- 1. Sia $p: \mathbf{R} \to S^1$ l'applicazione data da $s \mapsto (\cos 2\pi s, \sin 2\pi s)$. Verificare che $p: \mathbf{R} \to S^1$ definisce un rivestimento: descrivere esplicitamente un ricoprimento "trivializzante" $\{U_{\alpha}\}_{\alpha}$ di S^1 e la controimmagine $p^{-1}(U_{\alpha})$, al variare di α .
- 2. Sia $p:(0,5) \to S^1$ l'applicazione data da $s \mapsto (\cos 2\pi s, \sin 2\pi s)$. Verificare che $p:(0,5) \to S^1$ non definisce un rivestimento.
- 3. Sia $S^1 = \{z = e^{2\pi i s}, s \in [0,1]\}$. Sia $p: S^1 \to S^1$ l'applicazione data da $z \mapsto z^3$. Verificare che $p: S^1 \to S^1$ definisce un rivestimento: descrivere esplicitamente un ricoprimento "trivializzante" $\{U_\alpha\}_\alpha$ di S^1 e la controimmagine $p^{-1}(U_\alpha)$, al variare di α .
- 4. Sia $p: S^n \to \mathbf{R}P^n$ la proiezione al quoziente rispetto alla relazione di equivalenza su S^n data da $X \sim Y$ se $X = \pm Y$. Verificare che p definisce un rivestimento.
- 5. Siano $p: \widetilde{X} \to X$ e $q: \widetilde{Y} \to Y$ rivestimenti. Verificare che $p \times q: \widetilde{X} \times \widetilde{Y} \to X \times Y$ definisce un rivestimento. Determinare almeno tre rivestimenti distinti del toro $T = S^1 \times S^1$.
- 6. Sia $p: \mathbb{C}^* \to \mathbb{C}^*$ l'applicazione data da $z \mapsto z^n$. Verificare che $p: \mathbb{C}^* \to \mathbb{C}^*$ definisce un rivestimento: descrivere esplicitamente un ricoprimento "trivializzante" $\{U_{\alpha}\}_{\alpha}$ di \mathbb{C}^* e la controimmagine $p^{-1}(U_{\alpha})$, al variare di α .
- 7. Sia $p: \mathbf{C} \to \mathbf{C}^*$ l'applicazione data da $z \mapsto e^z$. Verificare che $p: \mathbf{C} \to \mathbf{C}^*$ definisce un rivestimento: descrivere esplicitamente un ricoprimento "trivializzante" $\{U_{\alpha}\}_{\alpha}$ di \mathbf{C}^* e la controimmagine $p^{-1}(U_{\alpha})$, al variare di α .