
IMM 2025-26 Complex Analysis Exercises 3. Solutions

Uniform convergence on compact sets

1. Show that the sequence fn(z) = 1−zn+1

1−z converges pointwise to 1
1−z , for z ∈ ∆. Show that the

convergence is locally uniform but not uniform on ∆.

Sol.: For every z0 ∈ ∆, the sequence converges pointwise: fn(z0)→ 1
1−z0 .

The convergence is locally uniform: for all z with |z| ≤ r < 1∣∣∣∣1− zn+1

1− z
− 1

1− z

∣∣∣∣ =
|z|n+1

|1− z|
≤ |z|n+1

|1− |z||
≤ rn+1

r − 1
→ 0.

The convergence is not uniform on ∆: for n0 fixed,

lim
x→1
x∈R

xn0+1

|1− x|
=∞.

Therefore, in order to make |z|
n+1

|1−z| small one needs to choose n0 bigger and bigger as |z| → 1.

2. Consider the following sequences of functions C→ C

fn(z) =
z

n
, gn(z) = zn, hn(z) =

1

nz
.

For each sequence:
(a) Find the pointwise limit;
(b) Find a set A where the convergence is uniform;
(c) Find a set U where the convergence is locally uniform;
(d) Determine whether the convergence is uniform on U or not.

Sol.: (a) The sequence converges pointwise to the function identically zero: in fact for all z0 ∈ C,
one has limn→∞

z0
n = 0.

The convergence is locally uniform: for |z| ≤ R one has

|z|
n
≤ R

n
→ 0.

The convergence is not uniform on C: the above estimate cannot be extended uniformly to all C.

(b) Pointwise, the sequence gn behaves as follows

gn(z0)→

 0, |z0| < 1;
∞, |z0| > 1;
may have no limit, |z0| = 1.

On the unit disk ∆, the convergence is locally uniform, but not uniform : for |z| ≤ r < 1

|z|n ≤ rn → 0.
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(c) One has
∣∣ 1
nz

∣∣ = 1
nx , where z = x+ iy. Pointwise the sequence hn behaves as follows

hn(z0)→

{ 0, x0 > 0;
1, x0 = 0;
+∞, x0 < 0.

Hence hn converges pointwise to 0 on {Re(z) > 0}. There the convergence is locally uniform but
not uniform. On the set {Re(z) > r > 0}, one has∣∣∣∣ 1

nz

∣∣∣∣ =
1

nx
≤ 1

nr
→ 0.

3. Let {pn}n∈N be a sequence of polynomials of degree ≤ N , where N is a fixed positive integer.
Show that if pn → p uniformly on compact sets, then the limit function p is a polynomial of
degree ≤ N .

Sol.: A function p(z) is a polynomial of degree ≤ N if and only if the kth derivative p(k)(z) is
identically 0, for all k > N . If the polynomials pn converge to p uniformly on compact sets, then
they converge together with all the derivatives. Let K be a compact set. Then for every ε > 0
there exists n0 ∈ N such that for all n > n0

|p(k)n (z)− p(k)(z)| < ε, ∀n > n0, ∀z ∈ K.

It follows that p(k)(z) ≡ 0, for all k > N and p(z) is a polynomial of degree ≤ N .

4. Let D be a domain and let fn:D → C be a sequence of holomorphic functions converging to
a non-constant function f uniformly on compact sets. Show that if f has m zeros in D, then
all but finitely many fn have at least m zeros in D.

Sol.: Let z1, . . . , zl be the zeros of f 6≡ 0. By a reformulation of Hurwitz theorem, for all j = 1, . . . , l
there exists nj such that fn(zj) = 0, for all n > nj . Then for all n > m = max{n1, . . . , nl} one has
fn(zj) = 0. Hence the number of zeros of fn is ≥ m, for all n > m.

Remark. Let z0 be a zero of a non-constant function f . Then there exists a disk D(z0, r) such
that f 6= 0 on D(z0, r) \ {z0}. If a sequence fn converges locally uniformly to f , then it converges
pointwise to f and for n sufficiently large, fn 6= 0 on D(z0, r)\{z0}. For a contour γ ⊂ D(z0, r)\{z0}
one has

1

2πi

∫
γ

f ′n(ζ)

fn(ζ)
dζ → 1

2πi

∫
γ

f ′(ζ)

f(ζ)
dζ = p ∈ N,

where p is the multiplicity of z0. Therefore also 1
2πi

∫
γ
f ′
n(ζ)
fn(ζ)

dζ = p.

5. Let g:D(0, ρ) → C be holomorphic. Let G:D(0, ρ) → C be such that G′ = g and G(0) = 0.
Show that for all z ∈ D(0, ρ) one has

|G(z)| ≤ |z| sup{|g(w)| : |w| ≤ |z|}.

Deduce that ‖G‖D(0,ρ) ≤ ρ‖G‖D(0,ρ) (suggestion: take G(z) :=
∫
γz
g(w)dw, where γz(t) = tz,

for t ∈ [0, 1]).
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Sol.: As D(0, r) is a convex set, every holomorphic function g on D(0, r) admits a holomorphic
primitive (determined up to a constant)

G:D(0, r)→ C, G′(z) = g(z), G(0) = 0.

For example one can take

G(z) =

∫
γz

g(w)dw,

where γz: [0, 1]→ D(0, r) is the segment γz(t) = tz joining 0 and z, namely

G(z) =

∫ 1

0

g(tz)zdt.

Now from the estimate

|G(z)| ≤ |z| sup
γz

{|g(tz)|} ≤ |z| sup{|g(w)| : |w| ≤ z}, ∀z ∈ D(0, r),

we obtain
‖G‖D(0,r) ≤ r‖g‖D(0,r).

6. Let fn be a sequence of holomorphic functions converging locally uniformly to f on D(0, R).
Show that Fn → F locally uniformly on D(0, R), where F ′n = fn, Fn(0) = 0 for all n, and
F ′ = f , F (0) = 0.

Sol.: From Exercise 5, for all r0 < R we have the following estimate on D(0, r0):

‖F‖D(0,r0) ≤ r0‖f‖D(0,r0).

In particular
‖Fn − F‖D(0,r0) ≤ r0‖fn − f‖D(0,r0).

Hence ‖fn − f‖D(0,r0) → 0 implies ‖Fn − F‖D(0,r0) → 0, as claimed.

7. Discuss the convergence and uniform convergence of the sequence fn(z) = nzn, for n ∈ N.

Sol.: Pointwise, the sequence behaves as follows

n|z0|n →∞, ∀ z0 |z0| ≥ 1, n|z0|n → 0, ∀ z0 |z0| < 1.

On the unit disk ∆, the convergence is locally uniform, but not uniform. In fact, for |z| ≤ r < 1.

n|z|n ≤ nrn =
n
1
rn

→ 0.

8. Prove that the sequence fn(z) = 1
1+nz is uniformly convergent to the function identically 0,

for all z such that |z| > 2. Can the region of uniform convergence be extended?
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Sol.: For every fixed n ∈ N, the function fn is a meromorphic function with a simple pole at

z = − 1
n . Hence all the poles of the sequence are contained in the closed disk D(− 1

2 ,
1
2 ). Then

all the functions fn are holomorphic on the set {z ∈ C : |z| > 2} and on that set the sequence
converges pointwise to the function identically 0. Fix R > 1

2 . The estimate

|nz + 1| ≥ |nR− 1| → ∞, for n→∞,

which is independent of z, shows that the convergence is locally uniform, and therefore uniform on
compact sets.

Actually, the sequence converges locally uniformly on C∗. Given an arbitrary fixed compact
set K, it is contained in some set of the form {z ∈ C : |z| > r}, for some r > 0. After removing
finitely many functions (depending on r), we are left with a family of holomorphic functions on
{z ∈ C : |z| > r} and estimates similar to the above ones show the local uniform convergence.

The point z = 0 cannot be included in the convergence set (not even pointwise) since all
functions have value 1 at z = 0.

9. Let F be the family of all analytic functions on the open unit disc ∆ whose coefficients in the
Taylor expansion

f(z) = z + a2z
2 + a3z

3 + . . . ,

satisfy |an| ≤ n, for each n. Show that F is relatively compact (with respect to the topology
of locally uniform convergence).

Sol.: We need to show that every family of functions fn in F admits a subsequence fnj converging
to an element f0 ∈ O(∆). By Montel’s theorem, it is sufficient to show that F is equibounded on
compact sets (equivalently, locally equibounded). Fix D(0, r) ⊂ ∆, for 0 < r < 1. Let f ∈ F . Then

|f(z)| ≤ 1 +
∑
n≥1

|an|rn ≤ 1 +
∑
n≥1

nrn, ∀z, |z| ≤ r.

Since the series
∑
n≥1 nr

n converges, then

|f(z)| ≤ S, ∀z, |z| ≤ r.

This shows that the family F is locally equibounded and therefore equibounded on compact sets.

10. Let fn be a sequence of analytic functions on ∆, uniformly bounded. Assume that for each
z ∈ ∆ the sequence fn(z) converges. Show that fn converges uniformly on compact subsets
of ∆.

Sol.: We are going to show that the sequence fn is uniformly Cauchy on discs D(z0, r) in ∆. This
is sufficient since any compact set in ∆ can be covered by finitely many disks of a fixed radius.
Let z ∈ D(z0, r). Write

|fn(z)− fm(z)| = |fn(z)− fn(z0) + fn(z0)− fm(z0)− (fm(z)− fm(z0))|

≤ |fn(z)− fn(z0)|+ |fn(z0)− fm(z0)|+ |fm(z)− fm(z0)|. (∗)

Since fn is uniformly bounded, then it is uniformly continuous (cf. proof of Montel’s theorem).
Namely if z, z0 ∈ ∆, then

|f(z)− f(z0| ≤M |z − z0|, for some M ∈ R. (∗∗)
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By (∗∗), we may choose r such that the first two summands of (*) are < ε/3, for all n; since the
sequence is pointwise convergent, we may choose N such that for all n,m > N , the third summand
is < ε/3. As a result, for r sufficiently small and n sufficiently large (depending on ε)

|fn(z)− fm(z)| ≤M |z − z0|+M |z − z0|+ |fn(z0)− fm(z0)| < ε.

11. Consider the family F = {fn(z) = z
n}n∈N, defined on C. Verify that F is not equibounded

on C, but it is equibounded on compact sets. Indeed it converges uniformly on compact sets
to f ≡ 0.

Sol.: For all |z| ≤ R and for all n ≥ 1 one has∣∣∣ z
n

∣∣∣ ≤ R.
Since every compact set K is contained in some disk D(0, R), for some R > 0, then the family F
is equibounded on compact sets. But it is not equibounded on all C.

By Montel’s theorem, every sequence in F admits a subsequence converging to a function f :C→ C.
In this case F itself converges uniformly on compact sets to f ≡ 0.

5



Some examples for comparing the real and the complex cases.

a. (Weierstrass’ convergence theorem does not hold in the real case) Consider the sequence of

functions fn(x) =
√
x2 + 1

n , defined on [−1, 1]. Verify that the functions fn are smooth, and

converge uniformly to a non-smooth function f .

b. (Hurwitz’s theorem does not hold in the real case) Consider the sequence fn:R → R, defined
by fn(x) = x2 + 1

n . Verify that the functions fn are never 0 on R. Nevertheless they converge
uniformly on compact sets to f(x) = x2, which takes the value f(0) = 0.

c. (Montel’s theorem does not hold in the real case) Consider the family F = {fn(x) = sin(nx)}n,
defined on [0, 2π]. Verify that F is equibounded. Nevertheless it does not admit any converging
subsequence (not even pointwise).
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