

Exercise 1. Compute the following integrals (giving details on the steps)

(i)

$$\int_{|z|=2} \frac{1}{1+z^2} dz;$$

(ii)

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx.$$

Solution 1.i. By the residue theorem

$$\int_{|z|=2} \frac{1}{1+z^2} dz = 2\pi i (Res_i f + Res_{-i} f),$$

where $f(z) = \frac{1}{1+z^2}$. As $Res_i f = \lim_{z \rightarrow i} (z-i)f(z) = \frac{1}{2i}$ and $Res_{-i} f = \lim_{z \rightarrow -i} (z+i)f(z) = -\frac{1}{2i}$, one has

$$\int_{|z|=2} \frac{1}{1+z^2} dz = 0.$$

As the ball $\{|z| < 2\}$ contains all poles of the rational function $\frac{1}{1+z^2}$ and the degree of the denominator is greater than the degree of the numerator plus one, the result can also be obtained by a general argument discussed during the lectures.

Moreover, it can be obtain by applying Cauchy's integral formula twice, as

$$\frac{1}{1+z^2} = \frac{1}{2i} \left(\frac{1}{z-i} - \frac{1}{z+i} \right).$$

Solution 1.i. A real analyst would notice that

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \lim_{r \rightarrow \infty} \int_{-r}^r \frac{1}{1+x^2} dx = \lim_{r \rightarrow \infty} \arctan |^r_{-r} = \pi.$$

A compex analyst would apply the sector method, as discussed during the lectures.

Exercise 2. Prove two of the following statements.

- (i) Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function. Let z_0 be an essential singularity of f . Then there exists a sequence $\{z_n\} \subset D$, with $z_n \rightarrow z_0$, such that $\lim_n f(z_n) = \infty$.
- (ii) Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function. Let z_0 be an essential singularity of f . Then there exists a sequence $\{z_n\} \subset D$, with $z_n \rightarrow z_0$, such that $\lim_n f(z_n)$ does not exist.
- (iii) Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be a non-polynomial holomorphic function. Then there exists a sequence $\{z_n\} \subset D$, with $z_n \rightarrow \infty$, such that $\lim_n g(z_n)$ does not exist.

Solution 1.i. Casorati-Weierstrass theorem may be useful. Picard's theorem more. Indeed it says that for every ε small enough $\mathbb{C} \setminus \{w_0\} \subseteq f(D^*(z_0, \varepsilon))$, for some $w_0 \in \mathbb{C}$. Hence, by choosing $\varepsilon = 1/n$, for n large enough, we obtain a sequence $z_n \rightarrow z_0$ such that $f(z_n) = w_0 + n$. This proves (i).

Solution 1.ii. Arguing as in (i), we can choose a sequence $z_n \rightarrow z_0$ such that $f(z_{2n}) = w_0 + 1$ and $f(z_{2n+1}) = w_0 + 2$. This proves (ii).

Solution 1.iii. Zero is an essential singularity of $f(\zeta) := g(\frac{1}{\zeta})$ (just look at the Laurent series in 0). By (ii) it follows that there exists $\zeta_n \rightarrow 0$, such that $\lim_n f(\zeta_n)$ does not exist. Let $z_n := \frac{1}{\zeta_n}$. Then $z_n \rightarrow \infty$ and $\lim_n g(z_n)$ does not exist. This proves (iii).