- 1. Sia X un insieme e sia $\mathcal{P}(X)$ l'insieme delle parti di X. Indichiamo con \cap e \cup le operazioni di intersezione e di unione fra sottoinsiemi di X. Dimostrare che $(\mathcal{P}(X), \cap, \cup)$ è un reticolo.
- 2. Sia N l'insieme dei numeri naturali con la relazione di ordine parziale data da $m \le n$ se m divide n.
 - (a) Dimostrare che per ogni coppia $m, n \in \mathbb{N}$ esistono $z, w \in \mathbb{N}$ tali che

$$\begin{cases} z \le m \\ z \le n, \end{cases} \qquad \begin{cases} m \le w \\ n \le w. \end{cases}$$

- (b) Concludere che inf: $\mathbf{N} \times \mathbf{N} \longrightarrow \mathbf{N}$ e sup: $\mathbf{N} \times \mathbf{N} \longrightarrow \mathbf{N}$ sono operazioni binarie su \mathbf{N} , che coincidono rispettivamente col massimo comun divisore e il minimo comune multiplo.
- (c) Dimostrare che (N, mcd, mcm) è un reticolo.
- 3. Stabilire quali dei seguenti insiemi parzialmente ordinati $(A \leq B \text{ se e solo se } A \subseteq B)$ sono reticoli:
 - (a) $\{A \in \mathcal{P}(\{1,2,3,4,5\}) : |A| \text{ dispari } \};$ (c) $\{A \in \mathcal{P}(\{1,2,3,4,5\}) : A \supseteq \{1,3\} \};$
 - (b) $\{A \in \mathcal{P}(\{1,2,3,4,5\}) : |A| \ge 2\};$ (d) $\{A \in \mathcal{P}(\{1,2,3\}) : |A| \le 1 \text{ oppure } |A| = 3\}$
- 4. Sia (L, \wedge, \vee) un reticolo.
 - (a) Si consideri la relazione " \leq " su L così definita: dati $a, b \in L$, $a \leq b$ se e solo se $a \wedge b = a$. Dimostrare che \leq è un ordinamento parziale su L.
 - (b) Si consideri la relazione " \leq '" su L così definita: dati $a, b \in L$, $a \leq' b$ se e solo se $a \vee b = b$. Dimostrare che \leq ' è un ordinamento parziale su L.
 - (c) Dimostrare che gli ordinamenti parziali \leq e \leq ' coincidono.
 - (d) Dimostrare che, rispetto all'ordinamento parziale \leq , $sup(a,b) = a \lor b$ e $inf(a,b) = a \land b$ per ogni $a,b \in L$.
- 5. Dimostrare che nel reticolo $(\mathcal{P}(X), \cap, \cup)$ le relazioni di ordine parziale definite nell'Esercizio 4 coincidono con la relazione di contenenza \subseteq .
- 6. Dimostrare che nel reticolo (\mathbf{N} , mcd, mcm) e relazioni di ordine parziale definite nell'Esercizio 4 coincidono con la relazione mRn se m divide n.
- 7. Siano (L, \vee, \wedge) e (L', \vee', \wedge') due reticoli e siano (L, \leq) e (L', \leq') le corrispondenti relazioni di ordine parziale. Una funzione biettiva $f: L \to L'$ si dice un isomorfismo di reticoli se: $f(x \vee y) = f(x) \vee' f(y)$ e $f(x \wedge y) = f(x) \wedge' f(y)$ per ogni $x, y \in L$. In tal caso i due reticoli sono detti isomorfi.
 - (a) Dimostrare che se $f: L \to L'$ è un isomorfismo di reticoli allora anche $f^{-1}: L' \to L$ lo è;
 - (b) Dimostrare che una funzione biettiva $f:L\to L'$ è un isomorfismo di reticoli se vale la seguente condizione: dati $x,y\in L$, si ha che $x\leq y$ se e solo se $f(x)\leq' f(y)$.
 - (c) Sia $X = \{1, 2\}$ e si consideri il reticolo $(\mathcal{P}(X), \cap, \cup)$. Determinare quanti sono gli isomorfismi di reticolo $f : \mathcal{P}(X) \to \mathcal{P}(X)$.
- 8. Dato un numero naturale n, si denoti $\mathbf{D}_n = \{m \in \mathbf{N} : m \text{ divide } n\}$, munito della relazione d'ordine parziale $m \leq k$ se e solo se m divide k. Stabilire se \mathbf{D}_{30} e $\mathcal{P}(\{1,2,3\})$ sono reticoli isomorfi. e, in caso affermativo, stabilire quanti sono gli isomorfismi di reticolo $f: \mathbf{D}_{30} \to \mathcal{P}(\{1,2,3\})$.
- 9. (a) Stabilire se i reticoli \mathbf{D}_6 e \mathbf{D}_{15} sono isomorfi.
 - (b) In caso affermativo eterminare tutti gli isomorfismi di reticolo $f: \mathbf{D}_6 \to \mathbf{D}_{15}$.
- 10. (a) Stabilire se i reticoli \mathbf{D}_{30} e \mathbf{D}_{105} sono isomorfi.

- (b) In caso affermativo, determinare tutti gli isomorfismi di reticolo $f: \mathbf{D}_{30} \to \mathbf{D}_{105}$.
- 11. (a) Stabilire se i reticoli \mathbf{D}_{12} e \mathbf{D}_{18} sono isomorfi.
 - (b) In caso affermativo, determinare tutti gli isomorfismi di reticolo $f: \mathbf{D}_{12} \to \mathbf{D}_{18}$.
- 12. (a) Stabilire se i reticoli $\mathcal{P}(\{1,2,3\})$ e \mathbf{D}_{24} sono isomorfi.
 - (b) Stabilire se uno dei reticoli del punto (a) è isomorfo a \mathbf{D}_{30} .
- 13. Si consideri il reticolo $L = \{A \in \mathcal{P}(\{1,2,3,4\}) : A \subseteq \{1,2,3\}\}$ (con $A \wedge B = A \cap B$ e $A \vee B = A \cup B$).
 - (a) Dimostrare che L è limitato.
 - (b) Stabilire se ci sono elementi il cui complemento non è unico.
 - (c) Stabilire se L è un reticolo distributivo.
- 14. Quali dei seguenti reticoli sono reticoli con complemento?
 - (a) \mathbf{D}_{70} ,
 - (b) \mathbf{D}_{18} ,
 - (c) $\mathcal{P}(\mathcal{P}(\{a\}))$.
- 15. Stabilire se i seguenti reticoli sono reticoli distributivi, reticoli con complemento, reticoli con complemento unico:
 - (a) $\{1, 2, 3, 4, 9, 12, 18, 36\}$, munito delle operazioni $a \land b = mcd(a, b), a \lor b = mcm(a, b)$,
 - (b) \mathbf{D}_{12} ,
 - (c) $\mathcal{P}(\{a, b, c\}),$
 - (d) \mathbf{D}_{30} ,
 - (e) $\{1, 6, 10, 15, 30, 60, 90, 180\}$, munito delle operazioni $a \wedge b = mcd(a, b)$.