- 1. Nello spazio vettoriale euclideo \mathbb{R}^2 , munito del prodotto scalare standard, si consideri il vettore u=(-1,1). Determinare tutti i vettori x che sono ortogonali ad u e che hanno norma uguale a 2.
- 2. Nello spazio vettoriale euclideo \mathbb{R}^3 , munito del prodotto scalare standard, siano dati i vettori:

$$v_1 = (1, 2, -1), v_2 = (1, 0, 1), v_3 = (1, 2, 0).$$

- (a) determinare $||v_1||$, $||v_2||$, il prodotto scalare $v_1 \cdot v_2$ e l'angolo formato da v_2 e v_3 ;
- (b) determinare il versore di v_1 ;
- (c) determinare tutti i vettori ortogonali a v_1 e v_2 e tutti i vettori ortogonali a v_3 .
- 3. Nello spazio vettoriale euclideo \mathbb{R}^3 , munito del prodotto scalare standard, determinare il vettore proiezione ortogonale del vettore $v_1 = (1, 1, 0)$ sul vettore $v_2 = (1, 0, 1)$.
- 4. Determinare una base ortonormale di \mathbb{R}^3 , rispetto al prodotto scalare standard, costruita a partire dalla base $B := \{v_1, v_2, v_3\}$, dove $v_1 = (1, 0, 1), v_2 = (0, 1, 1), v_3 = (0, 1, -1)$.
- 5. Sia \mathbb{R}^3 munito di prodotto scalare standard. Determinare una base ortonormale del sottospazio W di \mathbb{R}^3 generato dai vettori $w_1 = (1, 1, 1)$ e $w_2 = (0, 1, 1)$.
- 6. Sia \mathbb{R}^5 munito di prodotto scalare standard. Determinare una base ortonormale del sottospazio U di \mathbb{R}^5 così' definito:

$$U = \{(x_1, x_2, \dots, x_5) \in \mathbf{R}^5 : x_1 + x_2 + 2x_3 = x_1 + 2x_3 - x_4 - x_5 = x_2 + x_4 = 0\}.$$