1. Calcolare il raggio di convergenza delle serie di Laurent

$$\sum_{n=-\infty}^{+\infty} \frac{(z-1)^n}{3^n+1} \qquad \sum_{n=-\infty}^{+\infty} 2^n z^n.$$

- 2. Determinare e classificare le singolarità di $f(z) = \frac{z \cot(\pi z/2)}{z+1}$. Calcolarne i residui.
- 3. Calcolare

$$\int_{\gamma} \sin \frac{1}{z} dz, \qquad \gamma = \{z = e^{i\theta}, \ \theta \in [0, 2\pi]\}.$$

- 4. Determinare una trasformazione lineare fratta che manda 0, 1, 2 rispettivamente in $1, 0, \infty$
- 5. Siano

$$A = \{z \in \mathbf{C} \mid z = re^{i\theta}, \ r > 0, \ -\pi/4 < \theta < \pi/4\}$$
 e $B = \{z \in \mathbf{C} \mid z = x + iy, -2 < y < 2\}$. Disegnare A e B e dire se sono biolomorfi. Spiegare la risposta.

- 6. Sia $F: \mathbf{C} \longrightarrow \mathbf{C}$ una funzione olomorfa non costante. Dimostrare che l'immagine $f(\mathbf{C})$ è densa in \mathbf{C} .
- 7. Far vedere che la funzione definita da $\sum_{n=1}^{\infty} \frac{1}{n!z^n}$ è olomorfa su $\mathbb{C} \setminus \{0\}$. Calcolare il suo integrale su $\gamma = \{z = e^{i\theta}, \ \theta \in [0, 2\pi]\}$.
- 8. Sia $P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_0$ un polinomio di grado n a coefficienti complessi. Far vedere che esiste $z \in \mathbb{C}$ con |z| = 1, tale che $|P(z)| \ge 1$.
- 9. Determinare gli automorfismi olomorfi del piano complesso. Determinare gli automorfismi olomorfi della sfera di Riemann.
- 10. Calcolare gli integrali

$$\int_{-\infty}^{+\infty} \frac{dx}{(1+x+x^2)^2}, \quad \int_{0}^{2\pi} \frac{d\theta}{5-4\cos\theta}, \quad \int_{0}^{+\infty} \frac{x^2 dx}{x^4+6x^2+13},$$
$$\int_{0}^{+\infty} \frac{\cos x dx}{x^2+4^2}, \quad \int_{0}^{+\infty} \frac{\sqrt{x} dx}{2+x^4} dx.$$

- 11. Sia $f_n: D \longrightarrow D$ una successione di funzioni olomorfe su un dominio $D \subset \mathbf{C}$. Supponiamio che $\{f_n\}$ converga uniformemente sui compatti ad una funzione olomorfa, non identicamente nulla, $f: D \longrightarrow \mathbf{C}$. Far vedere che $f(z_0) = 0$, per $z_0 \in D$, se e solo se esiste una successione di punti $\{z_n\}$ in D e un N tali che $z_n \to z_0$ e $f_n(z_n) = 0$, per ogni n > N.
- 12. Far vedere che una funzione razionale non ha singolarità essenziali. Viceversa, una funzione olomorfa su $\mathbb{C} \setminus F$, ove F è un insieme finito di punti, senza singolarità essenziali, è una funzione razionale.
- 13. Siano f e G olomorfe su un aperto $D \subset \mathbf{C}$. Supponiamo che g abbia uno zero semplice in z_0 . Allora $Res_{f/g}(z_0) = f(z_0)/g'(z_0)$.
- 14. Siano f e g meromorfe su un aperto connesso D e sia A un sottoinsieme di $D \setminus \{Poli(f) \cup Poli(g)\}$ con un punto di accumulazione. Dimostrare che f = g su A implica f = g.