Cauchy-Riemann equations.

1. Determine all points where the following functions satisfy the Cauchy-Riemann equations:

$$f(x,y) = xy^2$$
, $f(z) = |z|^2(|z|^2 - 1)$, $f(z) = \sin(|z|^2)$, $f(z) = z(z + \bar{z})^2$.

- 2. Verify that $f(z) = \bar{z}$ is not **C**-differentiable.
- 3. Let $f: D \to \mathbf{C}$ be a function on an open set $D \subset \mathbf{C}$. Verify that $\frac{\partial f}{\partial \bar{z}} = \overline{\frac{\partial \bar{f}}{\partial z}}$.
- 4. Let $f: D \to \mathbf{C}$ be a holomorphic function on an open set $D \subset \mathbf{C}$. Verify that the function $g(z) := \overline{f(\bar{z})}$ is holomorphic on $D^* = \{\bar{z} : z \in D\}$.
- 5. Let $f: D \to \mathbf{C}$ be a holomorphic function on an open connected set $D \subset \mathbf{C}$:
 - (a) if $f'(z) \equiv 0$, then f is constant.
 - (b) if $|f(z)|^2$ is constant, then f is constant.
 - (c) if arg(f(z)) is constant, then f is constant.

Elementary functions; complex power series.

- 6. Compute the values of the following functions:
 - (a) $e^{i\pi/4}$, $e^{i3\pi/4}$, $e^{1+i2\pi/3}$.
 - (b) 2^{i} , i^{i} .
 - (c) $\log 3i$, $\log(-4)$, $\log(e+i)$, $\log(\log(i))$

(here log denotes the multivalued complex logarithm and Log denotes its principal value).

- 7. Consider the function $f(z) = z^2$, $z \in \mathbb{C}$.
 - (a) Determine the image of the set $Q = \{z = x + iy \in \mathbb{C} \mid x, y > 0\}$ under f.
 - (b) Determine the largest disc $B(1,R) = \{z \in \mathbb{C} \mid |z-1| < R\}$ on which f is injective.
 - (c) Answer questions (a) and (b) when $f(z) = z^4$.
- 8. Determine the preimage of $Q = \{z = x + iy \in \mathbb{C} \mid x, y > 0\}$ under $f(z) = \sqrt{z}$.
- 9. Determine the image of the following sets of the plane under the exponential map $z \mapsto e^z$:
 - (a) the line x = 2;
 - (b) the line y = x;
 - (c) the square of vertices 0, i, 1, 1+i.
 - (d) the strip $x \frac{\pi}{2} < y < x + \frac{\pi}{2}$.
- 10. Let $f(z) = e^{z^2}$. Draw the curves |f| = constant and arg(f) = constant.
- 11. Let $\cos z := \frac{e^{iz} + e^{-iz}}{2}$ and $\sin z := \frac{e^{iz} e^{-iz}}{2i}$.
 - (a) Verify that $(\sin z)' = \cos z$ e $(\cos z)' = -\sin z$.
 - (b) Verify that $\cos^2 z + \sin^2 z = 1$.

Complex integration.

12. Compute

$$\int_{\gamma} \frac{e^z}{z} dz, \qquad \int_{\gamma} \frac{e^z}{(z - 1/2)^2} dz,$$

where $\gamma = \{e^{i\theta}, \ \theta \in [0, 2\pi]\}.$

13. Compute

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{(z-1)(z-2i)} dz,$$

where $\gamma = \{4e^{i\theta}, \ \theta \in [0, 2\pi]\}.$

14. Compute

$$\int_{\gamma} \frac{\cos z}{(z - \pi/2)^{10}} dz,$$

where $\gamma = \{2e^{i\theta}, \ \theta \in [0, 2\pi]\}.$

15. Let |a| < 1 < |b|. For $n, m \in \mathbf{Z}$, compute

$$\frac{1}{2\pi i} \int_{\gamma} \frac{(z-b)^m}{(z-a)^n} dz,$$

where $\gamma = \{e^{i\theta}, \ \theta \in [0, 2\pi]\}.$

Identity principle, Liouville theorem.

- 16. Let $\Omega \subset \mathbf{C}$ be an open connected set. Let $f, g: \Omega \longrightarrow \mathbf{C}$ be holomorphic functions such that $f \cdot g \equiv 0$. Then either $f \equiv 0$ or $g \equiv 0$.
- 17. Let $f: \mathbf{C} \longrightarrow \mathbf{C}$ be a holomorphic function, such that $|f(z)| \le |e^z|$, for all $z \in \mathbf{C}$. Prove that $f(z) = ce^z$, for some constant $c \in \mathbf{C}$.
- 18. Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a holomorphic function. Assume that there exist positive constants M and c for which $|f(z)| \leq M(c + |z|^n)$, for all $z \in \mathbb{C} \setminus B(0, R)$, with R > 0.
 - (a) Show that f is a polynomial of degree $\leq n$.
 - (b) Assume $|f(z)| \leq M|z|^2$. Determine f(0) and f'(0).
- 19. Determine all the zeros of $\sin z$ and $\cos z$. Let $U = \mathbb{C} \setminus \{\pi/2 \pm k\pi, k \in \mathbb{Z}\}$. Let f be a holomorphic function on U, such that $f(\pi/n) = \tan(\pi/n), n \geq 3$. Deduce that f is not holomorphic on all \mathbb{C} and that it does not assume the value i.

2