IMM 2025-26 Complex Analysis Exercises 3. Solutions

Uniform convergence on compact sets

1. Show that the sequence f,(z) = 1-z"" converges pointwise to i, for z € A. Show that the

1—2
convergence is locally uniform but not uniform on A.

1
l—ZO .

Sol.: For every zy € A, the sequence converges pointwise: f,(z9) —
The convergence is locally uniform: for all z with |z| <r <1
1— Zn—i—l 1 ‘Z|n+1 |Z’n+1 ,r.n+1

— = < < — 0.
11—z l—z| 1=z —|1—Jz]| —r—1

The convergence is not uniform on A: for ng fixed,

|Z|n+l
[1—=]

Therefore, in order to make small one needs to choose ng bigger and bigger as |z| — 1.

2. Consider the following sequences of functions C — C

For each sequence:

(a) Find the pointwise limit;

(b) Find a set A where the convergence is uniform;

(c) Find a set U where the convergence is locally uniform;

(d) Determine whether the convergence is uniform on U or not.

Sol.: (a) The sequence converges pointwise to the function identically zero: in fact for all zg € C,
one has lim, ., 22 = 0.
The convergence is locally uniform: for |z] < R one has

2|

< — 0.

S| =

n
The convergence is not uniform on C: the above estimate cannot be extended uniformly to all C.

(b) Pointwise, the sequence g,, behaves as follows
07 |ZO| < 17
gn(20) = 00, |z0| > 1;
may have no limit, |z = 1.
On the unit disk A, the convergence is locally uniform, but not uniform : for |z| <r <1

|z|" < 7" — 0.
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(c) One has |- | = where z = x 4 iy. Pointwise the sequence h,, behaves as follows

nz?

0, x>0

hn(Zo) — { 1, To = O;

400, xo <O0.

Hence h,, converges pointwise to 0 on {Re(z) > 0}. There the convergence is locally uniform but
not uniform. On the set {Re(z) > r > 0}, one has

3. Let {pn}nen be a sequence of polynomials of degree < N, where N is a fixed positive integer.
Show that if p, — p uniformly on compact sets, then the limit function p is a polynomial of
degree < N.

Sol.: A function p(z) is a polynomial of degree < N if and only if the k" derivative p(*)(2) is
identically 0, for all k¥ > N. If the polynomials p, converge to p uniformly on compact sets, then
they converge together with all the derivatives. Let K be a compact set. Then for every ¢ > 0
there exists ng € N such that for all n > ng

PP () —p®(2) <e,  Vn>ng, VzeK.
It follows that p(*)(z) = 0, for all kK > N and p(z) is a polynomial of degree < N.

4. Let D be a domain and let f,: D — C be a sequence of holomorphic functions converging to
a non-constant function f uniformly on compact sets. Show that if f has m zeros in D, then
all but finitely many f, have at least m zeros in D.

Sol.: Let z1,..., z; be the zeros of f # 0. By a reformulation of Hurwitz theorem, for all j = 1,...,(
there exists n; such that f,(z;) =0, for all n > n;. Then for all n > m = max{n1,...,n;} one has
fn(2zj) = 0. Hence the number of zeros of f,, is > m, for all n > m.

Remark. Let zp be a zero of a non-constant function f. Then there exists a disk D(zp,r) such
that f # 0 on D(zg,7) \ {20}. If a sequence f, converges locally uniformly to f, then it converges
pointwise to f and for n sufficiently large, f,, # 0 on D(zg,7)\{z0}. For a contour v C D(zg,7)\{z0}

one has
1
2mi J fu(C)

L[ f(Q)
d¢ - — d¢ = N
¢ 2mi )., f(C) ¢(=peN,

where p is the multiplicity of zy. Therefore also ﬁ f7 ;ZE% d¢ = p.

5. Let g: D(0, p) — C be holomorphic. Let G: D(0,p) — C be such that G’ = g and G(0) = 0.
Show that for all z € D(0, p) one has

G(2)| < |z[supflg(w)] : |w] < [2[}.

Deduce that ||G||p(o,p) < PlIGllIp0,p) (Suggestion: take G(z) := [, g(w)dw, where 7.(t) = tz,
for t € 0,1]).



Sol.: As D(0,r) is a convex set, every holomorphic function g on D(0,r) admits a holomorphic
primitive (determined up to a constant)

G:D(0,r) = C, G'(2)=g(z), G(0)=0.

For example one can take

where 7,:[0,1] — D(0,r) is the segment ~,(¢) = ¢tz joining 0 and z, namely

1
G(z) = / g(tz)zdt.
0
Now from the estimate

G(2)] < Ileslp{lg(tZ)l} < lzlsup{lg(w)| = Jw[ <z}, Vze D(O,r),

we obtain
IGlIpo,r) < 7llgllpo,r-

6. Let f, be a sequence of holomorphic functions converging locally uniformly to f on D(0, R).
Show that F,, — F' locally uniformly on D(0,R), where F] = f,, F,,(0) = 0 for all n, and
F'=f, F(0)=0.

Sol.: From Exercise 5, for all ro < R we have the following estimate on D(0, rg):

1l D(0.r0) < 70l FllD(0,r0)-

In particular
1Fn = Fllp(o,re) < 7ollfn = fliD(0,10)-

Hence || fn, — fllp0,ro) — 0 implies ||Fy, — F||p(o,ry) — 0, as claimed.
7. Discuss the convergence and uniform convergence of the sequence f,(z) = nz", for n € N.
Sol.: Pointwise, the sequence behaves as follows
n|zo|" — 00, VY 2o |z0] > 1, n|zo|" =0, VY 2o |z0] < 1.
On the unit disk A, the convergence is locally uniform, but not uniform. In fact, for |z|] <r < 1.

n|z|" <nr" = % — 0.

rn

8. Prove that the sequence f,(z) = 1 +1nz is uniformly convergent to the function identically 0,

for all z such that |z| > 2. Can the region of uniform convergence be extended?
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Sol.: For every fixed n € N, the function f, is a meromorphic function with a simple pole at

z = —1. Hence all the poles of the sequence are contained in the closed disk D(—1,3). Then
all the functions f,, are holomorphic on the set {z € C : |z| > 2} and on that set the sequence

converges pointwise to the function identically 0. Fix R > % The estimate
[nz+ 1| > |nR—1] = o0, for n — oo,

which is independent of z, shows that the convergence is locally uniform, and therefore uniform on
compact sets.

Actually, the sequence converges locally uniformly on C*. Given an arbitrary fixed compact
set K, it is contained in some set of the form {z € C : |z| > r}, for some r > 0. After removing
finitely many functions (depending on ), we are left with a family of holomorphic functions on
{z € C : |z] > r} and estimates similar to the above ones show the local uniform convergence.

The point z = 0 cannot be included in the convergence set (not even pointwise) since all
functions have value 1 at z = 0.

9. Let F be the family of all analytic functions on the open unit disc A whose coefficients in the
Taylor expansion
f(2) =2+ a2® +asz® + ...,

satisfy |a,| < n, for each n. Show that F is relatively compact (with respect to the topology
of locally uniform convergence).

Sol.: We need to show that every family of functions f, in F admits a subsequence f,; converging
to an element fo € O(A). By Montel’s theorem, it is sufficient to show that F is equibounded on
compact sets (equivalently, locally equibounded). Fix D(0,7) C A, for 0 < r < 1. Let f € F. Then

|f(2)] §1+Z|an|T”§1+an", Vz, |z| <.

n>1 n>1
Since the series Zn21 nr" converges, then
lf(2)] < S, Vz, |z] <.
This shows that the family F is locally equibounded and therefore equibounded on compact sets.

10. Let f, be a sequence of analytic functions on A, uniformly bounded. Assume that for each
z € A the sequence f,(z) converges. Show that f, converges uniformly on compact subsets
of A.

Sol.: We are going to show that the sequence f, is uniformly Cauchy on discs D(zp,7) in A. This
is sufficient since any compact set in A can be covered by finitely many disks of a fixed radius.
Let z € D(zp,7). Write

|fn(2) = fn(2)] = | fa(2) = fu(20) + fn(20) = fm(20) — (fm(2) — fim(20))]
< |fa(2) = fa(20)| + | fn(20) = fin(20)| + | fm(2) = fim(20)]. (%)

Since f,, is uniformly bounded, then it is uniformly continuous (cf. proof of Montel’s theorem).
Namely if z,zg € A, then

|f(2) = f(z0] < M|z — 2], for some M € R. (%)
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By (#x), we may choose r such that the first two summands of (*) are < ¢/3, for all n; since the
sequence is pointwise convergent, we may choose N such that for all n,m > N, the third summand
is < €/3. As a result, for r sufficiently small and n sufficiently large (depending on ¢)

[fn(2) = fn(2)| < M|z = 20 + M|z = 20| + [ fn(20) = fm(20)| <€

11. Consider the family F = {fn.(2) = Z}nen, defined on C. Verify that F is not equibounded
on C, but it is equibounded on compact sets. Indeed it converges uniformly on compact sets
to f =0.

Sol.: For all |z| < R and for all n > 1 one has
HES
n

Since every compact set K is contained in some disk D(0, R), for some R > 0, then the family F
is equibounded on compact sets. But it is not equibounded on all C.

By Montel’s theorem, every sequence in F admits a subsequence converging to a function f: C — C.
In this case F itself converges uniformly on compact sets to f = 0.



Some examples for comparing the real and the complex cases.
a. (Weierstrass’ convergence theorem does nmot hold in the real case) Consider the sequence of
functions f,(z) = y/2% + &, defined on [—1,1]. Verify that the functions f, are smooth, and
converge uniformly to a non-smooth function f.

b. (Hurwitz’s theorem does not hold in the real case) Consider the sequence f,,: R — R, defined
by fu(z) = 22 + % Verify that the functions f, are never 0 on R. Nevertheless they converge
uniformly on compact sets to f(x) = x?, which takes the value f(0) = 0.

c. (Montel’s theorem does not hold in the real case) Consider the family F = {f,, () = sin(nz)},,
defined on [0, 27]. Verify that F is equibounded. Nevertheless it does not admit any converging
subsequence (not even pointwise).



