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ABSTRACT

Let R be a 1-dimensional integral domain, lete R\ {0} be prime, and let{.A

be the category of torsionless Hopf algebras aveiVe call H € HA a“quantized
function algebra” (=QFA) resp.“quantized restricted universal enveloping algebras”
(=QrUEA), at i if H/hH Is the function algebra of a connected Poisson group,
resp. the (restricted, iR / h R has positive characteristic) universal enveloping algebra
of a (restricted) Lie bialgebra.

An “inner” Galois correspondence dr.A is established via the definition of two
endofunctors( )” and( )’, of H.A such that(a) the image of )", resp. of( )/, is the
full subcategory of all QrUEAs, resp. QFAs, fat (b) if p := Char(R/hR) = 0,
the restrictiong MQFAS ( )’\QrUEAS yield equivalences inverse to each othe}; if
p = 0, starting from a QFA over a Poisson groGp resp. from a QrUEA over a Lie
bialgebrag, the functor( )", resp.( )/, gives a QrUEA, resp. a QFA, over the dual Lie
bialgebra, resp. a dual Poisson group. In particémnprovides a machine to produce
quantum groups of both types (either QFAs or QrUEAIS) gives a characterization of
them among objects G{.4, and(c) gives a “global” version of the so-called “quantum
duality principle” (after Drinfeld’s, cf. [Dr]).

and
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This result applies in particular to Hopf algebras of the fdefh] ©| H whereH is
a Hopf algebra over the fielkt this yields quantum groups, hence “classical’ geomet-
rical symmetries of Poisson type (Poisson groups or Lie bialgebras, via specialization)
associated to the “generalized” symmetry encoded/byoth our main result and the
above mentioned application are illustrated by means of several examples, which are
studied in some detail.

These notes draw a sketch of the theoretical construction leading to the “global
guantum duality principle”. Besides, the principle itself, and in particular the above
mentioned application, is illustrated by means of several examples: group algebras, the
standard quantization of the Kostant-Kirillov structure on any Lie algebra, the quantum
semisimple groups, the quantum Euclidean group and the quantum Heisenberg group.

Introduction

The most general notion of “symmetry” in mathematics is encoded in the definition of Hopf al-
gebra. Among Hopf algebrag over a field, the commutative and the cocommutative ones encode
“geometrical” symmetries, in that they correspond, under some technical conditions, to algebraic
groups and to (restricted, if the ground field has positive characteristic) Lie algebras respectively: in
the first cased is the algebra’[G] of regular functions over an algebraic groGp whereas in the
second case it is the (restricted) universal enveloping algébga (u(g) in the restricted case) of a
(restricted) Lie algebrg. A popular generalization of these two types of “geometrical symmetry” is
given by quantum groups: roughly, these are Hopf algeBraepending on a parameteisuch that
settingh = 0 the Hopf algebra one gets is either of the typé&] — henceH is aquantized function
algebrain short QFA — or of the typé/(g) or u(g) (according to the characteristic of the ground
field) — henceH is aquantized (restricted) universal enveloping algebrahort QrUEA. When a
QFA exists whose specialization (i.e. its “value” &at= 0) is F[G], the groupG inherits from this
“quantization” a Poisson bracket, which makes it a Poisson (algebraic) group; similarly, if a QrUEA
exists whose specialization {$(g) or u(g), the (restricted) Lie algebrg inherits a Lie cobracket
which makes it a Lie bialgebra. Then by Poisson group theory one has Poisson Grodypal toG
and a Lie bialgebrg* dual tog, so other geometrical symmetries are related to the initial ones.

The dependence of a Hopf algebra/onan be described as saying that it is defined over aking
and” € R: soone is lead to dwell upon the categ@tyd of Hopf R—algebras (maybe with some
further conditions), and then raises three basic questions:

— (1) How can we produce quantum groups?
— (2) How can we characterize quantum groups (of either kind) withit?
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— (3) What kind of relationship, if any, does exist between quantum groups over mutually dual
Poisson groups, or mutually dual Lie bialgebras?

A first answer to questiofil) and (3) together is given, in characteristic zero, by the so-called
“quantum duality principle”, known in literature with at least two formulations. One claims that
guantum function algebras associated to dual Poisson groups can be taken to be dual — in the Hopf
sense — to each other; and similarly for quantum enveloping algebras (cf. [FRT1] and [Se]). The
second one, formulated by Drinfeld in local terms (i.e., using formal groups, rather than algebraic
groups, and complete topological Hopf algebras; cf. [B7], and see [Ga4] for a proof), provides
a recipe to get, out of a QFA ovér, a QrUEA overg*, and, conversely, to get a QFA oveéf*
out of a QrUEA overg. More precisely, Drinfeld defines two functors, inverse to each other, from
the category of quantized universal enveloping algebras (in his sense) to the category of quantum
formal series Hopf algebras (his analogue of QFAs) and viceversa, suchtf@t— F.[[G*]] and
F_[[G]] = U-(g*) (in his notation, where the subscriptstands as a reminder for “quantized” and
the double square brackets stand for “formal series Hopf algebra”).

In this paper we presentgobal version of the quantum duality principle which gives a complete
answer to questiond) through(3). The idea is to push as far as possible Drinfeld’s original method
so to apply it to the categoryf.A of all Hopf algebras which are torsion-free modules over some
1-dimensional domain (in short, 1dD), s&y and to do it for each non-zero prime eleménh R .

To be precise, we extend Drinfeld’s recipe so to define functors ft#nto itself. We show that
the image of these “generalized” Drinfeld’s functors is contained in a category of quantum groups
— one gives QFAs, the other QrUEAs — so we answer quegfipnThen, in the zero characteris-
tic case, we prove that when restricted to quantum groups these functors yield equivalences inverse
to each other. Moreover, we show that these equivalences exchange the types of quantum group
(switching QFA with QrUEA) and the underlying Poisson symmetries (interchan@iog g with
G* or g*), thus solving(3). Other details enter the picture to show that these functors eftddw
with sort of a (inner) “Galois correspondence”, in which QFAs on one side and QrUEASs on the other
side are the subcategories ({i4) of “fixed points” for the composition of both Drinfeld’s func-
tors (in the suitable order): in particular, this answers queg&pnlit is worth stressing that, since
our “Drinfeld’s functors” are defined for each non-trivial poiiit) of Speqd R), for any such(h)
and for anyH in ‘H.A they yield two quantum groups, namely a QFA and a QrUEA, whritself.

Thus we have a method to get, out of any sinfle H.A, several quantum groups.

Therefore the “global” in the title is meant in several respects: geometrically, we consider global
objects (namely Poisson groups rather than Poigsonal groups, as in Drinfeld’s approach); al-
gebraically we consider quantum groups over any X¥o there may be several different “semi-
classical limits” (=specialization) to consider, one for each non-trivial point in the spectrufn of
(whereas in Drinfeld’s contexkz = k|[[i]] so one can specialise only &= 0); more generally,
our recipe applies tany Hopf algebra, i.e. not only to quantum groups; finally, most of our results
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are characteristic-free, i.e. they hold not only in zero characteristic (as in Drinfeld’s case) but also in
positive characteristic. As a further outcome, this “global version” of the quantum duality principle
leads to formulate a “quantum duality principle for subgroups and homogeneous spaces”, see [CG].
A key, long-ranging application of owlobal quantum duality principléGQDP) is the following.
Take asR the polynomial ringR = k|i], wherek is a field: then for any Hopf algebra ovierwe
have thatH [ ] := R®| H is a torsion-free Hopfz—algebra, hence we can apply Drinfeld’s functors
to it. The outcome of this procedure is the/stal duality principlg CDP), whose statement strictly
resembles that of the GQDP: now Hapfalgebras are looked at instead of torsionless Hepf
algebras, and quantum groups are replaced by Hopf algebras with canonical filtrations such that the
associated graded Hopf algebra is either commutative or cocommutative. Correspondingly, we have
a method to associate fé a Poisson group and a Lie bialgebr& such thatG is an affine space (as
an algebraic variety) andis graded (as a Lie algebra); in both cases, the “geometrical’” Hopf algebra
can be attained — roughly — through a continuous 1-parameter deformation process. This result can
also be formulated in purely classical — i.e. “non-quantum” — terms and proved by purely classical
means. However, the approach via the GQDP also yields further possibilities to déforta other
Hopf algebras of geometrical type, which is out of reach of any classical approach.
The purpose of these notes is to illustrate the global quantum duality principle in some detail
through some relevant examples, namely the application to the “Crystal Duality Prindjp)edr{d
some quantum groups: the standard quantization of the Kostant-Kirillov structure on a Lie algebra
(84), the quantum semisimple groug®), the three dimensional quantum Euclidean grai), the
guantum Heisenberg group. All details and technicalities which are skipped in the present paper can
be found in [Gab], together with another relevant example (see also [Ga6] and [Ga7]).

These notes are the written version of the author’s contribution to the confelieroeontres
Mathématiques de Glanon”, 6th editiofl—5 july 2002) held in Glanon (France). The author’s
heartily thanks the organizers — especially Gilles Halbout — for kindly inviting him. 1l remercie
aussi tous les Glanonnets pour leur charmante hospitalit
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§ 1 Notation and terminology

1.1 The classical setting. Letk be a fixed field of any characteristic. We call “algebraic group”
the maximal spectrund’ associated to any commutative HdpfalgebraH (in particular, we deal
with proaffineas well asaffine algebraic groups); theff is called the algebra of regular function on
G, denoted withF[G]. We say thatG is connected ifF'|G] has no non-trivial idempotents; this is
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equivalent to the classical topological notion whm(G) is finite. If G is an algebraic group, we
denote bym, the defining ideal of the unit elementc G (in factm, is the augmentation ideal of
F[G]). The cotangent space Gfate is g* := me/mf, endowed with its weak topology, which
is naturally a Lie coalgebra. By we mean the tangent space@®@fat ¢, realized as the topological
dual g := (g*)" of g*: this is the tangent Lie algebra 6f. By U(g) we mean the universal
enveloping algebra af: this is a connected cocommutative Hopf algebra, and there is a natural Hopf
pairing (see§l.2a)) betweenF|[G]| andU(g). If Char(k) = p > 0, theng is a restricted Lie
algebra, andu(g) := U(g)/({ a? — 2Pl z € g }) is the restricted universal enveloping algebra of
g. In the sequel, in order to unify notation and terminology, wi@mar(k) = 0 we call any Lie
algebrag “restricted”, and its “restricted universal enveloping algebra” willlbgy), and we write
U(g) :=U(g) if Char(k) =0 andl(g) := u(g) if Char(k) > 0.

We shall also consideHyp (G) := (F[G]°). = {f € FIG]"| f(m") =0Vn =20}, ie.the

connected component of the Hopf algeltiz]° dual to F'[G]; this is called thehyperalgebraf G.

By constructionHyp (G) is a connected Hopf algebra, containipg= Lie(G) ; if Char(k) =0 one

has Hyp(G) = U(g), whereas ifChar(k) > 0 one has a sequence of Hopf algebra morphisms
Ul(g) u(g) < Hyp(G) . In any case, there exists a natural perfect (= non-degenerate) Hopf
pairing betweerF’[G] andHyp (G).

Now assume? is a Poisson group (for this and other notions hereafter see, e.g., [CP], but within
analgebraic geometrgetting): then?’[G] is a Poisson Hopf algebra, and its Poisson bracket induces
on g* a Lie bracket which makes it into a Lie bialgebraj$¢g*) andi/(g*) are co-Poisson Hopf
algebras too. On the other hangturns into a Lie bialgebra — maybe in topological sensé&; ik
infinite dimensional — and/(g) andi{/(g) are (maybe topological) co-Poisson Hopf algebras. The
Hopf pairing above betweeR |G| andi/(g) then is compatible with these additional co-Poisson and
Poisson structures. Similarlidyp (G) is a co-Poisson Hopf algebra as well and the Hopf pairing be-
tweenF'[G]| andHyp(G) is compatible with the additional structures. Moreover, the perfect pairing
g x g* — k given by evaluation is compatible with the Lie bialgebra structure on either side (see
§1.2(b)): sog andg™ are Lie bialgebraglual to each othefn the sequel, we denote lgy* any con-
nected algebraic Poisson group wjtilas cotangent Lie bialgebra, and say iffoisson) duato G .

For the Hopf operations in any Hopf algebra we shall use standard notation, as in [Ab].

Definition 1.2.

(a) LetH, K be Hopf algebras (in any category). A pairing, ): H x K —— R (whereR
is the ground ring) is &opf (algebra) pairingf  (z,y1 - y2) = (A(x),11 @ y2) = D,y (T, ¥1) -
<$(2),y2>, <$1 ‘ $2,y> = <9C1 ® $2,A(y)> = Z(y) <x1,y(1)> : <x2,y(2)>, (2,1) = e(z), (Ly) =
e(y), (S(x),y) = {(x,5(y)), forall z,z1,20 € H, y,y1,2 € K.

(b) Letg, h be Lie bialgebras (in any category). A pairing, ) : g x h —— k (wherek is the
ground ring) is called a.ie bialgebra pairingf (z,[y1,y2]) = (3(x),11 @ y2) := 21,y () 1) -
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<515[2],f92>, <[I1,$Q]ay> = <$1 b2y x275(y)> = Z[y] <x1,y[1]> . <$2,y[2}>, forall z,z,,z, € g and
Yoy1,y2 € b, With 6(z) = >0 2y @ 2 and 6(y) = X Y © ype) -

1.3 The quantum setting. Let R be a 1-dimensional (integral) domain (=1dD), and Fet=
F(R) be its quotient field. Denote hy1 the category of torsion-fre@—modules, and b§{.A the
category of all Hopf algebras iM. Let M be the category of'—vector spaces, ard. Ay be the
category of all Hopf algebras iM . Forany M € M, set My := F(R) ®r M . Scalar extension
gives a functorM — My, M — My, which restricts to a functoH A — HAr.

Let 2 € R be a non-zero prime element (which will be fixed throughout), &nd- R/(h) =
R/hR the corresponding quotient field. For aRy-modulel/, we setMN‘ = M/hM =k®gr
M : this is ak—module (via scalar restrictio® — R/ h R =: k), which WNeicaII thespecialization
of M at h = 0; we use also notation/ —» N to mean thatMN‘ ~ N. Moreover, set

~=0
M, = N2 h"M (this is the closure of0} in the h—adic topology of)M). In addition, for any
HEMA, let I:=Ker( H - R =" Kk) and seth;:= (% 1"

Finally, givenH in H.Ar, a subsefd of H is calledan R—integer form(or simplyan R—form) of

Hif H is a HopfR—subalgebra ofll (henceH € HA)and Hr := F(R) ®z H = H.

Definition 1.4. (“Global quantum groups” [or “algebraglet h € R\ {0} be a prime.

(a) We callquantized restricted universal enveloping algebra&in short, QrUEA) anylU- €
‘HA such thatLLL:O = LL/hZ/L is (isomorphic to) the restricted universal enveloping algel(g)
of some restricted Lie algebrga.

We call QriUUEA the full subcategory df{.4A whose objects are all the QrUEAS (&t

(b) We callquantized function algebra (&} (in short, QFA) any F. € HA such that(F.) =
I.*° (notation of§1.3) and F~|~:0 = F~/h F. is (isomorphic to) the algebra of regular functions
F[G] of some connected algebraic groap

We call QFA the full subcategory of{.4 whose objects are all the QFAs (&t

Remark 1.5. If U is a QrUEA (ath, that is w.r.t. tok) then LL\NZQ is a co-Poisson Hopf
algebra, w.r.t. the Poisson cobracKetefined as follows: ifr € LLL:O and x’ € U- givesz = 1
mod AlU-, thend(z) := (h! (A(z) — A%(2'))) mod h (U-®U-). SoU-|__ = U(g) for some
Lie algebrag, and by [Dr], §3, the restriction ob makesg into a Lie bialgebra(the isomorphism
Z/LLO =~ U(g) being one oto-PoissoHopf algebras); in this case we writé. = U-(g) . Similarly,
if F.is a QFA ath, then F~]~:O is a PoissonHopf algebra, w.r.t. the Poisson bracKet } defined
as follows: if 2,y € F.|__, and 2/, € F. give x = 2/ mod hF., y =y mod hF., then
{z,y} = (A" (z'y/ —y'2’)) mod hF..So F.|__, = F[G] for some connecteBoissoralgebraic

groupG (the isomorphism being one &foissorHopf algebras): in this case we write. = F[G].

Definition 1.6.
(&) LetR be any (integral) domain, and I&t be its field of fractions. Given twb—modulesA,
B, and anF'-bilinear pairing A x B — F', for any R—submoduleA C A and B C B we set
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4 ={veB|(A,b)c R} and B* = {a €A (aB) C R}
(b) LetR be a1dD. GivenH, K € HA, we say thatH andK are dual to each othérthere
exists a perfect Hopf pairing between them for whigh= K* and K = H*.

§ 2 The global quantum duality principle

2.1 Drinfeld’s functors. (Cf. [Dr], §7) LetR, HAandh € R be as i§1.3. ForanyH € HA,
let I = I, := Ker(H—e»RLO»R/hR - k) - Ker<H~—HO»H/hH—E»k> (as in§1.3),
a maximal Hopf ideal off (wheree is the counit ofH}~ and the two composed maps clearly

coincide): we define

=0

o = Yhr"m =Y (1) = U @' (CHp).
n>0 n>0 n>0

If J=J,:=Ker(e;) thenl =J+h-1,, thus HY =5 _ m =3 _ (h71J)" too.

Given any Hopf algebra/, for everyn € N define A™: H — H®" by A0 =, Al = id,
and A" := (A @id5" ) o A" if n > 2. For any ordered subs&t = {i,, ... iz} C {1,...,n}
with 4, < --- < i, define the morphisny, : H®* — H®" by j.(a1®@ - ®ag) == 0@ - @b,
with b; == 1if i ¢ ¥ andb;, := a,, for 1 < m < k;thensetAy := js o A*, Ay := A°, and
0s == D osew (—1)”_‘EI'AE/, dg := €. By the inclusion-exclusion principle, this definition admits
the inverse formulaAy, = >, - 0w . We shall also use the notatiai := &y, J,, := df12,..»y, and
the useful formulad, = (id, — €)" o A", forall n € N, .

Now consider anyH € HA andh € R as in§1.3: we define

H = {acH|b,(a) e"H*", VneN} (CH).

Theorem 2.2 (“The Global Quantum Duality Principlg”

(@) The assignmenf/ — H, resp. H — H’, defines a functor ()": HA — HA,
resp. (): HA — HA, whose image lies iQrUEA, resp. inQFA. In particular, when
Char(k) > 0 the algebraic Poisson grou such thatH’L:0 = F|G] is zero-dimensional of height
1. Moreover, for all H € H.A we haveH C (H")' and H D (H')’, hence alsoH" = ((HY)")"
and H' = ((H')")".

(b) Let Char(k) = 0. Then for anyH € H.A one has

H=(H") < HeQFA and H=(H) <= Hec QrlUEA,
thus we have two induced equivalences, namely: QFA —— QrUEA, H — HY, and
(): QrUEA —— QFA, H+— H', which are inverse to each other.

(c) (“Quantum Duality Principle”) Let Chark) = 0. Then
FLGY| = EIG)Y /hEIG) = U U-@)|_ = Ue) [hU-(e) = F67]
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(with G, g, g*, g andG* as in§1.1, andU-(g) has the obvious meaning, §fL..5) where the choice
of the groupG* (among all the connected Poisson algebraic groups with tangent Lie bialgghra
depends on the choice of the QrUEA(g). In other words,F-[G]" is a QrUEA for the Lie bialgebra
g%, and U-(g)’ is a QFA for the Poisson grou@™.
(d) Let Char(k) = 0. Let F. € QFA, U-. € QrUUEA be dual to each other (with respect to
some pairing). The.” andU." are dual to each other (w.r.t. theamepairing).
(e) Let Chark) =0. Then for allH € H.Ar the following are equivalent:
H has anR—integer formH ;) which is a QFA ati;
H has ank—integer form/H,) which is a QrUEA at:.

Remarks 2.3.After stating our main theorem, some comments are in order.

(a) The Global Quantum Duality Principle as a “Galois correspondence” type theorem.
Let L C E be a Galois (not necessarily finite) field extension, andilet Gal (E/L) be its Galois
group. LetF be the set of intermediate extensions (i.e. all figidsuch thatL, C FF C F), let S
be the set of all subgroups 6fand letS¢ be the set of all subgroups 6fwhich areclosedw.r.t. the
Krull topology of G. Note thatF, S andS¢ can all be seen as lattices w.r.t. set-theoretical inclusion
— S°¢ being a sublattice o — hence as categories too. The celebrated Galois Theorem provides two
maps, namelyd : ¥ — S, F — Gal(E/F) .= {y € G| 7|, =idp },and ¥ : § — F,
Hw— E":={ecE|nle)=e VneH},suchthat:

— 1) ¢ andV¥ are contravarianfunctors (that is, they are order-reversing maps of lattices, i.e.
lattice antimorphisms); moreover, the imagepdfes in the subcategong®;

—2) for H € S one has®(¥(H)) = H, theclosureof H w.r.t. the Krull topology: thus
H C®(¥(H)), and® oV is aclosure operatoso thatH € S¢ iff H = &(¥(H));

—3) for F € F one has¥ ($(F)) = F;

— 4) @ andV restrict to antiequivalenceg : 7 — S¢ and ¥ : §¢ — F which are inverse to
each other.

Then one can see that Theorem 2.2 establishes a strikingly similar result, which in addition is
much more symmetrict.A plays the role of bottF andS, whereag )’ stands for and( )" stands
for @. QFA plays the role of the distinguished subcategSfy and symmetrically we have the
distinguished subcatego@rt/EA. The composed operatdi( )')" = ()" o ()" plays the role of
a “closure operator”, and symmetrically{ )')” = ()" o ()’ plays the role of a “taking-the-interior
operator”: in other words, QFAs may be thought of as “closed sets” and QrUEAs as “open sets” in
‘HA. Yet note also that now all involved functors arevariant

(b) Duality between Drinfeld’s functorsFor anyn € N let p, : J,°" « Hen ™ g
be the composition of the natural embedding/gf™ into H®" with the n—fold multiplication (in
H): thenyu, is the “Hopf dual” tod,,. By construction we have?’ = 3 pn(h*"JH‘@") and
H' = (,en 5,1 (h+"JH®”) . this shows that the two functors are built up as “dual” to each other
(see also pafid) of Theorem 2.2).
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(c) Ambivalence QrUEA— QFA inHAr. Part(e)of Theorem 2.2 means that some Hopf
algebrasover F'(R) might be thought ofboth as “quantum function algebrasind as “quantum
enveloping algebras”: examples dre andFr for U € QridEA and F € QFA.

(d) Drinfeld’s functors for algebras, coalgebras and bialgebrag definition of either of Drin-
feld functors requires only “half of” the notion of Hopf algebra. In fact, one can défirefor all
“augmented algebras” (that is, roughly speaking, “algebras with a counit”) ahfbr all “coaug-
mented coalgebras” (roughly, “coalgebras with a unit”), and in particular for bialgebras: this yields
again nice functors, and neat results extending the global quantum duality principle, cf.{§3a4],

(e) Relaxing the assumption&\e chose to work ovet{.A for simplicity: in fact, this ensures
that the specialization functoff +— HL:U yields Hopf algebras over a field, so that we can use
the more elementary geometric language of algebraic groups and Lie algebras in the easiest sense.
Nevertheless, what is really necessary to let the machine work is to consider any (commutative, unital)
ring R, any A € R and then define Drinfeld’s functors over Hapt-algebrasvhich areqi—torsionless
For instance, this is — essentially — what is done in [KT], where the ground rirgy 4s k[[u, v]],
and the role off is played by eithew or v. In general, working in such a more general setting
amounts to consider, at the semiclassical level (i.e. after specializafoisson group schemes over
R/h R (i.e. overSpe¢R/h R) ) andLie R /h R—bialgebraswhere R/i R might not be a field.

Similar considerations — aboui and. — hold w.r.t. remarkd) above.

§ 3 Application to trivial deformations: the Crystal Duality Principle

3.1 Drinfeld’s functors on trivial deformations. LetH.A; be the category of all Hopf algebras
over the fieldk. Foralln € N, let J" := (Ker(e: H —k))" and D,, := Ker(6,41: H —
H®"), andset /] := {J”}neN , D = {Dn}neN . Of courseJ is a decreasing filtration off
(maybe with(,., J* 2 {0}), andD is an increasing filtration off (maybe with(J,., D, & H),
by coassociativity of the,’s.

Let R :=k[h] be the polynomial ring in the indetermindie thenR is a PID (= principal ideal
domain), hence a 1dD, arfdis a non-zero prime iR. Let H. := H[h] = R ® H, the scalar ex-
tension ofH : this is a torsion free Hopf algebra ovBr hence one can apply Drinfeld’s functors to
H_; in this section we do that with respect to the prifnétself. We shall see that the outcome is quite
neat, and can be expressed purely in terms of Hopf algebfdsiin: because of the special relation
between some features Bf — namely, the filtrations/ and D — and some properties of Drinfeld’s
functors, we call this result “Crystal Duality Principle”, in that it is obtained through sort of a “crys-
tallization” process (bearing in mind, in a sense, Kashiwara’s motivation for the terminology “crystal
bases” in the context of quantum groups: see [GP}.1, and references therein). Indeed, this theo-
rem can also be proved almost entirely by using only classical Hopf algebraic methodsAihin
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i.e. without resorting to deformations: this is accomplished in [Ga6]. We first discuss the general sit-

uation §§3.2-5), second we look at the case of function algebras and enveloping aldggBtés ),

then we state and prove the theorem of Crystal Duality Princj3e9]. Eventually §5§3.11-12) we

dwell upon two other interesting applications: hyperalgebras, and group algebras and their dual.
Note that the same analysis and results (with only a few more details to take care of) still hold

if we take asRk any 1dD and as: any prime element iR such thatR/hR = k and R carries

a structure ok-algebra; for instance, one can take= k[[h]] and i = h, or R = k[q,¢7']

andh = ¢ — 1. Finally, in the sequel to be short we perform our analysis for Hopf algebras only:

however, as Drinfeld’s functors are defined not only for Hopf algebras but for augmented algebras and

coaugmented coalgebras too, we might do the same study for them as well. In particular, the Crystal

Duality Principle has a stronger version which concerns these more general objects too (cf. [Ga6g]).

Lemma 3.2
HY = ;R-h—’h}” =R-J+R-n'J'4+---+R-B"J" 4+ (3.1)
H' = RZ;ZR-FL*”Dn = R-Dy+R-W"''Dy+--+R-W™"D, +--- (3.2)
Sketch of proof. (3.1) follows directly from definitions, while (3.2) is an easy exercise. 0J
3.3 Rees Hopf algebras and their specializations. Let M be a module over a commutative
unitary ring R, and let M = {M.},_, = ( C M, C---CM,CMCMEC--C

M, C ) be a bi-infinite filtration ofA/ by submodules\/, (= € Z). In particular, we consider
increasing filtrations (i.e., those with/, = {0} for z < 0) and decreasing filtrations (those with
M, = {0} for all z > 0) as special cases of bi-infinite filtrations. First we define the associated
blowing moduleto be theR—submodule3,, (M) of M[t, t*l] (wheret is any indeterminate) given
by Bar (M) =Y., t*M,; this is isomorphic to théirst graded moduleassociated td/, namely
.., M.. Second, we define the associatedes moduldgo be theR[t|-submoduleR}, (M) of
M[t, t‘l] generated bys,,(M); straightforward computations then gif&-module isomorphisms

RY, (M) /(¢ = 1) Rl (M) = UM, Riy(M) SR (M) = Gy (M)
where Gy (M) =P, , M./M._, is thesecond graded modul@ssociated td1. In other words,
Ry, (M) is an R[t]-module which specializes tg), ., M. for ¢t = 1 and specializes t6:y, (M) for
t =0, therefore the—modules|J,., M. and G (M) can be seen as 1-parameter (polynomial)
deformations of each other via the 1-parameter familyjzemodules given byR’, (M). We can re-
peat this construction within the category of algebras, coalgebras, bialgebras or Hopf algebras over
with a filtration in the proper sense: then we’ll end up with corresponding obfagts/), R, (M),
etc. of the like type (algebras, coalgebras, etc.). In particular we’ll deal with Rees Hopf algebras.

1| pick this terminology from Serge Lang's textbotklgebra” .
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3.4 Drinfeld’s functors on H. and filtrations on H. Lemma 3.2 sets a link between properties
of H.', resp. of .Y, and properties of the filtratioP , resp.J, of H .

First, (3.1) together with/." ¢ H.A implies that.J is a Hopf algebra filtration of/ ; conversely,
if one proves that/ is a Hopf algebra filtration off (which is straightforward) then from (3.1) we get
a one-line proof that7-¥ € H.A. Second, we can look atas a bi-infinite filtration, reversing index
notation and extending trivially on positive indicesg, = ( cJrC...J?CJcC JO( = H) -
HC---CHC ) , then the Rees Hopf algebf&; (/) is defined (se§3.3). Now (3.1) give
HY =TR;(H), so HNV/hH Vo R;(H)/hR;(H) ~ G,(H). Thus G,(H) is cocommutative
becauseH.’ / h H. is; conversely, we get an easy proof of the cocommutativityrfof / hH.Y
once we prove that7;(H) is cocommutative, which is straightforward. Finally,;(H) is generated
by Q(H) = J/J? whose elements are primitive, sofortiori G;(H) is generated by its primitive
elements; then the latter holds deV/h H. as well. To sum up, aél.¥ € QriUEA we argue
that G;(H) = U(g) for some restricted Lie bialgebgg; conversely, we can gei-’ € QrUEA
directly from the properties of the filtration of 4. Moreover, since;(H) = U(g) is gradedg as
a restricted Lie algebra igradedtoo.

On the other hand, it is easy to see that (3.2) &hd € H.A imply that D is a Hopf algebra fil-
tration of H ; conversely, if one shows thad? is a Hopf algebra filtration off (which can be done)
then (3.2) yields a direct proof thdf.’ € H.A. Second, we can look d® as a bi-infinite filtration,
extending it trivially on negative indices, namellp = ( - C {0} € ---{0} C ({0} =)Dy C
D,C---CD,C ) , then the Rees Hopf algebRi, (H) is defined (se€3.3). Now (3.2) gives
H.' = Rp(H); butthen H.' / hH. =~ Ry (H) / hRy(H) = Gp(H). Thus Gp(H) is commu-
tative becausef.’ / hH. is; viceversa, we get an easy proof of the commutativityrbf / hH.
once we prove that’p(H) is commutative (which can be done too). Finallyp (H) is graded with
1-dimensional degree 0 component (by construction) hence it has no non-trivial idempotents; so the
latter is true forHJ/h H_' too. Note also that;” = {0} by construction (becausé- is free over
R). To sum up, sincél.' € QFA we getGp(H) = F|[G] for some connected algebraic Poisson
groupG'; conversely, we can argue that.’ ¢ QFA directly from the properties of the filtratiob .

In addition, sinceGp(H) = F[G] is graded, wherChar (k) = 0 the (pro)affine varietyG ) of
closed points of7 is a (pro)affine space that is Gy = ATI =k’ for some index sef, and so
F[G] = k[{;},.;] is apolynomial algebra.

Finally, whenp := Char(k) > 0 the groupG has dimension 0 and height 1: indeed, we can
see this as a consequence of part of Theorerta\2a the identity Hi/h H' = Gp(H), or
conversely we can prove the relevant part of Theorerta2\da this identity by observing that has
those properties (cf. [Ga5§5.4). At last, by general theory sin¢e has dimension 0 and height 1

2For it is acone— sinceH is graded — without vertex — Sin@& ), being a group, is smooth.
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the function algebra?'[G] = Gp(H) = H. / h H' is atruncated polynomial algebraamely of type
FlG] = k[{xi}ig}/({mf}id) for some index sef .

3.5 Special fibers ofH." and H- and deformations. Given H € HA,, considerH-: our
goal is to studyH." and H.'.

As for H., the natural map frontl to H := G, (H) = HNV/h}LV =: H.Y sendsJ * :=
= ~=0

MNuso " to zero, by definition; also, letting/ ¥ := H/J * (aHopf algebra quotient @i, for J is a

—HV=H= U(g-) for some graded
~=0

= (HV)}/(h ) (HY)Y =%, 7" = HY (see
§3.3). Thus we can se@d")’ = RQ(HV)NQS a 1-parameter family insidé.A; with regularfibers
(that is, they are isomorphic to each othekasector spaces; indeed, we switch fréfrto H" just to
achieve this regularity) which link&" and /" as (polynomial) deformations of each other, namely

Hopf algebra filtration), we havél = HV . Thus (HY).

restricted Lie bialgebrg_; also, (H").’

r (HY)Y| =H".

~— (HV)~V

Ug-)=H" = (H")!

Now look at ((HY)")". By construction, ((H")")’
()Y
0 then K_ = G* by Theorem 2.&). So ((HV)Y)’ can be thought of as a 1-parameter family inside
HA, , with regular fibers, linkingZ" and F'|G* | as (polynomial) deformations of each other, namely

l—~—0 H\/ ~V /
=1 (Y)Y ("))

= ().

~=1
= F[K_] for some connected algebraic Poisson gréup: in addition, if Char (k) =
=1

= HY, whereas

i = ()

— FIK_] (: FIG*] if Char(k) = o) .

~=0
ThereforeH " is botha deformation of an enveloping algelarada deformation of a function algebra,

via two different 1-parameter families (with regular fibers}itd; which match at the valué = 1,
corresponding to the common eleméidt’ . At a glance,

Ug.) ==L gV e 12720 P (:F[G*_] ifChar(k):0>. (3.3)

(HV)Y (HV)YY

Now considerH.. We have H.

= HJ/hHJ = Gp(H) = H, and H = F|G.]
~=0 -
for some connected algebraic Poisson gréip. On the other hand, we have aldd.’

~—1

HJ/(h —1)H.' =3 .,D,=: H'; note that the latter is a Hopf subalgebrarbfbecauseD is a

Hopf algebra filtration; moreover we havé = H', by the very definitions. Therefore we can think
of H.' = R}, (H') as a 1-parameter family insidé.4; with regular fibers which linkg? and H' as
(polynomial) deformations of each other, namely

O<—~—>1 /
B ~ H.

F|G,|=H=H/'

Consider aIso(HJ)v: by construction(H.,’)v‘ = H'| =H, whereas(H._’)V‘ =
~=1 ~=1 ~=0
U(t,) for some restricted Lie bialgebta : in addition, if Char(k) = 0 thent, = g by Theorem

11 1N



F. GAVARINI The global quantum duality principle...

2.2(c). Thus (HJ)v can be seen as a 1-parameter family with regular fibers, iffgide, which
links ¢(¢,) and H' as (polynomial) deformations of each other, namely

=t )|~ (= UG i Char(e) = 0).

~=1 (H_/)\/

H = (H))'

Therefore,H’ is at the same tima deformation of a function algebemd a deformation of an en-
veloping algebra, via two different 1-parameter families ingitl&| (with regular fibers) which match
at the valueh = 1, corresponding (in both families) t&’ . In short,

0—~—1

FIGy]

H 17770 ye) (:U(gj) if Char(k):(J). (3.4)

H! (H)

Finally, it is worth noticing that wherti’ = H = HY formulas (3.3-4) give

FIG,) ——— i’ 1;/;0 U(e,) (:U(gj) if Char(k):())
| ~
H (3.5)
|

Ulg) === gV e 12720 pi | (:F[G*_] ifChar(k):O>
(HY) (HV)YY

which providesfour different regular 1-parameter (polynomial) deformations frinto Hopf alge-
bras encoding geometrical objects of Poisson type, i.e. Lie bialgebras or Poisson algebraic groups.

3.6 The function algebra case. Let G be any algebraic group over the fidtd Let R := k[A]
be as in§3.1, and setF.[G] := (F[G]). = R®| F[G]: this is trivially a QFA ath, because
F_[G]/h F.[G] = F|[G], inducing onG the trivial Poisson structure, so that its cotangent Lie bialge-
bra is simplyg™ with trivial Lie bracket and Lie cobracket dual to the Lie brackegofin the sequel
we identify F'|G] with 1® F[G] C F-[G].

We begin by computing™.[G]" (w.r.t. h) and F.[G]" o FlG] = Gy (F[G)) .

Let J := Jpiq) = Ker (epiq)) , let {jv}es (€ J) be a system of parametersiBfG|, i.e. {y, := jp
mod J?},cs is ak-basis of Q(F[G]) = J/J2 = g*. Then J"/J"*! is k—spanned by{ j¢
mod J"™ | e € N§, |e] =n} foralln, whereN§ := { 0 € N¥|o(b) =0 foralmostallbe S}
(hereafter, monomials like the previous ones ar@eredw.r.t. some fixed order of the index s&9

and |e| := >, ¢ e(b). This implies that
FIG) = Sensklh] - helje @ KR [h7] I = 5 ,cns klb] - ()¢ @ k[R][A71] J
where J* := ), .y J" and j7 := h7'j, forall s € S. We also get thatF/[a] = G, (F[G)) is
k-spanned by{ j¢ mod J*™!' | e e N§}, so f[@] = G, (F|G]) is aquotient ofS(g*).
Now we distinguish various cases. First assuthés smoothi.e. k* ®| F'|G] is reducedwhere
k* is the algebraic closure df), which is always the case {€har(k) = 0. Then (by standard
results on algebraic groups) the above set spanﬁi[ld\g is ak—basis: thusF.[G]" .= 17[5] =

Gy (F[G)) = S(g*) ask-algebras. In addition, tracking the construction of the co-Poisson Hopf
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— —

structure ontd”’[GG] we see at once thal'[G] = S(g*) as co-Poisson Hopf algebras tadhere the
Hopf structure orf(g*) is the standard one and the co-Poisson structure is the one induced from the
Lie cobracket ofy* (cf. [Ga5] for details). Note also thaf(g”*) = U(g*) becausg™ is Abelian.

Another “extreme” case is whe is afinite connected group schemiben, assuming for simplic-
ity that k be perfect, we have"[G] = k[z,, . .. ,a:n]/(a:’l’el, ...,aP™) for somen, ey, ..., e, € N.
Modifying a bit the analysis of the smooth case one gets

FIG]" = Yoo klR] - hldue = 37 o k[R] - (2¥)¢

(now J* = {0}), and F-[G]"| = F[G] = G,(F[G]) S(gx>/(:z-§”,...,:zg€"), where

Z; = x; mod J> € g*. Now, recall that for any Lie algebra there is hiPI™ = {xW =
2" |z € h,n € N } , therestricted Lie algebra generated hynside U(h), with p—operation
given by zP! := 27; then one always ha#/(h) = u(h”!™). In our case{f{’el, . jz}fﬁ”}

generates a—idealZ of (g%)™, hencegX, := g[P]OO/I is a restricted Lie algebra too, witk-

A < €1y, 0y < en}. Then the previous analysis giveEN[G]v

basis {:E{’ LT

U(grie) = S(gx)/({ffq, ey :E;je”}) as co-Poisson Hopf algebras.

The general case is intermediate. Assume again for simplicitykhze perfect. LetF[[G]]
be the J—adic completion of H = F[G]. By standard results on algebraic groups (cf. [DG])
there is a subsefz;},., of J such that{z; := 2, mod .J? }Z.EZ is a basis ofg* = J/J? and
F[G]] = k[[{xi}iez]]/({xf"(zi)}lez ) (the algebra of truncated formal power series), for some
Iy € T and (n(ay)),., € N™. SinzceoGi (FIG]) = G, (F[[G]]), we argue thatG, (F[G]) =

k[{7i}ies] / ({ff"“”}i%)  finally, since k[{7;},] = S(g*) we get

G, (FlaG]) = S<gx)/<{ 7 }mEN(F[G])>

as algebras\ (F[G]) being the nilradical of[G] and p"(*) is the nilpotency order of € N (F[G]) .
. . _p'n(x) . _ . . % . .
Finally, noting that({ T }:Jce/\/'(F[G]) ) is a co-Poisson Hopfideal 6f(g*), like in the smooth

case we argue that the above isomorphism is or@@d?Poisson Hopélgebras.
If k is not perfect the same analysis applies, but modifying a bit the previous arguments.
As for F[G]Y := F[G]/J*>, one has (cf. [Ab], Lemma 4.6.4}[G]" = F|[G] wheneverG is
finite dimensional and there exists rfoc F[G| \ k which is separable algebraic ouer
It is also interesting to considéF-[G]")". If Char(k) = 0 Theorem 2.&) gives (F.[G]")" =
F_[G]. If instead Char(k) = p > 0, then the situation might change dramatically. Indeedj if
has dimension 0 and eight 1 then — i.e. AfG] = k[{l’z’},‘ezﬂ/({xf |i € I}) as ak—algebra —
the same analysis as in the zero characteristic case applies, with a few minor changes, whence one
gets again(FN[G}V)' = F_[G]. Otherwise, lety € J \ {0} be primitive and such thag”? # 0 (for
instance, this occurs fofr = G, ). Theny? is primitive as well, hencé,,(y*) = 0 for eachn > 1.
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It follows that 0 # 7 (y¥)" € (F~[G]V)', whereash (y¥)" ¢ F.[G], due to our previous description
of FL[G]". Thus (F.[G]")' 2 F.[G]", acounterexample to the first part of Theorem(€)2

What for F[G]" and f[\GT] ? Again, this depends on the groGpunder consideration. We provide
two simple examples, both “extreme”, in a sense, and opposite to each other.

Let G := G, = Speck|z]), so F[G] = F[G,] = k[z] and F_.[G,] := R ®, k[z] = R[z].
Then sinceA(z) ==z ® 1+ 1®z and e(x) = 0 we find F.[G,]" = R[hz] (like in §3.7 below:
indeed, this is just a special instance, #B{G,] = U(g) whereg is the 1-dimensional Lie algebra).

Moreover, iterating one gets easi(y.[G.]) = R[kz], ((R[Ga]’)/), = R[R*z], andin general
(((FN[@G}’)’)' y ) — R[i"z] = Rlz] = F.[G,] forall n € N.
N—_—— ——

Second, letG = G,, = Spec(k[z“,z—l]) , thatis F[G] = F[G,,] = k[z™,27!] so that
F[G,) == R®  k[z"!, 271 = R[z"!,27']. Then sinceA (z*!) := 2 @ 2*! and ¢(z*!) =1
we find A" (2%!) = (zil)@m and g, (2*') = (2 — 1)®" forall n € N. It follows easily from that
F.[G,,]' = R -1, the trivial possibility (see als§3.12 later on).

3.7 The enveloping algebra case Let g be any Lie algebra over the fiekd andU (g) its universal
enveloping algebra with its standard Hopf structure. Ass@hear(k) = 0, and let R = k[A], as
in §3.1, and setU_(g) := R®, U(g) = (U(g))_. ThenU-(g) is trivially a QrUEA at#, for
U-(g)/hU-(g) = U(g) , inducing ong the trivial Lie cobracket. Thus the dual Poisson group is just
g* (the topological dual of w.r.t. the weak topology) w.r.t. addition, withas cotangent Lie bialgebra
and function algebrd@’[g*] = S(g): the Hopf structure is the standard one, and the Poisson structure
is the one induced by z, y} := [z,y] forall z,y € g (it is the Kostant-Kirillov structureon g*).

Similarly, if Char(k) = p > 0 andg is any restricted Lie algebra ovirlet u(g) be its restricted
universal enveloping algebra, with its standard Hopf structure. Thén=fk|[h| the HopfR—algebra
U-(g) == R® u(g) = (u(g))_ is a QrUEA ath, becauseu-(g)/hu-(g) = u(g), inducing on
g the trivial Lie cobracket: then the dual Poisson group is agairwith cotangent Lie bialgebrg
and function algebraF'[g*] = S(g) (the Poisson Hopf structure being as above). Recall also that
U(g) =u(g?"™) (cf. §3.6).

First we computeu-(g)’ (w.r.t. the primeh) using (3.2), i.e. computing the filtratial .

By the PBW theorem, once an ordered bdsisf g is fixedu(g) admits as basis the set of ordered
monomials in the elements &f whose degree (w.r.t. each element)fis less tharp ; this yields a
Hopf algebra filtration ofi(g) by the total degree, which we refer tothe standard filtrationThen a
straightforward calculation shows th&tcoincides with the standard filtration. This and (3.2) imply
u-(g)' = (g§) = (hg): hereafterg := hg, andsimilarlys := hx forall 2 € g. Then the relations

—_~—

vy —yxr = [z,y] and ¥ = 2Pl inu(g)yield 2§ — 42 = hA[z,y] = 0 mod hu-(g) and also

# = pp~lzlPl = 0 mod hu-(g)'; therefore, fromu-(g) = TR(g)/({ zy—yx—[z,y], 2L —
2P | T,Y, % € g}) we get
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U~(g)’:<é>iw@:ﬂ(g)/({:ﬁg G7, 3 j,g,zeg}):
:Tl(g)/({xy—yx,zp!m,y,zég}):S|(g)/({zp‘zEg}):F[g*]/({zp|z€g})

that is u(g) := Gp(u(g)) = u-(g) /hu-(g) = F[g*]/({ 2| 2 €g}) as Poisson Hopf algebras

In particular,this means thanA(g) is the function algebra of, and-(g)’ is a QFA (ath) for, a non-
reduced algebraic Poisson group of dimension 0 and height 1, whose cotangent Lie bialggbra is
hence which is dual tg; thus, in a sense, pait) of Theorem 2.2 is still valid in this case too.

Remark Note that this last result reminds the classical formulation of the analogue of Lie’s Third
Theorem in the context of group-schem&aiven a restricted Lie algebrg, there exists a group-
schemée= of dimension 0 and height\Wwhose tangent Lie algebra ig (see e.g. [DG]). Here we have
just given sort of a “dual Poisson-theoretic version” of this fact, in that our result sounds as follows:
Given a restricted Lie algebrg, there exists a Poisson group-schetef dimension 0 and height 1
whosecotangentL.ie algebraisg.

As a byproduct, sincé/_(g) = u-(g?!™) we have alsoU-(g)’ = u-(g#™)’, whence

U-(g) = u-(g"") —= 5 (g[p]m>/<{zp}zegp1°°) = F|(g" )}/<{Zp}z€g ~)-

Furthermore,u-(g)’ = (g) implies thatI, y is generated (as an ideal) ByRR - 1, ) + Rg,
henceh—llm(g)/ isgenerated by? -1 + Rg, therefore

(u~(9>/)v = Unzo(h_IIU—(g)’)n = Unzo(R' L+ Rg)n = u-(g) -

This means that also pdtt) of Theorem 2.2 is still valid, though no&har (k) > 0.

When Char(k) = 0 and we look at/(g), the like argument applieg? coincides with the standard
filtration of U(g) provided by the total degree, via the PBW theorem. This and (3.2) irbjgly)’ =
(g) = (hg), so that from the presentation/-(g) = TR(g)/({ ry—yr—[v.yl}, ..) We get

—~—

U-(a) = Tu@)/ ({35 - 5~ n-[e 0]}

> , whence we get at once
z,5€9

U-(g) —"— Ulg) = 1\(8)/({#5- 57| 55€8}) = Si(9) = Fla']
ie. [7(}5) = Gp(U(g)) = g)/hU-(g) = F[g*] asPoisson Hopfalgebras, as predicted
by Theorem 2.&). Moreover, U~(g) =(g) =T(g /({ ig—gz=~h-lz,y]|z,5€g}) implies
that I,y is generated byi R - 1y ) + R g thush—1[U~(g)f is generated by? - 1;7_g) + Rg, SO
(U-(9))" == U (W) = U (R 1y + Rg)" = U-(g), agreeing with Theorem ).
>0

nz

What for the functor( )" ? ThIS heaV|Iy depends on tlyeve start from!
First assumeChar(k) = 0. Let gy :== g, g : [g I(h— 1} (k € N,), be thelower central
seriesof g. Pick subsetsB, , B,, ..., By, ... (€ g) such thatB;, mod g1y be ak-basis of
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(k) /81y (forall k € N,), pick also ak-basisBe, Of g(e) = [4en, » and setd(b) := & for
any b € B, and eachk € N, U{oo}. Then B := (UkeN+ Bk> U B, is ak—basis ofg; we fix a
total order on it. Applying the PBW theorem to this ordered basig wE get thatJ™ has basis the
set of ordered monomial$ b'05* - - - b¢* | s € N ,b, € B, >°_ b, 9(b,) > n}. Then one finds
that U-(g)" is generated by{ A1b \ b€ B\ By} (as aunitalk-algebra) and it is the direct sum

U~(9)V - (@sem R (h_a(bl)bl)el e (h—a(bs)bs)es) D (@saeN+ b e R[ﬁ } b bgs)

b'reB\Boo 7:br€Bo

From this it follows at once thatUN(g)v/h U-(9)" = U (g/9(=)) Via an isomorphism which
maps 7®b mod hU-(g)” t0 b mod gy € 9/8(x) C U (8/8(x)) forall b € B\ B, and
mapsh~"b mod hU-(g)" to 0 forall b € B\ B, andalln € N,

Now assumeChar(k) = p > 0. Then in addition to the previous considerations one has to take
into account the filtration ofi(g) induced by both the lower central seriesgofindthe p—filtration
of g, thatisg D gl?) D glPl® D ... D g’" > ..., wheregl" is the restricted Lie subalgebra
generated by{ 21" |z € g} andz — 2! is thep—operation irg : these encode thé-filtration of
u(g) , hence ofu-(g), so permit to describe-(g)".

In detail, for any restricted Lie algebhalet b,, := <U(mpk2n (b(m))[”k]> forall n € N, (where
(X) denotes the Lie subalgebra ipiyenerated byX') and oo := (o, hn:  We call {l‘)n}n€N+
thep—lower central series df . It is a strongly central seriesf b, i.e. a central series &f such that
[H2ms bn] < B for allm, n, and bl < g, foralln.

Applying these tools tog C u(g) the very definitions giveg, C J" (for all n € N) where
J := Jyg) - more precisely, ifB is an ordered basis gfthen the (restricted) PBW theorem fa(g)
implies thatJ”/J"Jrl admits ak-basis the set of ordered monomials of the farfjw;> - - - 7> such
that >~°_, e, 0(x;,) = n whered(xz;.) € N is uniquely determined by the condition, € gy, ) \
00(z:, )+1 and eachy;, is a fixed lift in g of an element of a fixed ordered basisggf(xik)/ga(%m .
This yields an explicit description of, hence ofu(g)" andu-(g)", like before: in particular

u /hu g/goo) :

Definition 3.8. We callpre-restricted universal enveloping algepr@rUEA) any H € 'H.A; which
is down-filtered byJ (i.e., ),y /™ = {0}), and PriUEA the full subcategory ofH A of all
PrUEAs. We callpre-function algebrd=PFA) any H < H.A; which is up-filtered byD (i.e.,
Unen Dn = H), and PFA the full subcategory ot A, of all PFAs.

Theorem 3.9 (“The Crystal Duality Principley’

(@ Hw— HY:=H/J® and H — H':= ],y D» define functors()": HA; — H.A; and
()': HA; — HA, respectively whose image aRri/EA and P.FA respectively.

(b) Let H € HA,. ThenH := G, (H) = U(g) as graded co-Poisson Hopf algebras, for some
restricted Lie bialgebrag which is graded as a Lie algebra. In particular, if Ch@) = 0 and
dim(H) € N then H = k-1 and g = {0}.
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More in general, the same holdsH = B is ak—bialgebra.

(c) LetH € HA,. Then H := Gp(H) = F[G], as graded Poisson Hopf algebras, for some
connected algebraic Poisson grodp whose variety of closed points form a (pro)affine space. If
Char(k) = 0 then F[G] = H is a polynomial algebra, i.eF[G] = k[{zi},.;] (for some sef);
in particular, if dim(H) € N then H = k-1 and G = {1}. If p := Char(k) > 0 thenG has
dimension 0 and height 1, and f is perfect thenF'[G] = H is a truncated polynomial algebra,
i.e. F[G] = k[{xi}iez}/({:z:f}ig) (for some sef).

More in general, the same holdsH = B is ak—bialgebra.

(d) For every H € HA,, there exist two 1-parameter familigg?") = R;(H") and
((HY).)" in H.A,; giving deformations off ¥ with regular fibers

if Char(k) =0, U(g_) S T S T Centt F[K_] = F[G*]
if Char(k) >0, u(g.) (HV)Y (H) F[K_]

and two 1-parameter familie$l.’ = R, (H') and (H!)" in HA, giving deformations

U(ty) =U(gy) if Char(k) =0

u(ty) if Char(k) >0

of H' with regular fibers, wheré&7, is like G in (c), K_ is a connected algebraic Poisson groyp,
is like g in (b), &, is a (restricted, if Chafk) > 0) Lie bialgebra,g is the cotangent Lie bialgebra
to G, andG* is a connected algebraic Poisson group with cotangent Lie bialggbr.i\

(e) If H = F[G] is the function algebra of an algebraic Poisson groipthen F[G] is a bi-
Poisson Hopf algebra (cf. [KTK1), namely

F[E] o~ S(GX)/({EPHM};&NF[G]) = U(QX)/<{EPHW}I€NF[G])

where Nz(q; is the nilradical of F[G], p"®) is the order of nilpotency of: € A and the bi-

H! (H)"

Poisson Hopf structure oS(gﬂ/({W““} v ) is the quotient one frons(g*) ; in particular
TENF[G]

—

if the groupG is reduced thenF'[G] = S(g*) = U(g*) .

(f) If Char(k) =0 and H = U(g) is the universal enveloping algebra of some Lie bialgebra
then ﬁ\(g/) is a bi-Poisson Hopf algebra, nameﬁg/) ~ S(g) = F[g*] where the bi-Poisson Hopf
structure onS(g) is the canonical one.

If Char(k) = p > 0 and H = u(g) is the restricted universal enveloping algebra of some
restricted Lie bialgebrag, then ng) is a bi-Poisson Hopf algebra, namely we haveA(gT) =
S(g)/({xﬂx € g}) = F[G*] where the bi-Poisson Hopf structure oﬁ(g)/({:ﬂ’}x € g})
is induced by the canonical one ¢ftg), and G* is a connected algebraic Poisson group of dimen-
sion 0 and height 1 whose cotangent Lie bialgebrg.is

(9) LetH, K € HA) andletr: HxK —— k be aHopf pairing. Ther induce afilteredHopf

pairing 7y : HY x K’ —— k, agradedHopf pairing 7, : Hx K —— k, both perfect on the
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right, and Hopf pairings ovek|# | (notation of§3.1) H.x K. —— k[h] and H-Y x K/ —— k[h],
the latter being perfect on the right. If in addition the pairing : HY x K’ —— k is perfect, then
all other induced pairings are perfect as well, afd” and K are dual to each other.

The left-right symmetrical results hold too.

Proof. Everything follows from the previous analysis, but fgj, to be found in [Ga5] or [Ga6]. (]

Remarks 3.10. (a) Though usually introduced in a different way, is an object pretty familiar
to Hopf algebraists: it is theonnected componenf H (see [Ga6] for a proof); in particulaf!
is a PFA iff it is connected. Nevertheless, the remarkable properti¢s of Gp(H) in Theorem
3.9(c) seems to have been unknown so far. Similarly, the “dual” constructiéf’adnd the important
properties ofH = G;(H) in Theorem 3.@b) seem to be new.

(b) Theorem 3.€) reminds the classical formulation of the analogue of Lie’s Third Theorem for
group-schemes, i.eGiven a restricted Lie algebrg, there exists a group-schemeof dimension 0
and height Iwhose tangent Lie algebra ig (see e.g. [DG]). Our result gives just sort of a “dual Pois-
son-theoretic version” of this fact, in that it sounds as follo@szen a restricted Lie algebra, there
exists a Poisson group-scheifieof dimension 0 and height wWhosecotangent.ie algebraisg.

(c) Part(d) of Theorem 3.9 is quite interesting for applications in physics. In factHldie
a Hopf algebra which describes the symmetries of some physically meaningful system, but has no
geometrical meaning, and assume als6 = H = HY. Then Theorem 3(@) yields a recipe to
deform H to four Hopf algebras with geometrical content, which means having two Poisson groups
and two Lie bialgebras attached &b, hence a rich “Poisson geometrical symmetry” underlying the
physical system. AR (the typical ground field) has zero characteristic, we have in fact two pairs of
mutually dual Poisson groups along with their tangent Lie bialgebras. A nice application is in [Ga7].

3.11. The hyperalgebra case. Let GG be an algebraic group, which for simplicity we assume to
be finite-dimensional. Letyp(G) be the hyperalgebra @f (cf. §1.1), which is connected cocom-
mutative. Recall also the Hopf algebra morphigm: U(g) — Hyp(G); if Char(k) = 0 then
® is an isomorphism, selyp (G) identifies toU(g); if Char(k) > 0 then® factors throughu(g)
and the induced morphisr® : u(g) — Hyp(G) is injective, so thati(g) identifies with a Hopf
subalgebra oHyp(G). Now we studyHyp (G)', Hyp(G)", H?p(\/G), Tp@), the key tool being
the existence of a perfect (= non-degenerate) Hopf pairing betwgeghand Hyp (G).

One can prove (see [Ga6]) that a HdpfalgebraH is connected ﬁ{[/z H'. As Hyp(G) is

connected, we havelyp (G) = Hyp(G)' . Now, Theorem 3.&) gives Hyp(G) := Gp(Hyp(G)) =
F[I'] for some connected algebraic Poisson gréouprheorem 3.€e) yields

s /({7 ), ) o500/, ) =)

—

with (g*)”m = Span({ xP" ‘ reg,neN }) C F|G], and noting thatg* = g*. On the other
hand, exactly like fol/(g) andu(g) respectively in caseChar(k) = 0 and Char(k) > 0, the
filtration D of Hyp(G) is nothing but the natural filtration given by the order of differential operators:
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this implies immediatelyHyp (G)- == (k[i] @) Hyp(G)) = ({ i"a™ |z € g,n € N}), where
=™ denotes ther—th divided power ofr € g (recall thatHyp(G) is generated as an algebra by all
thez(™’s, some of which might be zero). It is then immediate to check that the graded Hopf pairing

—

betweenHyp(G).f/h Hyp(G)-" = Hyp(G) = F[I'] and F|G] from Theorem 3.€) is perfect.

From this one argues that the cotangent Lie bialgebra isfisomorphic to((g*)pm)* :

As for Hyp(G)" and Hm), the situation is much like fot/(g) andu(g), in that it strongly
depends on the algebraic naturg®{cf. §3.7).

3.12 The CDP on group algebras and their duals. In this section( is any abstract group. We
divide the subsequent material in several subsections.

Group-related algebrasFor any commutative unital ring , by A[G] we mean the group algebra of
G overA; wheng is finite, we denote byAa(G) := A[G]" (the linear dual ofA[G]) the function
algebra ofG overA . Our aim is to apply the Crystal Duality Principlek¢G] and A, (G) with their
standard Hopf algebra structure: herealtés a field andR := k[A] as in§5.1, with p := Char (k).
Recall thatH := A[G] admitsG itself as a distinguished basis, with Hopf algebra structure given
byg-,vi=9g-.7v, 1, =1, Alg) :=9g®g, e(g) =1, S(g) := g, forall g,v € G.
Dually, H := Aa(G) has basis{y, | g € G} dual to the basi& of A[G], with ¢,(7) = &,
for all g, € G; its Hopf algebra structure is given by, - v, = .04, 1, == > ¥y,
Apy) = szg 0y ® i, €(@g) = 0g14, S(pg) == @41, forall g,y € G. In particular,
R[G] = R® k|G] and Ag|[G] = R ®; A|G] . Our first result is
Theorem A (k[G]) = R-1, K[G] =k -1 and k[G] = k-1 = F[{x}].
Proof. The claim follows easily from the formuld,(¢) = (¢ — 1)*", for g€ G, n € N. O

RG], K[G)", H@] and the dimension subgroup problemin contrast with the triviality result in
Theorem A above, things are more interestingRi]" = (]k[G])~v , k[G]" and H@] . Note however

that sincek|[G] is cocommutative the induced Poisson cobracket@®] is trivial, hence the Lie
cobracket oft; := P(k[G}) is trivial as well.

Studyingk|G]" andk[G] amounts to study the filratiofy"} _\ . with J := Ker(e, ), which
is a classical topic. Indeed, foreN let D,,(G) := {g € G } (9—1) € J* }: thisis a characteristic
subgroup ofG, called the n'" dimension subgroup af . All these form a filtration insideG :
characterizing it in terms ofr is the dimension subgroup problenwhich (for group algebras over
fields) is completely solved (see [Pa], Ch. §1, and [HB], and references therein); this also gives a
description of{J”} L Thus we find ourselves within the domain of classical group theory: now

neN

—

we use the results which solve the dimension subgroup problem to argue a descriffih’ok|G]
andR[G]", and later on we’ll get from this a description @R[G]V)' and its semiclassical limit too.
By construction,/ hask—basis{n, | g € G\ {1,}}. wheren, := (g—1). Thenk[G]" is

—

generated by{ 7, mod J>*| g € G\ {1,}}, andk[G] by {7, | g€ G\ {1,}}: hereafter
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—_

T:=xz mod J"! forall z € J", thatisz is the element ifk[G] which corresponds ta: € k[G] .
Moreover,g = 1+n, =1 forall g€ G; also, A(7,) =7, g+ 17 =N, 1+10 7, :
thus, is primitive, so{ 77, | g€ G \ {1,}} generated, := P(ﬂq(\}]) :

The Jennings-Hall theoremThe description oD,,(G) is given by the Jennings-Hall theorem, which
we now recall. The construction involved strongly depends on whetherChar (k) is zero or not,
so we shall distinguish these two cases.

First assumep = 0. Let Gy := G, Gy = (G,Gu-1)) (k € Ny), form the lower central
seriesof G ; hereafter( X, Y) is the commutator subgroup 6f generated by the set of commutators
{(z,y) == zya~ly~' |z € X,y € Y}: thisis astrongly central serie; G, which means
a central series{Gk}kem (= decreasing filtration of normal subgroups, each one centralizing the
previous one) of7 such that(G,,, G) < Gy forallm, n. Thenlet,/G,) = {z € G } ds e
N, : 2% € G(n>} for all n € N, : these form a descending series of characteristic subgroups in
G, such that each composition factd;,, := \/G(n)/\/G(nH) is torsion-free Abelian. Therefore

Lo(G) = @,cn, A, is a graded Lie ring, with Lie brackely, 7] := (g,¢) for all homogeneous

g, ¢ € Lyo(G), with obvious notation. It is easy to see that the miapz Lo(G) — tc, g — 7y,

is an epimorphisnof graded Lie rings thusthe Lie algebr& is a quotient ofk @z L,(G) ; in fact,

the above is an isomorphism, see below. We use notdtigh:= n forall g € \/Gu) \ /G nr) -
For eachk € N, pickin A, a subse3;, which is aQ—basis ofQ ®; AG; for eachb € B,

choose a fixedh ¢ \/% such that its coset iﬁlﬁc) beb, and denote byB, the set of all such

elements). Let B := (J,oy, Bx: we call such a setf.l.c.s.-net(="torsion-free-lower-central-

series-net”) on:. Clearly B, = (B N w/G(,f)> \ (B N ,/G(kﬂ)) for all k. By an ordered
t.f.l.c.s.-netis meant a t.f.l.c.s.-neB which is totally ordered in such a way thdi) if « € B,,,

be B,, m<n, thena <b; (ii) for eachk, every non-empty subset &f, has a greatest element.
As a matter of fact, an ordered t.f.I.c.s.-net always exists.

Now assume insteag > 0. The situation is similar, but we must also consider phpower
operation in the groupr and in the restricted Lie algebta . Starting from the lower central series
{Gw) fren, » define Gy =TT e, (G forall n € N, (hereafter, for any group we denote
I'"* the subgroup generated t{yype } yel } ): this gives another strongly central seri{a@[n} }n€N+
in G, with the additional property tha{Gy,,))" < G},41) for all n, calledthep—lower central series
of G. Then L,(G) := ®nen, Gn)/ Gt is a graded restricted Lie algebra ovéy = Z/pZ,
with operationsg + ¢ := g - ¢, [g.¢] := (¢,£), g") := g7, forall g, ¢ € G (cf. [HB], Ch. VIIl,
§9). Like before, we consider the mapxz L£,(G) — t¢, g — 7,;, which now is an epimorphism
of graded restricted Lié,—algebraswhose image spartg; overk: thereforet. is a quotient of
k®z,L,(G); infact, the above is an isomorphism, see below. Finally, we introduce also the notation
d(g) :=n forall g € G[n] \ G[n+1] .

For eachk € N, choose ﬁp—basisﬁk of the Z,—vector space-/ / Gieq); for eachb € B,
fix b € G such thatb = bG.q), and let B, be the set of all such elemeniis Let B :=
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Uk€N+ By . such a set will be calledgl.c.s.-net(= “p-lower-central-series-net”; the terminology in
[HB] is “ k-net”) onG. Of courseBy, = (BNGy) \ (BNGk4y) forall k. By anorderecp-I.c.s.-net
we mean &-l.c.s.-netB which is totally ordered in such away théi} if « € B,,,, b€ B,,, m <n,
thena < b; (ii) for eachk, every non-empty subset &f; has a greatest element (like fpr= 0).
Again, it is known thap-I.c.s.-nets always do exist.

We can now describe eadh, (G), hence also each graded summafiyg J"*! of k/[a], in terms
of the lower central series or the-lower central series aff, more precisely in terms of a fixed
ordered t.f.l.c.s.-net gr-l.c.s.-net. To unify notations, s&t,, := G, 0(g) := d(g) if p=0, and
Gy = Gy, 0(g) == d(g) if p>0, setGu = (V,cn,Gn, l€t B =y, Br be an ordered
t.f.I.c.s.-net op-l.c.s.-net according to whether=0 or p>0, and set/(0) := +oo and {(p) :=p
for p > 0. The key result we need is

Jennings-Hall theoreffef. [HB], [Pa] and references therein). Let := Char (k) .

(@) Forall ge G, n, € J* <= g €G,,. ThereforeD,,(G) = G, forall n e N, .

(b) Foranyn € N, , the set of ordered monomials

IBn = {n_hel"’%er bz eBdiv €; €N+7 €; <€(p)a bl é ébrv Z::leidi:n}

is ak—basis of /" /J"™, and B := {1} UJ, .y B, is ak—basis ofﬂ@] .

() {7 | be B,} isak-basis of the:—th graded summané; N (J"/J"™) of the graded
restricted Lie algebrd., and {7, | b€ B} is ak—basis oft .

(d) {m } be Bl} is a minimal set of generators of the (restricted) Lie algebra

(e) The mapk®zL,(G) — ¢, g — 7,, isanisomorphism of graded restricted Lie algebras.

Thereforek[G] = U(k ®z £,(G)) as Hopf algebras.
() J>~ = Sparf{n,|g € G }), whencek[G]" = @,/ k-7 = k[G/Gx] . O

Recall thatd [z, 2] (for any A) hasA-basis{(z—1)"z"["/? | n € N}, where[q] is the integer
part of ¢ € Q. Then from Jennings-Hall theorem and (5.2) we argue

Proposition B Let x, := h=%9y,, forall g € {G}\ {1}. Then

R[G]\/ _ (@biGB, 0<es<t(p) R. Xbell bf[el/Q] . 'Xbir b;[er/ﬂ) @ R[ﬁ*l} L J® =

reN, by - by

= (@ bieB, 0<e;<l(p) 12 - Xbell bl_[ﬁm T Xbe: br_[erﬂ]) @ (ZwerR[h_l} : 777) 3

T‘EN,bl b'r

If J°°=J" for somen€eN (iff G..= G,) we can drop the factors, /% ... pl/2 O

Poisson groups froa[G].  The previous discussion attached to the abstract géotipe (maybe
restricted) Lie algebrd; which, by Jennings-Hall theorem, is just the scalar extension of the Lie
ring Lcnar]) a@ssociated ta- via the central series of th@,’s; in particular the functorG; — ¢ is

one considered since long in group theory. Now, by Theorerdpbwe know that (R[G]v)/ is a
QFA, with (R[G]")’

= F[FG] for some connected Poisson grolip. This defines a functor
0
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G — I from abstract groups to connected Poisson groups, of dimension zero and height Dif
in particular, thisl; is a new invariant for abstract groups

The description of?[G]" in Proposition B above leads us to an explicit descriptior@]@[fG]V)',
hence of(R[G]")'| = F[I';] and ofl; . Indeed direct inspection givek () = pln=1)0g)y En
S0 ¢, = hy, = A~ 9(977 € (R[G]") \ h (R[G]")" foreachg € G'\ G, whilstfor v € G, we
haver, € J> which implies7, € (R[G]")" and evern, € N,y 7" (R[G]")". Thus(R[G]Y)"is
generated by v, | g € G\ {1}} U {7, |7 € G} . Moreover,g = 1 + 1@y, € (R[G]")" for
everyg € G\Go, andy =1+ (y—1) € 1+J= C (R[G]")' for v € G . This and the previous

analysis along with Proposition B prove next result, which in turn is the basis for Theorem D below.

Proposition C

(RIGT") = (Duen o<ty B by b ) @ R[N T =

reN, by -

(691’ €B, 0<e; <{(p R w 2 el wb? b;[er/2]> GB (ZwerR[hil] '77v> '

reN, by - br
In particular, (R[G]")" = R[G] ifand only if Gy = {1} = G . If in addition J> = J" for
someneN (iff G, = G,,) then we can drop the factors 2l gl O

!/

TheoremD Let x, := 1, mod h (R[G]")", 2z, := g mod h (R[G]") forall g # 1, and
By :={beB|(b) =1}, B> :={beB|0(b) > 1}.

(@ If p=0, then F[FG} = (R[G]V)” Is a polynomial/Laurent polynomial algehraamely
FlIg] = k[{zp}yep U {zbﬂ}beBJ : thé;:bs being primitive and the;’s being group-like. In
particular I'; = (G5>) x (G:5') as algebraic groups, i.€; is a (pro)affine space times a torus.

(b) If p > 0, then F[Ig] = (R[G]V)'LO is a truncated polynomial/Laurent polynomial

algebranamely F[I'z] = k[{z,},cp. U {zbﬂ}beBJ/({zvf}beB> U{z —1}), thex’s being
primitive and thez,’s being group-like. In particular/; = (o, *?>) x (p,*?") as algebraic groups
of dimension zero and height 1.

(c) The Poisson groupy; has cotangent Lie bialgebrg, , that is coLig ) = ¢¢ .

Proof. (a) The very definitions gived(g¢) > d(g) + 9(¢) forall g,¢ € G, so that [1)y, 1] =
pi=09)-00+0((9.0) o) gl € T - (R[G]V)', which proves (directly) that(R[G]V)'LO is com-
mutative! Moreover, the relation = g7'g = g~ (1 + K9 ~1y,) (for any g € G) yields
21 = 2,V iff A(g) =1 andz,1 = 1iff d(g) > 1. Noting also that/> = 0 mod 4 (R[G]")" and
g=1+h9"1, =1 mod h (R[G]") for g€ G\ Gw, andalsoy=1+(y—1) € 1+J> =1
mod £ (R[G]")" for v € G, Proposition C gives

<EBb €Bs, cieNy K- xpt- 'xbe:) D (EB bieBy, acz K- 2y o Zb?)

~=0 reN, by - by sEN, by - by

!/

FIs] = (RIGT)

SOF [FG} is a polynomial-Laurent polynomial algebra as claimed. Similakly,) = z, ® z, for all
geGandA(x,) =z, 1+1®uz, iff 9(g) > 1; sothez’s are group-like and the,’s primitive.
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(b) The definition ofd implies d(g¢) > d(g) + d(¢) (g,¢ € G), whence we get[y,, ] =
pi=d)=dO+d(90) g g€ € - (R[G]")", proving that (R[G]V)" _is commutative. In addi-
tion d(g?) > p d(g), so P = hPU-d9)pr = pr-1ida’)-pd) wg; € h- (R[G]")", whence
(v2|__,)" = 0 inside (R[G]")’
1. Finally o = (1+4)” = 1+ ¢ = 1 mod h(R[G]) forall b € By, sob! = p!
mod h (R[G]")". Thus lettingz, := v, mod & (R[G]") (for g+#1) we get

= F[I'z], which proves thaf; has dimension 0 and height
~=0

F[Ig] = (RIG))

— = (@ b;EB>, 0<e;<p K - l’bell T l’::) ) (@ b;eBy, 0<e;<p K - Zbell T Z;;)
= reN, by - bp seEN, by -+ bs

just like for (a) and also taking care that, = x, + 1 and z/ = 1 for b € B,. Therefore
(R[G]V)' is a truncated polynomial/Laurent polynomial algebra as claimed. The properties of
thex,'s and thez,'s w.r.t. the Hopf structure are then proved like {a) again.

(c) The augmentation ideah, of (R[G]V)" = F[I¢] is generated by{x},.; then
A1 (g, 0] = RO@D)=6@=00) 4 (1+h9(9)‘11/;g_) (1+h%O=1, ) by the previous computation,
whence ath = 0 one has{z,, 2} = x(,, mod mZ2if 0((g,¢)) =0(g)+0(¢),and {z,,z,} =
0 mod m2if 6((g,¢)) > 6(g9)+6(¢). This means that the cotangent Lie bialgeb'ga>/me2 of I'y
is isomorphic tct;, as claimed. U

Remarks (a) Theorem D claims that the connected Poisson gréijp:= [ is dualto ¢ in the
sense of1.1. Since R[G]" ,=U(te) and (R[G]V)"N_
in positive characteristic, of the second half of Theorenf.2

(b) Theorem D provides functorial recipes to attach to each abstract groamd each fieldk
a connected Abelian algebraic Poisson group d&vemamely G — [ , explicitly described as
algebraic group and such thebLie(K?) = ¢; . Every suchl'i; (for givenk) is then an invariant of
(G, a new one to the author’s knowledge. Indeed, it is perfectly equivalent to the well-known invariant
t: (over the samé), because clearlys; = G, implies ¢;, = £;,, Whereasts, = €, implies
thatG; and G, are isomorphic as algebraic groups — by Theorefa-b) — and bear isomorphic
Poisson structures — by pdd) of Theorem D — whencé&y; = (G, as algebraic Poisson groups.

= F[K{], this gives a close analogue,

The case ofl|(G) . Let's now dwell uponH := A|(G), for afinite groupG .
Let A be a commutative unital ring, arid R := k[h] be as before. Sincéla(G) := A[G]", we
have A[G] = AA(G)", so there is a perfect Hopf pairinda(G) x A[G] — A.. Our first result is

Theorem E AR(G)’= R-1@ R[h']J = (Ar(G)"), 4(G)” =k-1, 4)(G) = Ap(G)"
k-1=U(0) and (Az(G)")’ _=kl= F[{x}] .

~=0

Proof. By construction.] := Ker(e, ) hask—basis{gpg}geG\{lc} U{e1e— L@} andsince
0, = @2 forall g and (p;.—1)* = —(¢1,—1) we haveJ = J*, so 4;(G)” = k-1 and
A)(G) = k-1. Similarly, Az(G)" is generated by{h_lgpg}gec\{lg} U (016 = Lie)) ) s

moreover, J = J> implies i"J C Ag(G)" for all n, whence Az(G)" = R1 @& R[h']J.
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F. GAVARINI The global quantum duality principle...

Then J,, v = R[F']J C hAR(G), which implies (Ax(G)")" = Ar(G)": in particular,
(AR(G)")| _ = 4n(G)’

Poisson groups from(G). Now we look atAr(G)', A|(G)" andA,(G) . By constructionAg(G)
and R[G] are in perfect Hopf pairing, and are fré&-modules offinite rank In this case, using a
general result about the relation between Drinfeld’s functors and Hopf pairings (namely, Proposition
4.4 in [Ga5]) one findsAz(G)" = (R[G]")" = (R[G]")": thus Ax(G)" is the dual Hopf algebra
to R[G]'. Then from Proposition B we can argue an explicit descriptionigfG)’, whence also
of (AR(G)’)V. Now, in proving Theorem 3(8) one also shows thatl|(G)" = (JI@])L; therefore
there is a perfect filtered Hopf pairing[G]" x A[(G)" — k and a perfect graded Hopf pairing
A)(G) x k[G] — k. Thus Al(G) = (k[G]")" as filtered Hopf algebras anm = (k/@)* as
graded Hopf algebras. f = 0 thenJ = J*°, as eachy € G has finite order and™ = 1 implies
g€ Gu: thenk[G] —k-1=KG], s04,(Q) =k-1=4/(G). If p> 0 instead, this
analysis glvesA = (k[G]) = (u(te))" = F[K¢], where K is a connected Poisson group
of dimension 0, helght 1 and tangent Lie bialgekta Thus

=k-1, asclaimed. O
~=0

Theorem F
(a) Thereis asecond functorial recipe to attach to each finite abstract group a connected algebraic
Poisson group of dimension zero and height 1 over any fkeldth Char(k) > 0, namely G
Kq = Spec(A/&C/})). This K is Poisson dual td'; of Theorem D in the sense §f.1, in that
Lie(Kg) = t; = colie(Ig) .
(b) If p:=Char(k) > 0, then (Ar(G))

Y

= u() =S() /(e |z ees))
Proof. Claim (a) is the outcome of the discussion above. Rbjtinstead requires an explicit de-
scription of (Az(G))". Since Ax(G) = (R[G]")", from Proposition B we get Az(G) =

..... er er

D vicB o<ei<p R-pyl7 > where eachp,! " is defined by
TGN b1 b, 777777 T

e 2 es 2 —les/2 T
<pbi ..... by X,Bl ﬁl /2 " X3, 55 [ /}> = 57"75 Hi:l 6171'7/31‘561',51'

(forall b;,3; € B and0 < e;,¢; < p). Now, using notation 0§1.3, K., C K’ forany K € HA,
whenceK’ =1 ( K /) where 7 : K —» K /K, =: K is the canonical projection. So lét :=
R[G]", H := Ag(G)"; Proposition B givesk,, = R[A~!] - J and provides at once a description
of K; from this and the previous description &f one sees also that in the present casg is
exactly the right kernel of the natural pairinfg x K — R, which is perfect on the left, so that the
induced pairingd x K — R is perfect. By construction its specialization/at= 0 is the natural
pairing F[Kq] x u(tg) — k, which is perfect too. Then one applies Propositior(e).4f [Ga5]
(with 7 playing the ble of & therein), which yieldsk '= (HV)* = ((AR(G)’)V)' . By construction

K'= (R[G]V)'/(R[Ffl} -J>), and Proposition C describes the latter/s = (EB bieB, 0<e;<p R+
reN, by - by

)' where ¢, = ¢4, mod R[h~'] - J> foralli; since K = <(AR(G)’)V>' and

€1

Ebl .

er

Py,
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by = htly,, thisyields (Ar(G))" = (EB bieB, 0<e;<p R-H~ i eid(bi)pii:::::;’:> ~ (K')", whence
reN, by - by
we get (Ax(GQ)) = (K" = (K) = ((R[G]V)/L:O) ~ F[I]" = u(ey) =

S(EGX)/({:EP |z € £Z}) asclaimed, the latter identity being trivial (faé; is Abelian). O

Remarks(a) This K is another invariant fo€z, but again equivalent tg; .
(b) Theorem Rb) is a positive characteristic analogue fBr[G] = Ar(G)" of the first half of
Theorem 2.&).

Examples

(1) Finite Abelianp —groups. Letp be a prime number and’ := Z,e1 X Zyez X -+ X Lpex
(k,e1,...,ex € N), with e > ey > --- > ¢,. Letk be a field withChar(k) = p > 0, and
R :=k[h] as above, so thdt|G]- = R[G].

First, ¢, is Abelian, becausé is. Letg; be a generator ofZ,.; (for all i), identified with its
image inG . SinceG is Abelian we have|,; = G*" (for all n), and an ordereg-l.c.s.-net isB :=
U,en, Br With B, := {gfr, g gf} wherej, is uniquely defined bye;, > r, ;.1 <.

Then ¢; hask-basis {—ngpsl- } . , and minimal set of generators (as a restricted Lie
i 1<i<k; 0<s;<e;
)[p}

algebra){ 7, , 7y, , -+, T, }, for thep—operation ok is (77,
nilpotency of eachr,; is exactlyp®, i.e. the order ofj; . In addition /> = {0} so k[G]" = k[G].
The outcome isk|[G]" = k[G] and

0<s<e;

01 = uta) = vito) [ ({tn) 7w ) U (g )

whenceﬂ@] = klzy, ... ,m]/({ 2l
As for k[G]., for all r < ¢; we haved(g]") = p" and sox » = h *" (g} —1) and ¢, =
Bl (gf-)r —1); since G = {1} (or, equivalently,/~ = {0}) and everything is Abelian, from

= T+ s and the order of

1<i<k }) . via T o o (foralli, s).

the general theory we conlude that bétldz]” and (k[G]Y) are truncated-polynomial algebras, in
the x ,~'s and in they ,’s respectively, namely

k[G]-" = K[A] [{ ngs}léiﬁk;0§s<ei] = k[h][y1,- -y /({ . ‘ l<i< k‘})
(KIG1)" = K0 [{ ¥ hrcocnsosoce) = W [{ 2 hrcicnsomoced / ({=e]1=i<k])

via the isomorphisms given bygg_p — yi”s and W — 25 (forall 7, s). Whene;, > 1 this
implies (k[G].")’ 2 k[G] that is acounterexampléo Theorem 2.@b). Setting @ = 1y
mod h (k[G]Y)" (forall 1 <i <k, 0<s<e¢)we have

PIKe) = (ALY, = w7 Y25 = k[{w)55] /({ ] 12i<e))
(via @ — w; ) as ak—algebra. The Poisson bracket trivial, and #hg’s are primitive fors > 1
and A(w; 1) =w; 1 @1 +1Qw; 1 +w;p @w;y foralll <i¢ <k.Ifinsteade; =--- =¢;, =1,
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F. GAVARINI The global quantum duality principle...

= m = F[K¢] and of (A}(G).)

gous descriptions of}, (G)ﬁ‘ Y

k[G]. is a QFA, withk[G] ‘ = k[G] = F[G] whereG is thegroup of charactersf G . But then
= (k[G)Y)
I CCA N
Finally, a direct easy calculation shows that — letting := 149 (¢, — ¢1) € 4(G). and
Vv " 0<s<e;| ~u 0<s<e; 0<s<e;
(AI(G>~/~) = kA [{ ¢gf5 1<i<k } = kA [{Zizs}gigk ]/<{Zzps - Zivs}gigk )
(2) A non-Abelianp —group. Letp be a prime numbeik be a field withChar(k) = p > 0,
vt = 7P In this case,Gpy = -+ = G = {1, 77}, Gp+y = {1}, so we can take
G = @l okl X2 X2XS = @lpemo kA7 (v = 1)" (7 = 1) (77 — 1)
Dok XXX ¢ = KIGLY| = K[G) = @k T T

then (k[G]Y)’ = k[G]_; thisis an analogue of Theorem g though nowChar(k) > 0, in that
F[@] = k[G] = k[G]_ = F[K{] (by our general analysis) €B can be realized
= 0
as a finite, connected, Poisson group-scheme of dimension 0 and height 1 guahsomely K .
¥ = RO (o, — 1) € (A4)(G))] (forall g € G\ {1}) — we have also
% 0<s<e;| ~u 0<s<e; 0<s<e;

AI(G)i = k[A] [{ ng’s 1§igk} = k{n] [{YM 1<i<k ]/({Y;? 1<i<k )

via the isomorphisms given bx;,s — Y, and @b;,_,s — Z,; s, from which one also gets the analo-
=u(ty) .
= utEg)

and R := k[h| as above, so thdt|G]- = R|G].

Let G := Z, x Z,2, thatis the group with generatorg 7 and relationsy” = 1, ™ =1,
By, ={v,7} and B, = {Tp} to form an ordereg-l.c.s.-netB := B, U B, w.r.t. the ordering
v = 7 X 7. Noting also that/> = {0} (for G) = {1}), we have
ask[h]-modules, sincel(v) = 1 = d(r) and d(77)) = p, with A(x,) = x, ® 1 +1® x4 +
hd9) x, ® x, forall g € B. As a direct consequence we have also

The two relationsy” = 1 and 7#° = 1 within G yield trivial relations insidek|G] andk[G]_;
instead, the relatiom 7 v~! = 77 turns into[n,, n,] = n.»-7v, which gives|x,, x.] = A?~2 x» -

v in k[G].". Therefore [\, , X7| = d,2Xm»- Since [X7, X-»] = 0 = [X», Xor ) (because
vyl = (r197)" = 774" = Py and {%,, X7, Xov } is ak-basis oft; = £,(G), we conclude
that the latter has trivial or non-trivial Lie bracket according to whethet: 2 or p = 2. In
addition, we have the relationg? = 0, x5 =0 and x? = x,»: these give analogous relations in
k[G].Y| , which define thg—operation ok, namely y, P! =0, x5 Pl =0, P =y .

To sum up, we have a complete presentationi{i#]" by generators and relations, that is

V1 Vg — Vo — AP 2ug (1 + huy) (1 4 Ao
KO = (o) f(( | M0 T O )
U1 V3 — U3V, Uf? Uzp—v?n U§)7 VU2 U3 — U3 U2
via x, — v, X, — U2, X.» — v3. Similarly (as a consequence) we have the presentation

p
~ Y1Ya2 —Y2Y1 — 0p2Ys3, Ys — Y3
= k<y1,y2,y3>/( ? 2 )

Viys—ysyrs UL, Y3, Y23 — Y3l
via X, — y1, Xr > Y2, Xo» — Y3, With p—operation as above and thés being primitive.

k[G] = k[G].
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Remark if p # 2 exactly the same result holds f6¥ = Z, x Z,:, i.e. Eansz = EszzPQ :
this shows that the restricted Lie bialgelbramay be not enough to recover the grasip

As for (k[G].Y)', itis generated by, = v — 1, ¢, = 7 — 1, t» = K" 2(7? — 1), with
relations v = 0, ¥ = Y, 0.5 =0, U0 — ety = h 0 (14 9,) (1+ 1),
Ur oo — Yo hr = 0, @nd ¥, Yo — ¥r0 1, = 0. In particular (k[G]_')" 2 k[G]_, and

(G = ] ) /(07 R e )

ul, upug —usuy —RP  ug (14 ue) (1+wr),  ug

via v, — uy, ¥, — uy, Y — ug. Letting 2z, = wl,L:O—l—l, 2o 1= wTL:O—i—l and z3 := w7p|~20
this gives (k[G].")’ e k[z1, 29, 23] /(zf—l, 27 —1,27) as ak—algebra, with the;’s group-like,

x5 primitive (cf. Theorem O(b)), and Poisson bracket given 1, 2o} = 6,2 21 20 23, {22, 23} =0
and {1, 25} = 0. Thus (K[G].")’

= F'[Ig] with I'c = p, x p, X o, @s algebraic groups, with
Poisson structure such thapLie( G:)O% £ .

Since G, = {1} the general theory ensures thaj(G)" = A;(G). We leave to the inter-
ested reader the task of computing the filtratiorof 4(G), and c/qpiequently describér(G)’,

(Ar(@))", m and the connected Poisson grofi; := Sped 4,(G)) .
(3) An Abelian infinite group. Let G = Z™ (written multiplicatively with generators,, ..., e, ),
thenk[G] = k[Z"] = k[ei", ..., eX!] (the ring of Laurent polynomials). This is the function algebra

of the algebraic groufy,," — the n—dimensional torus ok — which is exactly the character group
of Z™, thus we get back to the function algebra case.

§ 4 First example: the Kostant-Kirillov structure

4.1 Classical and quantum setting. Let g andg* be as irk3.7, considey as a Lie bialgebra with
trivial Lie cobracket and look g* as its dual Poisson group, whose Poisson structure then is exactly
the Kostant-Kirillov one. Take as ground ring := k[v] (a PID, hence a 1dD): we shall consider the
primesh=v andh=v — 1, andwe’ll find quantum groups at either of them for bgthndg* .

To begin with, we assum€har (k) = 0, and postpone t§4.4 the caseChar (k) > 0.

Let g, := g[v] = k(] ®| g, endow it with the uniqué|v|-linear Lie bracket], |, given by
[z,y], :=v[z,y] forall z,y € g, and define

H :=Uyp(9v) :Tnu](gu)/({l"y—y'I—V[%y} |z, yeg})

the universal enveloping algebra of the lkip/|-algebrag,, endowed with its natural structure of
Hopf algebra. Ther/ is a freek[v]-algebra, so thatl € HA and Hy :=k(v)® ) H € HAFp (see
§1.3); its specializations at = 1 and aty = 0 are H/(u—l) H = U(g), as aco-PoissorHopf

algebra, andH/uH = S(g) = F[g*], as aPoissorHopf algebra. In a more suggesting way,

11 NO



F. GAVARINI The global quantum duality principle...

we can also express this with notation liké = U(g), H -~ F[g*]. SoH is a QrUEA at
h:= (v—1) and a QFA ath := v ; so we'll consider Drinfeld’s functors fof at (v—1) and at(v) .

4.2 Drinfeld’s functors at (v). Let ()" : HA — HA and ()@ : HA — HA be the
Drinfeld’s functors at(v) ( € Spe¢k[v]) ). By definitions.J := Ker(e: H — k[v]) is nothing
but the 2-sided ideal off := U(g,) generated by, itself; thus H"», which by definition is the
unital k[v]-subalgebra ofi - generated by/¥») := v~1J, is just the unitak|v]-subalgebra off
generated byg, := v~ g, . Now consider thé[v]-module isomorphisn{ )’ : g, =gV =
v~tg, givenbyz — 2V :=v71z € g,Y» forall z € g, ; consider ong, := k[v]®, g the natural Lie
algebra structure (with trivial Lie cobracket), given by scalar extension frpand push it oveg,
via ()™, so thatg, " is isomorphic tog" (i.e. g, carrying the natural Lie bialgebra structure) as
a Lie bialgebra. Considet”, y¥ € g,"» (with z,y € g,): then H'» > (2Vy¥ —y'z") =
v zy —yx) = v 3[zyl, = v ivr,yl = vl a,y] = [zy] = [2¥,y"] € g,"» . Therefore
we can conclude at once thdf v = U(g,"») = U (gp®) .

As a first consequence(,HW)’ = U(g[}at)/y U(gl®) = U(ggat/y g”at> = U(g), thatis

v=0 v

HVw) 220, U(g), thus agreeing with the second half of Theoren{@.2
Second, look af HY)'™. Since H"» = U(g,"»), andd,(n) = 0 forall n € U(g,"») such
that 0(n) < n (cf. Lemma 4.2d) in [Ga5]), it is easy to see that

(H©) = (va, ) = (vva,) = Ulg,) = H

(hereafter(S') is the subalgebra generated By, so (HVM)/(”) = H, which agrees with Theo-
rem 2.2b). Finally, proceeding as i§3.7 we see thatd’«) = U(vg,), Whence (H'®)

v=0
(U(ugy))‘yzo’é S(gar) = Flgj_an) Whereg,,, resp.g;_,,. is simplyg, resp.g*, endowed with

the trivial Lie bracket, resp. cobracket, so tt'(&‘f’(v))‘ >~ S(gaw) = F[g5_a) has trivial Poisson
v=0

bracket. lIterating this procedure one finds that all further ima@es ((H)’<u>)’<v> . > " of the

functor ()’ applied many times td/ are pairwise isomorphic; thus in particular they all have the
/ w
same specialization &), namely (< - ((H) @) ) ( )) ~ S(gw) = Flg}_ap) -

v=0

4.3 Drinfeld’s functors at (v—1). Now we consider the non-zero prinfe—1) (€ Speck[v]) ) ;
let () : HA— HA and ()“V: HA — HA be the corresponding Drinfeld’s functors.
Setg, /-1 = (v—1)g,, let : g, = g/o == (v—1)g, be thek[~]—-module isomorphism given
by z+— 2 :=(v—1)z € g/o-v forall z € g,, and push over via it the Lie bialgebra structure of
g, to an isomorphic Lie bialgebra structure gri“-», whose Lie bracket will be denoted By |, .
Notice then that we have Lie bialgebra isomorphisps® g, /(v —1) g, = g/ /(v—1) g/
Since H := U(g,) itis easy to see by direct computation that

Hen = (v=1)g,) = U(g,/e") (4.1)
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whereg,/ -1 is seen as a Lik[v]-subalgebra ofy, . Now, if 2/, ¢y’ € g,/~-» (with z,y € g, ), then
/o rol 2 _ 2 _ I oo
2y -y =w-1) (xy—yx) =w-1)"[zy,=w-1)|zy], =v-—-1) [x,y]* . (4.2)

This and (4.1) show at once thgt{'c-v) ‘(u—l):o = S(gl,’wfn/(y - 1)gy’<w1>) as Hopf al-
gebras, and also &oissonalgebras: indeed, the latter holds because the Poisson bracket
of S(gl,’wfw/(y - 1)gl,’<vf1>) inherited from H'~-v (by specialization) is uniquely determined
by its restriction tog,’=v /(v — 1) g,/e», and on the latter space we hav¢ , } = [, ],
mod (v — 1)g,/»» (by (4.2)). Finally, sinceg,’»-v /(v — 1)g,/e-» = g as Lie algebras we

have (H't-v) ’( = S(g) = F[g*] as Poisson Hopf algebras, or, in shoH/- —=1, F[g*],
v—1)=0
as prescribed by the “first half” of Theorem &2
Second, look at(H’<vf1>)V‘”‘”. Since H'e-v = U(g,/»-v), the kernelKer(e: H'¢-» —

k[v]) =: J'w-v is just the 2-sided ideal of/’»-v = U(g,/~-v) generated by, «-v . There-
fore (H'w-n)""=9, generated by(.J'»-»)"“"" := (v —1)"'J'»-» as a unitak[v]-subalgebra
of (H'v-v), = Hp, is just the unitak[v]-subalgebra of{; generated by (v —1)'g,/0-1 =
(v—1""v—-1)g, =g,, thatis (H’(vfw)v(”‘” = U(g,) = H, confirming Theorem 2(D).

Finally, for HV~-1 one has essentially the same feature &8iid, and the analysis therein can be
repeated; the final result then will depend on the natuge, @i particular on its lower central series.

4.4 The case of positive characteristic.Let us consider now a field such thatChar (k) = p >
0. Starting fromg and R := k[v| as in§4.1, defingg, like therein, and considef! := U (g,) =
Ur(g,). Then we haveH/(y—l)H = Ulg) = u<g[m°°) as aco-PoissorHopf algebra and

H/VH = S(g) = Flg*] as aPoissorHopf algebra; thereforél is a QrUEA ath := (v—1) (for

u(gwo> ) and is a QFA ath := v (for F[g*]). Now we go and study Drinfeld’s functors faéf at
(v—1) and at(v).

Exactly the same procedure as before shows againitiat = U(gl,vw) , from which it follows
that (HVM)‘V_O ~ [/(g), i.e.inshort HY% =2,
the second half of Theorem 2. Changes occur when looking itHWw)'(”): since H'» =
U(g,'») = u((gﬂw)[p]m) we haved,(n) = 0 forall n € u((gva)[p}m) such thatd(n) < n
w.r.t. the standard filtration of ((gva) WO) (cf. the proof of Lemma 4 @) in [Ga5], which clearly
adapts to the present situation): this implies

U(g), which is a result quite “parallel” to

(HV(U>),(V) _ <7/- (gyv(y))ﬂp]“> (C u(v- (gyv(y))ﬂplm> )

which is strictly bigger than H, because we have<u ~ (gVV<v>)[p]OO> - < Sv- (gl,v<u>)[”]n> -

:<gy+yl—p{xl)‘$Egy}+yl—p2{xp2 xegy}+> 2 U(gy):H
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Finally, proceeding as above it is easy to see tHat = <u P(U(gy))> = <1/ g[p}m> whence,
letting g :== v g and 7 := vz forall x € g, we have
2 €8}))

H'o = TR(@)/({ FG—GF— 2y, 3 — Pl
s0 that H'e) — =2 T.(@)/({ig—m 2 ) 792 €a}) = Silgw) [ ({] 2 € 8}) =
= Flg;_ ab]/({ | 2 €g}), thatis H® Flgs. ab]/({ | 2 € g}) as Poisson Hopf
algebraswhereg,, andg;_,, are as above. Thereforé'® is a QFA (ath = v) for a non-reduced,
zero-dimensional algebraic Poisson group of height 1, whose cotangent Lie bialgebra is the vector

spaceg with trivial Lie bialgebra structure: this again yields somehow an analogue ofq)aft The-
/ v
orem 2.2 for the present case. If we iterate, we find that all further iméges((H)’m)f(u) . ) )

of the functor( )’ applied toH are pairwise isomorphic, so that

(e (o)) = Sew)/({2] 2 €0)) = Flsial /("] z€8)).

v=0
Now for Drinfeld’s functors atv—1). Up to minor changes, with the same procedure and notations
as in§4.3 we get analogous results. First of all, a result analogous to (4.1) holds, nditfely =

<(y —1)- P(U(g,,))> = <(u —1) (gy)[p]w> = <<(gy)[z7]°°>'(”1)> , which yields

H'e-v = T (<(9v)[p]m>/(yl)) /<{ ?y —yd — =1 [y, @) = =) ()
‘ T,y € (gy)[p}* })

>~ S\ (g /({xﬂxég}) = Flg /({xp\:peg}) as Poisson

—1)=0
v—1

Hopf algebras: in a nutshelld’«-» " F[g / {2 |z eg}).

and consequentlyd'¢-1
(v

/l/ . . .
Iterating, one finds again that a(l - ((HY <”>)'<”*1> ) " are pairwise isomorphic, so

(- (ayemyemn ) %ﬂmMWwa=ﬂ%Mﬂwva-

(v—1)=0

V(v-1)

Further on, one hagH'w-)" ") = <(y — 1) ()" = {(v (v—1)g,) =
= <gy> = Ug(g,) =: H, which perfectly agrees with Theorem gh2 Flnally, for HY~-1 one has
again the same feature as§®.7: one has to apply the analysis therein, howevep#tHitration in
this case is “harmless”, since it is “encoded” in the standard filtratioi(gh. In any case the final
result will depend on the lower central seriegjof

Second, we assume in addition ti@abe arestrictedLie algebra and consideH := uy;(g,) =
ur(g,) . Inthis case we haveH/(u — 1) H = u(g) as aco-PoissorHopf algebra, andH/yH =

S(g)/({ Plzeg}) = F[g*]/({ 2’| z € g}) as aPoissorHopf algebra, which means that
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isa QrUEA ath := (v—1) (for u(g)) and is a QFA ath := v (for F[g*]/({ 2| z€g})) Then
we go and study Drinfeld’s functors fdf at (v — 1) and at(v) .

As for HY» | it depends again on the-operation ofy, in short because the-filtration of u, (g)
depends on the-filtration ofg . In the previous case —i.e. when= h!™ for some Lie algebrg —
the solution was plain, because thdiltration of g is “encoded” in the standard filtration 6f(h); but
the general case will be more complicated, and in consequence also the situaﬁﬁmio)'(”’, since
HY» will be different according to the nature gf Instead, proceeding exactly like before one finds
H'») = <y P(u(gl,))> = (vg),whence, lettingg := vg and & := vz forall = € g, we have

H'o = Tw(ﬁ)/({fﬂ G§i— 12z, y], 3 — LD ‘ %%ZGB})

so that H'») —=%, T,(g)/({g:«g _ i,

7,0, % € g}) = S.(gab)/({zp\ zeg)) =

~ Flgi ol /({"] =€ a}), thatis 1| = Flg; o /({=*] =€ a}) as Poisson Hopf alge-
=0

bras(using notation as before). This® is a QFA (ath = v) for a non-reduced, zero-dimensional

algebraic Poisson group of height 1, whose cotangent Lie bialgebraitt the trivial Lie bialgebra

structure: so again we get an analogue of part of Theore(n)2Moreover, iterating again one finds

iy
that all ( - ((HY®) ) " are pairwise isomorphic, so

(. .. ((H)’w—l))’(("—l). ..)l(”_n o S(gab)/({zp‘ zeg}) = F[gg_ab]/({zp’ z€g }) )

As for Drinfeld’s functors afr — 1), the situation is more similar to the previous casefbf=
Un(g) . First H'e- = ((v=1)- P(u(g,)) ) = {(v = 1) 8.} = (a/= ), hence

/o= = Ty (g, / ({ev-—ve -l @y -e-17 G )

o Sl(g)/({l’p |z € g}) = F[g*]/({xp | 2 € g}) as Pois-
son Hopf algebras, that isi"e-—1 —— F[g*]/({ o’ | € g}). Iteration then shows that all

(v—1)=0

thus again H'¢-v

/V . - - . .
(- > ((H)’<"))’(”*“ . ) " are pairwise isomorphic, so that again

(...((H)’@A))’((ufl)_..)’<V*1> . ~ 5( Qab/ {Zp‘ zeg}) _ F[g(; ab]/({zp’ zeg}) '

Further, we have( H'¢-)" ¢ = (v —1)g,) " “ ™ = (g,) = ur(g,) = H, which agrees at
all with Theorem 2.gb). Finally, H"Y~-v again has the same feature a§317: in particular, the out-
come strongly depends on the propertiebofh the lower central seriesnd of the p—filtration ofg.

4.5 The hyperalgebra case. Let k be again a field withChar (k) = p > 0. Like in §3.11, let
G be an algebraic group (finite-dimensional, for simplicity), andHip (G) := (F[G]°)_ = { ¢ €
FIG]° |¢(m) =0,Vn>>0 } be the hyperalgebra associatedxqsee§1.1).
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For eachv € k, letg, := (g . ]V) be the Lie algebra given by endowed with the rescaled
Lie bracket| , ], :== v[, |, . By general theory, the algebraic groGpis uniquely determined by
a neighborhood of the identity together with the formal group law uniquely determinéd ﬂqu
Similarly, a neighborhood of the identity ¢f together with[ , | uniquely determines a new con-
nected algebraic grou@, , whose hyperalgebrllyp (G,) is an algebraic deformation éfyp (G) ;
moreover,G, is birationally equivalent t@~, and for v # 0 they are also isomorphic as algebraic
groups, via an isomorphism induced By g, , = — v~z (however, this may not be the case when
v = 0). Note thatHyp (G) is clearly commutative, becauég is Abelian: indeed, we have

Hyp(Go) = S (g(p)oo)/<{ a? }zeg(p)“> - F|:<g(p)°°>*i| /({ v’ }yEQ(p’oo>

where g~ .= Span({ ") ‘ reg,neN }) : here as usual™ denotes the—th divided power
of z € g (recall thatHyp (G), hence alsdlyp (G,,), is generated as an algebra by all #t#¢’s, some

of which might be zero). S¢dyp(Gy) = F[I'] wherel" is a connected algebraic group of dimension
zero and height 1: moreovef, is a Poisson group, with cotangent Lie bialgebfd™ and Poisson
bracket induced by the Lie bracket gf

Now think atv as a parameter itk := k[v] (as in§4.1), and setd := k[v] ®| Hyp(G,). Then
we find a situation much similar to that §4.1, which we shall shortly describe.

Namely,H is a freek[v|—-algebra, thus? € HA and Hp :=k(v) @ H € HAr (see§l.3);its
specialization atv = 1 is H/(z/—l)H = Hyp(G,) = Hyp(G), andatr =0 is H/I/H =
Hyp(G,) = FI[I'] (as aPoissorHopf algebra), orH =1, Hyp(G) and H”—_’O>F[F], ie.H
is a “quantum hyperalgebra” & := (v —1) and a QFA ati := v . Now we study Drinfeld’s functors
forHath=(v—1) andath =v.

First, a straightforward analysis like §#.2 yields Y = k[v] ® Hyp(G) (induced byg =
g,, © — v~'z) whence in particular( H) ’WO > Hyp(G), thatis HY» - Hyp(G).
Second, one can also see (essentiatiytatis mu?andislike in §4.2) that (H V(v))“” = H, whence
(fY0) | = H| = Hyp(Go) = FII] follows.

At b = (v — 1), we can see by direct computation thaf'¢-» = <(g(P)°C)'(”*”> where

(g ™Yo = Span({ (v —1)P" ") ‘x cg,neN }) . Indeed the structure gf’~-v depends
only on the coproduct off, in whichv plays no role; therefore we can do the same analysis as in the
trivial deformation case (s€8.11): the filtrationD of Hyp(G,) is just the natural filtration given by
the order (of divided powers), and this yields the previous descriptidiiefy . At v = 1 we find

H’(u—l)/(}/ —1)H'»-» = G, (g(p)“>/<{ P }meg(f’)oo> = Hyp(Gy) = FII
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as Poisson Hopf algebras: in shdift(»-v is a QFA, ath = v — 1, for the Poisson group'. Similarly
1o = (g™ with (g~ = Span({ 174" |+ €g, n €N }); therefore

wo foire = 8687 [({+ ) gore) = Flr]

where gap IS simply g with trivialized Lie bracket and}, is the same algebraic groups I" but
with trivial Poisson bracket: this comes essentially like§é2, roughly because{m,y_y} =

(Vﬁl[ua:,yy})’llzo = (Vfl . 1/3[:L‘,y]g)‘yzg = (l/ v [m,y]g)‘yzo =0 (forall z,y € g).

Finally, we have(H’(ufl))v“’*1> = <{ (v—1)p" 1 (") ’x €eg,neN }> & H and (Hl(u))v(V) =
<{ ZA ‘fc €g,neN }> & H, by direct computation. Faf/V~-1 we have the same fea-
tures as irg3.7: the analysis therein can be repeated, with the final upshot depending on the nature of
G (or of g, essentially, in particular on its-lower central series).

§ 5 Second exampleSL,, SL, and the semisimple case

5.1 The classical setting. Letk be any field of characteristip > 0. Let G := SLy(k) = SLs;
its tangent Lie algebrg = sl, is generated byf, h, e (the Chevalley generatojswith relations
[h,e] = 2e, [h, f] = =2f, [e, f] = h. The formulasé(f) = h® f — f® h, §(h) =0, d(e) =
h® e —e® h, define a Lie cobracket o which makes it into a Lie bialgebra, corresponding to
a structure of Poisson group éh These formulas give also a presentation of the co-Poisson Hopf
algebral/(g) (with the standard Hopf structure). #f > 0, thep—operation irsl, is given bye?l = 0,
flrl =0, I = h.

On the other hand;'[S L, is the unital associative commutatilzealgebra with generators, b, c,
d and the relatiomd — bc = 1, and Poisson Hopf structure given by

Ala)=a®a+b®c, A(D)=a®@b+b®d, Alc)=c®a+d®c, Ald)=c®@b+d®d
€(a) =1, €b) =0, €c)=0, e(d)=1, S(a)=d, SOb)=-b, S(c)=—c, Sd)=a
{a,b} =ba, {a,c} =ca, {bc}=0, {d,b}=-bd, {d,c}=—-cd, {a,d}=2bc.

The dual Lie bialgebrai* = sl," is the Lie algebra with generators f, h, e, and relatigng] = e,
[h,f] =1, [e,f] = 0, with Lie cobracket given by)(f) = 2(f® h—h®f), é(h) =exf-fxe,
é(e) =2(h®e—e®h) (we choose as generators=f f*, h:=h*, e:=¢*, where {f*, h*,e*} is
the basis ofl;* which is the dual of the basisf, i, e} of sl;). This again yields also a presentation
of U (sly"). If p > 0, thep—operation irsl," is given by &) = 0, fPl = 0, hP! = h. The simply
connected algebraic Poisson group whose tangent Lie bialgefisgaéan be realized as the group of
pairs of matrices (the left subscriptmeaning “simply connected”)

=06 2)

x,yEk,sz\{O}} < SLQXSLQ.
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This group has centre/ := {(I, I), (-1, —I)} , SO there is only one other (Poisson) group sharing
the same Lie (bi)algebra, namely the quotigtlL,” = SSLQ*/Z (the adjoint of ;S L5, as the
left subscripta means). Thereforé’ [SSLQ*} Is the unital associative commutatike-algebra with
generatorse, z*!, y, with Poisson Hopf structure given by

Alr) =202 ' +z2®«, A(zil):zﬂ@zﬂ, AlY) =y®@z'+20y
e(x) =0, () =1, €y =0, S(a)=—z, S(*) =2, Sy =-y

{z,y} = (22—2_2)/2, {Zil,x} ::lzxzztl7 {zi17y} ::inly

(Remark: with respect to this presentation, we haved,| , h= zaz|e, e= ax|€, wheree is the
identity element of SL,* ). Moreover,F' [aSLQ*] can be identified with the Poisson Hopf subalgebra
of F[SSLQ*} spanned by products of an even number of generators — i.e. monomials of even degree:
this is generated, as a unital subalgebragzby %2, andz"'y.

In general, we shall considgr = g” a semisimple Lie algebra, endowed with the Lie cobracket
— depending on the parameter— given in [Gal],51.3; in the following we shall also retain from
[loc. cit] all the notation we need: in particular, we denote(®yresp.P, the root lattice, resp. the
weight lattice, ofg, and byr the rank ofg.

5.2 The’ QrUEAs U,(g). We turn now to quantum groups, starting with #igcase. Letk be
any 1dD,% € R\ {0} aprime suchthaf?/h R =k; moreover, letting; := ii+1 we assume that
be invertible inR, i.e. there exists; ' = (h+ 1)~ € R. For instance, one can pick := klq,q7]
for an indeterminate and 7 := ¢ — 1, then F'(R) = k(q) .

Let U,(g) = U,(sly) be the associative unit#l( R)—algebra with (Chevalley-like) generatofs
K*!, E, and relations

K—-K!

KK'=1=K'K, K"F=¢PFK" -
q=q

, K¥'E =¢*?EK*', EF —FFE =

This is a Hopf algebra, with Hopf structure given by

AF)=FoK'+1aF, AKT)=K" 0K, A[E)=Ecl+KekE
€(F)=0, e(K*)=1,€eE)=0, S(F)=-FK, S(K*') = K", §(E)=-K'E.

K—-1 K—-K™!
Then letU,(g) be theR—subalgebra otl,(g) generated byF', H := T = ——,
q— qa—4q
K#*'| E. From the definition ofU,(g) one gets a presentation &% (g) as the associative unital

3In §§5-7 we should use notatioti, ,(g) and F,_,[G], after Remark 1.5 (fof = ¢ — 1); instead, we writelJ, (g)
and F,[G] to be consistent with the standard notation in use for these quantum algebras.
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algebra with generatorg’, H, I', K*!, E and relations
KK '=1=K'K, K9"H=HK*, K I'=rK*, HI=TH
(g—-1)H=K-1, (¢q—¢" ) '=K-K "', Hl+K')=(Q1+q¢ "), EF-FE=T
K F =¢®FK*, HF=q°FH—(q+1)F, I'F=q°FI—(q+q")F
K*'E=¢®EK*, HE=q"7EH+ (q+1)E, TI'E=q¢qPEl+ (¢+q¢")E
and with a Hopf structure given by the same formulas as abové'far*!, andE plus

A= K+K'ol, )
AH)=Ho1+K®H, €H)=

0, S(I')=-T

0, S(H)=-K'H.
NotealsothatX =1+ (¢q—1)H and K ' =K — (¢q—¢ " )I'=1+(¢q—1)H — (¢ — ¢ "),
henceU,(g) is generated even by, H, I and E alone. Further, notice also that

U,(g) = free F(R)-module over{ F*K?E4 ‘ a,d €N,z € Z} (5.1)
U,(g) = R-span of{ FH'TE? | a,b,c,d € N} inside U,(g) (5.2)

which implies that ' (R) ®x U,(g) = U,(g). Moreover, definitions imply at once thdf,(g) is
torsion-free, and also that it is a Hoff-subalgebra o), (g) . ThereforeU,(g) € H.A, and in fact
U,(g) is even a QrUEA, whose semiclassical limiti&g) = U(sl,), with the generatord”, K*!,
H, I', E respectively mapping td¢f, 1, h, h, e € U(sly) .

It is also possible to define a “simply connected” versiorJpfg) andU,(g), obtained from the
previous ones — called “adjoint” — as follows. FO[(g), one adds a square root&f!, call it L*?,

L—1
as new generator; fdr,(g) one adds the new generatdrs! and alsoD := ——1 Then the same

analysis as before shows thiaf(g) is another quantization (containing theq‘adjoint” one)yidfy) .

In the general case of semisimgle let U,(g) be the Lusztig-like quantum group — ov&r—
associated tg = g7 as in [Gal], namelyU,(g) := U,",(g) with respect to the notation ifdc. cit],
where M is any intermediate lattice such thegt < M < P (this is just a matter of choice, of the
type mentioned in the statement of Theorem(@)2 this is a Hopf algebra oveF'(R), generated

by elementsF;, M;, E; for i = 1,...,r =: rank(g). Then letU,(g) be the unitalR—subalgebra
M; —1 K, —K!

of U,(g) generated by the elements, H, := T L= ——"", Miﬂ, E; , where the
q— q—q

K; = M,, are suitable product af/;’s, defined as in [Gal}2.2 (whencek;, K;' € U,(g)). From

[Gal],§52.5, 3.3, we have thdf,(g) is the freel’'( R)-module with basis the set of monomials

{ [T Fl-TIK7 - TI Ee | farea €N, 2 € Z, Va€®+,i:1,...,n}

acdt =1 acdt

while U,(g) is the R—span insidéJ,(g) of the set of monomials

{ I1 Fja-HHfi-Hlffj- [T Eé | fartiscjyea €N vaeq>+,z',j:1,...,n}
acdt i= Jj=

i=1 acdt
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(hereafter®™ is the set of positive roots gf, eachE,, , resp.F, , is aroot vector attached to € &,
resp. to—a € (—®*), and the products of factors indexed &y are ordered with respect to a fixed
convex order ofb*, see [Gal]), whence (as for = 2) U,(g) is a freeR—module. In this case again
U,(g) is a QrUEA, with semiclassical limit/(g) .

5.3 Computation of U,(g) and specialization U, (g)' ——— F[G*]. We begin with the sim-
plest casgy = sl, . From the definition ofU,(g) = U, (sl>) we haved,(E) = (id — )" (A™(E)) =

(id — e)®" (é KoY E® 1®(”3)) =(¢g— 1" '"H®"D @ E from which §,((¢ — 1)E) €

(q—1)"Uy(g) \ (¢ —1)""'U,(g) (for all n € N), whence(q — 1)E € U,(g)", whereasE ¢
U,(g)". Similarly, (¢ — 1)F € U,(g)’, whilst F ¢ U,(g)’. As for generatorsi, I, K*!, we have
AM(H) = Yy K560 @ H @ 19079, An(K1) = (K*)*", AT = X1, K9 D o I'e
(K‘1)®(" 9, hence fors, = (id — €)®" o A" we have §,(H) = (¢ — 1)"!- H®", o"(K!) =
(4= 1" - (~K=H)®", §7(K) = (¢ — 1) - H®, §"(I') = (¢ — 1" - 32 (~1)"*HCD

s=1
re (HK D" forall n € N, so that(q — 1)H, (¢ — )I", K*' € Uy(g)' \ (¢ — 1)U, (a) .
ThereforelU,(g)’ contains the subalgebf& generated by(q — 1)F, K, K, (¢ — 1)H, (¢ — 1),
(¢ —1)E. On the other hand, using (5.2) a thorough — but straightforward — computation along the
same lines as above shows that any elemedt ip)’ does necessarily lie iti’ (details are left to the
reader: everything follows from definitions and the formulas aboveXo). ThusU,(g)’ is nothing
but the subalgebra df,(g) generated byF" := (¢ — 1)F, K, K~', H :== (¢ — 1)H, " := (¢ — 1)T,
E = (¢ — 1)E; notice also that the generatdf is unnecessary, fof = K — 1. ThenU,(g)' can
be presented as the unital associafi«@lgebra with generatorg , I, K*!, E and relations

KK =1=K'K, K¥I'=TK*, 1+¢" ) =K-K ' EF-FE=(q—1)I
K- K~ 1 _ (1+q l)]'ﬂ’ KilF:q:FQFKil’ KilE:quEvKil
[F=q?Fl—(q-1)(q+q¢ " )F, T'E=¢?El+(q-1)(q+¢")E

with Hopf structure given by

A(F)=FeK'+1&F, e(F) =0, S(F) =-FK

AN)=T®K+K'&I, e(I' =0, S(I') =-T
A(K#) = K+ @ K*L, (K1) =1, S(K*) = K71
AE)=E®1+K®FE, e(B) =0, S(E) =—-K'E.

When ¢ — 1, a direct computation shows that this gives a presentatiof’ @fSLg*}, and the
Poisson structure thak'[,SL,*] inherits from this quantization process is exactly the one coming
from the Poisson structure qfb'Ly" : in fact, there is a Poisson Hopf algebra isomorphism

U@ /(4= ) Uyle) —— FL.5L7] (€ FLSLST)
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given by: E mod (¢ — 1) — zz, K*' mod (¢ — 1) — 2z*2, H mod (¢ — 1) — 22 — 1,

I' mod (¢ —1) = (2% - z*2)/2, F mod (¢ — 1) — z~'y. In other words,U,(g)" specializes
to F[GSLQ*} as a Poisson Hopf algebralNote that this was predicted by Theorem (£)2vhen
Char(k) = 0, but our analysis now proves it also fahar(k) > 0.

Note that we got thedjointPoisson group dual of = SL-, thatis,SL,"; a different choice
of the initial QrUEA leads us to theimply connectedne, i.e.,SLy". Indeed, if we start from the
“simply connected” version df/,(g) (see§5.2) the same analysis shows thgtg)’ is like above but
for containing also the new generatdrs', and similarly when specializing at 1: thus we get the
function algebra of a Poisson group which is a double coveringat*, namely,SL,". So changing
the QrUEA quantizingg we get two different QFAs, one for each of the two connected Poisson
algebraic groups dual &f L, i.e. with tangent Lie bialgebral,” ; this shows the dependence@f
(here denoted:* since g* = g*) in Theorem 2.£c) on the choice of the QrUEA/,(g) , for fixed g .

With a bit more careful study, exploiting the analysis in [Gal], one can treat the general case too:
we sketch briefly our arguments — restricting to the simply laced case, to simplify the exposition —
leaving to the reader the straightforward task of filling in details.

So now letg = g” be a semisimple Lie algebra, asiifi1, and letU,(g) be the QrUEA introduced
in §5.2: our aim again is to compute the QFA (g)’.

The same computations as fgr= s[(2) show that 6,,(H;) = (¢ — 1)1 - H®" and 6"(I}) =
(=13 (- H Ve he (H,-K{l)@"_s), which gives

s=1

H; = (¢—1)H; € Uy(9)' \ (¢ — 1) Uy(9)" and I} :=(q—1)I; € Uya)\ (¢ —1) Uyg)"-

As for root vectors, letF,, := (¢—1)E, and F, := (¢—1)F, forall v € ®* : using the same type
of arguments as in [Gal}5.16, we can prove thak,, ¢ U,(g)’ but F, € U,(g)' \ (¢ — 1) U,(g)".
In fact, let U, (b, ) and U,(b_) be quantum Borel subalgebras, add . , U, LU, U} their
R—subalgebras defined in [Ga3R: then bothU,(b.) and U,(b_) are Hopf subalgebras &f,(g) .
In addition, letting)’ be the lattice betwee® and P dual of M (in the sense of [Gal}1.1, there
exists anF'(R)-valued perfect Hopf pairing betwed, (b, ) andU,(bs) — one built up onM
and the other on/’ — such thats(), = <Z/Ig{'§> , U = (ug{’z) , U = (ug{’g) , and
Uy, = (ug{’z)°. Now, (¢ — ¢ ')Eq € UY, = (ugg)’, hence — sincél! is an algebra —
we have A (g — ¢ E.) € (e @wye) = (wro) @ (ul) = Ui @ Uy, . Therefore,
by definition of/}’. and by the PBW theorem for it and fmrg,{’g (cf. [Gal], §2.5) we have that
A((q — q*l)Ea) is an R—linear combination IikeA((q - q*l)Ea> =5 AP @ AP inwhich
the AY)'s are monomials in thé/;’s and in theE,’s, where E,, := (¢ — ¢~")E, forall v € &+
iterating, we find that\* ((q — q—l)Ea> is an R—linear combination

AZ((q - q‘l)Ea) =3, AV AP @ - 0 AY (5.3)

4In [Gal] one assume€har(k) = 0: howeverthis is not necesarior the present analysis.
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in which the AY”’s are again monomials in thi/;’s and in the E,’'s. Now, we distinguish two cases:
either A% does contain somé&,, (€ (—q") U,(g)) ,thUSE(A,(nj)) =AY € (¢—1)U,(g) whence

(id—¢) (Aﬁ”) — 0; or AY) does not contain anyZ, and is only a monomial in th&/;’s, say AY) =

[T M then (id — ) (A9) = [T, M — 1 =TT, (g — 1) He+1)™ = 1€ (g=1) Uyla).
In addition, for some €—grading reasons” (as in [GaX3.16), in each one of the summands in (5.3)
the sum of all they’s such that the (rescaled) root vectdrs occur in any of the factorgV, A,

.., Al must be equal ta:: therefore, in each of these summands at least one factdoes occur.
The conclusion is thatd,(E,) € (1+ ¢ ") (g — 1) Uy(g)® (the factor (1 + ¢~') being there
because at least one rescaled root vegtooccurs in each summand of (Ea) , thus providing a
coefficient (¢ — ¢~') the term (1 + ¢') is factored out of), whencey, (E,) € (¢ — 1) U,(g)*".
More precisely, we have alséy (E,) ¢ (¢— 1)1 U,(g)®*, for we can easily check thak’(E,) is
the sum of M, @ M, ®---@ M, Q E, plus other summands which ake-linearly independent of this
first term: but thens, (5, ) isthe sumof(q — 1) ' H, @ H,® - @ H, ® E, (Where H,, := Mo
is equal to ank—linear combination of products df/;’s and H,’s) plus other summands which are
R-linearly independent of the first one, and sintlg ® H, ® --- ® Hy, ® E, & (¢ — 1) U,(g)*"
we can conclude as claimed. Therefaig(E,) € (¢ — 1) Uy(9)® \ (¢ — 1)1 U,(9)*", whence
we get B, := (¢ — 1)E, € Uy(g)' \ (¢ — 1) U,(g) Vo€ ®". An entirely similar analysis yields
also F, == (¢ —1)F, € Uy(g)' \ (¢ — 1) Uy(g)' Yaedt.

Summing up, we have found thaf,(g)’ contains the subalgebt& generated byF,,, H,, I,
E, forall a € ®+ and alli = 1,...,n. On the other hand, using (5.2) a thorough — but straight-
forward — computation along the same lines as above shows that any elerbigfi)imust lie inU’
(details are left to the reader). Thus finall(g)’ = U’, so we have a concrete description gfg)’.

Now comparel’ = U,(g)" with the algebral/}'(g) in [Gal],§3.4 (for » = 0), the latter being
just the R—subalgebra ot (g) generated by the sef F\,, M;, E, |a € ®F,i = 1,...,n}. First
of all, by definition, we havel/¥(g) C U’ = U,(g)'; moreover, F, = 1F,, E, = }E,,
I'=1(Ki— K;') mod (¢—1)U(g) forall o, i. Then

(Ue)), = Uale) [la =D Us(a) = U(9) /(a— DU (e) = F[G3)]

where G7, is the Poisson group dual af = G™ with centre Z(G7,) = M /Q and fundamental
group m (G3,) = P/M , and the isomorphism (of Poisson Hopf algebras) on the right is given by
[Gal], Theorem 7.4 (see also references therein for the original statement and proof). In other words,
U,(g)" specializes taF’ [GL} as a Poisson Hopf algehias prescribed by Theorem 2.2. By the way,
notice that in the present case the dependence of the dual gfoepG?;, on the choice of the initial
QrUEA (for fixedg) — mentioned in the last part of the statement of Theorerfc®-2 is evident.

By the way, the previous discussion applies as well to the cagawoiuntwisted affine Kac-Moody
algebra just replacing quotations from [Gal] — referring to results alfimiie Kac-Moody algebras
— with similar quotations from [Ga3] — referring to untwistadineKac-Moody algebras.
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5.4 The identity (Uq(g)’)v = U,(g). In this section we check the part of Theorem ()2
claiming that, wherp = 0, one hasH € QrUEA = (H')' = H for H = U,(g) as above. In
addition, our proof now will work forp > 0 as well. Of course, we start once again frgm-= s, .

Sincee(F) = e(H) = ¢(I') = ¢(E) = 0, the ideal J := Ker (e : U,(g)' —— R) is generated
by F, H, I, and E. This implies that/ is the R—span of{F%”H”FVE” ‘ (0, k,7,m) € N*\

{(0,0,0, 0)}} . Therefore (U, (g)') " := Dm0 ((q - 1)*1J>n is generated, as a unitBsubalgebra

of U,(g), by the element§q — 1) 'F = F, (¢4—1)"'"H=H, (¢—1)"'I'=1, (¢—1)'E =

E, hence it coincides with/,(g) , g.e.d. A similar analysis works in the “adjoint” case as well, and
also for the general semisimple or affine Kac-Moody case.

5.5 The quantum hyperalgebraHyp (g). Let G be a semisimple (affine) algebraic group,
with Lie algebrag, and letU,(g) be the quantum group considered in the previous sections. Lusztig
introduced (cf. [Lul-2]) a “quantum hyperalgebra”, i.e. a Hopf subalgebfd,¢f) overZ[q, ¢ ']
whose specialization at = 1 is exactly the Kostant'Z—integer formUz(g) of U(g) from which one
gets the hyperalgebrtdyp (g) over any fieldk of characteristico > 0 by scalar extension, namely
Hyp(g) = k®zUz(g) . Infact, to be precise one needs a suitable enlargement of the algebra given by
Lusztig, which is provided in [DL]§3.4, and denoted by'(g). Now we study Drinfeld’s functors (at
h=q—1)on Hyp(g) := R®zq,1 '(g) (With R like in §5.2), taking as sample the cage= sl .

Let g = sly. Let Hypqz(g) be the unitalZ ¢, ¢~']-subalgebra ot),(g) (say the one of “adjoint
type” defined like abovéut overZ [q, q*l}) generated the “quantum divided powers”

K- n ctl=spr _ 1
( ’ C) = H K . : EM = E"/[n]

n po g —1

FO = " /[n]

! !
a q

(forall n € N, c € Z)and byK~ ', wheren] ! := []._, [s], and [s], = (¢° — q_s)/(q —q )
for all n, s € N. Then (cf. [DL]) this is a Hopf subalgebra &f,(g), and Hypqz(g)‘ = Uz(g);
q=1

therefore Hyp ,(g) := R ®z(4,-1) HypZ(g) (for any R like in §5.2, with k := R/AR and p :=
Char (k) ) specializes aty = 1 to thek—hyperalgebradyp(g). Moreover, among all th(aKrzC)’s itis
enough to take only those with= 0. From now on we assumg > 0.

Using formulas for the iterated coproduct in [DL], Corollary 3.3 (which uses the opposite coprod-
uct than ours, but this doesn’t matter), and exploiting the PBW-like theorerfpr (g) (see [DL]
again) we see by direct inspection tdepq(g)’ is the unitalR—subalgebra ofyp (g) generated by
K~ and the “rescaled quantum divided powerfg’— 1)"F™, (¢ —1)" (*:°) and (¢ — 1)"E™

forall n € N. Since [n],!

—nl =0 iff p
q=1

n, we argue thatl—lypq(g)” is generated by
1

the corresponding specializations &f — 1)*" F®), (¢ —1)” <I;O) and (¢ —1)” E@) for all

s €N in particular this shows that the spectrumldj/pq(g)’

has dimension 0 and height 1, and
1

— has basis
q=1

its cotangent Lie algebrei/J2 — where/J is the augmentation ideal dﬂypq(g)’
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{(q—l)psF(ps), (q—l)ps(ﬁio) . (q=1)" E®) mod (¢—1) Hyp,(g)", mod .J2 ‘ s € N}- Fur-
thermore, (Hyp,(g)’)” is generated by the elementg — 1)" ' F"") | (g — 1) <I;°> , K1
and (¢ — 1) 'E®) forall s € N: in particular we have tha(Hypq(g)’)V C Hyp,(g), and

(Hyp,(8))"] _,
a basis of the restricted Lie bialgelrauch that(Hypq(g)’)V‘ = u(e).
q=1

is generated by the cosets modijo- 1) of the previous elements, which do form

We performed the previous study using the “adjoint” ve;siom}gfg) as starting point: instead,
we can use as well its “simply connected” version, thus obtaining a “simply connected version of
Hyp,(g)” which is defined like before but for using™" instead of K*'; up to these changes, the
analysis and its outcome will be exactly the same. Note that all quantum objects involved — namely,
Hyp,(9), Hypq(g)’ and (Hypq(g)’)v — will strictly contain the corresponding “adjoint” quantum
objects; on the other hand, the semiclassical limit is the same in the cs@ofg) (giving Hyp(g),
in both cases) and in the case(da’lypq(g)’)V (giving u(t), in both cases), whereas the semiclassical
limit of Hypq(g)’ in the “simply connected” case is a (countable) covering of the “adjoint” one.

The general case of semisimple or affine Kac-Mogdaan be dealt with similarly, with analogous
outcome. Indeed-lypZ(g) is defined as the unita[¢, ¢! |-subalgebra d¥l,(g) (defined like before
but overZ [q, q*l}) generated bys; ! and the “quantum divided powers” (in the above serEZB’)? ,
("iey, E™ forallneN, ceZ andi=1,...,rank(g) (notation of§5.2, but now each divided
power relative ta is built upong;, see [Gal]). Then (cf. [DL]) this is a Hopf subalgebrdiyf g) with
Hypf(g)‘ X = Uz(g), SO Hyp,(g) == R ®zgq1 Hypf(g) (for any R like before) specializes at

q = 1 to thek—hyperalgebralyp(g); and among th(éK;jc)’s it is enough to take those with= 0.
Again a PBW-like theorem holds fayp (g) (see [DL]), where powers of root vectors are re-

placed by quantum divided powers Iikg!™ | (" K{Em(”/ 2 and E”, for all positive roots

«a of g (each divided power being relative tg, see [Gal]) both in the finite and in the affine

case. Using this and the same type of arguments §5.5v— i.e. the perfect graded Hopf pair-

ing between quantum Borel subalgebras — we see by direct inspectiom-lﬂpabt(g)/ is the uni-

tal R—subalgebra oHyp (g) generated by thé(, ''s and the “rescaled quantum divided powers”

(go — V)"F, (g — 1" (%5°) and (g, — 1)"E{” forall n € N. Since [n], !‘ =n! =

iff p|n, one argues like before tha‘Hypq(g)’

is generated by the corresponding specializa-
q=1

tions of (gu — D)? E), (gi — 1) (f;O) and (¢, — 1" EY” for all s € N and all positive

rootsa. Again, this shows that the spectrum biypq(g)’ has (dimension 0 and) height 1,
q=1

and its cotangent Lie algeerJ&/J2 (whereJ is the augmentation ideal (Hypq(g)” ) has basis
q=1
{(qa—l)pSFép‘“), (qi—1)pS<Ki;°)  (ga—1)" E@) mod (q—1)Hyp,(g)' mod J? ‘s € N}. More-

pS

over, (Hyp,(a)))" is generated by, — 1)” " F¥”, (¢, — 1)" (Kpo) K 'and(g, — 1)7" ' EPY
forall s, i anda: in particular (Hyp,(a)")" G Hyp,(g), and (Hypq(g)’)v‘ is generated by
q=1
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the cosets modul@; — 1) of the previous elements, which in fact do form a basis of the restricted Lie
bialgebrat such that(Hypq(g)’)v‘ = u(k) .
q=1

5.6 The QFAF,[G]. Inthis and the following sections we pass to look at Theorem 2.2 the other
way round: namely, we start from QFAs and produce QrUEAs.

We begin withG = SL,,, with the standard Poisson structure, for which an especially explicit de-
scription of the QFA is available. Namely, 1é{,[SL,,] be the unital associative—algebra generated
by {pi|i,7=1,...,n} withrelations

PijPik = 4 PikPij PikPhk = q PhkPik Vi<k i<h

PPk = PikPi s PikPit — PPk = (@ — q7Y) papie Vi <j k<l
l(o

detq(pzj) = desn(_Q) ( )pl,a(l)pQ,a(Z) * Pro(n) = 1.

This is a Hopf algebra, with comultiplication, counit and antipode given by
n i—j ki
Apij) = D km1Pik @ prj . €(pij) =035, S(pij) = (—q)" 7 detq ((phk)h;éj)

forall i,j =1,...,n. LetF,[SL,] := F(R) ®g F,[SL,] . The set of ordered monomials

M = { Hpg] thN,Qk 11 p%m Ny €N Vs, t; min{Nl,l, .. .,Nmn} =0 } (5.4)
i>j h=Fk I<m

is anR—basis ofF,[SL,| and anF'( R)-basis off,[SL,] (cf. [Ga2], Theorem 7.4, suitably adapted to
F,[SL,]). Moreover, F,[SL,] is a QFA (ath = q — 1), with F,[SL,]| —— F[SL,] .

5.7 Computation of F,[G]" and specialization F,[G]" —=" U(g*). In this section we com-

pute F,[G]" and its semiclassical limit (= specialization@t= 1). Note that

M= { T T (owe = 1™ Tl

1>] h=k I<m

Ng e N Vs, t; min{NLl,...,Nn,n} :O}

is an R—basis ofF,[SL,| and anF'(R)-basis ofF,[SL,|; then, from the definition of the counit,
it follows that M’ \ {1} is an R-basis of Ker(e : F,[SL,] — R). Now, by definition I :=

q—1

Ker <Fq[SLn] “ SR k) , whencel = Ker(e) + (¢ — 1) - F,[SL,]; therefore (M’ \

{1})u{(¢—1)-1} isanR-basis off, hence (¢ — 1) 'T hasR-basis(q— 1)~ (M'\ {1})U{1}.
The outcome is thaf,[SL,]" = > >0 ((q - 1)_11’)” is just the unitalR—subalgebra of,[SL,,]

Pij — Oij
qg—1

algebra, and that?,[SL,]"—— U(sl,") as predicted by Theorem 2.2. Details can be found in

[GaZ2], 5§ 2, 4, looking at the algebrﬁq[SLn] considered therein, up to the following changes. The

generated by{ Tij 1=

,j=1,...,n } . Then one can directly show that this is a Hopf

algebra which is considered ifof. cit] has generatorg1 + q*1)51]pj—_f (i,7 =1,...,n)

q R
instead of ourr;; 's (they coincide iff; = j) and also generators; = 1+ (¢—1) 7 (i =1,...,n);
then the presentation 2.8 of [loc. cit] must be changed accordingly; computing the specialization
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then goes exactly the same, and gives the same result — specialized generators are rescaled, though,
compared with the standard ones givenlat] cit], §1.
We sketch the case of = 2 (see also [FG]).
Using notation a= py11, b:=p12, C:=p21, d:= py5, we have the relations
ab=gqgba, ac=gqca, bd=q¢db, cd=gqgdc,
bc=cbh, ad—da= (¢—q ')bc, ad—gbc=1
holding in £,[S L»] and inF,[S L»], with
Ala) =a®a+b®c, Alb)=a®b+b®d, A(c)=c®a+d®c, A(d =ceb+dxd
c@=1,¢eb)=0,¢e0c)=0, e¢d =1, S@=d, S(b)=—¢'b, S(c)=—¢"c, S(d) =a.
a—1 b
q—l , E = TLQ = —q—l y F = 7”2’1 = q—l
d-—1 .
roo = - generatelfq[SLQ]v. Moreover, these generators have relations
q—

Then the elementd?, = r; = and H_ =

H E=qEH.+E, H.OF=qFH,+F, EH.=qH.E+E, FH_.=qH_F+F,
EF=FE, HH —H H, = (q—q " YEF, H +H,=(q—1)(¢EF —H.H)

and Hopf operations given by

AH)=H @14+10H, +(q—1)(HL®H . +E®F), eHy)=0, S(Hy)=H_
AE)y=E®14+10E+(¢-1)(H:®E+E®H_), €E)=0, SE)=-¢'E
AF)=F®1+10F+(q-1)(F®H +H_-®F), €F)=0, SF)=—-¢"F
AH.)=H_-®141QH_+(q-1)(H-QH_+FQ®E), €H_)=0, SH.)=H,

from which one easily checks thaf,[S L,]" =, U(sly") as co-Poisson Hopf algebras, for a co-

Poisson Hopf algebra isomorphism
F,[SLs)Y / (q— 1) F,[SLs)Y —=— U(sly")

exists, given by: H, mod (¢ — 1) — £h, F mod (¢ — 1) — e, F mod (¢ — 1) — f; that is,
F,[SL,]" specializes tdJ(sly") as a co-Poisson Hopf algebrpe.d.

Finally, the general case of any semisimple grasip= G”, with the Poisson structure induced
from the Lie bialgebra structure @f = g™, can be treated in a different way. Following [Gaf§5—6,
F,[G] can be embedded into a (topological) Hopf algebidg*) = U}’ (g*), so that the image of
the integer formi [(7] lies into a suitable (topological) integer fortd,”,(g*) of U,(g*). Now, the
analysis given inlpc. cit], when carefully read, shows thdt,[G]" = F,[G] N u;;(g*)v ; moreover,
the latter (intersection) algebra “almost” coincides — it is its closure in a suitable topology — with
the integer formF,[G] considered inlpc. cit]: in particular, they have the same specialization at
¢ = 1. Since in additionF,[G] does specialize t&'(g*), the same is true faF,[G]", g.e.d.
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The last point to stress is that, once more, the whole analysis above is vaficdsfo€Char (k) > 0,
i.e. also forp > 0, which was not granted by Theorem 2.2.

5.8 The identity (Fq[G]V> = F,[G]. In this section we verify the validity of that part of

Theorem 2.g) claiming that # € QFA = (HY)' = H for H = F,[G] as above; moreover we
show that this holds fop > 0 too. We begin withG = SL,, .

From A(p;;) = k;ﬂz‘,k ® prj, weget AN(p;) :k1 ..... gv:lpi,lkl @ Pryky @ @ Pry_yjr DY
repeated iteration, whence a simple computation yields
on(rij) = ) (q=17" (=D 7rigs @ (4= D7y, ® - @ (g = V) iy, 5) Vi,j
ki,...ky_1=1
so that
on((g—Vry) € (g = DV F[SLa]"\ (g = 1)V F[S L)Y Vi,j. (5.5)

Now consider M’ := { 11 pg” IT (pre — 1)Nhk I1 prij" Ny € NVs,t; min; {N“} =0 }:
i>] h=k I<m
since this is arkR—basis off,[SL, |, we have also that

M" = {Hrg“nr%knrmm Ny €N Vs, t; min{N171,...,Nn7n}:O}
h=k

i>] I<m

is an R—basis ofF,[SL,]". This and(5.5) above imply that(Fq[SLn]v)' is the unitalR—subalgebra
of F,[SL,] generated by the seft(q — 1)r;;
latter algebra does coincide with,[SL, ], as expected.

For the general case of any semisimple grap= G7, the result can be obtained again by
looking at the immersion&,[G] C U,(g*) and F,[G] C U,",(¢g"), and at the identityF,[G]" =
F G n U (%) (cf. §5.6). If we go and compute(bquf{p(g*)v)/ (noting that (Uﬁ,(g*))v is a
QrUEA), we have to apply the like methods as 1df(g)’, thus finding a similar result; this and the
identity F,[G]" = F,[G] N, (g")" eventually yield <Fq[G]v>/ = F,[G] .

Is is worth pointing out once more that the previous analysis is validpfo= Char(k) > 0,
i.e. also forp > 0, so the outcome is stronger than what ensured by Theorem 2.2,

1,] = 1,...,%};Since(q—1)7"i]’ :,Oij—éij,the

Remark Formula (5.4) gives an explicR—basisM of F|[SL,]. By direct computation one sees
that 6, (1) € F,[SLy]*" \ (¢ — 1) F,[SLy]*" forall u € M \ {1} andn € N, whenceF,[SL,] =
R-1, whichimplies (F,[SLo]), = F(R)-1 G F,[SL,] and also(F,[SL.]")" = R-1 G F,[SLy].
This yields a counterexample to part of Theoren(l2).2

5.9 Drinfeld’s functors and L—operators inU,(g) for classicalg. Let nowk have zero charac-
teristic, and lety be a finite dimensional semisimple Lie algebra dvevhose simple Lie subalgebra
are all of classical type. It is known from [FRTZ2] that in this cdﬁ?(g) (where the subscripP
means that we are taking a “simply-connected” quantum group) admits an alternative presentation, in
which the generators are the so-calledoperators, denote’éfj) with ¢ = +1 andq, j ranging in a
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suitable set of indices (see [FRT2R). Now, if we consider instead the subalgebrdJ§f(g) , call it
H , generated by thé—operatorover R, we get at once from the very description of the relations
between théfj) 's given in [FRT2] thatH is aHopf R—subalgebra de;(g) , and more precisely it is
a QFA for the connected simply-connected dual Poisson gf8up
When computingH ¥, it is generated by the elementg — 1)‘1l§§); even more, the elements
(g — 1)‘%;21 and (¢ — 1)_1l§;{7i are enough to generate. Now, Theorem 12 in [FRT2] shows that
these latter generators are simply multiples of the Chevalley generatdi§(gf (in the sense of
Jimbo, Drinfeld, etc.), by a coefficient of typﬁqs(l + qfl) for somes € Z: this proves directly
that HV is a QrUEA associated tg, that is the dual Lie bialgebra @f*, as prescribed by Theorem
2.2. Conversely, if we start fromf(g) , again Theorem 12 of [FRT2] shows thatt(hﬁu q—l)fllfj) 'S
are quantum root vectors lv’f(g) . Thenwhen computinUf(g)/ we can shorten a lot the analysis in
§5.3, because the explicit expression of the coproduct of-teperators given in [FRT2] — roughly,
A is given on them by a standard “matrix coproduct” — tells us directly that aI(Ihe q*l)_llffj) 'S
do belong ton’(g)’, and again by a PBW argument we conclude ﬂﬁﬁ(g)' is generated by these
rescaled.—operators, i.e. thél + qfl)_llfj) .
Therefore, we can say in short that shifting frdito 5" or from U/ (g) to qu(g)' essentially
amounts — up to rescaling by irrelevant factors (in that they do not vanigh-at ) — to switching
from the presentation cliﬂf; (g) via L—operators (after [FRTZ2]) to the presentation of Serre-Chevalley

type (after Drinfeld and Jimbo), and conversely. See also [Ga8] for the gasef,, and g = sl,, .

5.10 The cased/,(gl,), F,|GL,] and F,[M,]. In [Ga2], §3.2, a certain algebré,(gl,,) is con-
sidered as a quantization @f, ; due to their strict relationship, from the analysis$gyone argues a
description ofU,(gl,,)" and its specialization aj = 1, and also verifies tha@Uq(g[n)’)v = U,(gl,).

Similarly, we can consider the unital associatiRealgebraF,[M,] with generatorsp;; (i, j =
1,...,n)andrelationsp;;pi. = q pikpij » PirpPrk = q prrpar (forall j <k, i <h), pupjx = pjrpi »
pikpjit — pipie = (¢ —q 1) pupje (forall i < j, k < 1) —i.e. like for SL,,, but for skipping
the last relation. This is the celebrated standard quantizatidf{f,], the function algebra of the
variety M,, of (n x n)—matrices ovek: it is ak—bialgebra, whose structure is given by formulas
A(pij) =Y 1y Pik @ prj» €(pij) = 6;; (forall 4, j = 1,...,n) again, but it isnot a Hopf algebra
The quantum determinantet,(p;) := > cq (—q)l(”)pwu) P2,0(2) " Pro) 1S CENtral inFy[M,],
so by standard theory we can extefid)/,,] by adding a formal inverse tdet,(p;;), thus getting
a larger algebraF,[GL,| = F,[M,] [detq(pij)_l} . this is now a Hopf algebra, with antipode
S(pij) = (—q) detq((phk)ﬁ’;;> (forall i, j =1,...,n), the well-known standard quantization of
F[GL,], due to Manin (see [Ma]).

Applying Drinfeld’s functor( )V w.rt. i := (¢ — 1) at F,[GL,] we can repeat step by step the
analysis made foF,[SL,]: thenF,[GL,]" is generated by the,'s and (¢ — 1)~ (det,(pi;) — 1),
the sole real difference being the lack of the relatit,(p;;) = 1, which implies one relation less
among the-;;’s inside F,[G L,,] ", hence also one relation less among their cosets mdduld). The
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outcome is pretty similar, in particulaf,[G L,]"

= U(gl,) (cf. [Ga2],§6.2). Even more, we
can do the same with;[)M,,]: things are even eésier, because we have only;tfeealone which
generateF,[M,,]", with no relation coming from the relatiodet, (p;;) = 1; nevertheless af = 1
the relations among the cosets of thes are exactly the same as in the casédtL,]"| , whence

g=1

we getF,[M,]"| = Ul(gl,). In particular,F,[M,]" is a Hopf algebra, although boffy[ M,
1 1

4=
andF,[M,]" are only bialgebras, not Hopf algebras: this gives a non-trivial explicit example of how

Theorem 2.2 may be improved@he general result in this sense is Theorem 4.9 in [Ga5].
Finally, an analysis of the relationship between Drinfeld functors largperators abodﬂf(g[n)
can be done again, exactly like §i.9, leading to entirely similar results.

§ 6 Third example: the three-dimensional Euclidean groupE,

6.1 The classical setting. Letk be any field of characteristip > 0. Let G := Ey(k) = E»,
the three-dimensional Euclidean group; its tangent Lie alggbrace, is generated byf, i, e with
relations[h,e] = 2¢e, [h, f] = =2f, [e, f] = 0. The formulasé(f) =h® f — f®@h, 6(h) =0,
d(e) = h®e —e® h, makee, into a Lie bialgebra, henck, into a Poisson group. These also give
a presentation of the co-Poisson Hopf algelifa,) (with standard Hopf structure). Ih > 0, we
consider ore, the p—operation given by?! =0, ! =0, all = h.

On the other hand, the function algelitgF,] is the unital associative commutatizealgebra with
generatorsh, a*!, ¢, with Poisson Hopf algebra structure given by

Ab)=b®a'+axb, A(aﬂ):aﬂ@aﬂ’ Alc)=c®a+a'®c
) =0, e(a®) =1, e(c)=0, S®)=-b, S(a*)=a¥", 5()=—c
{ail,b} = +at'h, {aﬂ,c} = +atle, {b,c} =0

We can realize?, as B> = {(b,a,c) |b,c € k,a € k\ {0}}, with group operation
(bi,a1,¢1) - (ba, a2,00) = (blaz_l + a1y, aray, craz + Gf102) ;

in particular the centre of, is simply 7 := {(0, 1,0), (0, —1, 0)} , SO there is only one other con-
nected Poisson group havingas Lie bialgebra, namely the adjoint groyps := EQ/Z (the left
subscript: stands for “adjoint”). Ther#'|, E»| coincides with the Poisson Hopf subalgebraof |
spanned by products of an even number of generators, i.e. monomials of even degree: as a unital
subalgebra, this is generated by, a2, anda~'c.

The dual Lie bialgebrgg* = ¢,* is the Lie algebra with generators f, h, e, and relatifimg| =
2e, [h,f] = 2f, [e,f] = 0, with Lie cobracket given by(f) = feh—-h®f, d(h) = 0,
5(e) = h®e—e®h (we choose as generators=f f*, h:= 2h*, e:= ¢*, where { f*,h*,e*}
is the basis ots* which is dual to the basi§f, h,e} of ¢;). If p > 0, the p—operation ofk," reads
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el =0, f?l =0, hP) = h. This again gives a presentation Bf(e,*) too. The simply connected
algebraic Poisson group with tangent Lie bialgel3taan be realized as the group of pairs of matrices

R ()

this group has centre/ := {(I,1),(—1,—1)}, so there is only one other (Poisson) group with Lie

x,yek,zek\{O}};

(bi)algebrae;” , namely the adjoint groupFEs" := SEQ*/Z .
ThereforeF’ [SEQ*} is the unital associative commutatikkealgebra with generators, z*!, y, with
Poisson Hopf structure given by

A@)=z@z ' +z0z,  AlRY) =0, Al =ye: +20y
e(x) =0, e(zil) =1, ely)=0, S(x) =—u, S(zil) =T, S(y) = —y
{‘ray} = Oa {Zilax} == :izzﬂx, {Ziljy} = :inly

(Remark: with respect to this presentation, we have d,| , h=z0.| , e= 9,|_, wheree is the

identity element of, E5" ). Moreover,F’ [aEﬂ can be identified with the Poisson Hopf subalgebra of
F[SEQ*} spanned by products of an even number of generators, i.e. monomials of even degree: this is
generated, as a unital subalgebra,y, 22 and z7'y.

6.2 The QrUEAs U/ (ez) and Ug(ep). We turn now to quantizations: the situation is much
similar to the case ofl, , so we follow the same pattern; nevertheless, now we stress a bit more the
occurrence of different groups sharing the same tangent Lie bialgebra.

Let Rbe aldD,andlet. € R\ {0} andg:=h+ 1 € R be like in§5.2.

Let U,(g) = U;(e2) (where the superscriptstands for “simply connected”) be the associative
unital F'(R)—algebra with generatorg, [+, F, and relations

LL'=1=L"L, L"'F=¢"'"FL*', LY"E=q¢"'EL*, EF=FE.
This is a Hopf algebra, with Hopf structure given by

AF)=F@L?+1®F, A(L*)=L"oL", AE)=E®1+L*’®FE
e(F)=0, ¢(L*") =1, e¢(E)=0, S(F)=-FL*, S(L*')=LF", S(E)=-L"E.

+1

L
Then letU;(e;) be theR—subalgebra ot} (e2) generated byF, D, = 1 E . From the
definition of U; (¢2) one gets a presentation@f (e;) as the associative unital algebra with generators

I, D,, E andrelations

D.E=qED.+E, FD,=¢qD,F+F, ED_=¢qD_E+E, D_F=qFD_+F
EF = FE, D.D_=D_D, Di+D_+(q—1)DyD_=0
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with a Hopf structure given by

AE)=E®1+10E+2(q-1)D; @ E+(q—1)°-D?QE
A(Dy)=D:®@1+1®@Dy+(¢—1)- Dy ® Dy
AF)=F®1l+19F+2(q-1)F@D_+(¢-1)° Fo D?

€(E)=0, S(E)Y=—-E—-2(q—1)D_E - (¢—1)’D*E
E(Di> =0 y S(D:t) = D¢
e(F)=0, S(F)=~F —2(q—1)FDy — (¢ —1)°FD? .

The “adjoint version” ofU; (¢,) is the unital subalgebfd (¢;) generated by, K*!' .= L*?, E,

which is clearly a Hopf subalgebra. It also hasigAnteger formU¢ (e;) , the unital —subalgebra

K* -1
generated byF', H, = — 1 E': this has relations

EF=FFE, HLE=¢FH, +(¢+1)E, FH, =¢H, F+(¢q+1)F, HLH =H H,
EH =¢H E+(q+1)E, HF=¢FH_ +(q+1)F, H .+ H_ +(¢q—1)HH_ =0

and it is a Hopf subalgebra, with Hopf operations given by

AE)=E®1+1®FE+(q—1)-H.®E, €E)=0, SE)=-E—(¢q—1)H_E
A(Hi):Hi(X)l—{—l@Hi—i—(q—l)Hi®Hi, €<H:t):0, S(Hi):H:F
AF)=F®1+1@F+(q—1)-F®H_, eF)=0, SF)=—-F—(q—1)FH,.

It is easy to check thal/;(e;) is a QrUEA, whose semiclassical limit & (e) : in fact, map-
ping the generator$” mod (¢—1), D+ mod (¢—1), £ mod (¢ — 1) respectively tof , ih/2,
e € U(es) gives an isomorphian;(eg)/(q — 1) Uj(e2) =, U(e,) of co-Poisson Hopf algebras.
Similarly, Uf(es) is a QrUEA too, with semiclassical limit/(e;) again: here a co-Poisson Hopf
algebra isomorphisrTU;(eQ)/(q— 1)Ug(e2) = Uf(ez) is given mappingF mod (¢ —1), Hi
mod (¢—1), £ mod (¢g—1) respectively tof , +h, e € Ul(es).

6.3 Computation of U, (e,)" and specialization U, () —— F[E5*]. This section is devoted

to computel; (e;) andU¢ (e2)", and their specialization at = 1: everything goes on as §5.3, so
we can be more sketchy. From definitions we have, foramyN, A™(E) =" K®t V@ F®
190=9), 50 §,(E) = (K —1)*" V@ E=(¢g-1)""-H" Vo E, whences,((¢—1)E) €

(¢ —1)"Us(e2) \ (¢ — 1)" U(es) thus (q— 1)E € U(es)', whereasE ¢ U2 (e;)". Similarly, we
have (¢ — 1)F, (¢ — 1)Hy € Ug(es)"\ (¢ — 1) UZ(e2)". ThereforeU¢(e,) contains the subalgebra
U’ generated by’ := (¢ — 1)F, Hy := (¢ — 1)Hy, E = (¢ — 1)E. On the other hand/¢(e,)" is
clearly theR—span of the set{ FeHY He B¢ ‘ a,b,c,d e N } . to be precise, the set

{ FeHb Kb g ‘ a,b,d e N} - { FOHY (14 (g — )H_ )" e ‘ ab.de N}
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is an R—basis ofU/? (e,)'; therefore, a straightforward computation shows that any eleméf(ie)’
does necessarily lie iy’ thUSU;(22>/ coincides withU’. Moreover, sinceH. = K*!' — 1, the
unital algebrd];(e2)’ is generated by, K*! andE as well.

The previous analysis —+mutatis mutandis— ensures also thaltqu(eg)’ coincides with the unital

R-subalgebrd/” of U;(e») generated byF .= (¢ — 1)F, Dy := (¢ —1)Dy, E := (¢ — 1)E;in
particular, Uz (es)' D Ug(e,)'. Moreover, asDy = L*! — 1, the unital algebrd/:(e,)’ is generated
by I, L*! andE as well. Thud/:(e,)’ is the unital associativB—algebra with generatots := LF',
L= [* £ .= FL~! and relations

Lel=1=L7'L, EF=FE, L[UF=¢PFLY, LY =gtect
with Hopf structure given by

AF)=FQL'+LF, ALT)=LcL, AE)=EQL'+LRE

e(F)=0, (L) =1, €&) =0, S(F)=-F, S(£) =L, S¢&)=-¢.

As ¢ — 1, this yields a presentation of the function algela, E»|, and the Poisson bracket

that F[sEﬂ earns from this quantization process coincides with the one coming from the Poisson
structure on, E5y" : namely, there is a Poisson Hopf algebra isomorphism

Uiea) [ (g = 1) Ug(e2) —— F By

givenby £ mod (¢—1)— x, £*' mod (¢—1)— 2z*', F mod (¢—1) — y. Thatis, U (e;)’
specializes toF’ [SEQ*} as a Poisson Hopf algehias predicted by Theorem 2.2.

In the “adjoint case”, from the definition éf’ and from U;(eQ)’ = U’ we find thatU;(eg)’ is the
unital associativd:—algebra with generator8, K*!, E and relations

KK'=1=K'K, EF=FE, KYF=¢PFK*,6 K"E=?FK*
with Hopf structure given by
AF)=FoKk ' +1eF, AKT) =Kok, AF)=Eel+Kek
e(F)=0,e(K*)=1,¢(E)=0, S(F)=-FK,K S(K*")=K* S(E)=-K'E.
The outcome is that there is a Poisson Hopf algebra isomorphism
Us(ea) [ (a = 1) U(e2) —— FE5] ( F[.E5])

givenby E mod (¢ —1) — zz, K*' mod (¢ —1) — 2*2, F mod (¢ — 1) — z~'y, which
meansU¢ (e;)" specializes toF' [, E5"| as a Poisson Hopf algebmcording to Theorem 2.2.
To finish with, note thaall this analysis (and its outcome) is entirely characteristic-free

6.4 The identity (U,(e5)')” = U,(e5). This section goal is to check the part of Theoren((2).2
claiming that H € QridEA — (H’)V = H bothfor H = U;(es) and H = U (e2) . In addition,
our analysis work for alp := Char (k) , thus giving a stronger result than Theorem(18)2

11 AN
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First, U;(e2)’ is clearly a freeR—module, with basis{ FeLdge
B := {f“(/:ﬂ — 1’| a,b,c € N}, is an R-basis as well. Second, sineéF) = e(L£*' —
1) = €(&) = 0, the ideal J := Ker<e: Us(es) — R) is the span ofB \ {1}. Therefore
(Us(e2)') = S so <(q — 1)_1J)n is generated by(q — 1) 'F = LF, (¢—1)"(L-1) = D,
(g—1)"'(£'=1)=D_, (¢—1)" '€= EL', hence byF, D, E,so it coincides wittU; (e.) .

The situation is entirely similar for the adjoint case: one simply has to ch&g€*!, £ respec-
tively with ', K*', F, and D, with H. , then everything goes through as above.

a,c € N/ d € Z}, hence

6.5 The quantum hyperalgebraHyp (¢2). Like for semisimple groups, we can define “quantum
hyperalgebras” foe, mimicking what done ir§5.5. Namely, we can first define a HoZﬂ[q, q*l}—
subalgebra olU?(e2) whose specialization af = 1 is the Kostant-likeZ—integer formUz(e;) of
U (e2) (generated by divided powers, and giving the hyperalgétya(¢,) over any fieldk by scalar
extension, namelyHyp (e;) = k ®z Uz(ez)), and then take its scalar extension ofer

To be precise, IeHyij(eQ) be the unitalZ [q, q—l]—subalgebra otJ? (e2) (defined like abovéut
overZ[q, q‘l}) generated by the “quantum divided powers”

L: n ctl-ry _1q
F) .= F"/[n]q! , < ’ C) = H g~ ., EW.= E”/[n} !

_ q
n e qg- —1

(forall n € N and ¢ € Z, with notation 0f§5.5) and byL~!. Comparing with the case of
sl, one easily sees that this is a Hopf subalgebr@jik,), and Hypg’z(eg)‘ » >~ Uz(ey); thus
Hyp;(e2) := R ®z[q,q4-1] Hyp;’z(eg) (for any R like in §6.2, with k := R/h]-g and p := Char(k))
specializes at; = 1 to thek—hyperalgebradyp(¢;). In addition, among all théﬁ;c)’s it is enough
to take only those withe = 0. From now on we assumg > 0.

Again a strict comparison with the, case shows us thdﬂyp;(eQ)’ Is the unitalR—subalgebra of
Hyp; (e2) generated by.~! and the “rescaled quantum divided powefg™1)"F™, (¢—1)"("i")

and (¢g—1)"E™ for all n € N. It follows that Hyp:(e;)’ 1 is generated by the corresponding
=

specializations of(¢ — 1)” F®"), (¢ —1)" (Lpo) and (g —1)” E®") forall r € N: this proves

that the spectrum oHyp;(eQ)" has dimension 0 and height 1, and its cotangent Lie algebra has
q=1

basis { (q—1)" F&), (g—1)”" (Lp;o), (g—1)" EP) mod (q—1) Hyp:(g) mod J2 | r e N}

, SO thatJ/J2 is the aforementioned cotangent
1

(where./ is the augmentation ideal éfyp (e,)’
=

Lie bialgebra). Moreover(Hyp3(e,)')” is generated byig — 1) ' F), (¢ — 1)~ (Lpo) L1

and (¢ —1)” 'E®@) (for all » € N): in particular (HypZ(QQ),)V C Hyp:(e;), and finally

(Hyp;(eQ)’)V‘ is generated by the cosets modudip— 1) of the elements above, which in fact
q=1

form a basis of the restricted Lie bialgetirauch that(HypZ(eg)’)v‘ = u(®) .
q=1
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All this analysis was made starting frdtff (e,) , which gave “simply connected quantum objects”.
If we start instead fronJ; (e;) , we get “adjoint quantum objects” following the same pattern but for
replacing everywheré*! by K*!: apart from these changes, the analysis and its outcome will be
exactly the same. Like fosl, (cf. §5.5), all the adjoint quantum objects — ifgypy (e2), Hypg(eg)’
and (Hypg(eg)’)v — will be strictly contained in the corresponding simply connected quantum ob-
jects; nevertheless, the semiclassical limits will be the same in the céfegfe,) (always yielding
Hyp(e;)) and in the case o(nypq(eg)’)v (giving u(¢), in both cases), while the semiclassical limit
of Hypq(eg)’ in the simply connected case will be a (countable) covering of that in the adjoint case.

6.6 The QFAs F,[E,] and F,[,E,]. Inthis and the following sections we look at Theorem 2.2
starting from QFAs, to get QrUEASs out of them.

We begin by introducing a QFA for the Euclidean groupsand,E, . Let F,[E,] be the unital
associativeR—algebra with generatorst§ b, ¢ and relations

ab=gba, ac=gqca, bc=cb
endowed with the Hopf algebra structure given by

Al@) =a'wa’, Ab)=bea'+avb, Ac)=cea+ta'®c
e(@') =1, e(b)=0, e(c)=0, S(a')=a"', S(b)=-¢'b, S(c)=—-¢""c.

Define F,[,E-] as theR—submodule of’, | E;] spanned by the products of an even number of gen-
erators, i.e. monomials of even degreedt ab, c: this is a unital subalgebra Bf[ E»] , generated by
B:=ba,a* :=a", andy :=a'c. LetalsoF [Ey] := (Fy[Es]) , andFy[,Eo] := (F,[aE2])
having the same presentation th&yi£,] and F,[, E>] but overF'(R). By constructionF;[E,] and
F,[.E,] are QFAs (ath = g — 1), with semiclassical limit[ E;] and F'[, E»] respectively.

6.7 Computation of F,[E,]" and F,[,E,]" and specializations F,[E,]' " U(g*) and
Fq[aEZ]VLl> U(g*). Inthis section we go and compufé[G]* and its semiclassical limit (i.e. its
specialization ayy = 1), both for G = F, and G = ,E,.

First, F,[Es] is free overR, with basis{ b'a‘ct |a € Z,b,c € N } and so also the sei; :=

{ b’(at' — 1)"c® |a,b,c € N} is an R—basis. Second, agb) = e(a*! — 1) = ¢(c) = 0, the ideal

J = Ker(e : Fy[Ey)] — R) isthe span of8,\ {1} . Then F,[E,]" = > >0 ((q—l)_lj)n is the
1_

unital R—algebra with generatord.. := & 11 , B = b 7 ,and F :=

q— q— q—

D.E=qED,+E, D,F=qFD,+F, ED =qD_E+E, FD_=¢qD_F+F

and relations

EF = FE, D.D_=D_D,, D,+D_+(q—1)DsD_=0
with a Hopf structure given by

AB)=E®1+10E+(¢-1)(E®D_-+D,®E), €¢E)=0, S(E)=-¢'E
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A(D:t):Dj:@l—i-l@Di—i-(q—l)‘Di@Di, E(Di)zo, S(D:t):D¢
AF)=F®1+19F+(q-1)(F®Dy +D_QF), €F)=0, SF)=-—¢"F.

This implies thatF,[E,]" =t U(ey*) as co-Poisson Hopf algebras, for an isomorphism
B [(a=1) BB —— Ules)

of co-Poisson Hopf algebra exists, given Y. mod (¢ — 1) — + h/2, E mod (¢ —1) — e,
and ' mod (¢—1) — f;so F,[E,]" does specialize t&/ (e;*) as a co-Poisson Hopf algebege.d.
Similarly, if we considerF,[,F,] the same analysis works again. In fagj[, F>] is free overR,
with basisB,, := {ﬂb(aﬂ —1)%¢ ‘ a,b,c € N} ; then as above/ := Ker (e : FyloEs] — R) is
the span ofB, \ {1}. F,[oEx]" = 3,5, ((q—l)_lj>n is nothing but the unitak—algebra (inside
. atl —1 I} v
F,[.E»]) with generatorsH, .= ———, £/ := ,and F/ =
q—1 q—1 q—
E'F=¢?*FE HE=¢FH, +(q+1)E, H F=¢FH, +(q+1)F,H H =H_H,

and relations

FH =¢HFE+@+1)E, FH_=¢H F +(q+1)F,H, +H +(¢q—1)H,H =0
with a Hopf structure given by
A(EY=F®@1+1®@F +(¢q—1)-H, ®FE, ¢F)=0, SFE)=-E -(¢q—1)H_F

AH)=Hi®1+1®H:+(¢q—1)-HL®Hy, €Hy)=0, S(Hy)=H-
AFY=F@1+1@F +(q—-1)-H.-®QF, €F)=0, SF)=-F—(¢—1)H.F.

This implies thatF, [, Fs] " 1, U(ey") as co-Poisson Hopf algebras, for an isomorphism
FlLB [(a=1) FlaBs) —— U(es)

of co-Poisson Hopf algebras is given b§{. mod (¢ — 1) — £h, E' mod (¢ — 1) — e, andF’
mod (¢ — 1) — f; s0 F,[,E,]" too specializes td/(e;*) as a co-Poisson Hopf algebes expected.
We finish noting that, once mor#his analysis (and its outcome) is characteristic-free

6.8 The identities (F,[E.]") = F,[Ey) and (Fy[,E2]") = F,[,E]. In this section we verify
for the QFASH = F,[E,| and H = F,[,E>] the validity of the part of Theorem 212) claiming that
H € QFA = (HY)' = H. Once more, our arguments will prove this result @har (k) > 0,
thus going beyond what forecasted by Theorem 2.2.

FormulasA™(E) = Y a”@Ew® (@)™, An(Dy)= Y (@) ® Diy®1% and
r+s+1l=n r+s+1=n

A"F)y= > (a—1)®r ® E ® a® are found by induction. These identities imply the following
r+s+1=n
W(E) = > @-DTebe@E' -1)"=@g-)"" ¥ DTeEoD®
r+s+1=n r+s+1=n
6u(Ds) = (@ -1)"" V@ Ds=(g— 1) D"
WEF) = Y (@' -1)"eEe@-1)"=(q-1)"" ¥ D¥eE®D®

r+s+1=n r+s+1=n
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which give £ := (¢ —1)E, Dy = (¢—1)Dx, F:= (¢—1)F € (F,[E5]") \ (¢ —1)- (F,[E]")".
So (F,[E»]")’ contains the unitaR—subalgebral’ generated (insid&,[F,]) by ¥/, D andF'; but
E=b,D. =a" -1, and F' = c, thusA’ is just F,[E,]. SinceF,[E,]" is the R—span of
{ EedeDd_* Flledy,d_,f €N } , one easily sees — using the previous formulasX6r— that
in fact (F,[Es]")" = A’ = F,[E,], q.ed.

When dealing with the adjoint case, the previous arguments go through again: i(rFtﬁ@EQ]v)’
turns out to coincide with the unitat—subalgebrad” generated (insidér, [, F,]) by E' := (¢ —
DE' =§, Hy :==(¢q—1)Hy = o' —1,and F' := (¢ — 1)F’ = ~; but this is also generated b,
o*tandy, thus it coincides with, [, E»], g.e.d.

§ 7 Fourth example: the Heisenberg groupH,,

7.1 The classical setting. Let k be any field of characteristip > 0. Let G := H,(k) =
H,, the(2n + 1)-dimensional Heisenberg group; its tangent Lie algebra b,, is generated by
{fish,e; i = 1,...,n} with relations [e;, f;] = di;h, leise;] = [fi, [;] = [h,eil = [h, f;] =0
(Vi,7 =1,...n). The formulasi(f;)) = h® fi — fi® h, 6(h) =0, 0(e;)) = h®e; —e; @b
(Vi =1,...n) makeb, into a Lie bialgebra, which provides,, with a structure of Poisson group;
these same formulas give also a presentation of the co-Poisson Hopf dlgéhigwith the standard
Hopf structure). Wherp > 0 we consider orh),, the p—operation uniquely defined byi[p] =0,
fPl =0, Pl = p (forall i = 1,...,n), which makes it into a restricted Lie bialgebra. The group
H,, is usually realized as the group of all square matri@ei§)m:1 ..... 2 such thata;; = 1 V¢ and
a;; = 0Vi,j suchthateithet > j or 1 #i < j ori < j#n+2;itcan also be realized a,, =
k™ x k x k™ with group operation given by(a', ¢, V') - (a”, ", V") = (¢’ +a”", +"+d'«b", b +1b")
where we use vector notation= (vy,...,v,) € k" anda' * 0" := 31" | a}b] is the standard scalar
product in k™ ; in particular the identity of7,, is e = (0,0,0) and the inverse of a generic element is
given by (a, c, l_))_1 = (—a,—c+ax*b,~b). ThereforeF[H,] is the unital associative commutative
k—algebra with generators, , ..., a,,c, by, ..., b,, and with Poisson Hopf structure given by

Aa))=0;®14+1®a;, Ale)=c®@1+1Qc+>, jar®b, Ab)=b®@1+1®10;
e(a;)) =0, €e(c)=0, €b;)=0, S(a;) = —a;, S(c)=—c+> ) jab;, S(b;)=—b

{ai,a;} =0, Hai,bj} =0, {b,b;} =0, A{c,ai}=a;, {c,bi}=0b

o h=2,,
e; = 0a,|,» Wheree is the identity element off,, ). The dual Lie bialgebrg* = b,,” is the Lie algebra
with generators;f, h, g, and relationsh, e;| = e;, [h,f;] =1;, [e;, €] = [e,f;] = [fi,f;] = 0, with
Lie cobracket given byi(f;) = 0, o(h) =37 (e; @ f; —f,®e;), o(e) =0 forall i = 1,...,n
(we take f := f7, h:= h*, & := ¢, where { f/,h*,ef|i = 1,...,n} is the basis of,’

which is the dual of the basi§f;, h,e;|i = 1,...,n} of h,,). This again gives a presentation of

forall 7,7 =1,...,n. (Remark: with respect to this presentation, we hdve- 0,,
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U(h,") too. If p > 0 thenh,” is a restricted Lie bialgebra with respect to theperation given
by ei[p] =0, fi[p] =0, hPl = h (forall i = 1,...,n). The simply connected algebraic Poisson
group with tangent Lie bialgebitg,” can be realized (witlk* := k \ {0}) as ;H,” = k" x k* x k",
with group operation (&,%,3) - (&,%,8) = (& + 97'& 47,98 + 7'3); so the identity of
JH,"is e = (0,1,0) and the inverse is given bfg,’y,@)_l = (—a,7 ', —p). Its centre is
Z(sH,") = {(0,1,0),(0,-1,0)} =: Z, so there is only one other (Poisson) group with tangent Lie
bialgebrah,,” , that is the adjoint group H,,” := SHn*/Z .

It is clear thatF [an*] is the unital associative commutatike-algebra with generatora,, ...,
an, v, B, ..., B, and with Poisson Hopf algebra structure given by

Al) =0, 97+7 ' ®a;, AT =7"@+", AB)=87+7'®5
E(ai) =0 ) 6(fyil) = ) 6(6@) =0 5 S(Oél) = —qy, S("}/il) = ’y$1 , S(ﬁz) = _ﬁz
{oi, 0} ={ai, B} ={6:. B} = {7} = {67} =0, {3} =6;(v* —777) /2

forall 7,5 =1,...,n (Remark: with respect to this presentation, we have 5@.\6 , h= % 787|e,

& = Oa, ]e , wheree is the identity element ofl,,* ), andF'[, H,,*] can be identified — as in the case of
the Euclidean group — with the Poisson Hopf subalgebr& ben*} which is spanned by products
of an even number of generators: this is generated by, =2, andy~ ' 3; (i=1,...,n).

7.2 The QrUEAs U;(h,,) and Ug(h,). We switch now to quantizations. Once again,/igbe a
1dD and leth € R\ {0} and assume := 1 + h € R be invertible, like in§5.2.

Let Uy(g) = Ui(h,) be the unital associative'(R)-algebra with generators;, =", E; (for
i=1,...,n)and relations

L2 _ L—2
LL™'=1=L""'L, L[F'F=FL", LY"E=EL", EF;—FE=6——"/
q49—4q
forall i, =1,...,n;we give it a structure of Hopf algebra, by settingi(; =1,...,n)

AE)=E®1+L*®E, AL™)=L"oL", AF)=FL?*+10F
e(E;)=0, (L) =1, €F)=0, S(E)=-L°E;, SL*)=LT, S(F)=-FL

Note then that{ [T, Fo-L- T, B ‘ 2 € Z, a;,d; €N, vz'} is an F'(R)—basis ofU;(h.,) .

Now, let U;(bn) be the unitalR—subalgebra oU;(hn) generated by the elements , ..., F,,
L—-1 L— L2 - -
D = T I''=———,FE,..., E,. ThenU;(h,) can be presented as the associative unital
q— q—4q
algebra with generators; , ..., F,,, L*',D,I", E,, ..., E, and relations
DX =XD, LHX = XL*!, X =XI, E;F; — FyE; = §;I

L=1+(q-1)D, L*-L7?=(q—¢ "), DL+1)(1+L?)=QQ+¢g "I
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forall X e {F,,L*",D,IE;} _,
bra (overR), with

andi,j =1,...,n; furthermoreU/(b,) is a Hopf subalge-

AD)=TQL*+L2xI,

(I') =0
(D)

: S(I')=-I
0, S(D)=—L"'D .

€
€

Moreover, from relations. = 1+ (¢ — 1)D and L™ = L — (¢ — ¢7*) LI it follows that

s a a; b e - d; s
U;(h,) = R-span of{ HE -D°I" ];[1EZ ai,b,c,dieN,V'L—l,...,n} (7.1)

=1 [

The “adjoint version” ofUs(b,,) is the unital subalgebrd?(h,) generated byF;, K*' := L*?,
E; (i = 1,...,n), which is also aHopf subalgebra. It also has di-integer formU¢ (b,,), namely

. K -1 K—-K!
the unitalR—subalgebra generated @&, ..., F,,, K*' | H := 1 = ———, E1, ...,
q— q—4q
E,, : this has relations
HX = XH , KX = XK', Ix=Xr, E,F; — F;E; = 6T

K=1+(g-1)H, K-K'=(q-¢")I', HAI+K"Y)Y=QQ+q¢")I

forall X e {F,, K*',H,I''E;},_, andi,j=1,...,n,and Hopf operations given by

AE)=E®1+K®E;, e(E) =0, S(E) =K 'E;
A(Kil) — Kt @ K+ E(Kil) =1, S(Kil) _ KTl
AH)=H®1+K®H, e(H)=0, S(H)=—-K'H
A= K'+KaTI, e(I') =0, S(ry=-r
AF)=FEK'+10F,, e(Fi) =0, S(F) = —FK!
forall i = 1,...,n. One can easily check thdf;(h,) is a QrUEA, with U(h,) as semiclassical

limit: in fact, mapping the generators; mod (¢ — 1), L*! mod (¢ — 1), D mod (¢ — 1), I’
mod (¢—1), E; mod (¢ — 1) respectively tof;, 1, h/2 ,h,e; € U(h,) yields a co-Poisson Hopf
algebra isomorphism betweelﬁ;(hn)/(q —1)U;(h,) andU(h,). Similarly, Ug(h,) is a QrUEA

too, again with limit U(b,,), for a co-Poisson Hopf algebra isomorphism betwe‘gﬁhn)/(q —
1) U¢(bn) and U(h,) is given by mapping the generatof$ mod (¢ —1), K*' mod (¢—1), H
mod (¢ —1), I' mod (¢ —1), E; mod (¢ — 1) respectively tof;,1,h,h,e; € U(h,).

—1

7.3 Computation of U,(h,)" and specialization U,(h,) —— F[H,"] . Here we compute
U:(h,) andUg(h,)", and their semiclassical limits, along the patterfi®f.

Definitions give, for anyn € N, A"(E;) = ", (£2)*" Y @ E; ® 190=9), hence 6,(E;) =
(g—1)"" - D"V @ E so &((g-1)E) € (g—1)"U:b,) \ (¢—1)"" U:(h,) whence
E; = (g — 1) E; € Ui(h,)', whereasE; ¢ U:(h,); similarly, we have F; := (¢ — 1) F;, L*!,
D:=(q-1)D=L—-1,I:=(q-1)T ¢ Us(b)'\ (g — 1) Us(h,), forall i = 1,...,n. Thus
U (h,) contains the subalgebtd generated byf}, L*', D, I, E;; we argue that/:(h,,)’ = U’:
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this is easily seen — like fa$ L, and for F;, — using the formulas above along with (7.1). Therefore
Ug(h,) is the unitalR-algebra with generator8; , ..., F,,, L*', D, I", Ey, ..., E, and relations

DX=XD, [*X=XL*, TI'X=XI',  EF,~FE=2;(q-1I
L=1+D, L*-L?=(1+¢" ', DL+1)(QA+L?*)=QQ+¢ "I

-----

A Lil):Lil®Lil7 E(Lil)zl, S(Lil):L:Fl
AD)=T®L*+L2xI, €I)=0, S(I')=-r
A(D)=D®l+L®D, €¢D)=0, S[D)=-L"'D
AR)=FEeoL?+10F, ¢F)=0, S(F)=-FL Vi=1,...,n.

A similar analysis shows thaﬂfg(hn)’ is the unitalR—subalgebrd’” of Ug(h,) generated byF
: . J . L . a / s / a /.
K H:=(q-1)H, ' E (i=1,... ,n),.ln partlc:.ularT Us(by) - Qq(hn) : Thuqu (h,)" is the
unital associativer—algebra with generator8; , ..., F,, H, K*' ,I", E,, ..., E, and relations
HX=XH, KYX=XK*, X=X, EF—FEB=0,q-)F
K=1+H, K-K'=QQ+4¢" ', HOA+K')=({1+q¢")I

forall X € {F;, K*',K,I",E;},_, andi,j=1,...,n,with Hopf structure given by

A(K:I:l) :K:H@Kil, 6(K':tl) =1, S(K:tl) — KF1
AD)=T®K+K'®I', €I)=0, S(I')=-I
AH)=Heol+K®H, €H)=0, S(H)=-K'H
AF)=FEeoK'+10F, F)=0, S(F)=-FK Vi=1,...,n.

As ¢ — 1, the presentation above provides an isomorphism of Poisson Hopf algebras
Uz (ba) [ (a = 1) Up(9) —— F[H,]

given by E; mod (¢ — 1) — a7, L* mod (¢ —1) +— ", D mod (¢g—1) —~y—1, I
mod (¢ — 1) — (+2 — 7*2)/2 , F; mod (q—1) — 414, . In other words, the semiclassical limit
of Us(h,) is F[.H,"], as predicted by Theorem 2 for p = 0. Similarly, when considering the
“adjoint case”, we find a Poisson Hopf algebra isomorphism

Ushn)' [(a = DU —— FLH] (< PLH)

givenby E; mod (¢ —1) — a;7*!, K*' mod (¢ —1) —~+*2, H mod (g—1) —~2—1, I’
mod (¢—1) — (72—7—2)/2 , F; mod (¢—1) — 77! . Thatis to sayl/2(h,)" has semiclassical
limit F[,H,"], as predicted by Theorem 2 for p = 0.
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We stress the fact thahis analysis is characteristic-frego we get in fact that its outcome does
hold for p > 0 as well, thus “improving” Theorem 2(@) (like in §§5—6).

7.4 The identity (U,(h,))" = U,(h,). In this section we verify the part of Theorem b}
claiming, forp = 0, that H € QriUEA — (H’)V = H, both for H = U;(b,) and for H =
Ug(bn) . In addition, the same arguments will prove such a resulpfor (0 too.

To begin with, using (7.1) and the fact that, D, I, E; ¢ Ker< Uz (b)) — R) we get
that J := Ker(e¢) is the R—span of M \ {1}, where M is the set in the right-hand-side of (7.1).
Since (U (h,))" = Dm0 ((q 1)~ J) we have that(U:(9,)’)” is generated — as a unitéh-
subalgebra o3 (h,) —by (¢— 1) "' F; =F,,(¢q—1)"D=D,(¢—1)"'I'=T,(¢g—1)"'E; =
E; (i=1,...,n),soitcoincides wittU:(h,), g.e.d. In the adjoint case the procedure is similar: one
changed*!, resp.D, with K**, resp.H, and everything works as before.

7.5 The quantum hyperalgebraHyp (b,). Like in §85.5 and 6.5, we can define “quantum
hyperalgebras” associatedtp. Namely, first we define a Hopf subalgebraldfh,,) overZ [q, q—l}
whose specialization at = 1 is the natural Kostant-liké—integer formUz(h,,) of U(h,,) (generated
by divided powers, and giving the hyperalgelsfgp (h,,) over any fieldk by scalar extension), and
then take its scalar extension over

To be precise, letyp:*(h,,) be the unitalZ ¢, ¢ ] -subalgebra of’; (b,,) (defined like abovéut
overZ[q, q*l]) generated by the “guantum divided powers”

R I G B A

r=1

(forall m € N, ¢ € Z andi = 1,...,n, with notation of§5.5) and byL—!. Comparing with
the case ofl, — noting that for each the quadruplé F;, L, L', E;) generates a copy df; (sl2)

= Uz(h,); thus
Hyp:(bn) :== R @zjgq-1) Hyp.?(h,) (foranyR like in §6.2, withk := R/h R and p := Char(k))
specializes ay = 1 to thek—hyperalgebralyp(h,,) . Moreover, among all th(aL;LC)’s it is enough
to take only those withe = 0. From now on we assumg > 0.

Pushing forward the close comparison with the caselpfve also see thaHypZ(hn)’ is the
unital R—subalgebra oHyp:(h,) generated by.~! and the “rescaled quantum divided powers
(q—1)"F™, (¢=1)" (%) and (g—1)"E"™ , forall m € N andi = 1,...,n. It follows that

m

— we see at once that this is a Hopf subalgebra&/ff,,) , and Hyp(j’z(hn)

Hypg(hn)" s generated by the specializations @t= 1 of (g — VW EP) | (q— 1)pT<L;°>

9= p"
and (¢ — 1)pTEi(pr), forall » € N, i = 1,...,n: this proves directly that the spectrum of
Hypg(hn)/‘ has dimension 0 and height 1, and its cotangent Lie algeb/n/af2 (where J is
q=1

_)has basiS{ (q—17" F", (q—l)”r<1;9;°), (¢—1)" B
mod (q—1) Hyp:(g)" mod J> ‘ reN,i=1,....n } Finally, (Hyp;(l‘)n)’)v is generated by

the augmentation ideal dfyp: (b,,)’
q
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(q— 1" EP) (-1 (Lp;0> , L' and (¢ — 1)" 'E®" (for all » andi): in particular

(Hyp;(hn)’)v C Hyp:(h,), and (Hyp;(bn)’)v ’q_l is generated by the cosets mod(4o- 1) of these

elements, which form a basis of the restricted Lie bialgélsach that(Hyp;j(bn)’)v‘ = ue) .

The previous analysis stems frdifj(h, ), and so gives “simply connected quar?t_um objects”. In-
stead we can start froig (h,,), thus getting “adjoint quantum objects”, moving along the same
pattern but for replacind*! by K*! throughout: apart from this, the analysis and its outcome are
exactly the same. Like fosl, (cf. §5.5), all the adjoint quantum objects — if¢yp; (h,.), Hypg(hn)’
and (Hypg(l‘)n)’)v — will be strictly contained in the corresponding simply connected quantum ob-
jects. However, the semiclassical limits will be the same in the cast/pf(g) (giving Hyp(h,) in
both cases) and in the case(o?ﬁypq(g)’)v (always yieldingu(t)), whereas the semiclassical limit of

Hypq(g)’ in the simply connected case will be a (countable) covering of the limit in the adjoint case.

7.6 The QFA F,[H,|. Now we look at Theorem 2.2 the other way round, i.e. from QFAs to
QrUEAs. We begin by introducing a QFA for the Heisenberg group.

Let F,[H,] be the unital associativB—algebra with generators, a..., a,,c, b, ..., b,, and
relations (foralli,j =1,...,n)

aa, =aa, ab,=ba, bb,=bb, ca=ac+(¢g—1)a, cby=bjc+(¢g—1)b;
with a Hopf algebra structure given by (forallj = 1,...,n)

Ala)=a®l+1loa, Al)=col+loctyawb, Ab)=bel+leb,

J=1

@) =0, ec)=0, ebi)=0, Sla) =—a, S(C):_C+iaéb67 S(b;) = —b;

7j=1

and let alsoF,[H,| be theF(R)—algebra obtained fronk,[H,| by scalar extension. TheB :=
{H?Zl a" -l b;’?' ‘ a;,c,b; € NVi,j } is an R—basis ofF,[H,], hence an’(R)-basis of
F,[H,]. Moreover,F,[H,| is a QFA (ath = ¢—1) with semiclassical limit'[H,,] .

7.7 Computation of F,[H,]" and specialization F,,[H,,]" e, U(h,"). This section is de-
voted to computel,[H,,]" and its semiclassical limit (af = 1).

Definitions imply thatB \ {1} is an R—basis of J := Ker<e : FylH,) — R) . Therefore

F,[H,)" = > om0 ((q - 1)_1J>n is just the unitalR—algebra (subalgebra Bf,[ H,,]) with generators
E; ::L,H:: ¢ ,and F; := b (¢=1,...,n)andrelations (forall,; =1,...,n)
q—1 q—1 q—1

with Hopf algebra structure given by (forallj =1,...,n)

AE)=EQ1+1QFE,, A(H)=H1+1®H+(¢—1)>_ E;®F;, A(F;)=F®1+1QF,
j=1
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«(E;) =e(H) =e(F) =0, S(E)=-E;, S(H):—H—F(q—l)i E;F;, S(F,)=—F;.

J
At ¢ = 1 this implies thatF,[H,,]" =, U(h,") = U(h,") as co-Poisson Hopf algebras, for a
co-Poisson Hopf algebra isomorphism

FlH] (0= 1) Bl —— Ub,")

exists, given by £; mod (¢ —1) — €&, H mod (¢ —1) — h, F; mod (¢ —1) — f;, forall
i,j=1,...,n.Thus F,[H,]" specializes td/(h,") as a co-Poisson Hopf algebrge.d.

7.8 The identity (Fq[Hn]V)/ = F,[H,]. Finally, we check the validity of the part of Theorem
2.2(b) claiming, whenp = 0, that H € QFA — (H) = H forthe QFA H = F,[H,]. Once
more the proof works for alp > 0, so we do improve Theorem Zi5).

First of all, from definitions induction gives, for ath € N,

Am(EZ): Z 1®T®Ei®1®s, Am(Fl): Z 1®T®Fi®1®s Vz:l,,n

r+s=m—1 r+s=m—1

AMH)= Y 1 H®1®+5 Y 1800 @ B, @ 19611 @ F, @ 19m=Fk)
r+s=m—1 i=1j,k=1
i<k
so that 6,,(E;) = 0,(H) = 0,,(F;) =0 forall m > 1,¢ > 2 andi = 1,...,n; moreover, for
Ei:=(q—-1)E =a,H:=(q—-1)H=c,F,:=(q—1)F,=b; (i=1,...,n)one has

01(Ei)= (a=1E;, 01(H)= (¢ = DH, 6:(F) = (¢ = DEF; € (¢ = 1) F[H]"\ (¢ = 1)°Fy[H,]"
5 (H) = (0= 1° S B @ Fi € (¢ = P (F[H] )7\ (= ) (F[H])

The outcome is thaf; = a, /f = ¢, F; = b, € (F,[H,]")", so the latter algebra contains the
one generated by these elements, thét j7,,] . Even moreF,[H,,]" is clearly theR—span of the set
BY := { [T, 2 - He - T F;’j ai,c,b; e NVi, j } , s0 from this and the previous formulas for
A" one gets tha( F,[H,|")' = F,[H,], g.e.d.
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