

### Exercise 3.

(a) Let  $f$  be a meromorphic function on  $\mathbf{C}$ . Then  $f = g/h$  where  $g$  and  $h$  are entire functions.  
 (b) Let  $f$  be a meromorphic function on the Riemann sphere. Then  $f$  is rational, that is  $f = g/h$  where  $g$  and  $h$  are polynomials.

*Sol.:* (a) Let  $f$  be a meromorphic function on  $\mathbf{C}$ . The set of poles of  $f$  is a discrete subset of  $\mathbf{C}$ , possibly infinite. By Weierstrass' factorization theorem, there exists an entire function  $h \in \mathcal{O}(\mathbf{C})$  with zeros on the poles of  $f$ , with the same order. Namely, if  $\{a_j\}_j$  are the poles of  $f$ , each with order  $m_j$ , then there exist integers  $p_j$  so that the infinite product

$$h(z) = z^k \prod_j E_{p_j} \left( \frac{z}{a_j} \right)^{m_j}$$

converges to an entire function with the assigned zeros. Now the function  $g := h \cdot f$  is an entire function and  $f = g/h$  is a quotient of entire functions.

Let's check that  $g$  is entire. Let  $a$  be a pole of  $f$  of order  $m$ . Locally around  $a$

$$f(z) = \frac{a_{-m}}{(z-a)^m} + \frac{a_{-m+1}}{(z-a)^{m-1}} + \dots$$

and  $h(z) = (z-a)^m \chi(z)$ , with  $\chi(z) \neq 0$  holomorphic. Then locally around  $a$  one has  $h(z)f(z) = \chi(z)(a_{-m} + a_{-m+1}z + \dots)$  holomorphic.

(b) Let  $f$  be a meromorphic function on  $S^2 = \mathbf{C} \cup \infty$ . Since  $S^2$  is compact, the poles of  $f$  are finitely many.

- If the point  $\infty$  is not a pole of  $f$ , then there exists a polynomial  $g$  with zeros on the poles of  $f$  with the same order. It follows that  $g \cdot f$  is holomorphic on  $S^2$ , and therefore constant. In this case  $f = c/g$ , with  $c \in \mathbf{C}$ .

- If the point  $\infty$  is a pole of  $f$ , then there exists a polynomial  $h$  with zeros on the poles of  $f$  different from  $\infty$ , with the same order. Then  $g = h \cdot f$  is a holomorphic function on  $\mathbf{C} \cong S^2 \setminus \{\infty\}$ , with a pole at  $\infty$ . Hence  $g$  is a polynomial and  $f = g/h$  is rational.

**Exercise 4.** Show that  $\sum_{n=1}^{\infty} \frac{1}{z^2 - n^2}$  defines a meromorphic function on  $\mathbf{C}$ . Determine its poles, their orders and their residues.

*Sol.:* Denote  $f_n(z) = \frac{1}{z^2 - n^2}$ . Then for  $n \geq 1$ , the function  $f_n$  is meromorphic on  $\mathbf{C}$  with poles of order 1 at  $z = \pm n$ .

Fix a  $R > 0$ . Then for all  $n > R$ , the functions  $f_n$  are holomorphic on  $D(0, R)$ . Moreover, the estimate

$$|z^2 - n^2| > n^2 - R^2, \quad \text{for all } |z| < R,$$

implies that the series of holomorphic functions

$$\sum_{n>R} |f_n(z)| \leq \sum_{n>R} \frac{1}{n^2 - R^2}$$

converges uniformly on the closed disk  $\overline{D(0, R)}$  and

$$\sum_{n \leq R} |f_n(z)| + \sum_{n>R} |f_n(z)|$$

defines a meromorphic function therein. By taking  $R$  bigger and bigger, we can conclude that the series  $\sum_{n=1}^{\infty} \frac{1}{z^2 - n^2}$  defines a meromorphic function  $f$  on  $\mathbf{C}$ .

Since the poles of the functions  $f_n$  are pairwise disjoint, the poles of  $f$  are  $\mathbf{Z} \setminus \{0\}$  and the residue of  $f$  at a pole is given by

$$\text{Res}_f(n) = \text{Res}_{f_n}(n) = \lim_{z \rightarrow n} (z - n) f_n(z) = \frac{1}{2n}, \quad n > 0$$

and

$$\text{Res}_f(-n) = \text{Res}_{f_n}(-n) = \lim_{z \rightarrow -n} (z + n) f_n(z) = -\frac{1}{2n}, \quad n > 0.$$