Nome

Inserire le risposte negli spazi predisposti, accompagnandole con *spiegazioni chiare, sintetiche e complete*. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. Ogni esercizio vale 5 punti.

1. Determinare tutte le soluzioni intere dei sistemi di congruenze

$$\begin{cases} 2x \equiv 2 \bmod 5 \\ x \equiv 1 \bmod 3 \end{cases} \qquad \begin{cases} x \equiv 1 \bmod 3 \\ x \equiv 0 \bmod 6 \end{cases} \qquad \begin{cases} 2x \equiv 2 \bmod 5 \\ x \equiv 1 \bmod 3 \\ x \equiv 0 \bmod 6. \end{cases}$$

Sol.: Il primo sistema ha soluzioni intere perché le singole congruenze hanno soluzioni intere (infatti mcd(2,5) = 1 che divide 2) ed inoltre mcd(3,5) = 1 che divide 1-2=-1. La soluzione generale del sistema è della forma

$$x = x_0 + M15, \quad M \in \mathbb{Z},$$

dove x_0 è una qualunque soluzione particolare. Da semplici calcoli (provare....) segue che

$$x = 1 + M15, \quad M \in \mathbb{Z}.$$

Il secondo sistema non ha soluzioni, perché mcd(3,6) = 3 non divide 1. A maggior ragione il terzo sistema, che contiene le due equazioni del secondo, non ha soluzioni intere.

2. Sia $\mathbb{N} = \{1, 2, 3, \ldots\}$ l'insieme dei numeri naturali. Sia R la relazione su $\mathbb{N} \times \mathbb{N}$ così definita:

$$(a,b) R(c,d) \Leftrightarrow ad = bc.$$

- (a) Dimostrare che R è una relazione di equivalenza.
- (b) Sia $X = \{1, 2\}$. Determinarne la partizione del sottoinsieme $X \times X$ di $\mathbb{N} \times \mathbb{N}$ indotta dalla relazione R.

Sol.: (a) La relazione è riflessiva, cioè (a,b)R(a,b), per ogni (a,b). Infatti ab=ab, per ogni (a,b). La relazione è simmetrica, cioè (a,b)R(c,d) implica (c,d)R(a,b). Infatti ad=bc implica cb=da. La relazione è transitiva, cioè (a,b)R(c,d) e (c,d)R(e,f)) implica (a,b)R(e,f). Poiché b,d,f sono tutti diversi da zero, da ad=bc e cf=de ricaviamo $\frac{a}{b}=\frac{c}{d}$ e $\frac{c}{d}=\frac{e}{f}$. Ne segue $\frac{a}{b}=\frac{e}{f}$ e dunque af=eb come richiesto.

(b) Gli elementi di $X \times X$ sono (1,1), (2,2), (1,2), (2,1). La partizione di $X \times X$ indotta dalla relazione R (cioè formata dalle classi di equivalenza rispetto ad R in $X \times X$) è data da

$$\{(1,1),(2,2)\}\bigcup\{(1,2)\}\bigcup\{(2,1)\}.$$

Infatti (1,1) e (2,2) sono gli unici elementi distinti di $X \times X$ che sono in relazione fra loro.

- 3. Siano dati $a=200,\quad b=11,\quad c=1000.$
 - (a) Determinare quali fra a, b, c ammettono inverso moltiplicativo in \mathbb{Z}_{1001}^* (giustificare la risposta).
 - (b) Determinare l'inverso moltiplicativo in \mathbb{Z}_{1001}^* degli elementi invertibili trovati al punto precedente.

Sol.: (a) Abbiamo $1001 = 5 \cdot 200 + 1$, da cui mcd(200, 101) = 1;

 $1001 = 1 \cdot 1000 + 1$, da cui mcd(200, 101) = 1;

 $1001 = 91 \cdot 11$, da cui mcd(11,1001) = 11. Conclusione: 200 e 1000 ammettono inverso moltiplicativo in \mathbb{Z}_{1001}^* , mentre 11 no.

(b) Dalla prima equazione del punto precedente abbiamo

 $-5 \cdot 200 = 1 - 1001$, cioè $-5 \cdot 200 \equiv 1 \mod 1001$. In altre parole l'inverso moltiplicativo di 200 in \mathbb{Z}_{1001}^* è uguale a $-5 \equiv 996$.

Dalla seconda equazione del punto precedente abbiamo

- $(-1)\cdot 1000=1-1001$, cioè $1000^{-1}\equiv -1$ mod 1001 e l'inverso moltiplicativo di 1000 in \mathbb{Z}_{1001}^* è uguale a 1000 (scegliendo un rappresentante della classe resto di 1000^{-1} fra 1 e 1000).
 - 4. Sia p un numero primo. Determinare la cardinalità di \mathbb{Z}_p^* , la cardinalità di $\mathbb{Z}_{p^2}^*$ e in generale la cardinalità di $\mathbb{Z}_{n^k}^*$, per $k \in \mathbb{Z}_{>1}$, spiegando bene la risposta.

Sol.: Sia $n \in \mathbb{Z}_{>0}$. Le classi resto modulo n che ammettono inverso moltiplicativo sono date da $\mathbb{Z}_n^* =$ $\{\bar{x} \in \mathbb{Z}_n \mid mcd(x,n)=1\}$. Se n=p è primo, abbiamo che mcd(x,p)=1 se e solo se p non divide x (cioè xnon è un multiplo intero di p. Ciò equivale a dire che $x \not\equiv 0 \mod p$). Ne segue che $\mathbb{Z}_p^* = \{\bar{1}, \bar{2}, \dots, \overline{p-1}\}$ e $|\mathbf{Z}_{p}^{*}| = p - 1.$

Consideriamo adesso

$$\mathbb{Z}_{p^2} = \{\bar{0}, \bar{1}, \dots, \overline{p^2 - 1}\} = \{\bar{1}, \dots, \overline{p^2 - 1}, \bar{p}\}.$$

Poiché p è primo, $mcd(x, p^2) = 1$ se e solo se p non divide x, cioè x non è un multiplo intero di p. Ne segue che le classi $\bar{x} \in \mathbb{Z}_{p^2}$ che non ammettono inverso moltiplicativo sono tante quante i multipli interi di p compresi fra 1 e p^2 . Ne segue che $|\mathbb{Z}_{p^2}^*| = p^2 - p^2/p = p^2 - p$.

Con un ragionamento simile si ottiene che la cardinalità di $\mathbb{Z}_{p^k}^*$ è uguale a $p^k - p^k/p = p^k - p^{k-1}$.

- 5. Determinare se i seguenti enunciati con dominio IR sono veri o falsi, giustificando bene la risposta. Per ognuno di essi scrivere la negazione (N.B.: non ci devono essere negazioni davanti ai quantificatori):
 - (a) $\exists x : x^3 = -1$
 - (b) $\exists x : x^4 < x^2$
 - (c) $\forall x : 2x > x$.

Sol.: (a) VERA: infatti per x = -1 vale $(-1)^3 = -1$.

La sua negazione: $\forall x \quad x^3 \neq -1$.

(b) VERA: infatti per $x=\frac{1}{2}$ vale $\frac{1}{2}^4=\frac{1}{16}<\frac{1}{4}=\frac{1}{2}^2$. La sua negazione: $\forall x~:~x^4\geq x^2$.

(c) FALSA: infatti per x = -1 vale 2x = -2 < -1 = x.

La sua negazione: $\exists x : 2x \leq x$.

6. Determinare la soluzione dell'equazione ricorsiva $a_n - 5a_{n-1} = 5^n$, per $n \ge 1$, che soddisfa la condizione iniziale $a_0 = 3$.

Sol. Consideriamo l'equazione lineare omogenea associata $a_n - 5a_{n-1} = 0$, con polinomio caratteristico $\lambda - 5 = 0$. La soluzione generale di tale equazione è data dalle successioni della forma

$$H_n = A5^n, \quad A \in \mathbb{R}.$$

Determiniamo ora una soluzione particolare dell'equazione $a_n - 5a_{n-1} = 5^n$. Poiché 5 è radice del polinomio caratteristico dell'omogenea, cerchiamo una soluzione particolare del tipo $p_n = Bn5^n$, con $B \in \mathbb{R}$ da ricavare sostituendo p_n nell'equazione:

$$Bn5^{n} - 5B(n-1)5^{n-1} = 5^{n} \Leftrightarrow Bn - B(n-1) = 1 \Leftrightarrow B = 1$$

Dunque una soluzione particolare è data da $p_n = n5^n$ (provare per credere).

La soluzione generale dell'equazione $a_n - 5a_{n-1} = 5^n$ è data dalle successioni della forma

$$S_n = A5^n + n5^n, \quad A \in \mathbb{R},$$

con A da determinare a partire dalle condizioni iniziali. Ponendo n=0, troviamo

$$S_0 = A = 3.$$

Conclusione: la soluzione cercata è data da $\{a_n\}_n$, dove

$$a_n = 3 \cdot 5^n + n5^n, \quad n \ge 0.$$

(provare per credere).