeros on the imaginary axis at the points ±i
√
n, for n ≥ 1 is

given by

g(z) =
∏
n≥1

((
1− z

i
√
n

)
e

z
i
√

n
+ 1

2 (
z

i
√

n
)2+ 1

3 (
z

i
√

n
)3
)2 ((

1 +
z

i
√
n

)
e
−( z

i
√

n
+ 1

2 (
z

i
√

n
)2+ 1

3 (
z

i
√

n
)3
)2

=
∏
n≥1

(
1 +

z2

n

)2

.

This can be seen by applying the convergence criterion of Thm.8.2.2 in Greene-Krantz with an =
±i
√
n and pn = 3 for all n.

Now the function
F (z) := f(z)g(z)

is an entire function with the required zeros, and no other zeros.
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