Liouville's theorem, identity principle, maximum modulus principle, harmonic functions, Schwarz's lemma, automorphisms of the unit disk.

- 1. Let $f:\mathbb{C} \longrightarrow \mathbb{C}$ be a holomorphic doubly periodic function (it means that $f(z+\omega_1)=f(z+\omega_2)$ ω_2) = f(z) for all $z \in \mathbb{C}$, where $\omega_1, \omega_2 \in \mathbb{C}$ are \mathbb{R} -linearly independent vectors). Then f is constant.
- 2. Let $U \subset \mathbb{C}$ be an open neighbourhood of 0. Show that there are no holomorphic functions $f: U \to \mathbb{C}$, such that:
 - (a) $f(\frac{1}{n}) = (-1)^n \frac{1}{n^2}$,
 - (b) $f(\frac{1}{n}) = \frac{1}{2^n}$,
 - (c) $|f^{(n)}(0)| > n! n^n$.
- 3. Let $D \subset \mathbb{C}$ be a domain and let $f: D \to \mathbb{C}$ be a holomorphic function, not identically zero. Prove that the set of zeros of f in D is at most countable (use: D is a countable union of compact sets).
- 4. Let $f:U\to\mathbb{C}$ be a holomorphic function, where U is an open neighbourhood of the closed unit disc $\overline{\Delta}$. Assume that f is not identically zero.

 - (a) Show that f has at most finitely many zeros in Δ . (b) Determine the zeros of $f(z) = \sin(\frac{1}{1-z})$ on the disc Δ and compare the result with (a).
- 5. Let $S = \{z \in \mathbb{C} : 0 < \text{Re}z < \frac{\pi}{2}\}$. Determine whether there exists a holomorphic function $f: S \to \mathbb{C}$ such that
 - (a) Re $f(z) = x^2y + y^2x + \sin x \sinh y$:
 - (b) $\operatorname{Re} f(z) = y^3 yx^2 2x^2y + \cos x \cosh y + \sin x \sinh y$.

Justify your answer: either exhibit one such function or explain why it cannot exist.

- 6. (Liouville theorem for harmonic functions). Let $u:\mathbb{C}\to\mathbb{R}$ be harmonic and bounded either from above or from below.
 - (a) Show that u is constant.
 - (b) Verify that the real and the imaginary parts of the following holomorphic functions are not bounded:

$$e^z$$
, $\sin z$, $\cos z$, z^2

7. Set $D = D(z_0, r)$. Let $f: D \to \mathbb{C}$ be a holomorphic function. Show that

$$f(z_0) = \frac{1}{Area(D)} \int_D f(z) dx dy.$$

- 8. Let D be a domain in \mathbb{C} and let $f: D \to \mathbb{C}$ be a nonconstant holomorphic function. Show that the local minima of |f| coincide with the zeros of f.
- 9. Let $f:U\to\mathbb{C}$ be a nonconstant holomorphic function defined on a neighbourhood of the unit disc Δ . Show that if |f| is constant on the boundary of Δ , then f admits at least one zero in Δ .

- 10. Automorphisms of Δ .
 - (a) Show that every automorphism of the unit disc Δ extends injectively to a neighbourhood of its closure $\overline{\Delta}$ and admits at least a fixed point in $\overline{\Delta}$.
 - (b) Show that if f has a fixed point in Δ , then it is necessarily unique.
- 11. Define $D(0,r) = \{z \in \mathbb{C} : |z| < r\}$. Let $f: D(0,1) \to \mathbb{C}$ be a holomorphic function such that |f(z)| = 1 for all $z \in \partial D(0,1)$. Show that if f is nonconstant, then there exists an automorphism g of D(0,1) such that $f \circ g(0) = 0$.
- 12. Let $f: \Delta \to \Delta$ be a holomorphic function with a zero of order m at 0. Show that for all $z \in \Delta$ one has $|f(z)| \leq |z|^m$.
- 13. Verify that the Cayley transform

$$C(z) := i \frac{1+z}{1-z}$$

is a biholomorphism between the unit disc Δ and the upper half plane \mathbb{H}^+ .

- 14. Show that the strip $S_r := \{ z \in \mathbb{C} : 0 < \text{Im } z < r \}$, with r > 0, is biholomorphic to \mathbb{H}^+ (and therefore to Δ). Determine an explicit biholomorphism $f: S_1 \to \Delta$.
- 15. Determine whether there exists a nonconstant holomorphic function $f: \mathbb{C} \to \mathbb{C}$ whose image $f(\mathbb{C})$ has empty intersection with the border $\partial \Delta$ of the unit disc Δ .
- 16. Determine whether there exists a nonconstant holomorphic function $f: \mathbb{C} \to \mathbb{C}$ whose image $f(\mathbb{C})$ has empty intersection with the real line \mathbb{R} .