Tutorato III (18/03/2002)

(Integrali complessi)

Esercizio 1. Calcolare i seguenti integrali:

- 1. $\int_{\sigma} x \, dz$ dove σ è il segmento orientato da 0 a 1 + i;
- 2. $\int_{|z|=R} x dz$ in due modi diversi:
 - (a) mediante calcolo diretto;
 - (b) osservando che $x = \frac{z+\overline{z}}{2} = \frac{1}{2} \left(z + \frac{R^2}{z}\right)$ sulla circonferenza $\{|z| = R\}$;
- 3. $\int_{|z|=2} \frac{dz}{z^2-1}$;
- 4. $\int_{|z|=1} \frac{e^z}{z^n} dz$ al variare di $n \in \mathbb{Z}$;
- 5. $\int_{|z|=2} \frac{dz}{z^2+1}$;
- 6. $\int_{|z|=\rho} \frac{dz}{|z-a|^2}$ con la condizione che $|a| \neq \rho$;
- 7. $\int_{|z|=1} \frac{\sin z}{z^n} dz$ al variare di $n \in \mathbb{Z}$;
- 8. $\int_{|z|=2} z^n (1-z)^m dz$ al variare di $n, m \in \mathbb{Z}$.

Esercizio 2. (*) (Stime di Cauchy e applicazioni)

1. Sia f una funzione analitica su Ω , tale che $|f(z)| \leq M$ per ogni $|z| \leq R$ (con $\overline{B_R(0)} \subset \Omega$). Sia $0 < \rho < R$; trovare una stima di:

$$\sup_{|z| \le \rho} |f^{(n)}(z)|.$$

2. Mostrare che le derivate successive di una funzione analitica in un punto, non possono mai soddisfare la relazione $|f^{(n)}(z)| \geq n!n^n$, per ogni n.