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Abstract. Let R be an integral domain, let ~∈R\{0} be such that R
�
~R is a field, and HA

the category of torsionless (or flat) Hopf algebras over R. We call H∈ HA a “quantized func-
tion algebra” (=QFA), resp. “quantized restricted universal enveloping algebras” (=QrUEA),
at ~ if H

�
~H is the function algebra of a connected Poisson group, resp. the (restricted, if

R
�
~R has positive characteristic) universal enveloping algebra of a (restricted) Lie bialgebra.
We establish an “inner” Galois correspondence on HA, via the definition of two endo-

functors, ( )∨ and ( )′, of HA such that: (a) the image of ( )∨, resp. of ( )′, is the full
subcategory of all QrUEAs, resp. QFAs, at ~ ; (b) if p := Char

�
R
�
~R
�

= 0 , the restrictions

( )∨
��
QFAs

and ( )′
��
QrUEAs

yield equivalences inverse to each other; (c) if p = 0 , starting

from a QFA over a Poisson group G, resp. from a QrUEA over a Lie bialgebra g, the functor
( )∨, resp. ( )′, gives a QrUEA, resp. a QFA, over the dual Lie bialgebra, resp. a dual Poisson
group. In particular, (a) yields a machine to produce quantum groups of both types (either
QFAs or QrUEAs), (b) gives a characterization of them among objects of HA, and (c) gives
a “global” version of the so-called “quantum duality principle” (after Drinfeld’s, cf. [Dr]).

We then apply our result to Hopf algebras of the form |[~]⊗|H where H is a Hopf alge-
bra over the field |: this yields quantum groups, hence “classical” geometrical symmetries of
Poisson type (Poisson groups or Lie bialgebras, via specialization) associated to the “gener-
alized” symmetry encoded by H. Both our main result and the above mentioned application
are illustrated by means of several examples, which are studied in some detail.

“Dualitas dualitatum
et omnia dualitas”

N. Barbecue, “Scholia”
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Introduction

The most general notion of “symmetry” in mathematics is encoded in the notion of Hopf
algebra. Among Hopf algebras H over a field, the commutative and the cocommutative
ones encode “geometrical” symmetries, in that they correspond, under some technical con-
ditions, to algebraic groups and to (restricted, if the ground field has positive characteristic)
Lie algebras respectively: in the first case H is the algebra F [G] of regular functions over
an algebraic group G, whereas in the second case it is the (restricted) universal envelop-
ing algebra U(g) (u(g) in the restricted case) of a (restricted) Lie algebra g . A popular
generalization of these two types of “geometrical symmetry” is given by quantum groups:
roughly, these are Hopf algebras H depending on a parameter ~ such that setting ~ = 0
the Hopf algebra one gets is either of the type F [G] — hence H is a quantized function

algebra, in short QFA — or of the type U(g) or u(g) (according to the characteristic of
the ground field) — hence H is a quantized (restricted) universal enveloping algebra, in
short QrUEA. When a QFA exists whose specialization (i.e. its “value” at ~ = 0 ) is F [G],
the group G inherits from this “quantization” a Poisson bracket, which makes it a Poisson
(algebraic) group; similarly, if a QrUEA exists whose specialization is U(g) or u(g), the
(restricted) Lie algebra g inherits a Lie cobracket which makes it a Lie bialgebra. Then by
Poisson group theory one has Poisson groups G∗ dual to G and a Lie bialgebra g∗ dual to
g , so other geometrical symmetries are related to the initial ones.

The dependence of a Hopf algebra on ~ can be described as saying that it is defined over
a ring R and ~ ∈ R : so one is lead to dwell upon the category HA of Hopf R–algebras
(maybe with some further conditions), and then raises three basic questions:

— (1) How can we produce quantum groups?

— (2) How can we characterize quantum groups (of either kind) within HA?

— (3) What kind of relationship, if any, does exist between quantum groups over

mutually dual Poisson groups, or mutually dual Lie bialgebras?
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A first answer to question (1) and (3) together is given, in characteristic zero, by the
so-called “quantum duality principle”, known in literature with at least two formulations.
One claims that quantum function algebras associated to dual Poisson groups can be taken
to be dual — in the Hopf sense — to each other; and similarly for quantum enveloping
algebras (cf. [FRT1] and [Se]). The second one, formulated by Drinfeld in local terms
(i.e., using formal groups, rather than algebraic groups, and complete topological Hopf
algebras; cf. [Dr], §7, and see [Ga4] for a proof), gives a recipe to get, out of a QFA over
G, a QrUEA over g∗, and, conversely, to get a QFA over G∗ out of a QrUEA over g .
More precisely, Drinfeld defines two functors, inverse to each other, from the category of
quantized universal enveloping algebras (in his sense) to the category of quantum formal
series Hopf algebras (his analogue of QFAs) and viceversa, such that U~(g) 7→ F~[[G∗]]
and F~[[G]] 7→ U~(g∗) (in his notation, where the subscript ~ stands as a reminder for
“quantized” and the double square brackets stand for “formal series Hopf algebra”).

In this paper we establish a global version of the quantum duality principle which gives
a complete answer to questions (1) through (3). The idea is to push as far as possible
Drinfeld’s original method so to apply it to the category HA of all Hopf algebras which are
torsion-free — or flat, if one prefers this narrower setup — modules over some (integral)
domain, say R, and to do it for each non-zero element ~ in R such that R

/
~R be a field.

To be precise, we extend Drinfeld’s recipe so to define functors from HA to itself. We
show that the image of these “generalized” Drinfeld’s functors is contained in a category of
quantum groups — one gives QFAs, the other QrUEAs — so we answer question (1). Then,
in the characteristic zero case, we prove that when restricted to quantum groups these func-
tors yield equivalences inverse to each other. Moreover, we show that these equivalences ex-
change the types of quantum group (switching QFA with QrUEA) and the underlying Pois-
son symmetries (interchanging G or g with G∗ or g∗), thus solving (3). Other details enter
the picture to show that these functors endow HA with sort of a (inner) “Galois correspon-
dence”, in which QFAs on one side and QrUEAs on the other side are the subcategories (in
HA) of “fixed points” for the composition of both Drinfeld’s functors (in the suitable order):
in particular, this answers question (2). It is worth stressing that, since our “Drinfeld’s
functors” are defined for each non-trivial point (~) of Specmax (R), for any such (~) and for
any H in HA they yield two quantum groups, namely a QFA and a QrUEA, w.r.t. ~ itself.
Thus we have a method to get, out of any single H ∈ HA , several quantum groups.

Therefore the “global” in the title is meant in several respects: geometrically, we con-
sider global objects (Poisson groups rather than Poisson formal groups, as in Drinfeld’s
approach); algebraically we consider quantum groups over any domain R, so there may
be several different “semiclassical limits” (=specializations) to consider, one for each non-
trivial point of type (~) in the maximal spectrum of R (while Drinfeld has R = k[[~]] so
one can specialise only at ~ = 0 ); more generally, our recipe applies to any Hopf algebra,
i.e. not only to quantum groups; finally, most of our results are characteristic-free, i.e. they
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hold not only in characteristic zero (as in Drinfeld’s case) but also in positive characteris-
tic. Furthermore, this “global version” of the quantum duality principle opens the way to
formulate a “quantum duality principle for subgroups and homogeneous spaces”, see [CG].

A key, long-ranging application of our global quantum duality principle (GQDP) is the
following. Take as R the polynomial ring R = k[~ ] , where k is a field: then for any
Hopf algebra over k we have that H[~ ] := R ⊗k H is a torsion-free Hopf R–algebra,
hence we can apply Drinfeld’s functors to it. The outcome of this procedure is the crystal

duality principle (CDP), whose statement strictly resembles that of the GQDP: now Hopf
k–algebras are looked at instead of torsionless Hopf R–algebras, and quantum groups are
replaced by Hopf algebras with canonical filtrations such that the associated graded Hopf
algebra is either commutative or cocommutative. Correspondingly, we have a method to
associate to H a Poisson group G and a Lie bialgebra k such that G is an affine space (as
an algebraic variety) and k is graded (as a Lie algebra); in both cases, the “geometrical”
Hopf algebra can be attained — roughly — through a continuous 1-parameter deformation
process. This result can also be formulated in purely classical — i.e. “non-quantum” —
terms and proved by purely classical means. However, the approach via the GQDP also
yields further possibilities to deform H into other Hopf algebras of geometrical type, which
is out of reach of any classical approach.

The paper is organized as follows. In §1 we fix notation and terminology, while §2
is devoted to define Drinfeld’s functors and state our main result, the GQDP (Theorem
2.2). In §3 we extend Drinfeld’s functors to a broader framework, that of (co)augmented

(co)algebras, and study their properties in general. §4 instead is devoted to the analysis of
the effect of such functors on quantum groups, and prove Theorem 2.2, i.e. the GQDP. In
§5 we explain the CDP, which is deduced as an application of the CDP to trivial deforma-
tions of Hopf k–algebras: in particular, we study in detail the case of group algebras. In
the last part of the paper we illustrate our results by studying in full detail several relevant
examples. First we dwell upon some well-known quantum groups: the standard quantiza-
tion of the Kostant-Kirillov structure on a Lie algebra (§6), the standard Drinfeld-Jimbo
quantization of semisimple groups (§7), the quantization of the Euclidean group (§8) and
the quantization of the Heisenberg group (§9). Then we study a key example of non-
commutative, non-cocommutative Hopf algebra — a non-commutative version of the Hopf
algebra of formal diffeomorphisms — as a nice application of the CDP (§10).

Warning : this paper is not meant for publication! The results presented here will be

published in separate articles; therefore, any reader willing to quote anything from the

present preprint is kindly invited to ask the author for the precise reference(s).
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§ 1 Notation and terminology

1.1 The classical setting. Let k be a fixed field of any characteristic. We call
“algebraic group” the maximal spectrum G associated to any commutative Hopf k–algebra
H (in particular, we deal with proaffine as well as affine algebraic groups); then H is called
the algebra of regular function on G, denoted with F [G]. We say that G is connected if
F [G] has no non-trivial idempotents; this is equivalent to the classical topological notion
when F [G] is of finite type, i.e. dim(G) is finite.

If G is an algebraic group, we denote by me the defining ideal of the unit element e ∈ G

(it is the augmentation ideal of F [G] ); the cotangent space of G at e is g× := me

/
me

2 ,

which is naturally a Lie coalgebra. The tangent space of G at e is the dual space g :=
(
g×

)∗
to g× : this is a Lie algebra, which coincides with the set of all left-(or right-)invariant
derivations of F [G] . By U(g) we mean the universal enveloping algebra of g : it is a
connected cocommutative Hopf algebra, and there is a natural Hopf pairing (see §1.2(a))
between F [G] and U(g). If Char (k) = p > 0 , then g is a restricted Lie algebra, and
u(g) := U(g)

/({
xp− x[p ]

∣∣ x ∈ g
})

is the restricted universal enveloping algebra of g . In
the sequel, to unify notation and terminology, when Char (k) = 0 we shall call any Lie
algebra g “restricted”, and its “restricted universal enveloping algebra” will be U(g), and
we shall write U(g) := U(g) if Char (k) = 0 and U(g) := u(g) if Char (k) > 0 .

We shall also consider Hyp (G) :=
(
F [G]◦

)
ε

=
{

f ∈ F [G]◦
∣∣ f(me

n) = 0 ∀n = 0
}

,
i.e. the connected component of the Hopf algebra F [G]◦ dual to F [G], which is called
the hyperalgebra of G. By construction Hyp (G) is a connected Hopf algebra, containing
g = Lie(G) ; if Char (k) = 0 one has Hyp (G) = U(g) , whereas if Char (k) > 0 one has
a sequence of Hopf algebra morphisms U(g) −−³ u(g) ↪−−→Hyp (G) . In any case, there
exists a natural perfect (= non-degenerate) Hopf pairing between F [G] and Hyp (G).

Now assume G is a Poisson group (for this and other notions hereafter see, e.g., [CP],
but within an algebraic geometry setting): then F [G] is a Poisson Hopf algebra, and its
Poisson bracket induces on g× a Lie bracket which makes it into a Lie bialgebra, and so
U(g×) and U(g×) are co-Poisson Hopf algebras too. On the other hand, g turns into a
Lie bialgebra — maybe in topological sense, if G is infinite dimensional — and U(g) and
U(g) are (maybe topological) co-Poisson Hopf algebras. The Hopf pairing above between
F [G] and U(g) then is compatible with these additional co-Poisson and Poisson structures.
Similarly, Hyp (G) is a co-Poisson Hopf algebra as well and the Hopf pairing between F [G]
and Hyp (G) is compatible with the additional structures. Moreover, the perfect (=non-
degenerate) pairing g× g×−→ k given by evaluation is compatible with the Lie bialgebra
structure on either side (see §1.2(b)): so g and g× are Lie bialgebras dual to each other.
In the sequel, we denote by G? any connected algebraic Poisson group with g as cotangent
Lie bialgebra, and say it is dual to G .
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Let H be a Hopf algebra over an integral domain D . We call H a “function algebra”

(FA in short) if it is commutative, with no non-trivial idempotents, and such that, if
p := Char (k) > 0 , then ηp = 0 for all η in the kernel of the counit of H . If D is
a field, an FA is the algebra of regular functions of an algebraic group-scheme over D

which is connected and, if Char (k) > 0 , is zero-dimensional of height 1; conversely, if G

is such a group-scheme then F [G] has these properties. Instead, we call H a “restricted
universal enveloping algebra” (=rUEA) if it is cocommutative, connected, and generated
by its primitive part. If D is a field, an rUEA is the restricted universal enveloping algebra
of some (restricted) Lie algebra over D ; conversely, if g is such a Lie algebra, then U(g)
has these properties (see, e.g., [Mo], Theorem 5.6.5, and references therein).

For the Hopf operations in any Hopf algebra we shall use standard notation, as in [Ab].

Definition 1.2.
(a) Let H, K be Hopf algebras (in any category). A pairing 〈 , 〉 : H ×K −−→ R

(where R is the ground ring) is a Hopf (algebra) pairing if
〈
x, y1 ·y2

〉
=

〈
∆(x), y1⊗y2

〉
:=∑

(x)

〈
x(1), y1

〉 · 〈x(2), y2

〉
,

〈
x1 · x2, y

〉
=

〈
x1 ⊗ x2, ∆(y)

〉
:=

∑
(y)

〈
x1, y(1)

〉 · 〈x2, y(2)

〉
,

〈x, 1〉 = ε(x) , 〈1, y〉 = ε(y) ,
〈
S(x), y

〉
=

〈
x, S(y)

〉
, for all x, x1, x2 ∈ H, y, y1, y2 ∈ K.

(b) Let g, h be Lie bialgebras (in any category). A pairing 〈 , 〉 : g× h −−→ k (where
k is the ground ring) is called a Lie bialgebra pairing if

〈
x, [y1, y2]

〉
=

〈
δ(x), y1 ⊗ y2

〉
:=∑

[x]

〈
x[1], y1

〉 · 〈x[2], y2

〉
,

〈
[x1, x2], y

〉
=

〈
x1 ⊗ x2, δ(y)

〉
:=

∑
[y]

〈
x1, y[1]

〉 · 〈x2, y[2]

〉
, for

all x, x1, x2 ∈ g and y, y1, y2 ∈ h, with δ(x) =
∑

[x] x[1]⊗x[2] and δ(y) =
∑

[x] y[1]⊗ y[2] .

1.3 The quantum setting. Let R be a (integral) domain, and let F = F (R) be
its quotient field. Denote by M the category of torsion-free R–modules, and by HA the
category of all Hopf algebras in M ; note that flat modules form a full subcategory of
M . Let MF be the category of F–vector spaces, and HAF be the category of all Hopf
algebras in MF . For any M ∈ M , set MF := F (R) ⊗R M . Scalar extension gives a
functor M−→MF , M 7→ MF , which restricts to a functor HA −→ HAF as well.

Let ~ ∈ R be a non-zero element (which will be fixed throughout), and let k := R
/
(~) =

R
/
~R be the quotient ring. For any R–module M , we set M~

∣∣∣
~=0

:= M
/
~M = k⊗R M :

this is a k–module (via scalar restriction R → R
/
~R =: k ), which we call the specialization

of M at ~ = 0 ; we use also notation M
~→0−−−→M to mean shortly that M~

∣∣∣
~=0

∼= M .

Moreover, set M∞ :=
⋂+∞

n=0 ~nM (this is the closure of {0} in the ~–adic topology of M).

For any H∈HA , let IH :=Ker
(
H

ε³ R
~7→0−−³k

)
and set IH

∞:=
⋂+∞

n=0 IH
n.

Finally, given H in HAF , a subset H of H is called an R–integer form (or simply an
R–form) of H iff H is a Hopf R–subalgebra of H (so H is torsion-free as an R–module,
hence H ∈ HA ) and HF := F (R)⊗R H = H .

We are now ready to introduce the notion of “quantum group”.
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Definition 1.4.(“Global quantum groups” [or “algebras”]) Let R, ~∈R\{0} be as in §1.3.
(a) We call quantized restricted universal enveloping algebra (in short, QrUEA) (at ~)

any U~ ∈ HA such that U~
∣∣
~=0

:= U~
/
~U~ is (isomorphic to) an rUEA.

We call QrUEA the full subcategory of HA whose objects are all the QrUEAs (at ~).
(b) We call quantized function algebra (in short, QFA) (at ~) any F~ ∈ HA such that

(F~)∞ = IF~
∞ (notation of §1.3)1 and F~

∣∣
~=0

:= F~
/
~F~ is (isomorphic to) an FA.

We call QFA the full subcategory of HA whose objects are all the QFAs (at ~).

Remark 1.5: If U~ is a QrUEA (at ~ , that is w.r.t. to ~ ) then U~
∣∣
~=0

is a co-Poisson
Hopf algebra, w.r.t. the Poisson cobracket δ defined as follows: if x ∈ U~

∣∣
~=0

and x′ ∈ U~
gives x = x′ mod ~U~ , then δ(x) :=

(
~−1

(
∆(x′) − ∆op(x′)

))
mod ~

(U~ ⊗ U~
)
. If

k := R
/
~R is a field, then U~

∣∣
~=0

∼= U(g) for some Lie algebra g , and by [Dr], §3, the
restriction of δ makes g into a Lie bialgebra (the isomorphism U~

∣∣
~=0

∼= U(g) being one
of co-Poisson Hopf algebras); in this case we write U~ = U~(g) .

Similarly, if F~ is a QFA at ~, then F~
∣∣
~=0

is a Poisson Hopf algebra, w.r.t. the Poisson
bracket { , } defined as follows: if x, y ∈ F~

∣∣
~=0

and x′, y′ ∈ F~ give x = x′ mod ~F~ ,
y = y′ mod ~F~ , then {x, y} :=

(
~−1(x′ y′ − y′ x′)

)
mod ~F~ . Therefore , if k :=

R
/
~R is a field, then F~

∣∣
~=0

∼= F [G] for some connected Poisson algebraic group G (the
isomorphism being one of Poisson Hopf algebras): in this case we write F~ = F~[G] .

Definition 1.6.
(a) Let R be any (integral) domain, and let F be its field of fractions. Given two F–

modules A, B, and an F–bilinear pairing A×B −→ F , for any R–submodule A ⊆ A and
B ⊆ B we set A• :=

{
b ∈ B

∣∣∣
〈
A, b

〉 ⊆ R
}

and B• :=
{

a ∈ A
∣∣∣
〈
a,B

〉 ⊆ R
}

.
(b) Let R be a domain. Given H, K ∈ HA , we say that H and K are dual to each

other if there exists a perfect Hopf pairing between them for which H = K• and K = H• .

§ 2 The global quantum duality principle

2.1 Drinfeld’s functors. (Cf. [Dr], §7) Let R, HA and ~ ∈ R be as in §1.3. For any

H ∈ HA , let I = IH := Ker
(
H

ε−³ R
~7→0−−−³ R

/
~R = k

)
= Ker

(
H

~7→0−−−³ H
/
~H

ε̄−³k
)

(as in §1.3), a maximal Hopf ideal of H (where ε̄ is the counit of H
∣∣
~=0

, and the two
composed maps clearly coincide): we define

H∨ :=
∑

n≥0 ~
−nIn =

∑
n≥0

(
~−1I

)n
=

⋃
n≥0

(
~−1I

)n (⊆ HF

)
.

If J = JH := Ker (εH) then I = J +~ · 1H , so H∨ =
∑

n≥0 ~−nJn =
∑

n≥0

(
~−1J

)n too.

1This requirement turns out to be a natural one, see Theorem 3.8.
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Given any Hopf algebra H, for every n ∈ N define ∆n: H −→ H⊗n by ∆0 := ε ,
∆1 := idH , and ∆n :=

(
∆ ⊗ id⊗(n−2)

H

) ◦ ∆n−1 if n > 2. For any ordered subset Σ =
{i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik , define the morphism jΣ : H⊗k −→ H⊗n

by jΣ(a1 ⊗ · · · ⊗ ak) := b1 ⊗ · · · ⊗ bn with bi := 1 if i /∈ Σ and bim
:= am for

1 ≤ m ≤ k ; then set ∆Σ := jΣ ◦ ∆k , ∆∅ := ∆0 , and δΣ :=
∑

Σ′⊂Σ (−1)n−|Σ′|∆Σ′ ,
δ∅ := ε . By the inclusion-exclusion principle, this definition admits the inverse formula
∆Σ =

∑
Ψ⊆Σ δΨ . We shall also use the notation δ0 := δ∅ , δn := δ{1,2,...,n} , and the useful

formula δn = (idH − ε)⊗n ◦∆n , for all n ∈ N+ .
Now consider any H ∈ HA and ~ ∈ R as in §1.3: we define

H ′ :=
{

a ∈ H
∣∣ δn(a) ∈ ~nH⊗n, ∀ n ∈ N} (⊆ H

)
.

Theorem 2.2. (“The Global Quantum Duality Principle”) Assume k :=R
/
~R is a field.

(a) The assignment H 7→ H∨ , resp. H 7→ H ′ , defines a functor ( )∨: HA −→ HA ,
resp. ( )′: HA −→ HA , whose image lies in QrUEA , resp. in QFA . Moreover, for
all H ∈ HA we have H ⊆ (

H∨)′ and H ⊇ (
H ′)∨, hence also H∨ =

((
H∨)′ )∨ and

H ′ =
((

H ′)∨)′. Finally, if H ∈ HA is flat, then H∨ and H ′ are flat as well.
(b) Assume that Char (k) = 0 . Then for any H ∈ HA

H =
(
H∨)′ ⇐⇒ H ∈ QFA and H =

(
H ′)∨ ⇐⇒ H ∈ QrUEA ;

thus we have two induced equivalences, namely ( )∨: QFA −−−→ QrUEA , H 7→ H∨ ,
and ( )′: QrUEA −−−→ QFA , H 7→ H ′ , which are inverse to each other.

(c) (“Quantum Duality Principle”) Assume that Char (k) = 0 . Then

F~[G]∨
∣∣∣
~=0

:= F~[G]∨
/
~F~[G]∨ = U(g×) , U~(g)′

∣∣∣
~=0

:= U~(g)′
/
~U~(g)′ = F

[
G?

]

(with G, g, g×, g? and G? as in §1.1, and U~(g) has the obvious meaning, cf. §1.5) where
the choice of the group G? — among all the connected Poisson algebraic groups with tangent
Lie bialgebra g? — depends on the choice of the QrUEA U~(g). In other words, F~[G]∨

is a QrUEA for the Lie bialgebra g×, and U~(g)′ is a QFA for the Poisson group G?.
(d) Let Char (k) = 0 . Let F~ ∈ QFA , U~ ∈ QrUEA be dual to each other (with respect

to some pairing). Then F~
∨ and U~

′ are dual to each other (w.r.t. the same pairing).
(e) Let Char (k) = 0 . Then for all H ∈ HAF the following are equivalent:
H has an R–integer form H(f) which is a QFA at ~ ;
H has an R–integer form H(u) which is a QrUEA at ~ .

Remarks 2.3: after stating our main theorem, some comments are in order.
(a) The Global Quantum Duality Principle as a “Galois correspondence” type theorem.

Let L ⊆ E be a Galois (not necessarily finite) field extension, and let G := Gal
(
E/L

)
be

its Galois group. Let F be the set of intermediate extensions (i.e. all fields F such that



THE GLOBAL QUANTUM DUALITY PRINCIPLE: THEORY, EXAMPLES, APPLICATIONS 9

L ⊆ F ⊆ E ), let S be the set of all subgroups of G and let Sc be the set of all subgroups
of G which are closed w.r.t. the Krull topology of G. Note that F , S and Ss can all be
seen as lattices w.r.t. set-theoretical inclusion — Sc being a sublattice of S — hence as
categories too. The celebrated Galois Theorem yields two maps, namely Φ : F −−→ S ,
F 7→ Gal

(
E/F

)
:=

{
γ ∈ G

∣∣ γ
∣∣
F

= idF

}
, and Ψ : S −−→ F , H 7→ EH :=

{
e ∈

E
∣∣ η(e) = e ∀ η ∈ H

}
, such that:

— 1) Φ and Ψ are contravariant functors (that is, they are order-reversing maps of
lattices, i.e. lattice antimorphisms); moreover, the image of Φ lies in the subcategory Sc ;

— 2) for H ∈ S one has Φ
(
Ψ(H)

)
= H , the closure of H w.r.t. the Krull topology:

thus H ⊆ Φ
(
Ψ(H)

)
, and Φ ◦ Ψ is a closure operator, so that H ∈ Sc iff H = Φ

(
Ψ(H)

)
;

— 3) for F ∈ F one has Ψ
(
Φ(F )

)
= F ;

— 4) Φ and Ψ restrict to antiequivalences Φ : F → Sc and Ψ : Sc → F which are
inverse to each other.

Then one can see that Theorem 2.2 establishes a strikingly similar result, which in
addition is much more symmetric: HA plays the role of both F and S, whereas ( )′

stands for Ψ and ( )∨ stands for Φ. QFA plays the role of the distinguished subcategory
Sc, and symmetrically we have the distinguished subcategory QrUEA. The composed
operator

(
( )∨

)′
= ( )′ ◦ ( )∨ plays the role of a “closure operator”, and symmetrically(

( )′
)∨

= ( )∨ ◦ ( )′ plays the role of a “taking-the-interior operator”: in other words,
QFAs may be thought of as “closed sets” and QrUEAs as “open sets” in HA .

(b) Duality between Drinfeld’s functors. For any n ∈ N let µn : JH
⊗n ↪−→ H⊗n mn

−−→H

be the composition of the natural embedding of JH
⊗n into H⊗n with the n–fold multi-

plication (in H ): then µn is the “Hopf dual” to δn . By construction we have H∨ =∑
n∈N µn

(
~−nJH

⊗n
)

and H ′ =
⋂

n∈N δn
−1

(
~+nJH

⊗n
)
: this shows that the two functors

are built up as “dual” to each other (cf. also part (d) of Theorem 2.2).

(c) Ambivalence QrUEA ↔ QFA in HAF . Part (e) of Theorem 2.2 means that some

Hopf algebras over F (R) might be thought of both as “quantum function algebras” and as
“quantum enveloping algebras”: examples are UF and FF for U ∈ QrUEA and F ∈ QFA .

(d) Drinfeld’s functors for algebras, coalgebras and bialgebras. The definition of either of
Drinfeld functors requires only “half of” the notion of Hopf algebra. In fact, one can define
( )∨ for all “augmented algebras” (that is, roughly speaking, “algebras with a counit”)
and ( )′ for all “coaugmented coalgebras” (roughly, “coalgebras with a unit”), and in
particular for bialgebras: this yields again nice functors, and neat results extending the
global quantum duality principle hold for them; we shall prove all this in the next section.
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§ 3 General properties of Drinfeld’s functors

3.1 Augmented algebras, coaugmented coalgebras and Drinfeld’s functors for
them. Let R be a commutative ring with 1, M the category of torsion-free R–modules.

We call augmented algebra the datum of a unital associative algebra A ∈ M with
a distinguished unital algebra morphism ε : A −→ R (so the unit map u : R −→ A

is a section of ε ): these form a category in the obvious way. We call indecompos-

able elements of an augmented algebra A the elements of the set Q(A) := JA

/
JA

2 with
JA := Ker

(
ε : A −→ R ) . We denote A+ the category of all augmented algebras in M .

We call coaugmented coalgebra any counital coassociative coalgebra C with a distin-
guished counital coalgebra morphism u : R −→ C (so u is a section of the counit map
ε : C −→ R ), and let 1 := u(1) , a group-like element in C : these form a category in
the obvious way. For such a C we said primitive the elements of the set P (C) := { c ∈
C | ∆(c)=c⊗1+1⊗c } . We denote C+ the category of all coaugmented coalgebras in M .

We denote B the category of all bialgebras in M ; clearly each bialgebra B can be seen
both as an augmented algebra, w.r.t. ε = ε ≡ εB (the counit of B ) and as a coaugmented
coalgebra, w.r.t. u = u ≡ uB (the unit map of B ), so that 1 = 1 = 1B : then Q(B) is
naturally a Lie coalgebra and P (B) a Lie algebra over R . In the following we’ll do such
an interpretation throughout, looking at objects of B as objects of A+ and of C+.

Now let R be a domain, and fix ~ ∈ R \ {0} as in §1.3. Let A ∈ A+ , and I = IA :=

:= Ker
(
A

ε−³ R
~7→0−−−³ R

/
~R = k

)
= Ker

(
A

~ 7→0−−−³ A
/
~A

ε |~=0−−−−³k
)

as in §1.3, a max-

imal Hopf ideal of A (where ε
∣∣
~=0

is the counit of A
∣∣
~=0

, and the two composed maps
do coincide): like in §2.1, we define

A∨ :=
∑

n≥0 ~
−nIn =

∑
n≥0

(
~−1I

)n
=

⋃
n≥0

(
~−1I

)n (⊆ AF

)
.

If J = JA := Ker (εA) then I = J + ~ · 1A , thus A∨ =
∑

n≥0 ~−nJn =
∑

n≥0

(
~−1J

)n .
Given any coalgebra C, for every n∈N define ∆n: C −→ C⊗n by ∆0 := ε , ∆1 := idC,

and ∆n :=
(
∆⊗ id⊗(n−2)

C

) ◦∆n−1 if n > 2 . If C is coaugmented, for any ordered subset
Σ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik , define the morphism jΣ : C⊗k −→ C⊗n

by jΣ(a1⊗· · ·⊗ak) := b1⊗· · ·⊗ bn with bi := 1 if i /∈ Σ and bim := am for 1 ≤ m ≤ k ;

then set ∆Σ := jΣ ◦ ∆k , ∆∅ := ∆0 , and δΣ :=
∑

Σ′⊂Σ (−1)n−|Σ′|∆Σ′ , δ∅ := ε . Like
in §2.1, the inverse formula ∆Σ =

∑
Ψ⊆Σ δΨ holds. We’ll also use notation δ0 := δ∅ ,

δn := δ{1,2,...,n} , and the useful formula δn = (idC − ε · 1 )⊗n ◦∆n , for all n ∈ N+ .
Now consider any C ∈ C+ and ~ ∈ R as in §1.3. We define

C ′ :=
{

c ∈ C
∣∣ δn(c) ∈ ~nC⊗n, ∀ n ∈ N} (⊆ C

)
.

In particular, according to our general remark above for any B ∈ B (and any prime
element ~ ∈ R as above) B∨ is defined w.r.t. ε = εB and B′ is defined w.r.t. 1 = 1B .
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Lemma 3.2. Let H ∈ HA , and set H := H
/
H∞ (notation of §1.3). Then:

(a) H∞ = (H ′)∞ , H∞ ⊆ (
H∨)

∞ , H∞ is a Hopf ideal of H , and
(
H

)
∞ = {0} .

Moreover, there are natural isomorphisms
(
H

)∨
= H∨

/
H∞ ,

(
H

)′
= H ′

/
H∞ .

(b) H ∈ HA , and H
∣∣
~=0

= H
∣∣
~=0

. In particular, if H
∣∣
~=0

has no zero-divisors the
same holds for H, and if H is a QFA, resp. a QrUEA, then H is a QFA, resp. a QrUEA.

(c) Analogous statements hold for any A ∈ A+, any C ∈ C+ and any B ∈ B .

Proof. Trivial from definitions. ¤

Proposition 3.3. Let A∈A+, B ∈B, H ∈HA . Then A∨∈A+, B∨∈B , and H∨∈HA .
If in addition A, resp. B, is flat, then A∨, resp. B∨, is flat as well.

Proof. First, we have A∨, B∨, H∨ ∈M , for they are clearly torsion-free. In addition, A∨

is obtained from A in two steps: localisation — namely, A ÂÃ A
[
~−1

]
— and restriction,

i.e. taking a submodule — namely, A
[
~−1

] ÂÃ A∨
( ⊆ A

[
~−1

] )
. Both these steps preserve

flatness, hence if A is flat then A∨ is flat too, and the same for B and B∨.
Second, A∨ :=

∑∞
n=0 ~nJn where J := Ker (εA) , so A∨ is clearly an R–subalgebra of

AF , hence A∨ ∈ A+; similarly holds for B and H of course. Moreover, JB is bi-ideal of
B, so ∆(JB) ⊆ B ⊗ JB + JB ⊗ B , hence ∆

(
JB

n
) ⊆ ∑

r+s=n
JB

r ⊗ JB
s for all n ∈ N , thus

∆
(
~−nJB

n
) ⊆ ~−n

∑
r+s=n

JB
r⊗JB

s =
∑

r+s=n

(
~−rJB

r
)⊗ (

~−sJB
s
) ⊆ B∨⊗B∨ for all n ∈ N ,

whence ∆
(
B∨) ⊆ B∨ ⊗ B∨ which means B∨ ∈ B . Finally, for H we have in addition

S
(
JH

n
)

= JH
n (for all n ∈ N ) because JH is a Hopf ideal, therefore S

(
~−nJH

n
)

= ~−nJH
n

(for all n ∈ N ), thus S
(
H∨)

= H∨ and so H∨ ∈ HA . ¤

Lemma 3.4. Let B be any bialgebra. Let a, b ∈ B, and let Φ⊆N, with Φ finite. Then
(a) δΦ(ab) =

∑
Λ∪Y =Φ

δΛ(a) δY (b) ;

(b) if Φ 6= ∅ , then δΦ(ab− ba) =
∑

Λ∪Y =Φ
Λ∩Y 6=∅

(
δΛ(a) δY (b)− δY (b) δΛ(a)

)
;

(c) if the ground ring of B is a field, and if Dn := Ker (δn+1) (for all n ∈ N ), then

D : {0} =: D−1 ⊆ D0 ⊆ D1 ⊆ · · ·Dn ⊆ · · · (⊆ B )

is a bialgebra filtration of B with
[
Dm, Dn

] ⊆ Dm+n−1 (∀m,n ∈ N ) , hence the asso-
ciated graded bialgebra is commutative. If B = H is a Hopf algebra, then D is a Hopf
algebra filtration, so the associated graded bialgebra is a commutative graded Hopf algebra.

Proof. (a) (cf. [KT], Lemma 3.2) First, notice that the inversion formula ∆Φ =
∑

Ψ⊆Φ δΨ

(see §2.1) gives
∑

Ψ⊆Φ δΨ(ab) = ∆Φ(ab) = ∆Φ(a)∆Φ(b) =
∑

Λ,Y⊆Φ δΛ(a) δY (b) ; this can
be rewritten as ∑

Ψ⊆ΦδΨ(ab) =
∑

Ψ⊆Φ

∑
Λ∪Y =ΨδΛ(a) δY (b) . (3.1)
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We prove the claim by induction on the cardinality |Φ| of Φ. If Φ = ∅ then δΦ = j∅ ◦ ε ,
which is a morphism of algebras, so the claim does hold. Now assume it holds for all sets
of cardinality less than |Φ|, hence also for all proper subsets of Φ : then the right-hand-side
of (3.1) equals

∑
Ψ$Φ

δΨ(ab) +
∑

Λ∪Y =Φ

δΛ(a) δY (b) . Then the claim follows by subtracting

from both sides of (3.1) the summands corresponding to the proper subsets Ψ of Φ.
(b) (cf. [KT], Lemma 3.2) The very definitions give δΛ(a) δY (b) = δY (b) δΛ(a) when

Λ ∩ Y = ∅ , so the claim follows from this and from (a).
(c) Let a ∈ Dm , b ∈ Dn : then a b ∈ Dm+n because part (a) gives δm+n+1(ab) =∑
Λ∪Y ={1,...,m+n+1} δΛ(a) δY (b) = 0 since in the sum one has |Λ| > m or |Y | > n which

forces δΛ(a) = 0 or δY (b) = 0 . Similarly, [a, b] ∈ Dm+n−1 ≤ m + n− 1 because part (b)
yields δm+n

(
[a, b]

)
=

∑
Λ∪Y ={1,...,m+n}

Λ∩Y 6=∅
δΛ(a) δY (b) = 0 .

Second, we prove that ∆
(
Dn) ⊆ ∑

r+s=n Dr ⊗Ds , for all n ∈ N . Let η ∈ Dn \Dn−1 .
Then ∆(η) = ε(η) · 1 ⊗ 1 + η ⊗ 1 + 1 ⊗ η + δ2(η) ; since D0 := Ker (δ1) = 〈1〉 = k · 1 we
need only to show that δ2(η) ∈ ∑

r+s=n Dr ⊗Ds . We can write δ2(η) =
∑

j uj ⊗ vj with
uj , vj ∈ J := Ker (ε) — so that δ1(uj) = uj for all j — and the uj ’s linearly independent
among themselves. By coassociativity of ∆ one has (δr⊗δs)◦δ2 = δr+s (for all r, s ∈ N );
therefore, 0 = δn+1(η) =

∑
j δ1(uj)⊗ δn(vj) =

∑
j uj ⊗ δn(vj) : since the uj ’s are linearly

independent, this yields δn(vj) = 0 , that is vj ∈ Ker (δn) =: Dn−1 , for all j .
Now, set DJ

n := Dn ∩J for n ∈ N . Splitting J as J = DJ
1 ⊕W1 — for some subspace

W1 of J — we can rewrite δ2(η) as δ2(η) =
∑

i u
(1)
i ⊗ v

(n−1)
i +

∑
h u+

h ⊗ v+
h , where u

(1)
i ∈

DJ
1 , u+

h ∈ W1 , v
(n−1)
i , v+

h ∈ DJ
n−1 (for all i, h ) and the u+

h ’s are linearly independent.
Then also the δ2

(
u+

h

)
’s are linearly independent: indeed, if

∑
h ch δ2

(
u+

h

)
= 0 for some

scalars ch then
∑

h ch u+
h ∈ Ker (δ2) =: D1 , forcing ch = 0 for all h . Then again by

coassociativity 0 = δn+1(η) = (δ2 ⊗ δn−1)
(
δ2(η)

)
=

∑
i δ2

(
u+

h

) ⊗ δn−1

(
v+

h

)
, which — as

the δ2

(
u+

h

)
’s are linearly independent — yields δn−1

(
v+

h

)
= 0 , i.e. v+

h ∈ Dn−2 , for all h .
Now we repeat the argument. Splitting J as J = D2 ⊕W2 — for some subspace W2

of J — we can rewrite δ2(η) as δ2(η) =
∑

i u
(1)
i ⊗ v

(n−1)
i +

∑
j u

(2)
j ⊗ v

(n−2)
j +

∑
k u∗k ⊗ v∗k ,

where u
(2)
j ∈ D2

⋂
J , v

(n−2)
j , v∗k ∈ Dn−2

⋂
J , u∗k ∈ W2 (for all j, k ) and the u∗k’s are

linearly independent. Then also the δ3

(
u∗k

)
’s are linearly independent (as above), and by

coassociativity we get 0 = δn+1(η) = (δ3 ⊗ δn−2)
(
δ2(η)

)
=

∑
k δ3

(
u∗k

)⊗ δn−2

(
v∗k

)
, which

gives δn−2

(
v∗k

)
= 0 , i.e. v∗k ∈ Dn−3 , for all k . Iterating this argument, we eventually stop

getting δ2(η) =
∑

i u
(1)
i ⊗v

(n−1)
i +

∑
j u

(2)
j ⊗v

(n−2)
j +· · ·+∑

` u
(n−1)
` ⊗v

(1)
` =

∑n−1
s=1

∑
t u

(s)
s,t⊗

v
(n−s)
s,t with u

(s)
s,t ∈ Ds , v

(n−s)
s,t ∈ Dn−s for all s, t , so δ2(η) ∈ ∑

a+b=n Da ⊗Db , q.e.d.
Finally, if B = H is a Hopf algebra then ∆ ◦ S = S⊗2 ◦∆, hence ∆n ◦ S = S⊗n ◦∆n

(n ∈ N ), and ε ◦ S = S ◦ ε , thus δn ◦ S = S⊗n ◦ δn (for all n ∈ N ) follows, which yields
S

(
Dn

) ⊆ Dn for all n ∈ N . Thus D is a Hopf algebra filtration, and the rest follows. ¤
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Proposition 3.5. Assume that k := R
/
~R is a field. Let C ∈ C+, B ∈ B, H ∈ HA .

Then C ′∈ C+, B′∈ B , and H ′∈ HA . Moreover, if C, B, is flat, then C ′, B′, is flat too.

Proof. First, by definition C ′ is an R–submodule of C, because the maps δn (n ∈ N ) are
R–linear; since C is torsion-free, its submodule C ′ is torsion-free too, i.e. C ′ ∈ M . In
addition, C ′ is an R–submodule of C, and taking a submodule preserve flatness: hence if
C is flat then C ′ is flat too. The same holds for B and B′ as well.

We must show that C ′ is a subcoalgebra. Due to Lemma 3.2(c), we can reduce to prove
it for

(
C

)′, that is we can assume from scratch that C∞ = {0} .
Let R̂ be the ~–adic completion of R . Let also Ĉ be the ~–adic completion of C : this

is a separated complete topological R̂–module, hence it is topologically free (i.e. of type
R̂ Y for some set Y ); moreover, it is a topological Hopf algebra, whose coproduct takes
values into the ~–adic completion C ⊗̂C of C ⊗ C . Since C∞ = {0} , the natural map
C −→ Ĉ is a monomorphism of (topological) Hopf R–algebras, so C identifies with a Hopf
R–subalgebra of Ĉ. Further, we have Ĉ

/
~nĈ = C

/
~nC for all n ∈ N . Finally, we set

Ĉ∗ := Hom bR
(
Ĉ , R̂

)
for the dual of Ĉ.

Pick a ∈ C ′ ; first we prove that ∆(a) ∈ C ′ ⊗ C : to this end, since Ĉ is topologically
free it is enough to show that (id⊗f)

(
∆(a)

) ∈ C ′⊗R R̂ ·1 for all f ∈ Ĉ∗, which amounts
to show that

(
(δn ⊗ f) ◦∆

)
(a) ∈ ~nC⊗n ⊗R R̂ · 1 for all n ∈ N+ , f ∈ Ĉ∗ . Now, we can

rewrite the latter term as
(
(δn⊗f)◦∆)

(a) =
((

(id− ε · 1 )⊗n⊗f
)◦∆n+1

)
(a) = δn(a)⊗f(1 )·1+

(
id⊗n⊗f

)(
δn+1(a)

)

and the right-hand-side term does lie in ~nC⊗n ⊗R R̂ · 1 , for a ∈ C ′, q.e.d.
Definitions imply ∆(x) = −ε(x) ·1⊗1+x⊗1+1⊗x+ δ2(x) for all x ∈ C . Due to the

previous analysis, we argue that δ2(a) ∈ C ′⊗C for all a ∈ C ′ , and we only need to show
that δ2(a) ∈ C ′ ⊗ C ′ : this will imply ∆(a) ∈ C ′ ⊗ C ′ since 1 ∈ C ′ (as it is group-like).

Let Ĉ ′ be the ~–adic completion of C ′: again, this is a topologically free R̂–module,
and since (C ′)∞ = C∞ = {0} (by Lemma 3.2(a) and our assumptions) the natural map
C ′ −→ Ĉ ′ is in fact an embedding, so C ′ identifies with an R–submodule of Ĉ ′ . If{

βj

∣∣ j ∈ J }
is a subset of C ′ whose image in C ′

∣∣
~=0

is a basis of the latter k–vector
space, then it is easy to see that C ′ =

⊕
j∈J

R̂ βj : fixing a section ν : k ↪−→ R of the

projection map R −³ R
/
~R =: k , this implies that each element a ∈ C ′ has a unique

expansion as a series a =
∑

n∈N
∑

j∈J ν(κj,n) ~n βj for some κj,n ∈ k which, for fixed n,

are almost all zero. Finally Ĉ ′
/
~ Ĉ ′ = C ′

/
~C ′ = B

/
~B , with B :=

⊕
j∈J

R βj .

We shall also consider
(
Ĉ ′

)∗ := Hom bR
(
Ĉ ′ , R̂

)
, the dual of Ĉ ′ .

Now, we have δ2(a) ∈ C ′ ⊗ C ⊆ Ĉ ′ ⊗ C , so we can expand δ2(a) inside Ĉ ′ ⊗ C as
δ2(a) =

∑
i∈I

(∑
n∈N

∑
j∈J ν

(
κi

j,n

)
~n βj

)
⊗ ci for some κi

j,n ∈ k as above and ci ∈ C
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(I being some finite set). Then we can rewrite δ2(a) as

δ2(a) =
∑

j∈J
βj ⊗

( ∑
n∈N

∑
i∈I

ν
(
κi

j,n

)
~n · ci

)
=

∑
j∈J

βj ⊗ γj ∈ C ′ ⊗̃ Ĉ

where γj :=
∑

n∈N
∑

i∈I ν
(
κi

j,n

)
~n · ci ∈ Ĉ for all j, and C ′ ⊗̃ Ĉ is the completion of

C ′ ⊗ Ĉ w.r.t. the weak topology. We contend that all the γj ’s belong to
(
Ĉ

)′.
In fact, assume this is false: then there is s ∈ N+ such that δs(γi) 6∈ ~sĈ b⊗ s for some

i ∈ J ; we can choose such an i so that s be minimal, thus δs′(γj) ∈ ~s′Ĉ b⊗ s′ for all
j ∈ J and s′ < s ; since δs = (δ2 ⊗ id) ◦ δs−1 — by coassociativity — we have also
δs(γj) ∈ ~s−1Ĉ b⊗ s for all j ∈ J . Now consider the element

A :=
∑

j∈J βj ⊗ δs(γj) ∈
(
Ĉ ′

/
~ Ĉ ′

)
⊗̃k

(
~s−1Ĉ

b⊗ s
/
~sĈ

b⊗ s
)

the right-hand-side space being equal to
(
C ′

/
~C ′

) ⊗̃k
(
~s−1C⊗s

/
~sC⊗s

)
; hereafter, such

notation as x will always denote the coset of x in the proper quotient space. By construc-
tion, the βj ’s are linearly independent and some of the δs(γj)’s are non zero: therefore
A is non zero, and we can write it as A =

∑
`∈L λ` ⊗ χ` (6= 0) where L is a suit-

able non-empty index set, λ` (for all `) belongs to the completion C̃ ′ of Ĉ ′ w.r.t. the
weak topology, χ` ∈ ~s−1Ĉ b⊗ s , the λ`’s are linearly independent in the k–vector space
C̃ ′

/
~ C̃ ′ (which is just the completion of C ′

∣∣
~=0

:= C ′
/
~C ′ w.r.t. the weak topology),

and the χ` ’s are linearly independent in the k–vector space ~s−1Ĉ b⊗ s
/
~sĈ b⊗ s . In par-

ticular λ` 6∈ ~ C̃ ′ for all ` : so there is r ∈ N+ such that δr(λ`) ∈ ~rC̃ e⊗ r \ ~r+1C̃ e⊗ r for
all ` ∈ L (hereafter, K e⊗m denotes the completion of K⊗m w.r.t. the weak topology),
hence δr(λ`) 6= 0 ∈ ~rC̃ e⊗ r

/
~r+1C̃ e⊗ r . Now write δn for the composition of δn with a

projection map (such as X −³ X
/
~X , say): then the outcome of this analysis is that

(
δr ⊗ δs

)(
δ2(a)

)
=

(
δr ⊗ id

)(∑
j∈J βj ⊗ δs(γj)

)
=

∑
`∈L δr(λ`)⊗ χ` 6= 0

in the k–vector space
(
~rC⊗r

/
~r+1C⊗r

)
⊗̃k

(
~s−1C⊗s

/
~sC⊗s

)
.

On the other hand, coassociativity yields (δr ⊗ δs)
(
δ2(a)

)
= δr+s(a) . Therefore, since

a ∈ C ′ we have δr+s(a) ∈ ~r+sC⊗(r+s) , hence δr+s(a) = 0 in the k–vector space
~r+s−1C⊗(r+s)

/
~r+sC⊗(r+s) . Now, there are standard isomorphisms

~`C⊗`
/
~`+1C⊗r ∼=

(
~`C⊗`

)⊗R k for ` ∈ {r, s− 1, r + s− 1}
(
~r+s−1C⊗s

)⊗R k ∼=
((
~rC⊗r

)⊗R k
)
⊗k

((
~s−1C⊗s

)⊗R k
)

~r+s−1C⊗(r+s)
/
~(r+s)C⊗(r+s) ∼=

(
~rC⊗r

/
~r+1C⊗r

)
⊗k

(
~s−1C⊗s

/
~sC⊗s

)
.

Moreover,
(
~rC⊗r

/
~r+1C⊗r

)
⊗k

(
~s−1C⊗s

/
~sC⊗s

)
naturally embeds, as a dense subset,

into
(
~rC⊗r

/
~r+1C⊗r

)
⊗̃k

(
~s−1C⊗s

/
~sC⊗s

)
, so via the last isomorphism above we get
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~r+s−1C⊗(r+s)
/
~(r+s)C⊗(r+s) ↪−−→

(
~rC⊗r

/
~r+1C⊗r

)
⊗̃k

(
~s−1C⊗s

/
~sC⊗s

)
.

This last monomorphism maps (δr ⊗ δs)
(
δ2(a)

)
= δr+s(a) = 0 onto

(
δr⊗δs

)(
δ2(a)

) 6= 0 ,
a contradiction! Therefore we must have γj ∈

(
Ĉ

)′ for all j ∈ J , as contended.
The outcome is δ2(a) =

∑
j∈J βj ⊗ γj ∈ C ′⊗̃(

Ĉ
)′, so δ2(a) ∈ (

C ′ ⊗C
) ⋂ (

C ′⊗̃(
Ĉ

)′).
For all n ∈N, the result above yields

(
id⊗δn

)(
δ2(a)

) ∈ (
C ′⊗C⊗n

) ⋂ (
C ′⊗̃ δn

((
Ĉ

)′)) ⊆
⊆ (

C ′ ⊗C⊗n
) ⋂ (

C ′ ⊗̃ ~nĈ b⊗n
)

= C ′ ⊗ ~nC⊗n , because Ĉ
/
~nĈ = C

/
~nC (see above)

implies C
⋂
~nĈ = ~nC . So we found

(
id ⊗ δn

)(
δ2(a)

) ∈ C ′ ⊗ ~nC⊗n for all n ∈ N .
Acting like in the first part of the proof, we’ll show that this implies δ2(a) ∈ C ′ ⊗C ′ . To
this end, it is enough to show that (f ⊗ id)

(
δ2(a)

) ∈ R̂ · 1⊗R C ′ for all f ∈ (
Ĉ ′

)∗, which
amounts to show that (f ⊗ δn)

(
δ2(a)

) ∈ R̂ · 1⊗R ~nC⊗n for all n ∈ N+ , f ∈ (
Ĉ ′

)∗ . But
this is true because (f⊗δn)

(
δ2(a)

)
= (f⊗ id)

(
(id⊗δn)

(
δ2(a)

)) ∈ (f⊗ id)
(
C ′⊗~nC⊗n

) ⊆
R̂ · 1⊗R ~nC⊗n . We conclude that C ′ ∈ C+, q.e.d.

Now look at B ∈ B . By the previous part we have B′ ∈ C+. Moreover, B′ is multi-
plicatively closed, thanks to Lemma 3.4(a), and 1 ∈ B′ by the very definitions. Thus B′

is an R–sub-bialgebra of B, so B′ ∈ B .
Finally, for H ∈ HA one has in addition ∆ ◦ S = S⊗2 ◦∆, which implies ∆n ◦ S =

S⊗n ◦∆n hence δn ◦S = S⊗n ◦δn , for all n ∈ N . This clearly yields S(H ′) = H ′ , whence
H ′ is a Hopf subalgebra of H, thus H ′ ∈ HA , q.e.d. ¤

Remark: The “hard step” in the previous proof — i.e. proving that ∆(C ′) ⊆ C ′ ⊗ C ′

— is much simpler when, after the reduction step to C∞ = {0} , one has that C is free, as
an R–module (note also that for C free one has automatically C∞ = {0} ). In fact, in this
case — i.e. if C is free — we don’t need to use completions. The argument to prove that
δ2(a) ∈ C ′⊗C goes through untouched, just using C instead of Ĉ, the freeness of C taking
the role of the topological freeness of Ĉ ; similarly, later on if C ′ also is free (for instance,
when R is a PID, for C ′ is an R–submodule of the free R–module C ) we can directly use it
instead of the topologically free module Ĉ ′, just taking

{
βj

∣∣ j ∈ J }
to be an R–basis of

C ′ : then we can write δ2(a) =
∑

j∈J βj⊗γj ∈ C ′⊗C for some γj ∈ C , and the argument
we used applies again to show that now γj ∈ C ′ for all j , so that δ2(a) ∈ C ′ ⊗ C ′ , q.e.d.

Theorem 3.6. Assume that k := R
/
~R is a field.

(a) X 7→X∨ gives well-defined functors from A+ to A+, from B to B, from HA to HA .
(b) X 7→X ′ gives well-defined functors from C+ to C+, from B to B, from HA to HA .

(c) For any B ∈ B we have B⊆(
B∨)′, B⊇(

B′)∨, hence B∨=
((

B∨)′)∨, B′=
((

B′)∨)′
.

Proof. In force of Propositions 3.3–5, to define the functors we only have to set them on
morphisms. So let ϕ ∈ MorA+(A,E) be a morphism in A+ : by scalar extension it gives
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a morphism AF −→ EF of Hopf F (R)–algebras, which maps ~−1JA into ~−1JE , hence
A∨ into E∨ : this yields the morphism ϕ∨ ∈ MorA+

(
A∨, E∨)

we were looking for. On
the other hand, if ψ ∈ MorC+(C,Γ ) is a morphism in C+ then δn ◦ ψ = ψ⊗n ◦ δn for all
n , so ψ

(
C ′

) ⊆ Γ ′ : thus as ψ′ ∈ MorC+
(
C ′, Γ ′

)
we take the restriction ψ

∣∣
C′ of ψ to C ′.

Now consider B ∈ B . For any n ∈ N we have δn(B) ⊆ JB
⊗n (see §2.1); this can

be read as δn(B) ⊆ JB
⊗n = ~n

(
~−1JB

)⊗n ⊆ ~n
(
B∨)⊗n , which gives B ⊆ (

B∨)′ , q.e.d.

On the other hand, let I ′ := Ker
(
B′ ε−³ R

~7→0−−−³k
)

; since
(
B′)∨ :=

⋃∞
n=0

(
~−1I ′

)n , in

order to show that B ⊇ (
B′)∨ it is enough to check that B ⊇ ~−1I ′ . So let x′ ∈ I ′ : then

δ1(x′) ∈ ~B , hence x′ = δ1(x′) + ε(x′) ∈ ~B . Therefore ~−1x′ ∈ B , q.e.d. Finally, the
last two identities follow easily from the two inclusions we’ve just proved. ¤

Theorem 3.7. Assume that k := R
/
~R is a field.

Let B ∈ B . Then B∨
∣∣∣
~=0

is an rUEA (see §1.1), generated by ~−1J mod ~B∨ .

In particular, if H ∈ HA then H∨ ∈ QrUEA .

Proof. A famous characterization theorem in Hopf algebra theory claims the following
(cf. for instance [Ab], Theorem 2.5.3, or [Mo], Theorem 5.6.5, and references therein,
noting also that in the cocommutative case connectedness and irreducibility coincide):

A Hopf algebra H over a ground field k is the restricted universal enveloping algebra

of a restricted Lie algebra g if and only if H is generated by P (H) (the set of primitive

elements of H) and it is cocommutative and connected. In that case, g = P (H).
Thus we must prove that the bialgebra B∨∣∣

~=0
is in fact a Hopf algebra, it is gener-

ated by its primitive part P
(
B∨∣∣

~=0

)
and it is cocommutative and connected, for then

B∨∣∣
~=0

= U(g) with g = P
(
B∨∣∣

~=0

)
being a restricted Lie bialgebra (by Remark 1.5).

Since B∨ =
∑

n≥0

(
~−1J

)n , it is generated, as a unital algebra, by J∨ := ~−1J .
Consider j∨ ∈ J∨ , and j := ~ j∨ ∈ J ; then

∆(j) = δ2(j) + j ⊗ 1 + 1⊗ j − ε(j) · 1⊗ 1 ∈ j ⊗ 1 + 1⊗ j + J ⊗ J

for ∆ = δ2 + id⊗ 1 + 1⊗ id− ε · 1⊗ 1 and Im (δ2) ⊆ J ⊗ J by construction. Therefore

∆
(
j∨

)
= δ2

(
j∨

)
+ j∨ ⊗ 1 + 1⊗ j∨ − ε

(
j∨

) · 1⊗ 1 = δ2

(
j∨

)
+ j∨ ⊗ 1 + 1⊗ j∨ ∈

∈ j∨ ⊗ 1 + 1⊗ j∨ + ~−1J ⊗ J = j∨ ⊗ 1 + 1⊗ j∨ + ~+1J∨ ⊗ J∨

whence
∆

(
j∨

) ≡ j∨ ⊗ 1 + 1⊗ j∨ mod ~B∨ (∀ j∨ ∈ J∨) . (3.2)

This proves that J∨
∣∣
~=0

⊆ P
(
B∨∣∣

~=0

)
, and since J∨

∣∣
~=0

generates B∨∣∣
~=0

(for J∨ gen-
erates B∨), a fortiori B∨∣∣

~=0
is generated by P

(
B∨∣∣

~=0

)
, hence B∨∣∣

~=0
is cocommutative

too. In addition, (3.2) enables us to apply Lemma 5.5.1 in [Mo] — which is stated there
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for Hopf algebras, but holds indeed for bialgebras as well — to the bialgebra B∨∣∣
~=0

, with

A0 = k·1 and A1 = J∨
/(

J∨∩ ~B∨)
: then that lemma proves that B∨∣∣

~=0
is connected.

Another classical result (cf. [Ab], Theorem 2.4.24) then ensures that B∨∣∣
~=0

is indeed a
Hopf algebra; as it is also connected, cocommutative and generated by its primitive part,
we can apply the characterization theorem and get the claim. ¤

Theorem 3.8. Assume that k := R
/
~R is a field.

Let B ∈ B . Then (B′)∞ = IB′
∞ and B′

∣∣∣
~=0

is commutative and has no non-trivial

idempotents. In addition, when p := Char (k) > 0 each non-zero element of JB′|~=0 has
nilpotency order p , that is η p = 0 for all η ∈ JB′|~=0 .

In particular, if H ∈ HA then H ′ ∈ QFA .

Proof. The second part of the claim (about H ∈ HA ) is simply a straightforward refor-
mulation of the first part (about B ∈ B ), so in fact it is enough to prove the latter.

First we must show that B′∣∣
~=0

is commutative, (B′)∞ = IB′
∞ and B′∣∣

~=0
has no

non-trivial idempotents (cf. §1.3–4). For later use, set I := IB , J :=JB , J ′ :=JB′ , I ′ :=IB′ .
As for commutativity, we have to show that ab − ba ∈ ~B′ for all a, b ∈ B′ . First,

by the inverse formula for ∆n (see §2.1) we have idB = ∆1 = δ1 + δ0 = δ1 + ε ; so
x = δ1(x)+ε(x) for all x ∈ B . If x ∈ B′ we have δ1(x) ∈ ~B , hence there exists x1 ∈ B

such that δ1(x) = ~x1 . Now take a, b ∈ B′ : then a = ~ a1 + ε(a) , b = ~ b1 + ε(b) ,
whence ab− ba = ~ c with c = ~ (a1b1− b1a1) ; therefore we are left to show that c ∈ B′.
To this end, we have to check that δΦ(c) is divisible by ~|Φ| for any nonempty finite subset
Φ of N+ : as multiplication by ~ is injective (for B is torsion-free!), it is enough to show
that δΦ(ab− ba) is divisible by ~|Φ|+1.

Let Λ and Y be subsets of Φ such that Λ∪Y = Φ and Λ∩Y 6= ∅ : then |Λ|+|Y | ≥ |Φ|+1 .
Now, δΛ(a) is divisible by ~|Λ| and δY (b) is divisible by ~|Y |. From this and from Lemma
3.4(b) it follows that δΦ(ab− ba) is divisible by ~|Φ|+1, q.e.d.

Second, we show that (B′)∞ = (I ′)∞ . By definition ~B′ ⊆ I ′ , whence B′
∞ :=⋂+∞

n=0 ~nB′ ⊆⋂+∞
n=0

(
I ′

)n =:
(
I ′

)∞, i.e.
(
B′)

∞ ⊆ (
I ′

)∞. Conversely, I ′ = ~B′ + J ′ with
~B′ ⊆ ~B and J ′ = δ1(J ′) ⊆ ~B : thus I ′ ⊆ ~B , hence

(
I ′

)∞ ⊆⋂+∞
n=0 ~nB =: B∞ .

Now definitions give B∞⊆B′ and ~`B∞ = B∞ for all ` ∈ Z , so ~−n
(
I ′

)∞⊆~−nB∞ =
B∞⊆B′ hence

(
I ′

)∞⊆~nB′ for all n ∈ N, thus finally
(
I ′

)∞⊆(
B′)

∞.
Third, we prove that B′∣∣

~=0
has no non-trivial idempotents.

Let a ∈ B′, and suppose that a := a mod ~B′ ∈ B′∣∣
~=0

is idempotent, i.e. a 2 = a .
Then a2 = a + ~ c for some c ∈ ~B′ . Set a0 := ε(a) , a1 := δ1(a) , and c0 := ε(c) ,
c1 := δ1(c) ; since a, c ∈ B′ we have a1, c1 ∈ ~B ∩ J = ~ J .

First, applying δn to the identity a2 = a + ~ c and using Lemma 3.4(a) we get
∑

Λ∪Y ={1,...,n}
δΛ(a) δY (a) = δn

(
a2

)
= δn(a) + ~ δn(c) ∀ n ∈ N+ . (3.3)
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Since a, c ∈ B′ we have δn(a), δn(c) ∈ ~nB⊗n for all n ∈ N . Therefore (3.3) yields

δn(a) ≡ ∑
Λ∪Y ={1,...,n}

δΛ(a) δY (a) = 2 δ0(a) δn(a) +
∑

Λ∪Y ={1,...,n}
Λ,Y 6=∅

δΛ(a) δY (a) mod ~n+1B⊗n

for all n ∈ N+ , which, recalling that a0 := δ0(a) , gives (for all n ∈ N+)
(
1− 2 a0

)
δn(a) ≡ ∑

Λ∪Y ={1,...,n}
Λ,Y 6=∅

δΛ(a) δY (a) mod ~n+1B⊗n . (3.4)

Now, applying ε to the identity a2 = a + ~ c gives a0
2 = a0 + ~ c0 . This implies(

1− 2 a0

) 6∈ ~B : this is trivial if Char (R) = 2 or a0 = 0 ; otherwise, if
(
1− 2 a0

) ∈ ~B

then a0 = 1/2 + ~α for some α ∈ B , and so a0
2 =

(
1/2 + ~α

)2 = 1/4 + ~α + ~2 α2 6=
1/2 + ~α + ~ c0 = a0 + ~ c0 , thus contradicting the identity a0

2 = a0 + ~ c0 . Now using(
1 − 2 a0

) 6∈ ~B and formulas (3.4) — for all n ∈ N+ — an easy induction argument
gives δn(a) ∈ ~n+1B , for all n ∈ N+ . Now consider a1 = a − a0 = ~α for some
α ∈ ~ J : we have δ0(α) = ε(α) = 0 and δn(α) = ~−1δn(a) ∈ ~nB , for all n ∈ N+ ,
which mean α ∈ B′ . Thus a = a0 + ~α ≡ a0 mod ~B′ , whence a = a0 ∈ B′∣∣

~=0
;

then a0
2 = a0 ∈ k gives us a0 ∈ {0, 1} , hence a = a0 ∈ {0, 1} , q.e.d.

Finally, assume that p := Char (k) > 0 ; then we have to show that η p = 0 for each
η ∈ JB′|~=0 , or simply ηp ∈ ~ JB′ for each η ∈ JB′ . Indeed, for any n ∈ N from the
multiplicativity of ∆n and from ∆n(η) =

∑
Λ⊆{1,...,n} δΛ(η) (cf. §2.1) we have

∆n(ηp) =
(
∆n(η)

)p =
( ∑

Λ⊆{1,...,n} δΛ(η)
)p

∈ ∑
Λ⊆{1,...,n} δΛ(η)p +

+
∑

e1,...,ep<p
e1+···ep=p

(
p

e1,...,ep

) ∑
Λ1,...,Λp⊆{1,...,n}

∏p
k=1 δΛk

(η)ek + ~ ·
n−1∑
k=0

∑
Ψ⊆{1,...,n}
|Ψ|=k

jΨ
(
J

B′
⊗k

)
+ ~ ·J

B′
⊗n

because δΛ(η) ∈ jΛ

(
J

B′
⊗|Λ|

)
(for all Λ ⊆ {1, . . . , n} ) and

[
J

B′ , JB′
] ⊆ ~ J

B′ . Then

δn(ηp) = (idB− ε)⊗n(
∆n(ηp)

) ∈ δn(η)p +
∑

e1,...,ep<p
e1+···ep=p

(
p

e1,...,ep

) ∑
∪kΛk={1,...,n}

∏p
k=1 δΛk

(η)ek + ~ J
B′
⊗n.

Now, δn(η)p ∈ (
~nB⊗n

)p ⊆ ~n+1B⊗n because η ∈ B′ , and similarly we have also∏p
k=1 δΛk

(η)ek ∈ ~
P

k |Λk| ekB⊗n ⊆ ~nB⊗n whenever
⋃n

k=1 Λk = {1, . . . , n} ; in addition,
the multinomial coefficient

(
p

e1,...,ep

)
(with e1, . . . , ep < p ) is a multiple of p , hence it is

zero in R
/
~R = k , that is

(
p

e1,...,ep

) ∈ ~R : therefore

∑
e1,...,ep<p

e1+···+ep=p

(
p

e1,...,ep

) ∑
∪p

k=1Λk={1,...,n}

p∏
k=1

δΛk
(η)ek ∈ ~n+1B⊗n .

Finally, since J
B′ ⊆ ~ J

B
we have also ~ J

B′
⊗n ⊆ ~n+1B⊗n . The outcome then is that

δn(ηp) ∈ ~n+1B⊗n for all n ∈ N , thus η ∈ ~B′ as expected. ¤
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§ 4 Drinfeld’s functors on quantum groups

From now on, we assume that k := R
/
~R is a field.

Lemma 4.1. Let F~ ∈ QFA , and assume that F~
∣∣
~=0

is reduced. Let I := IF~ , let F̂~

be the I–adic completion of F~ , and Î
n the I–adic closure of In in F̂~ , for all n∈N .

(a) F̂~ is isomorphic as an R̂–module (where R̂ is the ~–adic completion of R ) to a
formal power series algebra of type R̂

[[{Yb}b∈S
]]

(where S stands for some index set).
(b) Letting ν : k ↪−−→ R be a section of the quotient map R −−³ R

/
~R =: k , use

it to identify (set-theoretically) F̂~ ∼= R̂
[[{Yb}b∈S

]]
with ν(k)

[[{Y0} ∪ {Yb}b∈S
]]

(with

~ ∼= Y0 ). Then via such an identification both
(̂
Î

)n and Î
n coincide with the set of all

formal series of (least) degree n (in the Yi’s, with i ∈ {0} ∪ S ), for all n ∈ N .
(c) There exist k–module isomorphisms GI

(
F~

) ∼= k
[
Y0, {Yb}b∈S

] ∼= GbI
(
F̂

)
for the

graded rings associated to F~ and F̂~ with the I–adic and the Î–adic filtration.
(d) Let µ : F~ −−→ F̂~ be the natural map. Then µ(F~)

⋂
Î

n = µ(In) for all n ∈ N .

Proof. Let F [G] ≡ F~
∣∣
~=0

:= F~
/
~F~ , and let F̂ [G] = F [[G]] be the m–adic completion

of F [G], where m = Ker
(
εF [G]

)
is the maximal ideal of F [G] at the unit element of G.

Then I = π−1(m) , the preimage of m under the specialization map π : F~ −−³ F~
/
~F~ =

F [G] . Therefore π induces a continuous epimorphism π̂ : F̂~ −−³ F̂ [G] = F [[G]] , which
again is nothing but specialization at ~ = 0 . Note also that the ground ring of F̂~ is R̂,
because the ground ring of the I–adic completion of a unital R–algebra is the (R∩ I)–adic
completion of R, and the R∩ I = ~R . Then of course F̂~ is also a topological R̂–module.
Moreover, by construction we have

(
F̂~

)
∞ = {0} .

Now, let {yb}b∈S be a k–basis of m
/
m2 = Q

(
F [G]

)
; by hypothesis F [G] is reduced,

thus F [[G]] is just the formal power series algebra in the yb’s, i.e. F [[G]] ∼= k
[[{Yb}b∈S

]]
.

For any b ∈ S, pick a jb ∈ π−1(yb)
⋂

J (with J := Ker (εF~) ), and fix also a section
ν : k ↪−−→ R of the quotient map R −−³ R

/
~R = k as in (b). Using these, we can

define a continuous morphism of R̂–modules Ψ : R̂
[[{Yb}b∈S

]] −−−→ F̂~ mapping Y e :=∏
b∈S Y

e(b)
b to j e :=

∏
b∈S j

e(b)
b for all e ∈ NSf :=

{
σ ∈ NS

∣∣ σ(b) = 0 for almost all b ∈
S }

(hereafter, monomials like the previous ones are ordered w.r.t. any fixed order of the
index set S ). In addition, using ν one can identify (set-theoretically) R̂ ∼= ν(k)[[Y0]] (with
~ ∼= Y0 ), whence a bijection ν(k)

[[
Y0 ∪ {Yb}b∈S

]] ∼= R̂
[[{Yb}b∈S

]]
arises.

We claim that Ψ is surjective. Indeed, since
(
F̂~

)
∞ = {0} , for any f ∈ F̂~ there is a

unique v~(f) ∈ N such that f ∈ ~v~(f)F̂~ \ ~v~(f)+1F̂~ , so π̂
(
~−v~(f)f

)
=

∑
e∈NSf ce · ye

for some ce ∈ k not all zero. Then for f1 := f − ~v~(f) · ∑e∈NSf ν(ce) · j e we have
v~(f1) > v~(f) . Iterating, we eventually find for f a formal power series expression of
the type f =

∑
n∈N ~n ·∑e∈NSf ν(ce,n) · j e =

∑
(e0,e)∈N×NSf ν(κe) · ~e0j e , so f ∈ Im (Ψ) ,

q.e.d. Thus in order to prove (a) we are left to show that Ψ is injective too.
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Consider the graded ring associated to the ~–adic filtration of F̂~, that is G~
(
F̂~

)
:=

⊕+∞
n=0

(
~nF̂~

/
~n+1F̂~

)
: this is commutative, because F̂~

/
~ F̂~ = π̂

(
F̂~

)
= F [[G]] is com-

mutative, and more precisely G~
(
F̂~

) ∼= k
[
~

] ⊗k
(
F̂~

/
~ F̂~

) ∼= k[Y0] ⊗k F [[G]] ∼=
∼=

(
F [[G]]

)
[Y0] as graded k–algebras. In addition, the epimorphism (of R̂–modules)

Ψ : R̂⊗kF [[G]] −−³ F̂~ induces an epimorphism GY0(Ψ) : GY0

(
R̂⊗kF [[G]]

) −−³ G~
(
F̂~

)

of graded k–algebras, and by the very construction GY0(Ψ) is clearly an isomorphism yield-
ing

(
F [[G]]

)
[Y0] ∼= GY0

(
R̂ ⊗k F [[G]]

) ∼= G~
(
F̂~

)
: then by a standard argument (cf. [Bo],

Ch. III, §2.8, Corollary 1) we conclude that Ψ is an isomorphism as well, q.e.d.
As for part (b), we start by noting that Î = π̂−1

(
Ker (εF [[G]])

)
= Ker (εcF~) + ~ F̂~ , so

each element of Î is expressed — via the isomorphism Ψ — by a series of degree at least
1; moreover, for all b, d ∈ S we have jb jd − jd jb = ~ j+ for some j+ ∈ Ker (εcF~) . This
implies that when multiplying n factors from Î expressed by n series of positive degree, we
can reorder the unordered monomials in the yb’s occurring in the multiplication process
and eventually get a formal series — with ordered monomials — of degree at least n . This

proves the claim for both În and
(̂
Î

)n .
For part (c), the analysis above shows that the natural map µ : F~ −→ F̂~ induces

k–module isomorphisms
(
Î

)n
/(

Î
)n+1 ∼=

(̂
Î

)n
/ ̂(

Î
)n+1 ∼= În

/
Î

n+1 (for all n ∈ N ),

so GI

(
F~

)
:=

+∞⊕
n=0

In
/

In+1 ∼=
+∞⊕
n=0

(
Î

)n
/(

Î
)n+1

=: GbI
(
F̂~

) ∼=
+∞⊕
n=0

Î
n
/

Î
n+1 ; moreover,

the given description of the În’s implies GbI
(
F̂~

)
:=

+∞⊕
n=0

Î
n
/

Î
n+1 ∼= k

[
Y0, {Yb}b∈S

]
as

k–modules, and the like for GI

(
F~

)
, thus (c) is proved.

Finally, (d) is a direct consequence of (c): for the latter yields k–module isomorphisms
F~

/
In ∼= GI

(
F~

)/
GI

(
In

) ∼= GI

(
F̂~

)/
GI

(
Î

n ) ∼= F̂~
/

Î
n, thus µ(In) = Î

n ⋂
µ(F~) . ¤

Remark: the previous description of the “formal quantum group” F̂~ shows that the
latter looks exactly like expected. In particular, in the finite dimensional case we can say
it is a local ring which is also “regular”, in the sense that the four numbers

— dimension of the “cotangent space” IF~

/
IF~

2 ,
— least number of generators of the maximal ideal IF~ ,
— Hilbert dimension ( = degree of the Hilbert polynomial of the graded ring GbI

(
F̂~

)
),

— Krull dimension of the associated graded ring GbI
(
F̂~

)
,

are all equal. Another way to say it is to note that, if
{
j1, . . . , jd

}
is a lift in JF~ of any

system of parameters of G = Spec
(
F~

∣∣
~=0

)
around the identity (with d = dim(G) ), then

the set
{
j0 := ~, j1, . . . , jd

}
is a “system of parameters” for F~ (or, more precisely, for

the local ring F̂~ ). A suggestive way to interpret all this is to think at quantization as
“adding one dimension (or deforming) in the direction of the quantization parameter ~ ”:



THE GLOBAL QUANTUM DUALITY PRINCIPLE: THEORY, EXAMPLES, APPLICATIONS 21

and here we stress the fact that this is to be done “in a regular way”.

Lemma 4.2. Let F~ ∈ QFA , and assume that F~
∣∣
~=0

is reduced. Then:
(a) if ϕ ∈ F~ and ~s ϕ ∈ IF~

n (s, n ∈ N), then ϕ ∈ IF~
n−s;

(b) if y ∈ IF~ \ IF~
2, then ~−1y 6∈ ~F~

∨ ;
(c)

(
F ∨
~

)
∞ =

(
F~

)
∞

(
= IF~

∞ )
.

(d) Let Char (k) = 0 , and let U~ ∈ QrUEA . Let x′ ∈ U~
′, and let x ∈ U~ \ ~U~ ,

n ∈ N , be such that x′ = ~nx . Set x̄ := x mod ~U~ . Then ∂(x̄) ≤ n (hereafter ∂(x̄) is
the degree of x̄ w.r.t. the standard filtration of the universal enveloping algebra U~

∣∣
~=0

).

Proof. (a) Set I := IF~ . Consider I∞ (cf. Definition 1.4(b)) and the quotient Hopf algebra

F ~ := F~
/

I∞ : then Ī := IF~ = I
/

I∞ . By Lemma 3.2(a), F ~ is again a QFA, having

the same specialization at ~ = 0 than F~ , and such that Ī∞ := IF~
∞ = {0} . Now,

φ ∈ I` ⇐⇒ φ ∈ Ī` for all φ ∈ F~ , ` ∈ N , with φ := φ + I∞ ∈ F ~ : thus it is enough
to make the proof for F ~ , i. e. we can assume from scratch that I∞ = {0} . In particular
the natural map from F~ to its I–adic completion F̂~ is injective, as its kernel is I∞ .

Consider the embedding F~ ↪→ F̂~ : from the proof of Lemma 4.1 one easily sees that
Î`

⋂
F~ = I`, for all ` (because F~

/
I` ∼= F̂~

/
Î` ): then, using the description of Î` in

Lemma 4.1, ϕ ∈ F~ and ~sϕ ∈In give at once ϕ ∈ În−s
⋂

F~ = In−s, q.e.d.
(b) Let y ∈ IF~ \ IF~

2 . Assume ~−1y = ~ η for some η ∈ F~
∨ \ {0} . Since F~

∨ :=⋃
N≥0 ~−NIF~

n we have η = ~−N iN for some N ∈ N+ , iN ∈ IF~
N . Then we have ~−1y =

~ η = ~1−N iN , whence ~N−1y = ~ iN : but the right-hand-side belongs to IF~
N+1, whilst

the left-hand-side cannot belong to IF~
N+1, due to (a), because y 6∈ IF~

2 , a contradiction.
(c) Clearly F~ ⊂ F~

∨ implies
(
F~

)
∞ :=

⋂+∞
n=0 ~nF~ ⊆

⋂+∞
n=0 ~nF~

∨ =:
(
F~
∨)
∞. For

the converse inclusion, note that by definitions
(
F~

)
∞ is a two-sided ideal both inside

F~ and inside F~
∨, and F ~

∨ ≡
(
F~

/(
F~

)
∞

)∨
= F~

∨
/(

F~
)
∞ , so we have also

(
F~
∨)
∞

mod
(
F~

)
∞ ⊆

(
F~
∨
/(

F~
)
∞

)
∞
=

(
F ~

∨)
∞

, with F ~ := F~
/

IF~
∞ = F~

/(
F~

)
∞ (a QFA, by

Lemma 3.2(a)). So, we prove that
(
F ~

∨)
∞

={0} for then
(
F~
∨)
∞ ⊆ (

F~
)
∞ will follow.

Let µ : F~ −→ F̂~ be the natural map from F~ to its IF~–adic completion, whose kernel

is IF~
∞ =

(
F~

)
∞ : this makes F ~ embed into F̂~ , and gives F ~

∨ ⊆ F̂~
∨

:=
⋃

n≥0 ~−nÎn

(notation of Lemma 4.1), whence
(
F ~

∨)
∞
⊆

(
F̂~

∨)
∞

. Now, the description of F̂~ and În

in Lemma 4.1 yields that F̂~
∨

is contained in the ~–adic completion of the R–subalgebra
of F (R) ⊗R F̂~ generated by

{
~−1jb

}
b∈S (as in the proof of Lemma 4.1), which is a

polynomial algebra. But then F̂~
∨

is separated in the ~–adic topology, i.e.
(
F̂~

∨)
∞

= {0} .

(d) (cf. [EK], Lemma 4.12) By hypothesis δn+1(x′) ∈ ~n+1U~
⊗(n+1), whence δn+1(x) ∈

~U~
⊗(n+1), so δn+1(x̄) = 0 , i.e. x̄ ∈ Ker

(
δn+1: U(g) −→ U(g)⊗(n+1)

)
, where g is the
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Lie bialgebra such that U~
∣∣
~=0

:= U~
/
~U~ = U(g) . But since Char (k) = 0 , the latter

kernel equals U(g)n :=
{

ȳ ∈ U(g)
∣∣ ∂(ȳ) ≤ n

}
(cf. [KT], §3.8), whence the claim. ¤

Proposition 4.3. Let Char (k) = 0 . Let F~ ∈ QFA . Then
(
F~
∨)′= F~ .

Proof. Theorem 3.6 gives F~ ⊆ (
F~
∨)′, so we have to prove only the converse. Let

F ~ := F~
/

(F~)∞ ; by Lemma 4.2(c) we have
(
F~
∨)
∞ = (F~)∞ ; by Lemma 3.2(a) we have

(
F ~

)∨
= F~

∨
/

(F~)∞ = F~
∨
/(

F~
∨)
∞ , whence again by Lemma 3.2(a) we get

((
F ~

)∨)′
=

(
F~
∨
/(

F~
∨)
∞

)′
=

(
F~
∨)′/(

F~
∨)
∞ =

(
F~
∨)′/(F~)∞ . Thus, if the claim is true for F ~

then F~
/

(F~)∞ =: F ~ =
((

F ~
)∨)′

=
(
F~
∨)′/(F~)∞ , whence clearly

(
F~
∨)′ = F~ .

Therefore it is enough to prove the claim for F ~ : in other words, we can assume IF~
∞ =

(F~)∞ =
(
F~
∨)
∞ = {0} (see Lemma 4.2(c)). In the sequel, set I := IF~ .

Let x′ ∈ (
F~
∨)′ be given; since (F~)∞ = {0} there are n ∈ N and x∨ ∈ F~

∨ \ ~F~
∨

such that x′ = ~nx∨ . By Theorem 3.7, F~
∨ is a QrUEA, with semiclassical limit U(g)

where the Lie bialgebra g is g = I∨
/(
~F~

∨⋂
I∨

)
, with I∨ := ~−1I .

Fix an ordered basis {bλ}λ∈Λ of g over k, and fix also a subset
{
x∨λ

}
λ∈Λ

of IF~
∨ such

that x∨λ mod ~F~
∨ = bλ for all λ ∈ Λ : so x∨λ = ~−1xλ for some xλ ∈ J , for all λ .

Lemma 4.2(d) gives d := ∂(x̄) ≤ n , so we can write x∨ as a polynomial P
({bλ}λ∈Λ

)
in

the bλ’s of degree d ≤ n ; hence x∨ ≡ P
({

x∨λ
}

λ∈Λ

)
mod ~F~

∨ , so x∨ = P
({

x∨λ
}

λ∈Λ

)
+

~x∨[1] for some x∨[1] ∈ F~
∨. Now x′ = ~nx∨ = ~nP

({
x∨λ

}
λ∈Λ

)
+ ~n+1x∨[1] with

~nP
({

x∨λ
}

λ∈Λ

)
= ~nP

({
~−1 xλ

}
λ∈Λ

)
∈ F~

because P has degree d ≤ n ; thus since F~ ⊆
(
F~
∨)′ (by Theorem 3.6) we get

x′1 := x′ − ~nP
({

x∨λ
}

λ∈Λ

) ∈ (
F~
∨)′ and x′1 = ~n+1x∨[1] = ~n1x∨1

for some n1 ∈ N, n1 > n , and some x∨1 ∈ F~
∨ \ ~F~

∨. Therefore, we can repeat this
construction with x′1 instead of x′, n1 instead of n, and x∨1 instead of x∨, and so on.
Iterating, we eventually get an increasing sequence

{
ns

}
s∈N of natural numbers and a

sequence
{

Ps

({Xλ}λ∈Λ

)}
s∈N

of polynomials such that the degree of Ps

({Xλ}λ∈Λ

)
is at

most ns, for all s ∈ N, and x′ =
∑

s∈N ~nsPs

({
x∨λ

}
λ∈Λ

)
.

How should we look at the latter formal series? By construction, each one of the
summands ~nsPs

({
x∨λ

}
λ∈Λ

)
belongs to F~ : more precisely, ~nsPs

({
x∨λ

}
λ∈Λ

) ∈ IF~
ns for

all s ∈ N ; this means that
∑

s∈N ~nsPs

({
x∨λ

}
λ∈Λ

)
is a well-defined element of F̂~, the

IF~–adic completion of F~, and the formal expression x′ =
∑

s∈N ~nsPs

({
x∨λ

}
λ∈Λ

)
is an

identity in F̂~. So we find x′ ∈ (
F~
∨)′⋂

F̂~ . Now, consider the embedding µ : F~ ↪→ F̂~
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and the specialization map π : F~ −³ F~
∣∣
~=0

= F [G] : like in the proof of Lemma 4.1, π

extends by continuity to π̂ : F̂~ −−³ F̂ [G] = F [[G]] : then one easily checks that the map
µ
∣∣
~=0

: F [G] = F~
∣∣
~=0

−−−−→ F̂~
∣∣
~=0

= F [[G]] is injective too. Since Ker (π) = ~F~ and
Ker (π̂) = ~ F̂~ , this implies F~

⋂
~ F̂~ = ~F~ , whence F~

⋂
~` F̂~ = ~`F~ for all ` ∈ N .

Getting back to our x′ ∈ (
F~
∨)′⋂

F̂~ , we have x′ = ~−ny for some n ∈ N and y ∈ F~ ;
thus, we conclude that y = ~nx′ ∈ F~

⋂
~n F̂~ = ~nF~ , so that x′ ∈ F~ , q.e.d. ¤

Proposition 4.4. Let H, K∈HA , and 〈 , 〉 : H ×K −−→ R a Hopf pairing. Then
(a) H∨ ⊆ (

K ′)• and K ′ ⊆ (
H∨)• (and viceversa). Therefore, the above pairing

induces a Hopf pairing 〈 , 〉: H∨×K ′ −−→ R .
(b) If in addition the pairing H×K −→ R and its specialization H

∣∣
~=0

×K
∣∣
~=0

−→ k
at ~ = 0 are both perfect, and K = H• , then we have also K ′ =

(
H∨)• .

(c) Similar results hold for B, Ω ∈ B and 〈 , 〉 : B × Ω −−→ R a bialgebra pairing
(i.e. a pairing with the properties of Definition 1.2(a) but the one about the antipode).

Proof. (a) The Hopf pairing HF×KF −→ F (R) given by scalar extension clearly restricts
to a similar Hopf pairing H∨×K ′ −→ F (R) : we must prove this takes values in R .

Let I = IH , so H∨=
⋃∞

n=0 ~−nIn (cf. §2.1). Pick c1, . . . , cn ∈ I , y ∈ K ′ : then

〈∏n
i=1ci , y

〉
=

〈
⊗n

i=1 ci , ∆n(y)
〉

=
〈
⊗n

i=1ci ,
∑

Ψ⊆{1,...,n}δΨ(y)
〉

=

=
∑

Ψ⊆{1,...,n}
〈
⊗n

i=1 ci , δΨ(y)
〉

=
∑

Ψ⊆{1,...,n}
〈
⊗i∈Ψ ci , δ|Ψ|(y)

〉
·∏j 6∈Ψ〈cj , 1〉 ∈

∈ ∑
Ψ⊆{1,...,n}~

n−|Ψ|R · ~|Ψ|R = ~nR .

The outcome is
〈
In,K ′〉 ⊆ ~nR , whence

〈
~nIn,K ′〉 ⊆ R , for all n ∈ N ; since

H∨ =
⋃∞

n=0 ~−nIn , we get H∨ ⊆ (
K ′)• and K ′ ⊆ (

H∨)• : then it follows also that the
restricted pairing H∨×K ′ −−→ F (R) does take values in R, as claimed.

(b) We revert the previous argument to show that
(
H∨)• ⊆ K ′ .

Let ψ ∈ (
H∨)• : then

〈
~−sIs, ψ

〉 ∈ R so
〈
Is, ψ

〉 ∈ ~sR, for all s. For s = 0 we get〈
H, ψ

〉 ∈ R , thus ψ ∈ H•= K and so δn(ψ) ∈ K⊗n for all n . If n ∈ N, i1, . . . , in ∈ I,

〈⊗n
k=1 ik , δn(ψ)

〉
=

∑
Ψ⊆{1,...,n}(−1)n−|Ψ| · 〈∏k∈Ψik , ψ

〉 ·∏k 6∈Ψε(ik) ∈
∈ ∑

Ψ⊆{1,...,n}
〈
I |Ψ|, ψ

〉 · ~n−|Ψ|R ⊆ ∑n
s=0~

s · ~n−sR = ~nR

therefore
〈
I⊗n, δn(ψ)

〉 ⊆ ~nR . Now, H splits as H = R · 1H ⊕ JH , with JH := Ker (εH) ;
then H⊗n splits into direct sum of JH

⊗n plus other direct summands which are tensor
products with at least one tensor factor R·1H . As JK := Ker (εK) =

{
y ∈K

∣∣ 〈1H , y〉 = 0
}
,

we have
〈
H⊗n, j⊗

〉
=

〈
JH
⊗n, j⊗

〉
for j⊗ ∈ JK

⊗n . Now δn(ψ) ∈ JK
⊗n : this and the

previous analysis together give
〈
H⊗n, δn(ψ)

〉 ⊆ 〈
IH
⊗n, δn(ψ)

〉 ⊆ ~n R , for all n ∈ N .
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Now, H• = K implies
(
H⊗n

)• = K⊗n for the induced pairing H⊗n ×K⊗n −→ R .

On the other hand,
〈
H⊗n, δn(ψ)

〉
⊆ ~nR (for all n ) gives ~−nδn(ψ) ∈ (

H⊗n
)• = K⊗n ,

that is δn(ψ) ∈ ~nK⊗n for all n ∈ N , whence finally ψ ∈ K ′ , q.e.d.
(c) We don’t need antipode to prove (a) and (b): the like arguments prove (c) too. ¤

Proposition 4.5. Let Char (k) = 0 . Let U~ ∈ QrUEA . Then
(
U~

′ )∨ = U~ .

Proof. First, let U~ := U~
/(

U~
)
∞ , and assume the claim holds for U~ : then repeated

applications of Lemma 3.2(a) give U~
/(

U~
)
∞ = U~ =

((
U~

)′)∨ =
(
U~

′)∨/(
U~

)
∞ ,

whence
(
U~

′ )∨ = U~ follows at once; therefore we are left to prove the claim for U~ , which
means we may assume

(
U~

)
∞ = {0} . In order to simplify notation, we set H := U~ .

Our purpose now is essentially to resort to a similar result which holds for quantum
groups “à la Drinfeld”: so we mimic the procedure followed in [Ga4] (in particular Propo-
sition 3.7 therein), noting in addition that in the present case we can get rid of the hy-
potheses dim(g) < +∞ (with U(g) = U~

/
~U~ ), as one can check getting through the

entire procedure developed in [Ga4] in light of [loc. cit.], §3.9.
Let Ĥ be the ~–adic completion of H: this is a separated complete topological R̂–

module, R̂ being the ~–adic completion of R , and a topological Hopf algebra, whose co-
product takes values into Ĥ ⊗̂ Ĥ := H ⊗̂H , the ~–adic completion of H⊗H (indeed, Ĥ is
a quantized universal enveloping algebra in the sense of Drinfeld). As H∞ = {0} , the nat-
ural map H −→ Ĥ embeds H as a (topological) Hopf R–subalgebra of Ĥ. Then we set also
Ĥ ′ :=

{
η ∈ Ĥ

∣∣ δn(η) ∈ ~nĤ b⊗n
}

and
(
Ĥ ′)× :=

⋃
n≥0 ~−nIbH′

n
(
⊆ Q

(
R̂

)⊗ bR Ĥ
)
, where

IbH′ := Ker (εbH′)+~ ·Ĥ ′ (as in §1.3), and we let
(
Ĥ ′)∨ be the ~–adic completion of

(
Ĥ ′)× .

Now consider K̂ := Ĥ∗ ≡ Hom bR
(
Ĥ , R̂

)
, the dual of Ĥ : this is a topological Hopf R̂–

algebra, w.r.t. the weak topology, in natural perfect Hopf pairing with Ĥ : in Drinfeld’s ter-
minology, it is a quantized formal series Hopf algebra. We define K̂× :=

∑
n≥0 ~−nJbK

n
(
⊆

Q
(
R̂

)⊗ bR K̂
)
, where JbK := Ker (εbK) (as in §1.3) and we let K̂∨ be the ~–adic completion

of K̂×, and we define
(
K̂∨)′

in the obvious way. With much the same arguments used for

Proposition 4.3, one proves that
(
K̂∨)′

= K̂ . Like in [Ga4], one proves — with much the
same arguments as for Proposition 4.4 — that Ĥ ′ =

(
K̂∨)•

and K̂∨ ⊆ (
Ĥ ′)• ; moreover,

one has also Ĥ = K̂∗, whence one argues K̂∨ =
(
Ĥ ′)• . Using this and the equality(

K̂∨)′
= K̂ one proves

(
Ĥ ′)∨ = Ĥ as well (see [Ga4] for details).

Now, definitions imply Ĥ
/
~nĤ = H

/
~nH for all n ∈ N : thus ~nĤ

⋂
H = ~nH ,

and similarly ~nĤ b⊗`
⋂

H⊗` = ~nH⊗`, for all n, ` ∈ N , whence Ĥ ′⋂ H = H ′ follows
at once; this easily implies I bH′

⋂
H = IH′ as well. By construction H is dense inside Ĥ

w.r.t. the ~–adic topology; then H ′ is dense inside Ĥ ′ w.r.t. the topology induced on the
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latter by the ~–adic topology of Ĥ. Now, the description of Ĥ ′ in [Ga4], §3.5 (which can
be given also when dim(g) = +∞ ), tells us that Ĥ ′⋂ ~nH = In

bH′ ; then we argue that H ′

is dense within Ĥ ′ w.r.t. the I bH′–adic topology of Ĥ ′. This together with I bH′
⋂

H = IH′

implies, by a standard argument, that I
n
bH′

⋂
H = I

n
H′ for all n ∈ N .

Finally, take η ∈ H \ ~H . We can show that there exists an η′ ∈ I
∂(η)
bH′ (notation of

Lemma 4.2(d)) such that η′ = ~∂(η)η + η′+ for some η′+ ∈ I
∂(η)+1
bH′ , just proceeding like

in [Ga4], §3.5 (noting again that we can drop the assumption dim(g) < +∞ ): roughly,
we consider any basis of H

∣∣
~=0

= Ĥ
∣∣
~=0

containing η, we look at the dual basis inside
K̂

∣∣
~=0

and lift it to a topological basis of K, then rescale the latter — dividing out each
element by the proper power of ~ — to sort a topological basis of K∨: the dual basis of Ĥ ′

will contain an element η′ as required. But then ~∂(η)η = η′ − η′+ ∈ I
∂(η)
bH′

⋂
H = I ∂(η) ,

thanks to the previous analysis: therefore η = ~−∂(η) · ~∂(η)η ∈ ~−∂(η)I ∂(η) ⊆ (
H ′)∨ . The

outcome is H ⊆ (
H ′)∨ , whilst the reverse inclusion follows from Theorem 3.6. ¤

Corollary 4.6. Let Char (k) = 0 . Let U~ ∈ QrUEA . Then
(
U~

′)
F

= (U~)F .

Proof. Definitions give H∨
F = HF for all H ∈ HA . Therefore, since U~ =

(
U~

′)∨ by

Proposition 4.5, we have
(
U~

′)
F

=
((

U~
′)∨)

F
= (U~)F , q.e.d. ¤

Remark: it is worth noticing that, while H∨
F = HF for all H ∈ HA , we have not

in general H ′
F = HF ; in particular, example exist of non-trivial H ∈ HA such that

H ′ = R · 1H , so that H ′
F = F (R) · 1H $ H . These cases also yield counterexamples to

Proposition 4.5, namely some H ∈ HA for which
(
H ′ )∨ $ H .

Theorem 4.7. Let F~[G] ∈ QFA (notation of Remark 1.5) such that F~[G]
∣∣
~=0

is re-
duced. Then F~[G]∨

∣∣
~=0

is a universal enveloping algebra, namely

F~[G]∨
∣∣∣
~=0

:= F~[G]∨
/
~F~[G]∨ = U(g×)

where g× is the cotangent Lie bialgebra of G (cf. §1.1).
Proof. Set for simplicity F~ := F~[G] , F0 := F~

/
~F~ = F [G] , and F~

∨ := F~[G]∨,
F0
∨ := F~

∨/
~F~

∨. By Theorem 3.7, F~
∨ is a QrUEA, so F0

∨ = F~
∨∣∣
~=0

is the restricted
universal enveloping algebra u(k) of some restricted Lie bialgebra k. Our purpose is to
prove that: first, F0

∨ = u(k) = U(h) for some Lie bialgebra h; second, h ∼= g×.
Once again we can reduce to the case when F~ is separated w.r.t. the ~–adic topol-

ogy. Indeed, we have
(
F~

)
∞ =

(
F~
∨)
∞ by Lemma 4.2(c); then F~

∨ := F~
∨
/(

F~
∨)
∞ =

F~
∨/(

F~
)
∞ =

(
F~

)∨
by Lemma 3.2(a) (taking notation from there), and so F~

∨
∣∣∣
~=0

=

F~
∨
∣∣∣
~=0

=
(
F~

)∨∣∣∣
~=0

, where the first identity follows from Lemma 3.2(b). Therefore it is

enough to prove the claim for F~ , which means that we can assume that
(
F~

)
∞ = {0} .
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Like in Lemma 4.1, let I := IF~ , and let F̂~ be the I–adic completion of F~ . By
assumption I∞ =

(
F~

)
∞ = {0} , hence the natural map F~ −−→ F̂~ is a monomorphism.

Consider J := Ker
(
ε : F~ −→ R

)
, and let J∨ := ~−1J ⊂ F~

∨ . As in the proof of

Lemma 4.1, let {yb}b∈S be a k–basis of J0

/
J0

2 = Q
(
F [G]

)
, where J0 := Ker (εF [G]) =

m , and pull it back to a subset {jb}b∈S of J . Using notation of Lemma 4.1, we have

In
/
In+1 ∼= În

/
În+1 for all n ∈ N; then from the description of the various Î` (` ∈ N)

given there we see that In
/
In+1 is a k–vector space with basis the set of (cosets of) ordered

monomials
{
~e0j e mod In+1

∣∣ e0 ∈ N, e ∈ NSf , e0 + |e| = n
}

where |e| :=
∑

b∈S e(b) .
As a consequence, and noting that ~−nIn+1 = ~ · ~−(n+1)In+1 ≡ 0 mod ~F~

∨ , we argue
that ~−nIn mod ~F~

∨ is spanned over k by
{
~−|e|j e mod ~F~

∨ ∣∣ e ∈ NSf , |e| ≤ n
}

:
we claim this set is in fact a basis of ~−nIn mod ~F~

∨ . Indeed, if not we find a non-trivial
linear combination of the elements of this set which is zero: multiplying by ~n this gives an
element γn ∈ In \ In+1 such that ~−nγn ≡ 0 mod ~F~

∨ ; then there is ` ∈ N such that
~−nγn ∈ ~·~−`I` , so ~`γn = ~1+nI` ⊆ I1+n+` : but then Lemma 4.2(a) yields γn ∈ In+1,
a contradiction! The outcome is that

{
~−|e|j e mod ~F~

∨ ∣∣ e ∈ NSf
}

is a k–basis of F0
∨.

Now let j∨β := ~−1jβ for all β ∈ S . Since jµ jν−jν jµ ∈ ~ J , for any µ, ν ∈ S , we can
write jµ jν − jν jµ = ~

∑
β∈S cβ jβ + ~2γ1 + ~ γ2 for some cβ ∈ R , γ1 ∈ J and γ2 ∈ J2,

whence
[
j∨µ , j∨ν

]
:= j∨µ j∨ν −j∨ν γ∨µ =

∑
β∈S cβ j∨β +γ1+~−1γ2 ≡

∑
β∈S cβ j∨β mod J+J∨J :

but J + J∨J = ~
(
J∨ + J∨J∨

) ⊆ ~F~
∨ , so

[
j∨µ , j∨ν

] ≡ ∑
β∈S cβ j∨β mod ~F~

∨ which
shows that h := J∨ mod ~F~

∨ is a Lie subalgebra of F0
∨. By the previous analysis F0

∨

has the k–basis
{(

j∨
)e mod ~F~

∨ ∣∣ e ∈ NSf
}

, hence the Poincaré-Birkhoff-Witt theorem
tells us that F0

∨ = U(h) as associative algebras. On the other hand, we saw in the proof
of Theorem 3.7 that ∆

(
j∨

) ≡ j∨ ⊗ 1 + 1 ⊗ j∨ mod ~
(
F~
∨)⊗2 for all j∨ ∈ J∨, which

gives ∆(j) = j⊗ 1 + 1⊗ j for all j ∈ h , whence F0
∨ = U(h) as Hopf algebras too.

Now for the second step. The specialization map π∨: F~
∨ −³ F0

∨ = U(h) restricts to
η : J∨ −³ h := J∨mod ~F~

∨ = J∨
/

J∨∩(
~F~

∨)
= J∨

/(
J +J∨J~

)
, for J∨∩(

~F~
∨)

=

J∨ ∩ ~−1IF~
2 = J~ + J∨J~ by Lemma 4.2(b). Moreover, multiplication by ~−1 yields

an R–module isomorphism µ : J
∼=

↪−−³ J∨. Let ρ : J0 −³ J0

/
J0

2 =: g× be the natural
projection map, and ν : g× ↪−→ J0 a section of ρ . The specialization map π : F~ −³ F0

restricts to π′: J −³ J
/
(J ∩ ~F~) = J~

/
~ J~ = J0 : we fix a section γ : J0 ↪−→ J~ of π′.

Consider the composition map σ := η ◦ µ ◦ γ ◦ ν : g× −−→ h . This is well-defined,
i.e. it is independent of the choice of ν and γ . Indeed, if ν, ν′: g× ↪−→ J0 are two
sections of ρ, and σ, σ′ are defined correspondingly (with the same fixed γ for both), then
Im (ν− ν′) ⊆ Ker (ρ) = J0

2 ⊆ Ker (η ◦µ ◦ γ) , so that σ = η ◦µ ◦ γ ◦ ν = η ◦µ ◦ γ ◦ ν′ = σ′ .
Similarly, if γ, γ′: J0 ↪−→ J~ are two sections of π′, and σ, σ′ are defined correspondingly
(with the same ν for both), we have Im (γ − γ′) ⊆ Ker (π′) = ~ J = Ker (η ◦ µ) , thus
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σ = η ◦ µ ◦ γ ◦ ν = η ◦ µ ◦ γ′ ◦ ν = σ′ , q.e.d. In a nutshell, σ is the composition map

g×
ν̄

↪−−−³ J0

/
J0

2 γ̄
↪−−−→ J

/(
J2 + ~ J

) µ̄
↪−−−³ J∨

/(
J + J∨J

) η̄
↪−−−³ h

where the maps ν̄, γ̄, µ̄, η̄, are the ones canonically induced by ν, γ, µ, η, and ν̄, resp. γ̄,

does not depend on the choice of ν, resp. γ, as it is the inverse of the isomorphism

ρ̄ : J0

/
J0

2
∼=

↪−³ g× , resp. π′ : J
/(

J2 + ~ J
) ∼=
↪−³ J0

/
J0

2 , induced by ρ , resp. by π′. We
use this remark to show that σ is also an isomorphism of the Lie bialgebra structure.

Using the vector space isomorphism σ : g×
∼=−→ h we pull-back the Lie bialgebra struc-

ture of h onto g×, and denote it by
(
g×, [ , ]•, δ•

)
; on the other hand, g× also carries its

natural structure of Lie bialgebra, dual to that of g (e.g., the Lie bracket is induced by
restriction of the Poisson bracket of F [G] ), denoted by

(
g×, [ , ]×, δ×

)
: we must prove

that these two structures coincide.
First, for all x1, x2 ∈ g× we have

[
x1, x2

]
• =

[
x1, x2

]
× .

Indeed, let fi := ν(xi) , ϕi := γ(fi) , ϕ∨i := µ(ϕi) , yi := η
(
ϕ∨i

)
( i = 1, 2). Then

[
x1, x2

]
• := σ−1

([
σ(x1), σ(x2)

]
h

)
= σ−1

(
[y1, y2]

)
=

(
ρ ◦ π′ ◦ µ−1

)([
ϕ∨1 , ϕ∨2

])
=

=
(
ρ ◦ π′

)(
~−1[ϕ1, ϕ2]

)
= ρ

({f1, f2}
)

=:
[
x1, x2

]
× , q.e.d.

The case of Lie cobrackets can be treated similarly; but since they take values in tensor
squares, we make use of suitable maps ν⊗ := ν⊗2, γ⊗ := γ⊗2, etc.; we also make use of
notation χ⊗ := η⊗◦ µ⊗ = (η ◦ µ)⊗2 and ∇ := ∆−∆op.

Now, for all x ∈ g× we have δ•(x) = δ×(x) .
Indeed, let f := ν(x) , ϕ := γ(f) , ϕ∨ := µ(ϕ) , y := η

(
ϕ∨

)
. Then we have

δ•(x) := σ⊗−1
(
δh(σ(x))

)
= σ⊗−1

(
δh

(
η
(
ϕ∨

)))
= σ⊗−1

(
η⊗

(
~−1∇(

ϕ∨
)))

=

= σ⊗−1
((

η ◦ µ
)
⊗

(∇(ϕ)
))

= σ⊗−1
((

η ◦ µ ◦ γ
)
⊗

(∇(f)
))

= ρ⊗
(∇(f)

)
= ρ⊗

(∇(ν(x))
)

= δ×(x)

where the last equality holds because δ×(x) is uniquely defined as the unique element in
g× ⊗ g× such that

〈
u1 ⊗ u2 , δ×(x)

〉
=

〈
[u1, u2] , x

〉
for all u1, u2∈g , and we have

〈
[u1, u2] , x

〉
=

〈
[u1, u2] , ρ(f)

〉
=

〈
u1 ⊗ u2 ,∇(f)

〉
=

〈
u1 ⊗ u2 , ρ⊗

(∇(ν(x))
)〉

. ¤

4.8 Interlude: quantizations of pointed Poisson manifolds and of their linear
approximation. The proof of Theorem 4.7 in fact leads to a more general result; to
mention it, we need some more terminology.

Namely, among algebraic k–varieties let us consider the pointed Poisson varieties, de-
fined to be pairs (M, m̄) where M is a Poisson variety and m̄ ∈ M is a point of M where
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the rank of the Poisson bivector is zero: in other words, {m̄} is a symplectic leaf of M . A
morphism of pointed Poisson varieties (M, m̄) and (N, n̄) is any Poisson map ϕ : M −→ N

such that ϕ(m̄) = n̄ . Clearly this defines a subcategory of the category of all Poisson vari-
eties, whose morphisms are those morphisms of Poisson varieties which map distinguished
points into distinguished points. In terms of their function algebras, any pointed Poisson
variety M is given by the datum

(
F [M ], mm̄

)
where mm̄ is the defining ideal of m̄ ∈ M .

By assumptions, the Poisson bracket of F [M ] restricts to a Lie bracket onto mm̄ : from
this the quotient space LM := mm̄

/
m 2

m̄ (the cotangent space to M at m̄) inherits a Lie
algebra structure too, the so-called “linear approximation of M at m̄ ” (see e.g. [We], §4).
In the following we also call it the cotangent Lie algebra of (M, m̄), or simply of M .

Natural examples of pointed Poisson varieties are the coisotropic Poisson homogeneous
spaces, also called Poisson quotients, i.e. those Poisson homogeneous spaces of the form
G

/
H , where G is a Poisson group and H is a (closed) coisotropic subgroup, where

coisotropic means that the ideal I(H) in F [G] of all functions vanishing on H is a Poisson
subalgebra of F [G] . The distinguished point is the coset eH of the unit element e ∈ G .

Another special class is given by the category of Poisson monoids ( =unital Poisson
semigroups): each one of them is naturally pointed by its unit element. If (M, m̄) = (Λ, e)
is any Poisson monoid, then F [Λ] is a bialgebra (and conversely), and LΛ has a natural
structure of Lie bialgebra — the cotangent Lie bialgebra of Λ — the Lie cobracket being
induced by the coproduct of F [Λ], hence (dually) by the multiplication in Λ . It follows
then that U(LΛ) is a co-Poisson Hopf algebra. When in particular the monoid Λ is a
Poisson group G we have Λ = g× .

We call quantization of a pointed Poisson variety (M, m̄) any A ∈ A+ such that A
∣∣
~=0

∼=
F [M ] as Poisson k–algebras, and if π : A −³ A

∣∣
~=0

∼= F [M ] is the specialisation map
( ~ 7→ 0 ), then Ker (π ◦ ε

M
) = mm̄ ; in this case we write A = F~[M ] . For any such

object we set JM := Ker (ε
M

) and IM := JM + ~A . A morphism of quantizations of

Poisson varieties is any morphism φ : F~[M ] −→ F~[N ] in A+ such that φ(JM ) ⊆ JN .
Quantizations of pointed Poisson varieties and their morphisms form a subcategory of A+ .

A quick check throughout the proof of Theorem 4.7 (and of Theorem 3.7 for the last
part of the claim) then shows that the same arguments also prove the following:

Theorem 4.9. Let F~[M ] ∈ A+ be a quantization of a pointed Poisson manifold (M, m̄)
(as above) such that F~[M ]

∣∣
~=0

is reduced. Then F~[M ]∨
∣∣
~=0

is a universal enveloping
algebra, namely

F~[M ]∨
∣∣∣
~=0

:= F~[M ]∨
/
~F~[M ]∨ = U(LM )

(notation of §4.8). If in addition M is a Poisson monoid and F~[M ] is a quantization of
F [M ] in B , then the last identification above is one of Hopf algebras. ¤
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Theorem 4.10. Let Char (k) = 0 . Let U~(g) ∈ QrUEA (notation of Remark 1.5). Then

U~(g)′
∣∣∣
~=0

:= Uq(g)′
/
~U~(g)′ = F

[
G?

]

where G? is a connected algebraic Poisson group dual to G (as in §1.1).
Proof. Due to Theorem 3.8, U~(g)′ is a QFA, with U~(g)′ ~→0−−−→F [H] for some connected
algebraic Poisson group H ; in addition we know by assumption that F [H] is reduced: we
have to show that H is a group of type G? as in the claim.

Applying Theorem 4.7 to the QFA U~(g)′ yields
(
U~(g)′

)∨ ~→0−−−→ U(h×) . Since Propo-
sition 4.5 gives U~(g) =

(
U~(g)′

)∨
, we have then

U(g) 0←~←−−−−U~(g) =
(
U~(g)′

)∨ ~→0−−−−→ U(h×)

so that h× = g : thus h :=
(
h×

)? = g? , whence H = G? , q.e.d. ¤

Theorem 4.11. Let Char (k) = 0 . Consider F~ ∈ QFA , U~ ∈ QrUEA , and a perfect
Hopf pairing 〈 , 〉 : F~ × U~ −−→ R such that F~ = U~

• and U~ = F~
•. Then

U~
′ =

(
F~
∨)• and F~

∨ =
(
U~

′)• .

Proof. First of all notice that the assumptions imply that the specialized Hopf pairing
F~

∣∣
~=0

× U~
∣∣
~=0

−→ k is perfect as well: then Proposition 4.4(b) gives U~
′ =

(
F~
∨)• . In

addition F~
∨ ⊆ (

U~
′)• by Proposition 4.4(a), and we have to prove the reverse inclusion.

Let ϕ ∈ (
U~

′)• ; in particular, we can choose ϕ such that
〈
ϕ , U~

′〉 = R . Since(
U~

′)• ⊆ F (R) ⊗R F~ = F (R) ⊗R F~
∨ , there exists c ∈ R \ {0} such that ϕ+ := c ϕ ∈

F~
∨ \~F~

∨ : it follows that
〈
ϕ+ , U~

′〉 = cR . If F~ = F~[G] , U~ = U~(g) , then Theorems
4.7–8 give F~

∨∣∣
~=0

= U(g×) and U~
′∣∣
~=0

= F [G?] . Thus there is η ∈ F [G?] such that〈
ϕ+

∣∣
~=0

, η
〉

= 1 , hence there is η ∈ U~
′ (a lift of η ) such that

〈
ϕ+, η

〉
= 1 + ~κ for

some κ ∈ R ; but
〈
ϕ+, η

〉 ∈ cR by construction, hence c divides (1 + ~κ) in R .
As ϕ+ ∈ F~

∨ :=
⋃

n∈N ~−nI
n

F~ we have ϕ+ = ~−nϕ0 for some n ∈ N and ϕ0 ∈ I
n

F~ ;
therefore

〈
ϕ0, U~

′〉 = c ~nR . On the other hand, since U~ =
(
U~

′)∨ (by Proposition
4.5) each y ∈ U~ can be written as y = ~−`y′ for some ` ∈ N and y′ ∈ U~

′ ; then〈
ϕ0, y

〉
= c ~n−`

〈
ϕ, y′

〉 ∈ R
⋂

c ~n−`R because
〈
ϕ0, y

〉 ∈ R and
〈
ϕ, y′

〉 ∈ R . Now,
if ~n−`

〈
ϕ, y′

〉 6∈ R then n − ` < 0 and so ~ divides c . Since c divides (1 + ~κ) we
get an absurd, unless c is invertible in R : hence ϕ = c−1ϕ+ ∈ F~

∨ , q.e.d. Otherwise,
we have always ~n−`

〈
ϕ, y′

〉 ∈ R , which means
〈
ϕ0, y

〉 ∈ c R for all y ∈ U~ ; thus
c−1ϕ0 ∈ U~

• = F~ . Now consider the IF~–adic completion F̂~ of F~ : the kernel of the
natural map µ : F~ −−→ F̂~ is I

∞
F~ = (F~)∞ (because F~ ∈ QFA ), and the latter is zero

because it is contained in the trivial left radical of the perfect pairing between F~ and U~;
therefore F~ embeds into F̂~ via µ . We have c−1ϕ0 ∈ F~ ⊆ F̂~ and ϕ0 ∈ I

n
F~ ⊆ Î

n
F~ : then

from Lemma 4.1(a)–(b) we argue that c−1ϕ0 ∈ Î
n

F~ , hence finally c−1ϕ0 ∈ Î
n

F~

⋂
F~ = I

n
F~ ,

thanks to Lemma 4.1(d). The outcome is ϕ = c−1~−nϕ0 ∈ h−nI
n

F~ ⊆ F~
∨ , q.e.d. ¤
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At last, we can gather our partial results to prove the main Theorem:

Proof of Theorem 2.2. Part (a) is proved by patching together Proposition 3.3, Proposi-
tion 3.5 and Theorems 3.6–8. Now recall that if Char (k) = 0 every commutative Hopf
k–algebra is reduced; then part (b) follows from Theorem 3.6 and Propositions 4.3 and 4.5.
Part (c) is proved by Theorems 4.7–8, whereas Theorem 4.11 proves part (d). Finally, as-
sume Char (k) = 0 and consider H ∈ HAF : if H(f) ∈ QFA (w.r.t. a fixed prime ~ ∈ R )
is an R–integer form of H, then H∨

(f) is an integer form too — by the very definitions —
and it is a QrUEA (at ~ ), by Proposition 3.3; conversely, if H(u) ∈ QrUEA (w.r.t. a fixed
prime ~ ∈ R ) is an R–integer form of H, then also H ′

(u) is an integer form — by Corollary
4.6 — and it is a QFA (again at ~ ), by Proposition 3.5; this proves part (e). ¤

§ 5 Application to trivial deformations: the Crystal Duality Principle

5.1 Trivial deformations and GQDP. In this section, we apply the GQDP to
the framework of trivial deformations of Hopf algebras over a field. In particular, we
consider more closely some key examples: function algebras over algebraic groups, universal
enveloping algebras of Lie algebras, and group algebras of abstract groups. The outcome
seems to be of special interest in its own, as a chapter of classical — rather than “quantum”
— Hopf algebra theory, and we propose it as a new tool for specialists in that matter.

To be short we perform our analysis for Hopf algebras only: however, as Drinfeld’s func-
tors are defined not only for Hopf algebras but for augmented algebras and coaugmented
coalgebras too, we might do the same study for them as well (indeed, we do it in [Ga5]).

Let us now be more precise. Let HAk be the category of all Hopf algebras over the field
k . For all n ∈ N , let Jn :=

(
Ker (ε: H −→ k)

)n and Dn := Ker
(
δn+1: H −→ H⊗n

)
,

and set J :=
{
Jn

}
n∈N , D :=

{
Dn

}
n∈N . Of course J is a decreasing filtration of

H (maybe with
⋂

n≥0 Jn % {0} ), and D is an increasing filtration of H (maybe with⋃
n≥0 Dn $ H ), by coassociativity of the δn’s.
Let R := k[~ ] be the polynomial ring in the indeterminate ~ : then R is a PID (=

principal ideal domain), and ~ is a non-zero prime in R such that R
/
~R is the field k . Let

H~ := H[~] = R ⊗k H , the scalar extension of H : this is the trivial deformation of H .
Clearly H~ is a torsion free Hopf algebra over R, hence one can apply Drinfeld’s functors
to it; in this section we do it with respect to the element ~ itself. We shall see that the
outcome is quite neat, and can be expressed purely in terms of Hopf algebras in HAk :
because of the special relation between some features of H — namely, the filtrations J

and D — and some properties of Drinfeld’s functors, we call this result “Crystal Duality
Principle”, in that it is obtained through sort of a “crystallization” process. Here we bear
in mind, in a sense, Kashiwara’s motivation for the terminology “crystal bases” in the
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context of quantum groups: see [CP], §14.1, and references therein. Indeed, this theorem
can also be proved almost entirely using only classical Hopf algebraic methods within HAk,
i.e. without resorting to deformations: this is accomplished in [Ga5].

Note that the same analysis and results (with only a bit more annoying details to take
care of) still hold if we take as R any domain which is also a k–algebra and as ~ any
element in R \ {0} such that R

/
~R = k ; for instance, one can take R = k[[h]] and

~ := h , or R = k
[
q, q−1

]
and ~ := q − 1 . Finally, in the sequel to be short we perform

our analysis for Hopf algebras only: however, as Drinfeld’s functors are defined not only
for Hopf algebras but for augmented algebras and coaugmented coalgebras too, we might
do the same study for them as well. In particular, the final result (the Crystal Duality
Principle) has a stronger version which concerns these more general objects too (see [Ga5]).

We first discuss the general situation (§§5.2–4), second we look at the case of func-
tion algebras and enveloping algebras (§§5.6–7), then we state and prove the theorem of
Crystal Duality Principle and eventually (§§5.12–13) we dwell upon two other interesting
applications: hyperalgebras, and group algebras and their duals.

Lemma 5.2.

H~
∨ =

∑
n≥0 R · ~−nJn = R · J0 + R · ~−1J1 + · · ·+ R · ~−nJn + · · · (5.1)

H~
′ =

∑
n≥0 R · ~nDn = R ·D0 + R · ~D1 + · · ·+ R · ~nDn + · · · (5.2)

Proof. As for (5.1), we have JH~ = R ·J , whence H~
∨ :=

∑
n≥0 ~−nJ~

n =
∑

n≥0 ~−nJn .
On the other hand, one has trivially H~

′ ⊇ ∑+∞
n=0 R · ~nDn . Conversely, let η ∈ H~

′ :
then η =

∑
k ck ηk for some ck ∈ R and ηk ∈ H ; in addition, we can assume the ηk’s

enjoy the following: η1, . . . , ηk1 ∈ D`1 \ D`1−1 , ηk1+1, . . . , ηk2 ∈ D`2 \ D`2−1 , . . . , η1,
. . . , ηkt ∈ D`t \D`t−1 for some ki, `j , t ∈ N with k1 < k2 < · · · < kt , they are linearly
independent over k, and moreover ηki+1, . . . , ηki+1 belong to a vector subspace Wi of
H such that Wi

⋂
D`i = {0} , for all i . By the assumptions on R , for any k there is

a unique vk ∈ N such that ck ∈ ~vkR \ ~vk+1R ; then for all n ∈ N we have ck ≡ 0
mod ~nR when vk ≥ n and ck ≡ ∑n−1

s=vk
a
(k)
s ~s mod ~nR , for some a

(k)
s ∈ k with

a
(k)
vk 6= 0 , when vk < n . Then

∑
vk<n

∑n−1
s=vk

a
(k)
s ~s δn(ηk) ≡ δn(η) ≡ 0 mod ~n and

δn(ηk) ∈ H⊗n ⊂ H~
⊗n \ ~H~

⊗n imply — since H~
⊗n

/
~nH~

⊗n ∼=
(
R

/
(~nR)

)
⊗k H⊗n ∼=(

k[x]
/
(xn)

)
⊗k H⊗n — that

∑
n>vk=v− a

(k)
v− δn(ηk) = 0 , where v− := min

k
{vk} , hence

∑
n>vk=v− a

(k)
v− ηk ∈ Ker (δn) =: Dn−1 : since all coefficients a

(k)
v− in this sum are non-zero,

by our assumptions on the ηk’s this forces ηk ∈ Ker (δn) =: Dn−1 , for all k such that
vk = v− . The outcome is: vk < n =⇒ ηk ∈ Dn−1 (for all k, n ), whence we get ηk ∈ Dvk

for all k , so that η =
∑

k ck ηk ∈
∑+∞

s=0 R · ~sDs , q.e.d. ¤

5.3 Rees Hopf algebras and their specializations. We need some more terminol-
ogy. Let M be a module over a commutative unitary ring R, and let
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M := {Mz}z∈Z =
(
· · · ⊆ M−m ⊆ · · · ⊆ M−1 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Mn ⊆ · · ·

)

be a bi-infinite filtration of M by submodules Mz (z ∈ Z). In particular, we consider
increasing filtrations (i.e., those with Mz = {0} for all z < 0 ) and decreasing filtrations
(those with Mz = {0} for all z > 0 ) as special cases of bi-infinite filtrations. First we
define the associated blowing module to be the R–submodule BM (M) of M

[
t, t−1

]
(where

t is any indeterminate) given by BM (M) :=
∑

z∈Z tzMz ; this is isomorphic to the first

graded module2 associated to M , namely
⊕

z∈ZMz . Second, we define the associated Rees

module to be the R[t]–submodule Rt
M (M) of M

[
t, t−1

]
generated by BM (M); straight-

forward computations then give R–module isomorphisms

Rt
M (M)

/
(t− 1)Rt

M (M) ∼= ⋃
z∈Z

Mz , Rt
M (M)

/
tRt

M (M) ∼= GM (M)

where GM (M) :=
⊕

z∈Z Mz

/
Mz−1 is the second graded module associated to M . In

other words, Rt
M (M) is an R[t]–module which specializes to

⋃
z∈ZMz for t = 1 and

specializes to GM (M) for t = 0 ; therefore the R–modules
⋃

z∈ZMz and GM (M) can be
seen as 1-parameter (polynomial) deformations of each other via the 1-parameter family
of R–modules given by Rt

M (M).
We can repeat this construction within the category of algebras, coalgebras, bialgebras

or Hopf algebras over R with a filtration in the proper sense (by subalgebras, subcoalgebras,
etc.): then we’ll end up with corresponding objects BM (M), Rt

M (M), etc. of the like type
(algebras, coalgebras, etc.). In particular we’ll cope with Rees Hopf algebras.

5.4 Drinfeld’s functors on H~ and filtrations on H . Lemma 5.2 sets a link
between properties of H~

′, resp. of H~
∨, and properties of the filtration D , resp. J , of H .

First, formula (5.1) together with the fact that H~
∨ ∈ HA implies that J is a Hopf

algebra filtration of H ; conversely, if one proves that J is a Hopf algebra filtration of H

(which is straightforward) then from (5.1) we get a one-line direct proof that H~
∨ ∈ HA .

Second, we can look at J as a bi-infinite filtration by reversing the index notation and then
extending it trivially on the positive indices, namely

J =
(
· · · ⊆ Jn ⊆ · · · J2 ⊆ J ⊆ J0

(
= H

) ⊆ H ⊆ · · · ⊆ H ⊆ · · ·
)

;

then the Rees Hopf algebra R~J(H) is defined (see §5.3). Now (5.1) give H~
∨ = R~J(H) ,

so H~
∨
/
~H~

∨ ∼= R~J(H)
/
~R~J(H) ∼= GJ(H) . Thus GJ(H) is cocommutative because

H~
∨
/
~H~

∨ is; conversely, we get an easy proof of the cocommutativity of H~
∨
/
~H~

∨

2Hereafter, I pick such terminology from Serge Lang’s textbook “Algebra”.
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once we prove that GJ(H) is cocommutative, which is straightforward. Finally, GJ (H)
is generated by Q(H) = J

/
J 2 whose elements are primitive, so a fortiori GJ(H) is

generated by its primitive elements; then the latter holds for H~
∨
/
~H~

∨ as well. To sum

up, as H~
∨ ∈ QrUEA we argue that GJ (H) = U(g) for some restricted Lie bialgebra g ;

conversely, we can get H~
∨ ∈ QrUEA directly from the properties of the filtration J of

H. Moreover, since GJ(H) = U(g) is graded, g as a restricted Lie algebra is graded too.

On the other hand, it is straightforward to see that (5.2) together with the fact that
H~

′ ∈ HA implies that D is a Hopf algebra filtration of H ; conversely, if one proves that
D is a Hopf algebra filtration of H (as we did in Lemma 3.4(c)) then from (5.2) we get
an easy direct proof that H~

′ ∈ HA . Second, we can look at D as a bi-infinite filtration
by extending it trivially on the negative indices, namely

D =
(
· · · ⊆ {0} ⊆ · · · {0} ⊆ ({0} =

)
D0 ⊆ D1 ⊆ · · · ⊆ Dn ⊆ · · ·

)
;

then the Rees Hopf algebra R~D(H) is defined (see §5.3). Now (5.2) gives H~
′ = R~D(H) ;

but then H~
′
/
~H~

′ ∼= R~D(H)
/
~R~D(H) ∼= GD(H) . Thus GD(H) is commutative

because H~
′
/
~H~

′ is; or, conversely, we get an easy proof of the commutativity of

H~
′
/
~H~

′ once we prove that GD(H) is commutative, as we did in Lemma 3.4(c).
Finally, GD(H) is graded with 1-dimensional 0-component — by construction — hence

it has no non-trivial idempotents; therefore the latter is true for H~
′
/
~H~

′ as well. Note

also that IH~′
∞ = {0} by construction (because H~ is free over R ). To sum up, since

H~
′ ∈ QFA we get that GD(H) = F [G] for some connected algebraic Poisson group G ;

conversely, we can argue that H~
′ ∈ QFA directly from the properties of the filtration D .

In addition, since GD(H) = F [G] is graded, when Char (k) = 0 the (pro)affine variety
G(cl) of closed points of G is a (pro)affine space3, that is G(cl)

∼= A×Ik = kI for some
index set I , and so F [G] = k

[{xi}i∈I
]

is a polynomial algebra.

Finally, when p := Char (k) > 0 the group G has dimension 0 and height 1: indeed, we
can see this as a consequence of the last part of Theorem 3.8 via the identity H ′

~

/
~H ′

~ =
GD(H) , or conversely we can prove that part of Theorem 3.8 via this identity by observing
that G has those properties. In fact, we must show that η̄p = 0 for each η ∈ H̃ := GD(G) :
letting η ∈ H ′

~ be any lift of η̄ in H ′
~, we have η ∈ D` for some ` ∈ N , hence δ`+1(x) = 0 .

From ∆`+1(η) =
∑

Λ⊆{1,...,`+1} δΛ(η) (cf. §2.1) and the multiplicativity of ∆`+1 we have

3For it is a cone — since H is graded — without vertex — since G(cl), being a group, is smooth.



34 FABIO GAVARINI

∆`+1(ηp) =
(
∆`+1(η)

)p
=

(∑
Λ⊆{1,...,`+1}δΛ(η)

)p

∈ ∑
Λ⊆{1,...,`+1} δΛ(η)p +

+
∑

e1,...,ep<p
e1+···ep=p

(
p

e1,...,ep

) ∑
Λ1,...,Λp⊆{1,...,`+1}

∏p
k=1 δΛk

(η)ek +

+
∑`

k=0

∑
Ψ⊆{1,...,`+1}

|Ψ|=k

jΨ
(
J

H′
⊗k

)
+

(
ad[ , ](D(`))

)p−1(
D(`)

)

(since δΛ(η) ∈ jΛ

(
J

H′
⊗|Λ|

)
for all Λ ⊆ {1, . . . , ` + 1} ) where D(`) :=

∑
P

k sk=`

⊗`+1
k=1Dsk

and
(
ad[ , ](D(`))

)p−1(
D(`)

)
:=

[
D(`),

[
D(`), . . . ,

[
D(`),

[
D(`), D(`)︸ ︷︷ ︸

p

]] · · · ]] . Then

δ`+1(ηp) = (idH − ε)⊗(`+1)(∆`+1(ηp)
) ∈ δ`+1(η)p +

∑
e1,...,ep<p
e1+···ep=p

(
p

e1,...,ep

)
×

× ∑
∪p

k=1Λk={1,...,`+1}
∏p

k=1δΛk
(η)ek + (idH − ε)⊗(`+1)

((
ad[ , ](D(`))

)p−1(
D(`)

))
.

Now, δ`+1(η)p = 0 by construction, and
(

p
e1,...,ep

)
(with e1, . . . , ep < p ) is a multiple of

p , hence it is zero because p = Char (k) ; therefore we end up with

δ`+1(η) ∈ (idH − ε)⊗(`+1)
((

ad[ , ](D(`))
)p−1(

D(`)

))
.

Now, by Lemma 3.4 we have Dsi · Dsj ⊆ Dsi+sj and
[
Dsi , Dsj

] ⊆ D(si+sj)−1 ; these

together with Leibniz’ rule imply that
(
ad[ , ](D(`))

)p−1(
D(`)

) ⊆ ∑
P

t rt=p `+1−p

⊗`+1
t=1Drt ;

moreover, since D0 = Ker (δ1) = Ker (id− ε) we have

(idH − ε)⊗(`+1)
((

ad[ , ](D(`))
)p−1(

D(`)

)) ⊆ ∑
P

t rt=p `+1−p
r1,...,r`+1>0

⊗`+1
t=1 Drt .

In particular, in the last term above we have Dr1 ⊆ D(p−1)`+1−p := Ker (δ(p−1)`+2−p) ⊆
Ker (δ(p−1)`) : therefore, using the coassociativity of the maps δn’s, we get

δp `(η) =
((

δ(p−1)` ⊗ id`
) ◦ δ`+1

)
(η) ⊆ ∑

P
t rt=p `−1

r1,...,r`+1>0

δ(p−1)`(Dr1)⊗Dr2 ⊗ · · · ⊗Dr`+1 = 0

i.e. δp `(η) = 0 . This means η ∈ Dp `−1 , whereas, on the other hand, ηp ∈ D p
` ⊆ Dp ` :

then η̄p := ηp = 0̄ ∈ Dp `

/
Dp `−1 ⊆ GD(H) , by the definition of the product in GD(H) .

Finally, by general theory since G has dimension 0 and height 1 the function algebra F [G] =
GD(H) = H ′

~

/
~H ′

~ is truncated polynomial, namely F [G] = k
[{xi}i∈I

]/({x p
i }i∈I

)
.
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5.5 Special fibers of H~
∨ and H~

′ and deformations. Given H ∈ HAk , consider
H~ : our goal is to study H~

∨ and H~
′ .

As for H~
∨, the natural map from H to Ĥ := GJ (H) = H~

∨
/
~H~

∨ =: H~
∨
∣∣∣
~=0

sends

J
∞ :=

⋂
n≥0 J

n to zero, by definition; also, letting H∨ := H
/

J
∞ (which is a Hopf

algebra quotient of H because J is a Hopf algebra filtration), we have Ĥ = Ĥ∨ . Thus
(H∨)~

∨
∣∣∣
~=0

= Ĥ∨ = Ĥ = U(g−) for some graded restricted Lie bialgebra g− . On the

other hand, (H∨)~
∨
∣∣∣
~=1

:= (H∨)~
∨
/

(~ − 1) (H∨)~
∨ =

∑
n≥0 J

n
= H∨ (see §5.3). Thus

we can see (H∨)~
∨ = R~J(H∨) as a 1-parameter family inside HAk with regular fibers —

that is, they are isomorphic to each other as k–vector spaces (indeed, we switch from H

to H∨ just in order to achieve this regularity) — which links Ĥ∨ and H∨ as (polynomial)
deformations of each other, namely

U(g−) = Ĥ∨ = (H∨)~
∨
∣∣∣
~=0

0← ~→ 1←−−−−−−−−→
(H∨)~

∨
(H∨)~

∨
∣∣∣
~=1

= H∨ .

Now look at
(
(H∨)~

∨)′
: by construction, we have

(
(H∨)~

∨)′∣∣∣
~=1

= (H∨)~
∨
∣∣∣
~=1

= H∨ ,

whereas
(
(H∨)~

∨)′∣∣∣
~=1

= F [K−] for some connected algebraic Poisson group K− : in

addition, if Char (k) = 0 then K− = G?
− by Theorem 2.2(c). So

(
(H∨)~

∨)′
can be

thought of as a 1-parameter family inside HAk , with regular fibers, linking H∨ and F [G?
−]

as (polynomial) deformations of each other, namely

H∨ =
(
(H∨)~

∨)′∣∣∣
~=1

1← ~→ 0←−−−−−−−−→
((H∨)~

∨)′

(
(H∨)~

∨)′∣∣∣
~=0

= F [K−]
(

= F [G?
−] if Char (k) = 0

)
.

Therefore H∨ is both a deformation of an enveloping algebra and a deformation of a
function algebra, via two different 1-parameter families (with regular fibers) in HAk which
match at the value ~ = 1 , corresponding to the common element H∨ . At a glance,

U(g−) 0← ~→ 1←−−−−−−−−→
(H∨)~

∨
H∨ 1← ~→ 0←−−−−−−−−→

((H∨)~
∨)′

F [K−]
(

= F [G?
−] if Char (k) = 0

)
. (5.3)

Now consider H~
′. We have H~

′
∣∣∣
~=0

:= H~
′
/
~H~

′ = GD(H) =: H̃ , and H̃ =

F [G+] for some connected algebraic Poisson group G+ . On the other hand, we have also
H~

′
∣∣∣
~=1

:= H~
′
/

(~− 1)H~
′ =

∑
n≥0 Dn =: H ′ ; note that the latter is a Hopf subalgebra

of H, because D is a Hopf algebra filtration; moreover we have H̃ = H̃ ′ , by the very
definitions. Therefore we can think at H~

′ = R~D(H ′) as a 1-parameter family inside
HAk with regular fibers which links H̃ and H ′ as (polynomial) deformations of each other,
namely

F [G+] = H̃ = H~
′
∣∣∣
~=0

0← ~→ 1←−−−−−−−−→
H~′

H~
′
∣∣∣
~=1

= H ′ .
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Consider also
(
H~

′)∨ : by construction, we have
(
H~

′)∨∣∣∣
~=1

= H~
′
∣∣∣
~=1

= H ′ , whereas
(
H~

′)∨∣∣∣
~=0

= U(k+) for some restricted Lie bialgebra k+ : in addition, if Char (k) = 0

then k+ = g×+ thanks to Theorem 2.2(c). Thus
(
H~

′)∨ can be thought of as a 1-
parameter family inside HAk with regular fibers which links U(k+) and H ′ as (polynomial)
deformations of each other, namely

H ′ =
(
H~

′)∨∣∣∣
~=1

1← ~→ 0←−−−−−−−−→
(H~′)∨

(
H~

′)∨∣∣∣
~=0

= U(k+)
(

= U(g×+ ) if Char (k) = 0
)

.

Therefore, H ′ is at the same time a deformation of a function algebra and a deformation
of an enveloping algebra, via two different 1-parameter families inside HAk (with regular
fibers) which match at the value ~ = 1 , corresponding (in both families) to H ′ . In short,

F [G+] 0← ~→ 1←−−−−−−−−→
H~′

H ′ 1← ~→ 0←−−−−−−−−→
(H~′)∨

U(k+)
(

= U(g×+ ) if Char (k) = 0
)

. (5.4)

Finally, it is worth noticing that in the special case H ′ = H = H∨ we can splice
together (5.3) and (5.4) to get

F [G+] 0← ~→ 1←−−−−−−−−→
H~′

H ′ 1← ~→ 0←−−−−−−−−→
(H~′)∨

U(k+)
(

= U(g×+ ) if Char (k) = 0
)

||
H (5.5)

||
U(g−) 0← ~→ 1←−−−−−−−−→

(H∨)~
∨

H∨ 1← ~→ 0←−−−−−−−−→
((H∨)~

∨)′
F [K−]

(
= F [G?

−] if Char (k) = 0
)

which gives four different regular 1-parameter deformations from H to Hopf algebras en-
coding geometrical objects of Poisson type (i.e. Lie bialgebras or Poisson algebraic groups).

5.6 The function algebra case. Let G be any algebraic group over the field k. Let
R := k[~] be as in §5.1, and set F~[G] :=

(
F [G]

)
~ = R ⊗k F [G] : this is trivially a QFA

at ~ , for F~[G]
/
~F~[G] = F [G] , inducing on G the trivial Poisson structure, so that its

cotangent Lie bialgebra is simply g× with trivial Lie bracket and Lie cobracket dual to the
Lie bracket of g . In the sequel we identify F [G] with 1⊗F [G] ⊂ F~[G] .

We begin by computing F~[G]∨ (w.r.t. the non-zero element ~ ).
Let J := JF [G] ≡ Ker

(
εF [G]

)
, let {yb}b∈S be a k–basis of Q

(
F [G]

)
= J

/
J2 = g× ,

and pull it back to a subset {jb}b∈S of J . Then we see that Jn
/
Jn+1 is a k–vector

space spanned by the set of (cosets of) ordered monomials (using multiindices and all the
notation introduced in the proof of Theorem 4.7)

{
j e mod Jn+1

∣∣ e ∈ NSf , |e| = n
}

where |e| :=
∑

b∈S e(b) ; therefore In
/
In+1 as a k–vector space is spanned by

{
~e0j e
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mod In+1
∣∣ e0 ∈ N, e ∈ NSf , e0 + |e| = n

}
. Noting that ~−nIn+1 = ~ · ~−(n+1)In+1 ≡ 0

mod ~F~[G]∨ , we can argue that ~−nIn mod ~F~[G]∨ is spanned over k by
{
~−|e|j e

mod ~F~[G]∨
∣∣ e ∈ NSf , |e| ≤ n

}
. Now we have to distinguish the various cases.

First of all, let y ∈ F [G] be idempotent: switching if necessary to y+ := y − ε(y) we
can assume that y ∈ J . Then y = y2 = · · · = yn ∈ Jn ⊂ In for all n ∈ N , so that
y ≡ 0 mod ~F~[G] . Thus in order to compute F~[G]

/
~F~[G] the idempotents of F [G]

are irrelevant: this means F~[G]
/
~F~[G] = F~

[
G0

]/
~F~

[
G0

]
, where G0 is the connected

component of G ; thus we can assume from scratch that G be connected.
First assume G is smooth, i.e. F [G] is reduced, which is always the case if Char (k) = 0 .

Then the set above is a basis of ~−nIn mod ~F~[G]∨ : for if we have a non-trivial linear
combination of the elements of this set which is zero, multiplying by ~n gives an ele-
ment γn ∈ In \ In+1 such that ~−nγn ≡ 0 mod ~F~[G]∨ ; then there is ` ∈ N such
that ~−nγn ∈ ~ · ~−`I` , so ~`γn = ~1+nI` ⊆ I1+n+` , whence clearly γn ∈ In+1, a
contradiction! The outcome is that

{
~−|e|j e mod ~F~[G]∨

∣∣ e ∈ NSf
}

is a k–basis of

F~[G]∨
∣∣∣
~=0

:= F~[G]∨
/
~F~[G]∨ . Now let j∨β := ~−1jβ for all β ∈ S . By the previous

analysis F~[G]∨
∣∣∣
~=0

has k–basis
{(

j∨
)e mod ~F~[G]∨

∣∣ e ∈ NSf
}

, hence the Poincaré-

Birkhoff-Witt theorem tells us that F~[G]∨
∣∣∣
~=0

= U(h) ≡ S(h) as associative algebras,

where h is the Lie algebra spanned by
{
j∨b mod ~F~[G]∨

}
b∈S (as in the proof of The-

orem 4.7), whose Lie bracket is trivial for it is given by
[
j∨b , j∨β

]
:= ~−2(jb jβ − jβ jb)

mod ~F~[G]∨ ≡ 0 . Further, we have also ∆
(
j∨

) ≡ j∨ ⊗ 1 + 1 ⊗ j∨ mod ~
(
F~[G]∨

)⊗2

for all j∨ ∈ J∨ := ~ J (cf. the proof of Theorem 3.7), whence ∆(j) = j⊗ 1 + 1⊗ j for all
j ∈ h , so F~[G]∨

∣∣∣
~=0

= U(h) ≡ S(h) as Hopf algebras too. Now, consider the linear map

σ : g× = J
/

J2 −→ h
(⊂U(h)

)
given by yb 7→ j∨b ( b ∈ S ). By construction this is clearly

a vector space isomorphism, and also a Lie algebra isomorphism, since the Lie bracket is
trivial on both sides (G has the trivial Poisson structure!). In addition, one has〈

u1 ⊗ u2 , δh

(
σ(yb)

)〉
=

〈
u1 ⊗ u2 , ~−1

(
∆−∆op

)(
σ(yb)

)
mod ~

〉
=

=
〈
u1 ⊗ u2 , ~−2

(
∆−∆op

)
(jb) mod ~

〉
=

〈(
u1 · u2 − u2 · u1

)
, ~−2jb mod ~

〉
=

=
〈
[u1, u2] , ~−2jb mod ~

〉
=

〈
u1⊗u2 , ~−2δg×(yb) mod ~

〉
=

〈
u1⊗u2 , (σ⊗σ)

(
δg×(yb)

)〉

for all u1, u2 ∈ g (with (u1 · u2 − u2 · u1) ∈ U(g) ) and b ∈ S , which is enough to prove
that δh ◦ σ = (σ ⊗ σ) ◦ δg× , i.e. σ is a Lie bialgebra morphism as well. Therefore the

outcome is F~[G]∨
∣∣∣
~=0

= U(g×) ≡ S(g×) as co-Poisson Hopf algebras.
Another extreme case is when G is a finite connected group scheme: then, assuming

for simplicity that k be perfect, we have F [G] = k[x1, . . . , xn]
/(

xpe1

1 , . . . , xpen

n

)
for some

n, e1, . . . , en ∈ N . The previous analysis, with minor changes, then shows that F~[G]∨
∣∣∣
~=0
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is now a quotient of U(g×) ≡ S(g×) : namely, the xi’s take place of the jb’s, so the
cosets of the x∨i ’s (i = 1, . . . , n) modulo ~F~[G]∨ generate g×, and we find F~[G]∨

∣∣∣
~=0

=

U(g×)
/(

(x∨1 )pe1
, . . . , (x∨n)pen )

. Now, recall that for any Lie algebra h we can consider

h[p ]∞ :=
{

x[p ]n := xpn
∣∣∣ x ∈ h , n ∈ N

}
, the restricted Lie algebra generated by h inside

U(h), with the p–operation given by x[p ] := xp ; then one always has U(h) = u
(
h[p ]∞

)
.

In the present case, the subset
{

(x∨1 )pe1
, . . . , (x∨n)pen

}
generates a p–ideal I of (g×)[p ]∞ ,

so g×res := g[p ]∞
/
I is a restricted Lie algebra too, with

{
(x∨1 )pa1

, . . . , (x∨n)pan
∣∣∣ a1 <

e1, . . . , an < en

}
as a k–basis. Then the previous analysis proves F~[G]∨

∣∣∣
~=0

= u (g×res) ≡
S(g×)

/({
(x∨1 )pe1

, . . . , (x∨n)pen
})

as co-Poisson Hopf algebras.

The general case is intermediate; we get it via the relation F~[G]
/
~F~[G] = GJ

(
F [G]

)
.

Assume again for simplicity that k be perfect. Let F [[G]] be the J–adic comple-
tion of H = F [G] . By standard results on algebraic groups (cf. [DG]) there is a subset
{xi}i∈I of J such that

{
xi := xi mod J2

}
i∈I is a basis of g× = J

/
J2 and F [[G]] ∼=

k
[[{xi}i∈I

]]/({
x pn(xi)

i

}
i∈I0

)
(the algebra of truncated formal power series), for some

subset I0 ⊂ I and some
(
n(xi)

)
i∈I0

∈ N I0 . Since GJ

(
F [G]

)
= GJ

(
F [[G]]

)
, we argue

that GJ

(
F [G]

) ∼= k
[{xi}i∈I

]/({
x pn(xi)

i

}
i∈I0

)
; finally, since k

[{xi}i∈I
] ∼= S(g×)

we get GJ

(
F [G]

) ∼= S(g×)
/({

x pn(x)
}

x∈N (F [G])

)
as k–algebras, where N (

F [G]
)

is the

nilradical of F [G] and pn(x) is the order of nilpotency of x ∈ N (
F [G]

)
.

Now, let 0 6= η ∈ J
/
J2 , and let η ∈ J be a lift of η : then ∆(η) = ε(η) ·1⊗1+δ1(η)⊗

1 + 1⊗ δ1(η) + δ2(η) = η ⊗ 1 + 1⊗ η + δ2(η) , by the very definitions. But δ2(η) ∈ J ⊗ J ,
hence δ2(η) = 0 ∈ GJ

(
F [G]

)⊗GJ

(
F [G]

)
: so ∆(η ) := ∆(η) = η⊗ 1 + 1⊗ η . Therefore,

all elements of J
/
J2 = g× are primitive: this implies that the previous isomorphism

respects also the Hopf structure. As for the Lie cobracket of GJ

(
F [G]

)
, by construction

it is given by δGJ (F [G])(x ) := ∇(x) = ∆(x)−∆op(x) . Now, in the natural pairing
between F [G] and U(g), for all x ∈ J we have

〈∇(x), Y ⊗ Z
〉

=
〈
∆(x) − ∆op(x), Y ⊗

Z
〉

=
〈
x, Y Z − Z Y

〉
=

〈
x, [Y, Z]

〉
, hence

〈
δGJ (F [G])(x ), Y ⊗ Z

〉
=

〈
x, [Y,Z]

〉
for all Y ,

Z ∈ g ; similarly
〈
δg×(x ), y ⊗ z

〉
=

〈
x, [Y, Z]

〉
for all Y , Z ∈ g . We then argue that

δGJ (F [G])(x ) = δg×(x ) for all x ∈ g× , whence the two Lie cobrackets do correspond to

one another in the isomorphism above. Since F~[G]∨
∣∣∣
~=0

= GJ

(
F [G]

)
, the outcome is

that F~[G]∨
∣∣∣
~=0

∼= S(g×)
/({

x pn(x)
∣∣∣ x ∈ N (

F [G]
)})

as co-Poisson Hopf algebras.

Note also that the description of F~[G]∨ in the general case is exactly like the one we
gave for the smooth case: one simply has to mod out the ideal generated by N (

F [G]
)∨ :=

~−1N (
F [G]

)
, i.e. (roughly) to set (x∨i )pn(xi)

= 0 (with x∨i := ~−1xi ) for all i ∈ I . By the
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way, to have this description we do not need k to be perfect. As for F [G]∨ := F [G]
/
J∞ ,

it is known (cf. [Ab], Lemma 4.6.4) that F [G]∨ = F [G] whenever G is finite dimensional
and there exists no f ∈ F [G] \ k which is separable algebraic over k .

It is also interesting to consider
(
F~[G]∨

)′
. If Char (k) = 0 , then the proof of Proposi-

tion 4.3 does work, with no special simplifications, giving
(
F~[G]∨

)′
= F~[G] . If instead

Char (k) = p > 0 , then the situation might change dramatically. Indeed, if the group
G has height 1 — i.e., if F [G] = k

[{xi}i∈I
]]/({

xp
i

∣∣ i ∈ I})
as a k–algebra — then

the same analysis as in the characteristic zero case may be applied, with a few minor
changes, whence one gets again

(
F~[G]∨

)′
= F~[G] . Otherwise, let y ∈ J \ {0} be prim-

itive and such that yp 6= 0 : for instance, this occurs for F [G] = k[x] , i.e. G ∼= Ga ,
and y = x . Then yp is primitive as well, hence δn(yp) = 0 for each n > 1 . It follows
that 0 6= ~ (y∨)p ∈ (

F~[G]∨
)′

, whereas ~ (y∨)p 6∈ F~[G] , as follows from our previous
description of F~[G]∨. Thus

(
F~[G]∨

)′ % F~[G]∨ , a counterexample to Proposition 4.3.

What for F~[G]′ and F̃ [G] ? Again, this depends on the group G under consideration.
We give two simple examples, both “extreme”, in a sense, and opposite to each other.

Let G := Ga = Spec
(
k[x]

)
, so F [G] = F [Ga] = k[x] and F~[Ga] := R ⊗k k[x] = R[x] .

Then since ∆(x) := x ⊗ 1 + 1 ⊗ x and ε(x) = 0 we find F~[Ga]′ = R[~x] (like in §5.7
below: indeed, this is just a special instance, for F [Ga] = U(g) where g is the 1-dimensional

Lie algebra). Moreover, iterating one gets easily
(
F~[Ga]′

)′
= R

[
~2x

]
,

((
F~[Ga]′

)′)′
=

R
[
~3x

]
, and in general

(((
F~[Ga ]′

)′)′ · · ·
)′

︸ ︷︷ ︸
n

= R
[
~nx

] ∼= R[x] = F~[Ga] for all n ∈ N .

Second, let G := Gm = Spec
(
k
[
z+1, z−1

])
, that is F [G] = F [Gm] = k

[
z+1, z−1

]
so

that F~[Gm] := R ⊗k k
[
z+1, z−1

]
= R

[
z+1, z−1

]
. Then since ∆

(
z±1

)
:= z±1 ⊗ z±1 and

ε
(
z±1

)
= 1 we find ∆n

(
z±1

)
=

(
z±1

)⊗n and δn

(
z±1

)
=

(
z±1 − 1

)⊗n for all n ∈ N .
From that it follows easily F~[Gm]′ = R ·1 , the trivial possibility (see also §5.13 later on).

5.7 The enveloping algebra case. Let g be any Lie algebra over the field k, and U(g)
its universal enveloping algebra with its standard Hopf structure. Assume Char (k) = 0 ,
and let R = k[~] as in §5.1, and set U~(g) := R ⊗k U(g) =

(
U(g)

)
~ . Then U~(g) is

trivially a QrUEA at ~, for U~(g)
/
~U~(g) = U(g) , inducing on g the trivial Lie cobracket.

Therefore the dual Poisson group is nothing but g? (the topological dual of g w.r.t. the weak
topology), an Abelian group w.r.t. addition, with g as cotangent Lie bialgebra and function
algebra F [g?] = S(g) : the Hopf structure is the standard one, given by ∆(x) = x⊗1+1⊗x

(for all x ∈ g ), and the Poisson structure is the one induced by {x, y} := [x, y] for all x,
y ∈ g . This is the so-called Kostant-Kirillov structure on g?.

Similarly, if Char (k) = p > 0 and g is any restricted Lie algebra over k, let u(g)
be its restricted universal enveloping algebra, with its standard Hopf structure. Then if
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R = k[~] the Hopf R–algebra U~(g) := R ⊗k u(g) =
(
u(g)

)
~ is a QrUEA at ~, because

u~(g)
/
~u~(g) = u(g) , inducing on g the trivial Lie cobracket: then the dual Poisson group

is again g?, with cotangent Lie bialgebra g and function algebra F [g?] = S(g) (the Poisson
Hopf structure being as above). Recall also that U(g) = u

(
g[p ]∞

)
(cf. §5.6).

First we compute u~(g)′ (w.r.t. the prime ~ ) using (5.2), i.e. computing the filtration D .
By the PBW theorem, once an ordered basis B of g is fixed u(g) admits as basis the

set of ordered monomials in the elements of B whose degree (w.r.t. each element of B)
is less than p ; this yields a Hopf algebra filtration of u(g) by the total degree, which
we refer to as the standard filtration. Then from the very definitions a straightforward
calculation shows that D coincides with the standard filtration. This together with (5.2)
immediately implies u~(g)′ = 〈g̃〉 = 〈~ g〉 : hereafter g̃ := ~ g , and similarly we set
x̃ := ~x for all x ∈ g . Then the relations x y − y x = [x, y] and zp = z[p ] in u(g) yield
x̃ ỹ− ỹ x̃ = ~ [̃x, y] ≡ 0 mod ~u~(g)′ and z̃p = ~p−1z̃[p ] ≡ 0 mod ~u~(g)′ ; therefore from
the presentation4 u~(g) = TR(g)

/({
x y − y x− [x, y] , zp − z[p ]

∣∣ x, y, z ∈ g
})

we get

u~(g)′ = 〈g̃〉 ~→0−−−−−→ ũ(g) = Tk(g̃)
/({

x̃ ỹ − ỹ x̃ , z̃p
∣∣∣ x̃, ỹ, z̃ ∈ g̃

})
=

= Tk(g)
/({

x y − y x , zp
∣∣ x, y, z ∈ g

})
= Sk(g)

/({
zp

∣∣ z ∈ g
})

= F [g?]
/({

zp
∣∣ z ∈ g

})

that is ũ(g) := GD

(
u(g)

)
= u~(g)′

/
~u~(g)′ ∼= F [g?]

/({
zp

∣∣ z ∈ g
})

as Poisson Hopf

algebras. In particular, this means that ũ(g) is the function algebra of, and u~(g)′ is a
QFA (at ~ ) for, a non-reduced algebraic Poisson group of dimension 0 and height 1, whose
cotangent Lie bialgebra is g , hence which is dual to g ; thus, in a sense, part (c) of Theorem
2.2 is still valid in this (positive characteristic) case.

Remark: Note that this last result reminds the classical formulation of the analogue of
Lie’s Third Theorem in the context of group-schemes: Given a restricted Lie algebra g,
there exists a group-scheme G of dimension 0 and height 1 whose tangent Lie algebra is g

(see e.g. [DG]). Here we have just given sort of a “dual Poisson-theoretic version” of this
fact, in that our result sounds as follows: Given a restricted Lie algebra g, there exists a
Poisson group-scheme G of dimension 0 and height 1 whose cotangent Lie algebra is g .

As a byproduct, since U~(g) = u~
(
g[p ]∞

)
we have also U~(g)′ = u~

(
g[p ]∞

)′
, whence

U~(g)′ = u~
(
g[p ]∞)′ ~→0−−−−→ Sk

(
g[p ]∞

)/({
zp

}
z∈g[p ]∞

)
= F

[(
g[p ]∞)?]/({

zp
}

z∈g[p ]∞

)
.

Furthermore, u~(g)′ = 〈g̃〉 implies that Iu~(g)′ is generated (as a two-sided ideal)
by ~R · 1u~(g) + R g̃ , hence ~−1Iu~(g)′ is generated by R · 1 + R g , thus

(
u~(g)′

)∨
:=

4Hereafter, TA(M) , resp. SA(M) , is the tensor, resp. symmetric algebra of an A–module M .
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⋃
n≥0

(
~−1Iu~(g)′

)n =
⋃

n≥0

(
R · 1 + R g

)n = u~(g) ; this means that also part (b) of
Theorem 2.2 is still valid, though now Char (k) > 0 .

When Char (k) = 0 and we look at U(g), the like argument applies: D coincides with
the standard filtration of U(g) given by the total degree, via the PBW theorem. This
and (5.2) immediately imply U(g)′ = 〈g̃〉 = 〈~ g〉 , so that from the presentation U~(g) =
TR(g)

/({
x y − y x− [x, y]

}
x,y,z∈g

)
we get U~(g)′= TR(g̃)

/({
x̃ ỹ − ỹ x̃− ~ · [̃x, y]

}
x̃,ỹ∈g̃

)
,

whence we get at once

U~(g)′ = TR(g̃)
/({

x̃ ỹ− ỹ x̃−~ · [̃x, y]
∣∣∣ x̃, ỹ ∈ g̃

})
~→0−−−→Tk(g̃)

/({
x̃ ỹ− ỹ x̃

∣∣ x̃, ỹ ∈ g̃
})

=

= Tk(g)
/({

x y − y x
∣∣ x, y ∈ g

})
= Sk(g) = F [g?]

i.e. Ũ(g) := GD

(
U(g)

)
= U~(g)′

/
~U~(g)′ ∼= F [g?] as Poisson Hopf algebras, as predicted

by Theorem 2.2(c). Moreover, U~(g)′ = 〈g̃〉 = T (g̃)
/({

x̃ ỹ − ỹ x̃ = ~ · [̃x, y]
∣∣ x̃, ỹ ∈ g̃

})

implies that IU~(g)′ is generated by ~R·1U~(g)+R g̃ : therefore ~−1IU~(g)′ is generated by
R · 1U~(g) + R g , whence

(
U~(g)′

)∨
:=

⋃
n≥0

(
~−1IU~(g)′

)n =
⋃

n≥0

(
R · 1U~(g) + R g

)n =
U~(g) , which agrees with Theorem 2.2(b).

What for the functor ( )∨ ? This heavily depends on the g we start from!
First assume Char (k) = 0 . Let g(1) := g , g(k) :=

[
g, g(k−1)

]
(k ∈ N+), be the lower

central series of g . Pick subsets B1 , B2 , . . . , Bk , . . . (⊆ g ) such that Bk mod g(k+1) be
a k–basis of g(k)

/
g(k+1) (for all k ∈ N+ ), pick also a k–basis B∞ of g(∞) :=

⋂
k∈N+

, and

set ∂(b) := k for any b ∈ Bk and each k ∈ N+ ∪ {∞} . Then B :=
(⋃

k∈N+
Bk

)
∪ B∞

is a k–basis of g ; we fix a total order on it. Applying the PBW theorem to this ordered
basis of g we get that Jn has basis the set of ordered monomials

{
be1
1 be2

2 · · · bes
s

∣∣ s ∈
N+ , br ∈ B ,

∑s
r=1 br ∂(br) ≥ n

}
. Then one easily finds that U~(g)∨ is generated by{

~−1b
∣∣ b ∈ B1 \B2

}
(as a unital R–algebra) and it is the direct sum

U~(g)∨ =
(
⊕

s∈N+
br∈B\B∞

R
(
~−∂(b1)b1

)e1 · · · (~−∂(bs)bs

)es

) ⊕(
⊕

s∈N+, br∈B
∃ r̄:br̄∈B∞

R
[
~−1

]
be1
1 · · · bes

s

)

From this it follows at once that U~(g)∨
/
~U~(g)∨ ∼= U

(
g
/
g(∞)

)
via an isomorphism

which maps ~−∂(b)b mod ~U~(g)∨ to b mod g(∞) ∈ g
/
g(∞) ⊂ U

(
g
/
g(∞)

)
for all b ∈

B \B∞ and maps ~−nb mod ~U~(g)∨ to 0 for all b ∈ B \B∞ and all n ∈ N .
Now assume Char (k) = p > 0 . Then in addition to the previous considerations one

has to take into account the filtration of u(g) induced by both the lower central series of
g and the p–filtration of g, that is g ⊇ g[p ] ⊇ g[p ]2 ⊇ · · · ⊇ g[p ]n ⊇ · · · , where g[p ]n is the
restricted Lie subalgebra generated by

{
x[p ]n

∣∣ x ∈ g
}

and x 7→ x[p] is the p –operation in
g : these encode the J–filtration of U(g), hence of H = u~(g) , so permit to describe H∨.

In detail, for any restricted Lie algebra h, let hn :=
〈 ⋃

(m pk≥n (h(m))
[pk]

〉
for all n ∈

N+ (where 〈X〉 denotes the Lie subalgebra of h generated by X ) and h∞ :=
⋂

n∈N+
hn :
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we call
{
hn

}
n∈N+

the p–lower central series of h . It is a strongly central series of h, i.e. it
is a central series (= decreasing filtration of ideals, each one centralizing the previous one)
of h such that [hm, hn] ≤ hm+n for all m, n ; in addition, it verifies h

[p ]
n ≤ hn+1 . When h is

Abelian
{
hn

}
n∈N+

coincides (after index rescaling) with the p–power series
{

h[pn]
}

n∈N
.

Applying these tools to g ⊆ u(g) the very definitions give gn ⊆ Jn (for all n ∈ N )
where J := Ju(g) : more precisely, if B is an ordered basis of g then the (restricted) PBW
theorem for u(g) implies that Jn

/
Jn+1 admits as k–basis the set of ordered monomials

of the form xe1
i1

xe2
i2
· · ·xes

is
such that

∑s
r=1 er∂(xir

) = n where ∂(xir
) ∈ N is uniquely

determined by the condition xir
∈ g∂(xir ) \ g∂(xir )+1 and each xik

is a fixed lift in g of an

element of a fixed ordered basis of g∂(xik
)

/
g∂(xik

)+1 . This yields an explicit description of

J , hence of u(g)∨ and u~(g)∨, like before: in particular u~(g)∨
/
~u~(g)∨ ∼= u

(
g
/
g∞

)
.

Definition 5.8. For any k–coalgebra C, define X
∧

Y := ∆−1
(
X ⊗ C + C ⊗ Y

)
for all

subspaces X, Y of C . Set also
∧1

X := X and
∧n+1

X :=
(∧n

X
)∧

X for all n ∈ N+ ,
and also

∧0
X := k · 1 if C is a k–bialgebra.

Lemma 5.9. Let H be a Hopf k–algebra. Then Dn =
∧n+1(k · 1) for all n ∈ N .

Proof. Definitions give D0 := Ker (δ1) = k · 1 =
∧1(k · 1) . By coassociativity we have

Dn := Ker (δn+1) = Ker
(
(δn ⊗ δ1) ◦ δ2

)
= Ker

(
(δn ⊗ δ1) ◦ ∆

)
= ∆−1

(
Ker (δn ⊗ δ1)

)
=

∆−1
(
Ker (δn)⊗H+H⊗Ker (δ1)

)
= ∆−1

(
Dn−1⊗H+H⊗D0

)
= Dn−1

∧
D0 = Dn−1

∧
(k·1)

for all n∈N+ ; so by induction Dn = Dn−1

∧
(k·1) =

( ∧n(k·1)
)∧

(k·1) =
∧n+1(k·1) . ¤

Definition 5.10.
(a) We call pre-restricted universal enveloping algebra (in short, PrUEA) any H ∈

HAk which is down-filtered by J (that is,
⋂

n∈N Jn = {0} ). We call P rUEA the full
subcategory of HAk of all the PrUEAs.

(b) We call pre-function algebra (in short, PFA) any H ∈ HAk which is up-filtered by
D (that is,

⋃
n∈NDn = H ). We call PFA the full subcategory of HAk of all the PFAs.

The content of the notions of PrUEA and of PFA is revealed by parts (a) and (b) of
next theorem, which collects the main results of this section.

Theorem 5.11. (“The Crystal Duality Principle”)
(a) The assignment H 7→ H∨ := H

/
J ∞

H
, resp. H 7→ H ′ :=

⋃
n∈NDn , defines

a functor ( )∨: HAk −→ HAk , resp. ( )′: HAk −→ HAk , whose image is P rUEA,
resp. PFA. More in general, the assignment A 7→ A∨ := A

/
J ∞

A
, resp. C 7→ C ′ :=⋃

n∈NDn(C) , defines a surjective functor from augmented k–algebras, resp. coaugmented
k–coalgebras, to augmented k–algebras which are down-filtered by J , resp. coaugmented
k–coalgebras which are up-filtered by D ; and similarly for k–bialgebras.
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(b) Let H ∈ HAk . Then Ĥ := GJ(H) ∼= U(g) , as graded co-Poisson Hopf algebras,
for some restricted Lie bialgebra g which is graded as a Lie algebra. In particular, if
Char (k)=0 and dim(H)∈ N then Ĥ = k·1 and g = {0} .

More in general, the same holds if H = B is a k–bialgebra.
(c) Let H ∈ HAk . Then H̃ := GD(H) ∼= F [G] , as graded Poisson Hopf algebras, for

some connected algebraic Poisson group G whose variety of closed points form a (pro)affine
space. If Char (k) = 0 then F [G] = H̃ is a polynomial algebra, i.e. F [G] = k

[{xi}i∈I
]

(for some set I); in particular, if dim(H) ∈ N then H̃ = k · 1 and G = {1} . If
p := Char (k) > 0 then G has dimension 0 and height 1, and if k is perfect then F [G] = H̃

is a truncated polynomial algebra, i.e. F [G] = k
[{xi}i∈I

]/({x p
i }i∈I

)
(for some set I).

More in general, the same holds if H = B is a k–bialgebra.
(d) For every H ∈ HAk , there exist two 1-parameter families (H∨)~

∨ = R~J(H∨) and(
(H∨)~

∨)′
in HAk giving deformations of H∨ with regular fibers

if Char (k) = 0 , U(g−)
if Char (k) > 0 , u(g−)

}
= Ĥ

0← ~→ 1←−−−−−−−→
(H∨)~

∨
H∨ 1← ~→ 0←−−−−−−−→

((H∨)~
∨)′

{
F [K−] = F [G?

−]
F [K−]

and two 1-parameter families H~
′ = R~D(H ′) and (H~′)

∨ in HAk giving deformations of
H ′ with regular fibers

F [G+] = H̃
0← ~→ 1←−−−−−−−→

H~′
H ′ 1← ~→ 0←−−−−−−−→

(H~′)∨

{
U(k+) = U(g×+ ) if Char (k) = 0
u(k+) if Char (k) > 0

where G+ is like G in (c), K− is a connected algebraic Poisson group, g− is like g in (b),
k+ is a (restricted, if Char (k) > 0 ) Lie bialgebra, g×+ is the cotangent Lie bialgebra to G+

and G?
− is a connected algebraic Poisson group whose cotangent Lie bialgebra is g− .

(e) If H = F [G] is the function algebra of an algebraic Poisson group G, then F̂ [G] is
a bi-Poisson Hopf algebra (see [KT], §1), namely

F̂ [G] ∼= S(g×)
/({

x pn(x)
∣∣∣ x ∈ NF [G]

}) ∼= U(g×)
/({

x pn(x)
∣∣∣ x ∈ NF [G]

})

where NF [G] is the nilradical of F [G], pn(x) is the order of nilpotency of x ∈ NF [G] and

the bi-Poisson Hopf structure of S(g×)
/({

x pn(x)
∣∣∣ x ∈ NF [G]

})
is the quotient one from

S(g×) ; in particular, if the group G is reduced then F̂ [G] ∼= S(g×) ∼= U(g×) .
(f) If Char (k) = 0 and H = U(g) is the universal enveloping algebra of some Lie

bialgebra g, then Ũ(g) is a bi-Poisson Hopf algebra, namely

Ũ(g) ∼= S(g) = F [g?]
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where the bi-Poisson Hopf structure on S(g) is the canonical one.
If Char (k) = p > 0 and H = u(g) is the restricted universal enveloping algebra of

some restricted Lie bialgebra g, then ũ(g) is a bi-Poisson Hopf algebra, namely

ũ(g) ∼= S(g)
/({

xp
∣∣ x ∈ g

})
= F [G?]

where the bi-Poisson Hopf structure on S(g)
/({

xp
∣∣ x ∈ g

})
is induced by the canonical

one on S(g), and G? is a connected algebraic Poisson group of dimension 0 and height 1
whose cotangent Lie bialgebra is g .

(g) Let H, K ∈ HAk and let π: H ×K −−→ k be a Hopf pairing. Then π induce a
filtered Hopf pairing πf : H∨×K ′ −−→ k , a graded Hopf pairing π

G
: Ĥ×K̃ −−→ k , both

perfect on the right, and Hopf pairings over k[~ ] (notation of §5.1) H~ ×K~ −−→ k[~ ]
and H~

∨ ×K~
′ −−→ k[~ ] , the latter being perfect on the right. If in addition the pairing

πf : H∨ ×K ′ −−→ k is perfect, then π
G

is perfect as well, and H~
∨ and K~

′ are dual to
each other. The left-right symmetrical results hold too.

Proof. Parts (a) through (c) of the statement are proved by the analysis in §5.4, but for
the naturality of H 7→ H∨ and H 7→ H ′ , which is however clear because, ϕ

(
J ∞

H

) ⊆ J ∞
K

and ϕ
(
Dn(H)

) ⊆ Dn(K) for any morphism ϕ : H −→ K within HAk . In addition, for
part (b) when Char (k) = 0 and dim(H) ∈ N we have to notice that Ĥ = U(g) is finite
dimensional too, hence Ĥ = U(g) = k ·1 and g = {0} ; similarly for (c) these assumptions
imply that H̃ = F [G] is finite dimensional too, so H̃ = F [G] = k · 1 and G = {1} , q.e.d.
Finally, if H = B is just a k–bialgebra then both B̂ := GJ (B) and B̃ := GD(B) are
irreducible graded k–bialgebras: then by [Ab], Theorem 2.4.24, they are also graded Hopf
algebras, whence we conclude as if B were a Hopf algebra.

Part (d) is proved by §5.5.
As for part (e), it is almost entirely proved by the analysis in §5.6, noting also that

in the case of H = F [G] one has S(g×) = U(g×) because g× is Abelian. What is
left to check is whatever refers to bi-Poisson structures. Indeed, the Lie bracket of g×

extends to a Poisson bracket which makes S(g×) into a bi-Poisson Hopf algebra (see §5.1);

then
({

x pn(x)
}

x∈NF [G]

)
is a bi-Poisson Hopf ideal, thus S(g×)

/({
x pn(x)

}
x∈NF [G]

)

is a bi-Poisson Hopf algebra as well. But F̂ [G] also inherits a Poisson bracket from F [G]
which makes it into a bi-Poisson Hopf algebra too: it is then clear that the isomorphism

S(g×)
/({

x pn(x)
}

x∈NF [G]

) ∼= F̂ [G] is one of bi-Poisson Hopf algebras.

Similarly, part (f) is proved by the analysis in §5.7, noting also that both Ũ(g) and
S(g) = F [G?] are naturally bi-Poisson Hopf algebras, isomorphic to each other via
the previously considered isomorphism. In addition, the same holds also for ũ(g) and
S(g)

/({
xp

∣∣ x ∈ g
})

= F [G?] , because
({

xp
∣∣ x ∈ g

})
is a bi-Poisson Hopf ideal of S(g) .
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Finally, we go for part (g). Let π: H × K −−→ k be the Hopf pairing under study.
Consider the filtrations J =

{
J

H

n
}

n∈N and D =
{
DK

n

}
n∈N . The key fact is that

DK

n =
(
J

H

n+1
)⊥ and J

H

n+1 ⊆ (
DK

n

)⊥ for all n ∈ N . (5.6)

Indeed, if X is a subspace of a coalgebra C and C is in perfect “Hopf-like” pairing
with an algebra A , one has

∧n
X =

(
(X⊥)n)⊥

(cf. Definition 5.8) for all n ∈ N , where
the superscript ⊥ means “orthogonal subspace” (either in A or in C) w.r.t. the pairing
under exam (cf. [Ab] or [Mo]). Now, Lemma 5.9 gives DK

n =
∧n+1(k ·1

K
) , thus DK

n =
∧n+1(k·1

K
) =

((
(k·1

K
)⊥

)n+1
)⊥

=
(
J

H

n+1
)⊥

because (k·1
K

)⊥ = J
H

(w.r.t. the pairing π

above). Therefore DK
n =

(
J

H

n+1
)⊥ , and this also implies J

H

n+1 ⊆ (
DK

n

)⊥.

Now K ′ :=
⋃

n∈NDK
n =

⋃
n∈N

(
JH

n+1
)⊥

=
(⋂

n∈N JH

n+1
)⊥

=
(
JH

∞)⊥ . Thus π induces
a Hopf pairing πf : H∨ ×K ′ −−→ k as required, and by (5.6) this respects the filtrations
on either side. Then by general theory πf induces a graded Hopf pairing πG as required:
in particular πG is well-defined because DK

n ⊆ (
JH

n+1
)⊥ and JH

n+1 ⊆ (
DK

n

)⊥ (for all
n ∈ N+ ) by (5.6), and both πf and π

G
are perfect on the right because all the inclusions

DK
n ⊆ (

J
H

n+1
)⊥ happen to be identities. Clearly by scalar extension π defines also a Hopf

pairing H~ ×K~ −→ k[~ ] ; then (5.6) and the description of H~
′ and K~

∨ in Lemma 5.2
directly imply that this yields another Hopf pairing H~

∨ ×K~
′ −→ k[~ ] as claimed.

Finally when πf is perfect it is easy to see that π
G

is perfect as well; note that this
improves (5.6), for we have J

H

n+1 =
(
DK

n

)⊥ for all n ∈ N . It is also clear that the pairing
H~

∨ ×K~
′ −→ k[~ ] is perfect as well, and that H~

∨ and K~
′ are dual to each other. ¤

Remarks: (a) It is worth noticing that, though usually introduced in a different way,
H ′ is an object which is pretty familiar to Hopf algebra theorists: indeed, it is the con-

nected component of H (cf. [Ga5] for a proof); in particular, H is a PFA if and only if it is
connected. Nevertheless, surprisingly enough the pretty remarkable property of its associ-
ated graded Hopf algebra H̃ = GD(H) expressed by Theorem 5.11(c) seems to have been
unknown so far (at least, to the author’s knowledge)! Similarly, the “dual” construction of
H∨ and the important property of its associated graded Hopf algebra Ĥ = GJ(H) stated
in Theorem 5.11(b) seem to have escaped the specialists’ attention.

(b) Part (d) of Theorem 5.11 is quite interesting for applications in physics. In fact, let
H be a Hopf algebra which describes the symmetries of some physically meaningful system,
but has no geometrical meaning (typically, when it is not commutative nor cocommutative,
as it usually happens in quantum physics), and assume also H ′ = H = H∨ . Then Theorem
5.11(d) yields a recipe to deform H to four different Hopf algebras bearing a geometrical
meaning, which means having two Poisson groups and two Lie bialgebras attached to H,
hence a rich “geometrical symmetry” (of Poisson type) underlying the physical system; if
the ground field has characteristic zero (as usual) we simply have two pairs of mutually
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dual Poisson groups together with their tangent Lie bialgebras. In §10 we’ll give a nice
application of this kind with the two pairs of groups strictly related, yet different.

5.12 The hyperalgebra case. Let G be an algebraic group, which for simplicity
we assume to be finite-dimensional. By Hyp (G) we mean the hyperalgebra associated to
G, defined as Hyp (G) :=

(
F [G]•

)
ε

=
{

φ ∈ F [G]◦
∣∣ φ(me

n) = 0 , ∀ n À 0
}

, that is the
irreducible component of the dual Hopf algebra F [G]◦ containing ε = ε

F [G] , which is a
Hopf subalgebra of F [G]◦; in particular, Hyp (G) is connected cocommutative. Recall that
there’s a natural Hopf algebra morphism Φ : U(g) −→ Hyp (G) ; if Char (k) = 0 then Φ
is an isomorphism, so Hyp (G) identifies to U(g); if Char (k) > 0 then Φ factors through
u(g) and the induced morphism Φ : u(g) −→ Hyp (G) is injective, so that u(g) identifies

with a Hopf subalgebra of Hyp (G). Now we study Hyp (G)′, Hyp (G)∨, H̃yp (G), Ĥyp (G).

As Hyp (G) is connected, letting C0 := Corad
(
Hyp (G)

)
be its coradical we have

Hyp (G) =
⋃

n∈N
∧n+1

C0 =
⋃

n∈N
∧n+1(k · 1) =

⋃
n∈NDn+1

(
Hyp (G)

)
=: Hyp (G)′ .

Now, Theorem 5.11(c) gives H̃yp (G) := GD

(
Hyp (G)

)
= F [Γ ] for some connected al-

gebraic Poisson group Γ ; Theorem 5.11(e) yields F̂ [G] ∼= S(g∗)
/({

x pn(x)
}

x∈NF [G]

)
=

u
(

P

(
S(g∗)

/({
x pn(x)

}
x∈NF [G]

)))
= u

((
g∗

)p∞
)

, with
(
g∗

)p∞ := Span
({

xpn
∣∣∣ x ∈

g∗ , n ∈ N
})

⊆ F̂ [G] , and noting that g× = g∗ . On the other hand, exactly like for U(g)
and u(g) respectively in case Char (k) = 0 and Char (k) > 0 , the filtration D of Hyp (G)
is nothing but the natural filtration given by the order of differential operators: this im-
plies immediately Hyp (G)~

′ :=
(
k[~ ]⊗k Hyp (G)

)′ =
〈{
~nx(n)

∣∣ x ∈ g , n ∈ N}〉
, where

hereafter notation like x(n) denotes the n–th divided power of x ∈ g (recall that Hyp (G) is
generated as an algebra by all the x(n)’s, some of which might be zero). It is then immediate

to check that the graded Hopf pairing between Hyp (G)~
′
/
~Hyp (G)~

′ = H̃yp (G) = F [Γ ]

and F̂ [G] given by Theorem 5.11(g) is perfect. From this we easily argue that the cotan-

gent Lie bialgebra of Γ is isomorphic to
((

g∗
)p∞

)∗
.

As for Hyp (G)∨ and Ĥyp (G), the situation is much like for U(g) and u(g), in that it
strongly depends on the algebraic nature of G (cf. §5.7).

5.13 The CDP on group algebras and their duals. In this section, G is any
abstract group. We divide the subsequent material in several subsections.

Group-related algebras. For any commutative unital ring A , by A[G] we mean the group
algebra of G over A and, when G is finite, we denote by AA(G) := A[G]∗ (the linear dual
of A[G] ) the function algebra of G over A . Our purpose is to apply the Crystal Duality
Principle to k[G] and Ak(G) with their standard Hopf algebra structure: hereafter k is a
field and R := k[~] as in §5.1, and we set p := Char (k) .
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Recall that H := A[G] admits G itself as a distinguished basis, with Hopf algebra
structure given by g ·H γ := g ·G γ , 1H := 1G , ∆(g) := g⊗ g , ε(g) := 1 , S(g) := g−1 , for
all g, γ ∈ G . Dually, H := AA(G) has basis

{
ϕg

∣∣ g∈G
}

dual to the basis G of A[G] , with
ϕg(γ) := δg,γ for all g, γ ∈ G ; its Hopf algebra structure is given by ϕg · ϕγ := δg,γϕg ,
1

H
:=

∑
g∈G ϕg , ∆(ϕg) :=

∑
γ·`=g ϕγ ⊗ ϕ` , ε(ϕg) := δg,1G

, S(ϕg) := ϕg−1 , for all
g, γ ∈ G . In particular, R[G] = R⊗k k[G] and AR[G] = R⊗k Ak[G] . Our first result is

Theorem A:
(
k[G]

)
~
′ = R · 1 , k[G]′ = k · 1 and k̃[G] = k · 1 = F

[{∗}] .

Proof. The claim follows easily from the formula δn(g) = (g−1)⊗n, for g ∈ G, n ∈ N . ¤

R[G]∨, k[G]∨, k̂[G] and the dimension subgroup problem. In contrast with the triviality

result in Theorem A above, things are more interesting for R[G]∨=
(
k[G]

)
~
∨ , k[G]∨ and

k̂[G] . Note however that since k[G] is cocommutative the induced Poisson cobracket on
k̂[G] is trivial, and the Lie cobracket of kG := P

(
k̂[G]

)
is trivial as well.

Studying k[G]∨ and k̂[G] amounts to study the filtration
{
Jn

}
n∈N , with J := Ker (εk[G]),

which is a classical topic. Indeed, for n∈N let Dn(G) :=
{

g ∈ G
∣∣ (g−1) ∈ Jn

}
: this

is a characteristic subgroup of G, called the nth dimension subgroup of G . All these
form a filtration inside G : characterizing it in terms of G is the dimension subgroup

problem, which (for group algebras over fields) is completely solved (see [Pa], Ch. 11, §1,
and [HB], and references therein); this also gives a description of

{
Jn

}
n∈N+

. Thus we
find ourselves within the domain of classical group theory: now we use the results which
solve the dimension subgroup problem to argue a description of k[G]∨, k̂[G] and R[G]∨,
and later on we’ll get from this a description of

(
R[G]∨

)′ and its semiclassical limit too.
By construction, J has k–basis

{
ηg

∣∣ g∈G\{1
G
}} , where ηg := (g−1) . Then k[G]∨ is

generated by
{

ηg mod J∞
∣∣ g ∈ G \ {1G}

}
, and k̂[G] by

{
ηg

∣∣ g∈G \ {1G}
}

: hereafter
x := x mod Jn+1 for all x ∈ Jn , that is x is the element in k̂[G] which corresponds to
x ∈ k[G] . Moreover, g = 1 + ηg = 1 for all g ∈ G ; also, ∆

(
ηg

)
= ηg ⊗ g + 1 ⊗ ηg =

ηg ⊗ 1 + 1⊗ ηg : thus ηg is primitive, so
{

ηg

∣∣ g∈G \ {1
G
}} generates kG := P

(
k̂[G]

)
.

The Jennings-Hall theorem. The description of Dn(G) is given by the Jennings-Hall
theorem, which we now recall. The construction involved strongly depends on whether
p := Char (k) is zero or not, so we shall distinguish these two cases.

First assume p = 0 . Let G(1) := G , G(k) := (G,G(k−1)) (k ∈ N+), form the lower

central series of G ; hereafter (X, Y ) is the commutator subgroup of G generated by the
set of commutators

{
(x, y) := x y x−1y−1

∣∣ x ∈ X, y ∈ Y
}

: this is a strongly central

series in G, which means a central series
{
Gk

}
k∈N+

(= decreasing filtration of normal
subgroups, each one centralizing the previous one) of G such that (Gm, Gn) ≤ Gm+n for
all m , n . Then let

√
G(n) :=

{
x ∈ G

∣∣ ∃ s ∈ N+ : xs ∈ G(n)

}
for all n ∈ N+ : these form

a descending series of characteristic subgroups in G, such that each composition factor
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AG
(n) :=

√
G(n)

/√
G(n+1) is torsion-free Abelian. Therefore L0(G) :=

⊕
n∈N+

AG
(n) is

a graded Lie ring, with Lie bracket
[
g, `

]
:= (g, ` ) for all homogeneous g, ` ∈ L0(G) ,

with obvious notation. It is easy to see that the map k⊗Z L0(G) −→ kG , g 7→ ηg , is an
epimorphism of graded Lie rings: therefore the Lie algebra kG is a quotient of k⊗ZL0(G) ;
in fact, the above is an isomorphism, see below. We shall use notation ∂(g) := n for all
g ∈ √

G(n) \
√

G(n+1) .
For each k ∈ N+ pick in AG

(k) a subset Bk which is a Q–basis of Q ⊗Z AG
(k) ; for each

b ∈ Bk , choose a fixed b ∈ √
G(k) such that its coset in AG

(k) be b, and denote by Bk the
set of all such elements b . Let B :=

⋃
k∈N+

Bk : we call such a set t.f.l.c.s.-net (= “torsion-

free-lower-central-series-net”) on G. Clearly Bk =
(
B ∩√

G(k)

)
\
(
B ∩√

G(k+1)

)
for all

k . By an ordered t.f.l.c.s.-net is meant a t.f.l.c.s.-net B which is totally ordered in such a
way that: (i) if a ∈ Bm , b ∈ Bn , m < n , then a ¹ b ; (ii) for each k, every non-empty
subset of Bk has a greatest element. An ordered t.f.l.c.s.-net always exists.

Now assume instead p > 0 . The situation is similar, but we must also consider the
p–power operation in the group G and in the restricted Lie algebra kG . Starting from
the lower central series

{
G(k)

}
k∈N+

, define G[n] :=
∏

kp`≥n (G(k))
p`

for all n ∈ N+

(hereafter, for any group Γ we denote Γ pe

the subgroup generated by
{
γpe ∣∣ γ ∈ Γ

}
):

this gives another strongly central series
{
G[n]

}
n∈N+

in G, with the additional property
that (G[n])

p ≤ G[n+1] for all n , called the p–lower central series of G . Then Lp(G) :=
⊕n∈N+G[n]

/
G[n+1] is a graded restricted Lie algebra over Zp := Z

/
pZ , with operations

g + ` := g · ` ,
[
g, `

]
:= (g, ` ) , g [p ] := gp , for all g, ` ∈ G (cf. [HB], Ch. VIII, §9). Like

before, we consider the map k⊗Zp Lp(G) −→ kG , g 7→ ηg , which now is an epimorphism
of graded restricted Lie Zp–algebras, whose image spans kG over k : therefore kG is a

quotient of k ⊗Zp Lp(G) ; in fact, the above is an isomorphism, see below. Finally, we
introduce also the notation d(g) := n for all g ∈ G[n] \G[n+1] .

For each k ∈ N+ choose a Zp–basis Bk of the Zp–vector space G[k]

/
G[k+1] ; for each

b ∈ Bk , fix b ∈ G[k] such that b = bG[k+1] , and let Bk be the set of all such elements b .
Let B :=

⋃
k∈N+

Bk : such a set will be called a p-l.c.s.-net (= “p-lower-central-series-net”;
the terminology in [HB] is “κ-net”) on G. Of course Bk =

(
B ∩ G[k]

) \ (
B ∩ G[k+1]

)
for

all k . By an ordered p-l.c.s.-net we mean a p-l.c.s.-net B which is totally ordered in such
a way that: (i) if a ∈ Bm , b ∈ Bn , m < n , then a ¹ b ; (ii) for each k, every non-empty
subset of Bk has a greatest element (like for p = 0 ). Again, p-l.c.s.-nets do exist.

We can now describe each Dn(G), hence also each graded summand Jn
/
Jn+1 of k̂[G] ,

in terms of the lower central series or the p–lower central series of G , more precisely in
terms of a fixed ordered t.f.l.c.s.-net or p-l.c.s.-net. To unify notations, set Gn := G(n) ,
θ(g) := ∂(g) if p=0 , and Gn := G[n] , θ(g) := d(g) if p>0 , set G∞ :=

⋂
n∈N+

Gn , let
B :=

⋃
k∈N+

Bk be an ordered t.f.l.c.s.-net or p-l.c.s.-net according to whether p = 0 or
p>0 , and set `(0) := +∞ and `(p) := p for p > 0 . The key result we need is
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Jennings-Hall theorem (cf. [HB], [Pa] and references therein). Let p := Char (k) .
(a) For all g ∈ G , ηg ∈ Jn ⇐⇒ g ∈Gn . Therefore Dn(G) = Gn for all n ∈ N+ .
(b) For any n ∈ N+ , the set of ordered monomials

Bn :=
{

ηb1
e1 · · · ηbr

er

∣∣∣ bi ∈ Bdi
, ei ∈ N+ , ei < `(p) , b1 � · · · � br ,

∑r
i=1ei di = n

}

is a k–basis of Jn
/
Jn+1 , and B := {1} ∪⋃

n∈N Bn is a k–basis of k̂[G] .
(c)

{
ηb

∣∣ b ∈ Bn

}
is a k–basis of the n–th graded summand kG ∩

(
Jn

/
Jn+1

)
of the

graded restricted Lie algebra kG , and
{

ηb

∣∣ b ∈ B
}

is a k–basis of kG .
(d)

{
ηb

∣∣ b ∈ B1

}
is a minimal set of generators of the (restricted) Lie algebra kG .

(e) The map k⊗Z Lp(G) −→ kG , g 7→ ηg , is an isomorphism of graded restricted Lie
algebras. Therefore k̂[G] ∼= U(

k⊗Z Lp(G)
)

as Hopf algebras (notation of §1.1).
(f) J∞ = Span

({
ηg

∣∣ g ∈ G∞
})

, whence k[G]∨ ∼= ⊕
g∈G/G∞k ·g ∼= k

[
G

/
G∞

]
. ¤

Recall that A
[
x, x−1

]
(for any A) has A–basis

{
(x−1)n

x−[n/2]
∣∣ n ∈ N}

, where [q] is
the integer part of q ∈ Q . Then from Jennings-Hall theorem and (5.2) we argue

Proposition B. Let χg := ~−θ(g)ηg , for all g ∈ {G} \ {1} . Then

R[G]∨ =
(⊕

bi∈B, 0<ei<`(p)
r∈N, b1�···�br

R · χ e1
b1

b
−[e1/2]
1 · · ·χ er

br
b−[er/2]
r

) ⊕
R

[
~−1

] · J∞ =

=
(⊕

bi∈B, 0<ei<`(p)
r∈N, b1�···�br

R · χ e1
b1

b
−[e1/2]
1 · · ·χ er

br
b−[er/2]
r

) ⊕ (∑
γ∈G∞R

[
~−1

] · ηγ

)
;

If J∞=Jn for some n∈N (iff G∞= Gn) we can drop the factors b
−[e1/2]
1 , . . . , b

−[er/2]
r .¤

Poisson groups from k[G]. The previous discussion attached to the abstract group G the
(maybe restricted) Lie algebra kG which, by Jennings-Hall theorem, is just the scalar
extension of the Lie ring LChar(k) associated to G via the central series of the Gn’s; in
particular the functor G 7→ kG is one considered since long in group theory.

Now, by Theorem 5.8(d) we know that
(
R[G]∨

)′
is a QFA, with

(
R[G]∨

)′∣∣∣
~=0

= F
[
ΓG

]

for some connected Poisson group ΓG . This defines a functor G 7→ ΓG from abstract
groups to connected Poisson groups, of dimension zero and height 1 if p > 0 ; in particular,
this ΓG is a new invariant for abstract groups.

The description of R[G]∨ in Proposition B above leads us to an explicit description of(
R[G]∨

)′
, hence of

(
R[G]∨

)′∣∣∣
~=0

= F
[
ΓG

]
and ΓG too. Indeed, direct inspection gives

δn

(
χg

)
= ~(n−1)θ(g)χ ⊗n

g , so ψg := ~χg = ~1−θ(g)ηg ∈
(
R[G]∨

)′ \ ~ (
R[G]∨

)′
for each

g ∈ G\G∞ , whilst for γ ∈ G∞ we have ηγ ∈ J∞ which implies also ηγ ∈
(
R[G]∨

)′
, and

even ηγ ∈
⋂

n∈N ~n
(
R[G]∨

)′
. Therefore

(
R[G]∨

)′
is generated by

{
ψg

∣∣ g ∈ G \ {1}} ∪{
ηγ

∣∣ γ ∈ G∞
}

. Moreover, g = 1 + ~θ(g)−1ψg ∈
(
R[G]∨

)′
for every g ∈ G \ G∞ , and

γ = 1 + (γ − 1) ∈ 1 + J∞ ⊆ (
R[G]∨

)′
for γ ∈ G∞ . This and the previous analysis along

with Proposition B prove next result, which in turn is the basis for Theorem D below.
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Proposition C.

(
R[G]∨

)′
=

(⊕
bi∈B, 0<ei<`(p)
r∈N, b1�···�br

R · ψ e1
b1

b
−[e1/2]
1 · · ·ψ er

br
b−[er/2]
r

) ⊕
R

[
~−1

] · J∞ =

=
(⊕

bi∈B, 0<ei<`(p)
r∈N, b1�···�br

R · ψ e1
b1

b
−[e1/2]
1 · · ·ψ er

br
b−[er/2]
r

) ⊕(∑
γ∈G∞R

[
~−1

] · ηγ

)
.

In particular,
(
R[G]∨

)′
= R[G] if and only if G2 = {1} = G∞ . If in addition J∞=Jn

for some n∈N (iff G∞ = Gn) then we can drop the factors b
−[e1/2]
1 , . . . , b

−[er/2]
r . ¤

Theorem D. Let xg := ψg mod ~
(
R[G]∨

)′
, zg := g mod ~

(
R[G]∨

)′
for all g 6= 1 ,

and B1 :=
{

b ∈B
∣∣ θ(b) = 1

}
, B> :=

{
b ∈B

∣∣ θ(b) > 1
}

.

(a) If p = 0 , then F
[
ΓG

]
=

(
R[G]∨

)′∣∣∣
~=0

is a polynomial/Laurent polynomial alge-

bra, namely F
[
ΓG

]
= k

[{
zb
±1

}
b∈B1

∪ {xb}b∈B>

]
, the zb’s being group-like and the xb’s

being primitive. In particular ΓG
∼=

(
G×B1

m

)× (
G×B>

a

)
as algebraic groups, that is ΓG is

a torus times a (pro)affine space.
(b) If p > 0 , then F

[
ΓG

]
=

(
R[G]∨

)′∣∣∣
~=0

is a truncated polynomial/Laurent polyno-

mial algebra, namely F
[
ΓG

]
= k

[{
zb
±1

}
b∈B1

∪{xb}b∈B>

]/({z p
b −1}

b∈B1
∪{

x p
b

}
b∈B>

)
, the

zb’s being group-like and the xb’s being primitive. In particular ΓG
∼=

(
µp
×B1

)× (
αp
×B>

)

as algebraic groups of dimension zero and height 1.
(c) The Poisson group ΓG has cotangent Lie bialgebra kG , that is coLie (ΓG) = kG .

Proof. (a) Definitions give ∂(g ` ) ≥ ∂(g) + ∂(` ) for all g, ` ∈ G , so that [ψg, ψ`

]
=

~1−∂(g)−∂(`)+∂((g,`)) ψ(g,`) g ` ∈ ~ · (R[G]∨
)′

, which proves (directly) that
(
R[G]∨

)′∣∣∣
~=0

is

commutative! Moreover, the relation 1 = g−1 g = g−1
(
1 + ~∂(g)−1ψg

)
(for any g ∈ G )

yields zg−1 = zg
−1 iff ∂(g) = 1 and zg−1 = 1 iff ∂(g) > 1 . Noting also that J∞ ≡ 0

mod ~
(
R[G]∨

)′
and g = 1 + ~∂(g)−1ψg ≡ 1 mod ~

(
R[G]∨

)′
for g ∈ G \ G∞ , and also

γ = 1 + (γ − 1) ∈ 1 + J∞ ≡ 1 mod ~
(
R[G]∨

)′
for γ ∈ G∞ , Proposition C gives

F
[
ΓG

]
=

(
R[G]∨

)′∣∣∣
~=0

=
(⊕

bi∈B1, ai∈Z
s∈N, b1�···�bs

k·z a1
b1
· · · z as

bs

) ⊗(⊕
bi∈B>, ei∈N+

r∈N, b1�···�br

k·x e1
b1
· · ·x er

br

)

which means that F
[
ΓG

]
is a polynomial-Laurent polynomial algebra as claimed. Again

definitions imply ∆(zg) = zg⊗zg for all g ∈ G and ∆(xg) = xg⊗1+1⊗xg iff ∂(g) > 1 ;
thus the zb’s are group-like and the xb’s are primitive as claimed.

(b) The definition of d implies d(g ` ) ≥ d(g)+d(` ) (g, ` ∈ G), whence we get [ψg, ψ`] =

~1−d(g)−d(`)+d((g,`)) ψ(g,`) g ` ∈ ~ · (R[G]∨
)′

, proving that
(
R[G]∨

)′∣∣∣
~=0

is commutative.

In addition d(gp) ≥ p d(g) , so ψ p
g = ~ p (1−d(g)) η p

g = ~ p−1+d(gp)−p d(g) ψgp ∈ ~·(R[G]∨
)′

,
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whence
(
ψ p

g

∣∣
~=0

)p = 0 inside
(
R[G]∨

)′∣∣∣
~=0

= F
[
ΓG

]
, which proves that ΓG has dimen-

sion 0 and height 1. Finally bp = (1 + ψb)
p = 1+ψb

p ≡ 1 mod ~
(
R[G]∨

)′
for all b ∈ B1 ,

so b−1 ≡ bp−1 mod ~
(
R[G]∨

)′
. Thus letting xg := ψg mod ~

(
R[G]∨

)′
(for g 6=1) we get

F
[
ΓG

]
=

(
R[G]∨

)′∣∣∣
~=0

=
(⊕

bi∈B1, 0<ei<p
s∈N, b1�···�bs

k ·z e1
b1
· · · z es

bs

)⊗(⊕
bi∈B>, 0<ei<p
r∈N, b1�···�br

k ·x e1
b1
· · ·x er

br

)

just like for (a) and also taking care that zb = xb + 1 and z p
b = 1 for b ∈ B1 . Therefore(

R[G]∨
)′∣∣∣
~=0

is a truncated polynomial/Laurent polynomial algebra as claimed. The prop-

erties of the xb’s and the zb’s w.r.t. the Hopf structure are then proved like for (a) again.

(c) The augmentation ideal me of
(
R[G]∨

)′∣∣∣
~=0

= F
[
ΓG

]
is generated by {xb}b∈B ;

then ~−1 [ψg, ψ`

]
= ~ θ((g,`))−θ(g)−θ(`) ψ(g,`)

(
1 + ~ θ(g)−1ψg

) (
1 + ~ θ(`)−1ψ`

)
by the pre-

vious computation, whence at ~ = 0 one has
{
xg , x`

} ≡ x(g,`) mod m 2
e if θ

(
(g, ` )

)
=

θ(g) + θ(` ) , and
{
xg , x`

} ≡ 0 mod m 2
e if θ

(
(g, ` )

)
> θ(g) + θ(` ) . This means that the

cotangent Lie bialgebra me

/
m 2

e of ΓG is isomorphic to kG , as claimed. ¤

Remarks: (a) Theorem D claims that the connected Poisson group K?
G := ΓG is dual to

kG in the sense of §1.1. Since R[G]∨
∣∣∣
~=0

= U(kG) and
(
R[G]∨

)′∣∣∣
~=0

= F
[
K?

G

]
, this gives

a close analogue, in positive characteristic, of the second half of Theorem 2.2(c).
(b) Theorem D gives functorial recipes to attach to each abstract group G and each

field k a connected Abelian algebraic Poisson group over k, namely G 7→ ΓG = K?
G ,

explicitly described as algebraic group and such that coLie (K?
G) = kG . Every such ΓG

(for given k) is then an invariant of G , a new one to the author’s knowledge. Indeed, it

is perfectly equivalent to the well-known invariant kG (over the same k), because clearly
ΓG1

∼= ΓG2 implies kG1
∼= kG2 , whereas kG1

∼= kG2 implies that ΓG1 and ΓG2 are isomorphic
as algebraic groups — by Theorem D(a–b) — and bear isomorphic Poisson structures —
by part (c) of Theorem D — whence ΓG1

∼= ΓG2 as algebraic Poisson groups.

The case of Ak(G) . Let’s now dwell upon H := Ak(G) , for a finite group G .
Let A be any commutative unital ring, and let k, R := k[~] be as before. By definition

AA(G) = A[G]∗ , hence A[G] = AA(G)∗ , and we have a natural perfect Hopf pairing
AA(G)× A[G] −→ A . Our first result is one of triviality:

Theorem E. AR(G)∨ = R · 1 ⊕ R
[
~−1

]
J =

(
AR(G)∨

)′
, Ak(G)∨ = k · 1 , Âk(G) =

AR(G)∨
∣∣∣
~=0

= k · 1 = U(0) and
(
AR(G)∨

)′∣∣∣
~=0

= k · 1 = F
[{∗}] .

Proof. By construction J := Ker (ε
Ak(G )) has k–basis

{
ϕg

}
g∈G\{1

G
}∪

{
ϕ1G

−1
Ak(G )

}
, and

since ϕg = ϕg
2 for all g and (ϕ1G−1)2 = −(ϕ1G−1) we have J = J∞ , so Ak(G)∨ = k·1

and Âk(G) = k ·1 . Similarly, AR(G)∨ is generated by
{
~−1ϕg

}
g∈G\{1

G
} ∪

{
~−1(ϕ1G

−
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1
AR(G ))

}
; moreover, J = J∞ implies ~−nJ ⊆ AR(G)∨ for all n , whence AR(G)∨ =

R 1 ⊕ R[~−1]J . Then JAR(G)∨ = R
[
~−1

]
J ⊆ ~AR(G)∨ , which implies

(
AR(G)∨

)′
=

AR(G)∨ : in particular,
(
AR(G)∨

)′∣∣∣
~=0

= AR(G)∨
∣∣∣
~=0

= k · 1 , as claimed. ¤

Poisson groups from Ak(G) . Now we look at AR(G)′, Ak(G)′ and Ãk(G) . By con-
struction AR(G) and R[G] are in perfect Hopf pairing, and are free R–modules of fi-

nite rank. In this case, since Proposition 4.4 yields AR(G)′ =
(
R[G]∨

)•
we have in

fact AR(G)′ =
(
R[G]∨

)•
=

(
R[G]∨

)∗
: thus AR(G)′ is the dual Hopf algebra to R[G]∨;

then from Proposition B we can argue an explicit description of AR(G)′, whence also of(
AR(G)′

)∨. By Theorem 5.10(g) and its proof, namely that Ak(G)′ =
(
J ∞
k[G]

)⊥, there
is a perfect filtered Hopf pairing k[G]∨ × Ak(G)′ −→ k and a perfect graded Hopf

pairing k̂[G] × Ãk(G) −→ k : thus Ak(G)′ ∼=
(
k[G]∨

)∗
as filtered Hopf algebras and

Ãk(G) ∼=
(
k̂[G]

)∗
as graded Hopf algebras. If p = 0 then J = J∞, as each g ∈ G has finite

order and gn = 1 implies g ∈ G∞ : then k[G]∨= k ·1 = k̂[G] , so Ak(G)′ = k ·1 = Ãk(G) .

If p > 0 instead, this analysis gives Ãk(G) =
(
k̂[G]

)∗
=

(
u(kG)

)∗ = F [KG] , where KG

is a connected Poisson group of dimension 0, height 1 and tangent Lie bialgebra kG . Thus

Theorem F.
(a) There is a second functorial recipe to attach to each finite abstract group a connected

algebraic Poisson group of dimension zero and height 1 over any field k with Char (k) > 0 ,

namely G 7→ KG := Spec
(
Ãk(G)

)
. This KG is Poisson dual to ΓG of Theorem D in the

sense of §1.1, in that Lie (KG) = kG = coLie (ΓG) .
(b) If p := Char (k) > 0 , then

(
AR(G)′

)∨∣∣∣
~=0

= u
(
k×G

)
= S

(
k×G

)/({
xp

∣∣ x ∈ k×G
})

.

Proof. Claim (a) is the outcome of the discussion above. Part (b) instead requires an
explicit description of

(
AR(G)′

)∨. Since AR(G)′ ∼=
(
R[G]∨

)∗ , from Proposition B we get

AR(G)′ =
(⊕

bi∈B, 0<ei<p
r∈N, b1�···�br

R · ρe1,...,er

b1,...,br

)
where each ρe1,...,er

b1,...,br
is defined by

〈
ρe1,...,er

b1,...,br
, χ ε1

β1
β
−[ε1/2]
1 · · ·χ εs

βs
β
−[εs/2]
s

〉
= δr,s

∏r
i=1 δbi,βiδei,εi

(for all bi, βj ∈ B and 0 < ei, εj < p ). Now, using notation of §1.3, K∞ ⊆ K ′ for any K ∈
HA , whence K ′ = π−1

(
K

′ )
where π : K −³ K

/
K∞ =: K is the canonical projection.

So let K := R[G]∨ , H := AR(G)′ ; Proposition B gives K∞ = R
[
~−1

] · J∞ and provides
at once a description of K ; from this and the previous description of H one sees also that in
the present case K∞ is exactly the right kernel of the natural pairing H×K −→ R , which
is perfect on the left, so that the induced pairing H×K −→ R is perfect. By construction
its specialization at ~ = 0 is the natural pairing F [KG] × u(kG) −→ k , which is perfect
too. Then we can apply Proposition 4.4(c) (with K playing the rôle of K therein) which

yields K
′
=

(
H∨)• =

((
AR(G)′

)∨)•
. By construction, K

′
=

(
R[G]∨

)′/(
R

[
~−1

] · J∞)
,
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and Proposition C describes the latter as K
′
=

(⊕
bi∈B, 0<ei<p
r∈N, b1�···�br

R · ψ e1

b1 · · ·ψ
er

br

)
, where

ψbi
:= ψbi

mod R
[
~−1

] · J∞ for all i ; since K
′
=

((
AR(G)′

)∨)•
and ψg = ~+1χg , this

analysis yields
(
AR(G)′

)∨ =
(⊕

bi∈B, 0<ei<p
r∈N, b1�···�br

R · ~−
P

i eiρe1,...,er

b1,...,br

) ∼=
(
K

′)∗ , whence we

get
(
AR(G)′

)∨∣∣∣
~=0

∼=
(
K

′)∗∣∣∣
~=0

=
(
K ′∣∣

~=0

)∗ =
((

R[G]∨
)′∣∣
~=0

)∗ ∼= F
[
ΓG

]∗ = u
(
k×G

)
=

S
(
k×G

)/({
xp

∣∣ x ∈ k×G
})

as claimed, the latter identity being trivial (as k×G is Abelian). ¤

Remarks: (a) this KG is another invariant for G, but again equivalent to kG .
(b) Theorem F(b) is a positive characteristic analogue for F~[G] = AR(G)′ of the first

half of Theorem 2.2(c).

Examples:

(1) Finite Abelian p –groups. Let p be a prime number and G := Zpe1×Zpe2×· · ·×Zpek

(k, e1, . . . , ek ∈ N ), with e1 ≥ e2 ≥ · · · ≥ ek . Let k be a field with Char (k) = p > 0 ,
and R := k[~] as above, so that k[G]~ = R[G] .

First, kG is Abelian, because G is. Let gi be a generator of Zpei (for all i ), identified
with its image in G . Since G is Abelian we have G[n] = Gpn

(for all n ), and an ordered p-

l.c.s.-net is B :=
⋃

r∈N+
Br with Br :=

{
g pr

1 , g pr

2 , . . . , g pr

jr

}
where jr is uniquely defined

by ejr > r , ejr+1 ≤ r . Then kG has k–basis
{

η
gpsi

i

}
1≤i≤k; 0≤si<ei

, and minimal set

of generators (as a restricted Lie algebra)
{

ηg1 , ηg2 , . . . , ηgk

}
, for the p–operation of

kG is
(
η

gps

i

)[p] = η
gps+1

i

, and the order of nilpotency of each ηgi is exactly pei , i.e. the

order of gi . In addition J∞ = {0} so k[G]∨= k[G] . The outcome is k[G]∨= k[G] and

k̂[G] = u(kG) = U(kG)
/({(

η
gps

i

)p − η
gps+1

i

}0≤s<ei

1≤i≤k

⋃ {(
η

gpei−1

i

)p
}

1≤i≤k

)

whence k̂[G] ∼= k[x1, . . . , xk]
/({

xpei

i

∣∣∣ 1 ≤ i ≤ k
})

, via η
gps

i
7→ x ps

i (for all i, s ).

As for k[G]∨~ , for all r < ei we have d
(
gpr

i

)
= pr and so χ

gpr

i
= ~−pr(

gpr

i −1
)

and

ψ
gpr

i
= ~1−pr(

gpr

i −1
)
; since G[∞] = {1} (or, equivalently, J∞ = {0} ) and everything is

Abelian, from the general theory we conlude that both k[G]∨~ and
(
k[G]∨~

)′
are truncated-

polynomial algebras, in the χ
gpr

i
’s and in the ψ

gpr

i
’s respectively, namely

k[G]∨~ = k[~]
[{

χ
gps

i

}
1≤i≤k ; 0≤s<ei

] ∼= k[~]
[
y1, . . . , yk

]/({
y pei

i

∣∣∣ 1 ≤ i ≤ k
})

(
k[G]∨~

)′
= k[~]

[{
ψ

gps

i

}
1≤i≤k ; 0≤s<ei

] ∼= k[~]
[{

zi,s

}
1≤i≤k ; 0≤s<ei

]/({
zi,s

p
∣∣∣ 1 ≤ i ≤ k

})

via the isomorphisms given by χ
gps

i
7→ y ps

i and ψ
gps

i
7→ zi,s (for all i, s ). When e1 > 1
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this implies
(
k[G]∨~

)′ % k[G]~ , that is a counterexample to Theorem 2.2(b). Setting
ψ

gps

i
:= ψ

gps

i
mod ~

(
k[G]∨~

)′
(for all 1 ≤ i ≤ k , 0 ≤ s < ei ) we have

F
[
ΓG

]
=

(
k[G]∨~

)′∣∣∣
~=0

= k
[{

ψ
gps

i

}0≤s<ei

1≤i≤k

] ∼= k
[{

wi,s

}0≤s<ei

1≤i≤k

]/({
w p

i,s

∣∣∣ 1≤ i≤k
})

(via ψ
gps

i
7→ wi,s ) as a k–algebra. The Poisson bracket trivial, and the wi,s’s are primitive

for s > 1 and ∆(wi,1) = wi,1 ⊗ 1 + 1 ⊗ wi,1 + wi,1 ⊗ wi,1 for all 1 ≤ i ≤ k . If instead
e1 = · · · = ek = 1 , then

(
k[G]∨~

)′
= k[G]~ . This is an analogue of Theorem 2.2(b),

although now Char (k) > 0 , in that in this case k[G]~ is a QFA, with k[G]~
∣∣∣
~=0

= k[G] =

F
[
Ĝ

]
where Ĝ is the group of characters of G . But then F

[
Ĝ

]
= k[G] = k[G]~

∣∣∣
~=0

=
(
k[G]∨~

)′∣∣∣
~=0

= F
[
ΓG

]
(by general analysis) which means that Ĝ can be realized as a finite,

connected, Poisson group-scheme of dimension 0 and height 1 dual to kG , i.e. ΓG = K?
G .

Finally, a direct easy calculation shows that — letting χ∗g := ~ d(g) (ϕg −ϕ1) ∈ Ak(G)′~
and ψ∗g := ~ d(g)−1 (ϕg − ϕ1) ∈

(
Ak(G)′

)∨
~ (for all g ∈ G \ {1} ) — we have also

Ak(G) ′~ = k[~]
[{

χ∗
gps

i

}0≤s<ei

1≤i≤k

] ∼= k[~]
[{

Yi,j

}0≤s<ei

1≤i≤k

]/({
Y p

i,j

}0≤s<ei

1≤i≤k

)

(
Ak(G) ′~

)∨
= k[~]

[{
ψ∗

gps

i

}0≤s<ei

1≤i≤k

] ∼= k[~]
[{

Zi,s

}0≤s<ei

1≤i≤k

]/({
Z p

i,s − Zi,s

}0≤s<ei

1≤i≤k

)

via the isomorphisms given by χ∗
gps

i

7→ Yi,s and ψ∗
gps

i

7→ Zi,s , from which one also gets the

analogous descriptions of Ak(G) ′~
∣∣∣
~=0

= Ãk(G) = F [KG] and of
(
Ak(G) ′~

)∨∣∣∣
~=0

= u(k×G) .

(2) A non-Abelian p –group. Let p be a prime number, k be a field with Char (k) =
p > 0 , and R := k[~] as above, so that k[G]~ = R[G] .

Let G := Zp n Zp 2 , that is the group with generators ν, τ and relations νp = 1 ,
τp2

= 1 , ν τ ν−1 = τ1+p . In this case, G[2] = · · · = G[p ] =
{
1, τp

}
, G[p+1] = {1} , so

we can take B1 = {ν , τ } and Bp =
{
τp

}
to form an ordered p-l.c.s.-net B := B1 ∪ Bp

w.r.t. the ordering ν ¹ τ ¹ τp . Noting also that J∞ = {0} (for G[∞] = {1} ), we have

k[G]~
∨ =

⊕p−1
a,b,c=0 k[~] · χ a

ν χ b
τ χ c

τp =
⊕p−1

a,b,c=0 k[~] ~−a−b−c p · (ν − 1)a (τ − 1)b (
τp − 1

)c

as k[~]–modules, since d(ν) = 1 = d(τ) and d
(
τp

)
) = p , with ∆(χg) = χg ⊗ 1 + 1⊗χg +

~d(g) χg ⊗ χg for all g ∈ B . As a direct consequence we have also
⊕p−1

a,b,c=0 k · χν
a χτ

b χτp
c = k[G]~

∨
∣∣∣
~=0

∼= k̂[G] =
⊕p−1

a,b,c=0 k · ην
a ητ

b ητp
c .

The two relations νp = 1 and τp2
= 1 within G yield trivial relations inside k[G] and

k[G]~ ; instead, the relation ν τ ν−1 = τ1+p turns into [ην , ητ ] = ητp · τ ν , which gives
[χν , χτ ] = ~p−2 χτp ·τ ν in k[G]~

∨. Therefore [ χν , χτ ] = δp,2 χτp . Since [ χτ , χτp ] = 0 =
[ χν , χτp ] (because ν τp ν−1 =

(
τ1+p

)p = τp+p2
= τp ) and {χν , χτ , χτp } is a k–basis

of kG = Lp(G) , we conclude that the latter has trivial or non-trivial Lie bracket according
to whether p 6= 2 or p = 2 . In addition, we have the relations χ p

ν = 0 , χ p
τp = 0 and

χ p
τ = χτp : these give analogous relations in k[G]~

∨
∣∣∣
~=0

, which read as formulas for the
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p–operation of kG, namely χν
[p ] = 0 , χτp

[p ] = 0 , χτ
[p ] = χτp .

To sum up, we have a complete presentation for k[G]~
∨ by generators and relations, i.e.

k[G]~
∨ ∼= k[~]

〈
v1, v2, v3

〉/(
v1 v2 − v2 v1 − ~p−2 v3 (1 + ~ vτ ) (1 + ~ vν)

v1 v3 − v3 v1 , v p
1 , v p

2 − v3 , v p
3 , v2 v3 − v3 v2

)

via χν 7→ v1 , χτ 7→ v2 , χτp 7→ v3 . Similarly (as a consequence) we have the presentation

k̂[G] = k[G]~
∨
∣∣∣
~=0

∼= k
〈
y1, y2, y3

〉/(
y1 y2 − y2 y1 − δp,2 y3 , y p

2 − y3

y1 y3 − y3 y1 , y p
1 , y p

3 , y2 y3 − y3 y2

)

via χν 7→ y1 , χτ 7→ y2 , χτp 7→ y3 , with p–operation as above and the yi’s being primitive
Remark: if p 6= 2 exactly the same result holds for G = Zp×Zp2 , i.e. kZpnZp2 = kZp×Zp2 :
this shows that the restricted Lie bialgebra kG may be not enough to recover the group G .

As for
(
k[G]~

∨)′
, it is generated by ψν = ν− 1, ψτ = τ − 1, ψτp = ~1−p

(
τp− 1

)
, with

relations ψ p
ν = 0 , ψ p

τ = ~p−1ψτp , ψ p
τp = 0 , ψν ψτ −ψτ ψν = ~ p−1ψτp (1+ψτ ) (1+ψν) ,

ψτ ψτp − ψτp ψτ = 0 , and ψν ψτp − ψτp ψν = 0 . In particular
(
k[G]~

∨)′ % k[G]~ , and
(
k[G]~

∨)′ ∼= k[~]
〈
u1, u2, u3

〉/(
u1 u3 − u3 u1 , u p

2 − ~p−1u3 , u2 u3 − u3 u2

u p
1 , u1 u2 − u2 u1 − ~ p−1u3 (1 + u2) (1 + u1) , u p

3

)

via ψν 7→ u1 , ψτ 7→ u2 , ψτp 7→ u3 . Letting z1 := ψν

∣∣
~=0

+ 1 , z2 := ψτ

∣∣
~=0

+ 1 and

x3 := ψτp

∣∣
~=0

this gives
(
k[G]~

∨)′∣∣∣
~=0

= k
[
z1, z2, x3

]/(
z p
1 −1, z p

2 −1, x p
3

)
as a k–algebra,

with the zi’s group-like, x3 primitive (cf. Theorem D(b)), and Poisson bracket given by{
z1, z2

}
= δp,2 z1 z2 x3 ,

{
z2, x3

}
= 0 and

{
z1, x3

}
= 0 . Thus

(
k[G]~

∨)′∣∣∣
~=0

= F [ΓG] with

ΓG
∼= µp×µp×αp as algebraic groups, with Poisson structure such that coLie (ΓG) ∼= kG .

Since G∞ = {1} the general theory ensures that Ak(G)′ = Ak(G) . We leave to the in-
terested reader the task of computing the filtration D of Ak(G), and consequently describe

AR(G)′ ,
(
AR(G)′

)∨ , Ãk(G) and the connected Poisson group KG := Spec
(
Ãk(G)

)
.

(3) An Abelian infinite group. Let G = Zn (written multiplicatively, with generators
e1, . . . , en ), then k[G] = k[Zn] = k

[
e±1
1 , . . . , e±1

n

]
(the ring of Laurent polynomials). This

is the function algebra of the algebraic group Gm
n, i.e. the n–dimensional torus on k (which

is exactly the character group of Zn), thus we get back to the function algebra case.

§ 6 First example: the Kostant-Kirillov structure

6.1 Classical and quantum setting. We study now another quantization of the
Kostant-Kirillov structure. Let g and g? be as in §5.7, consider g as a Lie bialgebra with
trivial Lie cobracket and look at g? as its dual Poisson group, hence its Poisson structure
is exactly the Kostant-Kirillov one.

Take as ground ring R := k[ν] (a PID): we shall consider the primes ~ = ν and
~ = ν − 1 , and we’ll find quantum groups at either of them for both g and g?.
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To begin with, we assume Char (k) = 0 , and postpone to §6.4 the case Char (k) > 0 .
Let gν := g[ν] = k[ν] ⊗k g , endow it with the unique k[ν]–linear Lie bracket [ , ]ν

given by [x, y]ν := ν [x, y] for all x, y ∈ g , and define

H := Uk[ν](gν) = Tk[ν](gν)
/({

x · y − y · x− ν [x, y]
∣∣ x, y ∈ g

})
,

the universal enveloping algebra of the Lie k[ν]–algebra gν , endowed with its natural
structure of Hopf algebra. Then H is a free k[ν]–algebra, so that H ∈ HA and HF :=
k(ν)⊗k[ν] H ∈ HAF (see §1.3); its specializations at ν = 1 and at ν = 0 are

H
/

(ν−1) H = U(g) as a co-Poisson Hopf algebra ,

H
/

ν H = S(g) = F [g?] as a Poisson Hopf algebra ;

in a more suggesting way, we can also express this with notation like H
ν→1−−−→U(g) ,

H
ν→0−−−→F [g?] . Therefore, H is a QrUEA at ~ := (ν−1) and a QFA at ~ := ν ; thus now

we go and consider Drinfeld’s functors for H at (ν−1) and at (ν).

6.2 Drinfeld’s functors at (ν). Let ( )∨(ν) : HA −→ HA and ( )′(ν) : HA −→ HA
be the Drinfeld’s functors at (ν)

( ∈ Spec
(
k[ν]

) )
. By definitions J := Ker

(
ε : H −→ k[ν]

)

is nothing but the 2-sided ideal of H := U(gν) generated by gν itself; thus H∨(ν) , which
by definition is the unital k[ν]–subalgebra of HF generated by J∨(ν) := ν−1J , is just
the unital k[ν]–subalgebra of HF generated by gν

∨(ν) := ν−1 gν . Now consider the k[ν]–
module isomorphism ( )∨(ν) : gν

∼=−→ gν
∨(ν) := ν−1 gν given by z 7→ z∨ := ν−1z ∈ gν

∨(ν)

for all z ∈ gν ; consider on gν := k[ν]⊗k g the natural Lie algebra structure (with trivial
Lie cobracket), given by scalar extension from g , and push it over gν

∨(ν) via ( )∨(ν) , so that
gν
∨(ν) is isomorphic to gnat

ν (i.e. gν carrying the natural Lie bialgebra structure) as a Lie
bialgebra. Consider x∨, y∨ ∈ gν

∨(ν) (with x, y ∈ gν ): then H∨(ν) 3 (
x∨ y∨ − y∨ x∨

)
=

ν−2
(
x y − y x

)
= ν−2 [x, y]ν = ν−2 ν [x, y] = ν−1 [x, y] = [x, y]∨ =:

[
x∨, y∨

] ∈ gν
∨(ν) .

Therefore we can conclude at once that H∨(ν) = U
(
gν
∨(ν)

) ∼= U
(
gnat

ν

)
.

As a first consequence,
(
H∨(ν)

)∣∣∣
ν=0

∼= U
(
gnat

ν

)/
ν U

(
gnat

ν

)
= U

(
gnat

ν

/
ν gnat

ν

)
= U(g) ,

that is H∨(ν)
ν→0−−−→U(g) , thus agreeing with the second half of Theorem 2.2(c).

Second, look at
(
H∨(ν)

)′(ν) . Since H∨(ν) = U
(
gν
∨(ν)

)
, and δn(η) = 0 for all η ∈

U
(
gν
∨(ν)

)
such that ∂(η) < n (cf. the proof of Lemma 4.2(d)), it is easy to see that

(
H∨(ν)

)′(ν) =
〈
ν gν

∨(ν)
〉

=
〈
ν ν−1gν

〉
= U(gν) = H

(hereafter 〈S 〉 is the subalgebra generated by S ), so
(
H∨(ν)

)′(ν) = H , which agrees with
Theorem 2.2(b). Finally, proceeding as in §5.7 we see that H ′(ν) = U(ν gν) , whence(
H ′(ν)

)∣∣∣
ν=0

=
(
U(ν gν)

)∣∣∣
ν=0

∼= S(gab) = F
[
g?

δ−ab

]
where gab , resp. g?

δ−ab , is simply g,
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resp. g?, endowed with the trivial Lie bracket, resp. cobracket, so that
(
H ′(ν)

)∣∣∣
ν=0

∼=
S(gab) = F

[
g?

δ−ab

]
has trivial Poisson bracket. Similarly, we can iterate this procedure

and find that all further images
(
· · · ((H)′(ν)

)′(ν) · · ·
)′(ν)

of the functor ( )′(ν) applied
many times to H are all isomorphic, hence they all have the same specialization at (ν),
namely ((

· · · ((H)′(ν)
)′(ν) · · ·

)′(ν)
)∣∣∣∣

ν=0

∼= S(gab) = F
[
g?

δ−ab

]
.

6.3 Drinfeld’s functors at (ν−1). Now consider (ν−1)
( ∈ Spec

(
k[ν]

) )
, and let

( )∨(ν−1) : HA −→ HA and ( )′(ν−1) : HA −→ HA be the corresponding Drinfeld’s func-
tors. Set gν

′(ν−1) := (ν−1) gν , let : gν

∼=−→ gν
′(ν−1) := (ν−1) gν be the k[ν]–module

isomorphism given by z 7→ z′ := (ν−1) z ∈ gν
′(ν−1) for all z ∈ gν , and push over via it the

Lie bialgebra structure of gν to an isomorphic Lie bialgebra structure on gν
′(ν−1) , whose

Lie bracket will be denoted by [ , ]∗ . Notice then that we have Lie bialgebra isomorphisms
g ∼= gν

/
(ν−1) gν

∼= gν
′(ν−1)

/
(ν−1) gν

′(ν−1) .
Since H := U(gν) it is easy to see by direct computation that

H ′(ν−1) =
〈
(ν−1) gν

〉
= U

(
gν
′(ν−1)

)
, (6.1)

where gν
′(ν−1) is considered as a Lie k[ν]–subalgebra of gν . Now, if x′, y′ ∈ gν

′(ν−1) (with
x, y ∈ gν ), we have

x′ y′ − y′ x′ = (ν−1)2
(
x y− y x

)
= (ν−1)2 [x, y]ν = (ν−1) [x, y]ν

′ = (ν−1)
[
x′, y′

]
∗ . (6.2)

This and (6.1) show at once that
(
H ′(ν−1)

)∣∣∣
(ν−1)=0

= S
(
gν
′(ν−1)

/
(ν−1) gν

′(ν−1)

)
as Hopf

algebras, and also as Poisson algebras: indeed, the latter holds because the Poisson bracket
{ , } of S

(
gν
′(ν−1)

/
(ν−1) gν

′(ν−1)

)
inherited from H ′(ν−1) (by specialization) is uniquely

determined by its restriction to gν
′(ν−1)

/
(ν−1) gν

′(ν−1) , and on the latter space we have
{ , } = [ , ]∗ mod (ν−1) gν

′(ν−1) (by (6.2)). Finally, since gν
′(ν−1)

/
(ν−1) gν

′(ν−1) ∼= g

as Lie algebras we have
(
H ′(ν−1)

)∣∣∣
(ν−1)=0

= S(g) = F [g?] as Poisson Hopf algebras, or, in

short, H ′(ν−1)
ν→1−−−→F [g?] , as prescribed by the “first half” of Theorem 2.2(c).

Second, look at
(
H ′(ν−1)

)∨(ν−1) . Since H ′(ν−1) = U
(
gν
′(ν−1)

)
, we have that J ′(ν−1) :=

Ker
(
ε : H ′(ν−1) −→ k[ν]

)
is nothing but the 2-sided ideal of H ′(ν−1) = U

(
gν
′(ν−1)

)
generated

by gν
′(ν−1) ; thus

(
H ′(ν−1)

)∨(ν−1) , generated by
(
J ′(ν−1)

)∨(ν−1) := (ν−1)−1
J ′(ν−1) as a unital

k[ν]–subalgebra of
(
H ′(ν−1)

)
F

= HF , is just the unital k[ν]–subalgebra of HF generated
by (ν−1)−1

gν
′(ν−1) = (ν−1)−1(ν−1) gν = gν , that is to say

(
H ′(ν−1)

)∨(ν−1) = U(gν) = H ,
according to Theorem 2.2(b).

Finally, for H∨(ν−1) one has essentially the same feature as in §5.7, and the analysis
therein can be applied again; the final result then will depend on the nature of g, in
particular on its lower central series.
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6.4 The case of positive characteristic. Let us consider now a field k such that
Char (k) = p > 0 . Starting from g and R := k[ν] as in §6.1, define gν like therein, and
consider H := Uk[ν](gν) = UR(gν) . Then we have again

H
/

(ν−1)H = U(g) = u
(
g[p ]∞

)
as a co-Poisson Hopf algebra ,

H
/

ν H = S(g) = F [g?] as a Poisson Hopf algebra

so that H is a QrUEA at ~ := (ν−1) (for the restricted universal enveloping algebra
u
(
g[p ]∞

)
) and is a QFA at ~ := ν (for the function algebra F [g?] ); so now we study

Drinfeld’s functors for H at (ν−1) and at (ν).
Exactly the same procedure as before shows again that H∨(ν) = U

(
gν
∨(ν)

)
, from which

it follows that
(
H∨(ν)

)∣∣∣
ν=0

∼= U(g) , i.e. in short H∨(ν)
ν→0−−−→U(g) , which is a result quite

“parallel” to the second half of Theorem 2.2(c).
Changes occur when looking at

(
H∨(ν)

)′(ν) : since H∨(ν) = U
(
gν
∨(ν)

)
= u

((
gν
∨(ν)

)[p ]∞
)

we have δn(η) = 0 for all η ∈ u
((

gν
∨(ν)

)[p ]∞
)

such that ∂(η) < n w.r.t. the standard

filtration of u
((

gν
∨(ν)

)[p ]∞
)

(cf. the proof of Lemma 4.2(d), which clearly adapts to the
present situation): this implies

(
H∨(ν)

)′(ν) =
〈
ν · (gν

∨(ν)
)[p ]∞

〉 (
⊂ u

(
ν · (gν

∨(ν)
)[p ]∞

) )

which is strictly bigger than H, because
〈
ν · (gν

∨(ν)
)[p ]∞

〉
=

〈 ∑
n≥0

ν · (gν
∨(ν)

)[p ]n
〉

=

=
〈
gν + ν1−p

{
xp

∣∣ x ∈ gν

}
+ ν1−p2

{
xp2

∣∣∣ x ∈ gν

}
+ · · ·

〉
% U(gν) = H .

Finally, proceeding as above it is easy to see that H ′(ν) =
〈
ν P

(
U(gν)

)〉
=

〈
ν g[p ]∞

〉

whence, letting g̃ := ν g and x̃ := ν x for all x ∈ g , we have

H ′(ν) = TR(g̃)
/({

x̃ ỹ − ỹ x̃− ν2 [̃x, y] , z̃p − νp−1z̃[p ]
∣∣∣ x, y, z ∈ g

})

so that H ′(ν)
ν→0−−−−→ Tk(g̃)

/({
x̃ ỹ− ỹ x̃ , z̃p

∣∣∣ x̃, ỹ, z̃ ∈ g̃
})

= Sk(gab)
/({

zp
∣∣ z ∈ g

})
=

= F [g?
δ−ab]

/({
zp

∣∣ z ∈ g
})

, that is H ′(ν)

∣∣∣
ν=0

∼= F [g?
δ−ab]

/({
zp

∣∣ z ∈ g
})

as Poisson

Hopf algebras, where gab and g?
δ−ab are as above. Therefore H ′(ν) is a QFA (at ~ = ν ) for

a non-reduced algebraic Poisson group of height 1, whose cotangent Lie bialgebra is the
vector space g with trivial Lie bialgebra structure: this again yields somehow an analogue
of part (c) of Theorem 2.2 for the present case. If we iterate, we find that all further images(
· · · ((H)′(ν)

)′(ν) · · ·
)′(ν)

of the functor ( )′(ν) applied to H are all pairwise isomorphic, so

(
· · · ((H)′(ν)

)′(ν) · · ·
)′(ν)

∣∣∣∣
ν=0

∼= S(gab)
/({

zp
∣∣ z ∈ g

})
= F

[
g?

δ−ab

]/({
zp

∣∣ z ∈ g
})

.
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Now for Drinfeld’s functors at (ν−1). Up to minor changes, with the same procedure
and notations as in §6.3 we get analogous results. First, an analogue of (6.1), namely

H ′(ν−1) =
〈
(ν−1) · P (

U(gν)
)〉

=
〈
(ν−1) (gν)[p ]∞

〉
=

〈(
(gν)[p ]∞

)′(ν−1)
〉

, holds and yields

H ′(ν−1) = TR

((
(gν)[p ]∞

)′(ν−1)
) /({

x′ y′−y′ x′−(ν−1)
[
x′, y′]∗ , (x′)p−(ν−1)p−1(

x[p ]
)′ ∣∣∣

∣∣∣ x, y ∈ (gν)[p ]∞
})

and consequently H ′(ν−1)

∣∣∣
(ν−1)=0

∼= Sk(g)
/({

xp
∣∣ x ∈ g

})
= F [g?]

/({
xp

∣∣ x ∈ g
})

as

Poisson Hopf algebras: in short, H ′(ν−1)
ν→1−−−→F [g?]

/({
xp

∣∣ x ∈ g
})

.

Iterating, one finds again that all
(
· · · ((H)′(ν)

)′(ν−1) · · ·
)′(ν)

are pairwise isomorphic, so

(
· · · ((H)′(ν−1)

)′((ν−1) · · ·
)′(ν−1)

∣∣∣∣
(ν−1)=0

∼= S(gab)
/({

zp
∣∣ z∈g

})
= F

[
g?

δ−ab

]/({
zp

∣∣ z∈g
})

.

Further on, one has
(
H ′(ν−1)

)∨(ν−1) =
〈
(ν−1) (gν)[p ]∞

〉∨(ν−1)

=
〈
(ν−1)−1 · (ν−1) gν

〉
=

=
〈
gν

〉
= UR(gν) =: H , which perfectly agrees with Theorem 2.2(b).

Finally, as for H∨(ν−1) one has again the same feature as in §5.7: one has to apply the
analysis therein, however, the p–filtration in this case is “harmless”, since it is essentially
encoded in the standard filtration of U(g). In any case the final result will depend on the
properties of the lower central series of g.

Second, we assume in addition that g be a restricted Lie algebra, and we consider
H := uk[ν](gν) = uR(gν) . Then we have

H
/

(ν−1)H = u(g) as a co-Poisson Hopf algebra ,

H
/

ν H = S(g)
/({

zp
∣∣ z ∈ g

})
= F [g?]

/({
zp

∣∣ z ∈ g
})

as a Poisson Hopf algebra

which means that H is a QrUEA at ~ := (ν−1) (for u(g) ) and is a QFA at ~ := ν (for
F [g?]

/({
zp

∣∣ z ∈ g
})

); we go and study Drinfeld’s functors for H at (ν−1) and at (ν).
As for H∨(ν) , it depends again on the p–operation of g, in short because the I–filtration

of uν(g) depends on the p–filtration of g. In the previous case — i.e. when g = h[p ]∞ for
some Lie algebra h — the solution was a plain one, because the p–filtration of g is “encoded”
in the standard filtration of U(h); but the general case will be more complicated, and in
consequence also the situation for

(
H∨(ν)

)′(ν) , since H∨(ν) will be different according to the

nature of g. Instead, proceeding exactly like before one sees that H ′(ν) =
〈
ν P

(
u(gν)

)〉
=〈

ν g
〉
, whence, letting g̃ := ν g and x̃ := ν x for all x ∈ g , we have

H ′(ν) = Tk[ν](g̃)
/({

x̃ ỹ − ỹ x̃− ν2 [̃x, y] , z̃p − νp−1z̃[p ]
∣∣∣ x, y, z ∈ g

})



60 FABIO GAVARINI

so that H ′(ν)
ν→0−−−−→ Tk(g̃)

/({
x̃ ỹ− ỹ x̃ , z̃p

∣∣∣ x̃, ỹ, z̃ ∈ g̃
})

= Sk(gab)
/({

zp
∣∣ z ∈ g

})
=

= F [g?
δ−ab]

/({
zp

∣∣ z ∈ g
})

, that is H ′(ν)

∣∣∣
ν=0

∼= F [g?
δ−ab]

/({
zp

∣∣ z ∈ g
})

as Poisson

Hopf algebras (using notation as before). Thus H ′(ν) is a QFA (at ~ = ν ) for a non-reduced
algebraic Poisson group of height 1, whose cotangent Lie bialgebra is g with the trivial Lie
bialgebra structure: so again we get an analogue of part of Theorem 2.2(c). Moreover,

iterating again one finds that all
(
· · · ((H)′(ν)

)′(ν−1) · · ·
)′(ν−1)

are pairwise isomorphic, so

(
· · · ((H)′(ν−1)

)′((ν−1) · · ·
)′(ν−1)

∣∣∣∣
(ν−1)=0

∼= S(gab)
/({

zp
∣∣ z∈g

})
= F

[
g?

δ−ab

]/({
zp

∣∣ z∈g
})

.

As for Drinfeld’s functors at (ν−1), the situation is more similar to the previous case
of H = UR(gν) . First H ′(ν−1) =

〈
(ν−1) · P (

u(gν)
)〉

=
〈
(ν−1) gν

〉
=:

〈
gν
′(ν−1)

〉
, hence

H ′(ν−1) = TR

(
gν
′(ν−1)

)/({
x′ y′ − y′ x′ − (ν − 1)

[
x′, y′]∗ , (x′)p − (ν−1)p−1(

x[p ]
)′ ∣∣∣

∣∣∣ x, y ∈ gν

})

thus again H ′(ν−1)

∣∣∣
(ν−1)=0

∼= Sk(g)
/({

xp
∣∣ x ∈ g

})
= F [g?]

/({
xp

∣∣ x ∈ g
})

as Poisson

Hopf algebras, that is H ′(ν−1)
ν→1−−−→F [g?]

/({
xp

∣∣ x ∈ g
})

. Iteration then shows that all
(
· · · ((H)′(ν)

)′(ν−1) · · ·
)′(ν)

are pairwise isomorphic, so that again

(
· · · ((H)′(ν−1)

)′((ν−1) · · ·
)′(ν−1)

∣∣∣∣
(ν−1)=0

∼= S(gab)
/({

zp
∣∣ z∈g

})
= F

[
g?

δ−ab

]/({
zp

∣∣ z∈g
})

.

Further, we have
(
H ′(ν−1)

)∨(ν−1) =
〈
(ν−1) gν

〉∨(ν−1) =
〈
(ν−1)−1 · (ν−1) gν

〉
=

〈
gν

〉
=

= uR(gν) =: H , which agrees at all with Theorem 2.2(b). Finally, H∨(ν−1) again has the
same feature as in §5.7: in particular, in this case the final result will strongly depend both

on the properties of the lower central series and of the p–filtration of g .

6.5 The hyperalgebra case. Let k be again a field with Char (k) = p > 0 . Like in
§5.12, let G be an algebraic group (finite-dimensional, for simplicity), and let Hyp (G) :=(
F [G]◦

)
ε
=

{
φ ∈ F [G]◦

∣∣ φ(me
n) = 0 , ∀ n À 0

}
be the hyperalgebra associated to G .

For each ν ∈ k , let gν :=
(
g, [ , ]ν

)
be the Lie algebra given by g endowed with the

rescaled Lie bracket [ , ]ν := ν [ , ]g . By general theory, the algebraic group G is uniquely
determined by a neighborhood of the identity together with the formal group law uniquely
determined by [ , ]g : similarly, a neighborhood of the identity of G together with [ , ]ν
uniquely determines a new connected algebraic group Gν , whose hyperalgebra Hyp (Gν)
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is an algebraic deformation of Hyp (G); moreover, Gν is birationally equivalent to G, and
for ν 6= 0 they are also isomorphic as algebraic groups, via an isomorphism induced by
g ∼= gν , x 7→ ν−1x (however, this may not be the case when ν = 0 ). Note that Hyp (G0)
is clearly commutative, because G0 is Abelian: indeed, we have

Hyp (G0) = Sk
(
g(p)∞

)/({
xp

}
x∈g(p)∞

)
= F

[(
g(p)∞

)?]/({
yp

}
y∈g(p)∞

)

where g(p)∞ := Span
({

x(pn)
∣∣∣ x ∈ g , n ∈ N

})
; here as usual x(n) denotes the n–th

divided power of x ∈ g (recall that Hyp (G), hence also Hyp (Gν), is generated as an
algebra by all the x(n)’s, some of which might be zero). So Hyp (G0) = F [Γ ] where Γ is a
connected algebraic group of dimension zero and height 1: moreover, Γ is a Poisson group,
with cotangent Lie bialgebra g(p)∞ and Poisson bracket induced by the Lie bracket of g .

Now think at ν as a parameter in R := k[ν] (as in §6.1), and set H := k[ν]⊗kHyp (Gν) .
Then we find a situation much similar to that of §6.1, which we shall shortly describe.

Namely, H is a free k[ν]–algebra, thus H ∈ HA and HF := k(ν)⊗k[ν] H ∈ HAF (see

§1.3); its specialization at ν = 1 is H
/

(ν−1)H = Hyp (G1) = Hyp (G) , and at ν = 0

is H
/

ν H = Hyp (G0) = F [Γ ] (as a Poisson Hopf algebra), or H
ν→1−−−→Hyp (G) and

H
ν→0−−−→F [Γ ] , i.e. H is a “quantum hyperalgebra” at ~ := (ν− 1) and a QFA at ~ := ν .

Now we study Drinfeld’s functors for H at ~ = (ν−1) and at ~ = ν .
First, a straightforward analysis like in §6.2 yields H∨(ν) ∼= k[ν] ⊗k Hyp (G) (in-

duced by g ∼= gν , x 7→ ν−1x ) whence in particular
(
H∨(ν)

)∣∣∣
ν=0

∼= Hyp (G) , that is

H∨(ν)
ν→0−−−→Hyp (G) . Second, one can also see (essentially, mutatis mutandis, like in

§6.2) that
(
H∨(ν)

)′(ν) = H , whence
(
H∨(ν)

)′(ν)
∣∣∣
ν=0

= H
∣∣∣
ν=0

= Hyp (G0) = F [Γ ] .

At ~ = (ν−1) , we can see by direct computation that H ′(ν−1) =
〈(

g(p)∞
)′(ν−1)

〉
where

(
g(p)∞

)′(ν−1) := Span
({

(ν − 1)pn

x(pn)
∣∣∣ x ∈ g , n ∈ N

})
. Indeed the structure of H ′(ν−1)

depends only on the coproduct of H, in which ν plays no role; therefore we can do the
same analysis as in the trivial deformation case (see §5.12): the filtration D of Hyp (Gν)
is just the natural filtration given by the order (of divided powers), and this yields the
previous description of H ′(ν−1) . When specializing at ν = 1 we find

H ′(ν−1)

/
(ν − 1)H ′(ν−1) ∼= Sk

(
g(p)∞

)/({
xp

}
x∈g(p)∞

)
= Hyp (G0) = F [Γ ]

as Poisson Hopf algebras: in a nutshell, H ′(ν−1) is a QFA, at ~ = ν−1 , for the Poisson group
Γ . Similarly H ′(ν) =

〈(
g(p)∞

)′(ν)
〉

with
(
g(p)∞

)′(ν) := Span
({

νpn

x(pn)
∣∣∣ x ∈g , n ∈ N

})
;

thus on the upshot we have

H ′(ν)

/
ν H ′(ν) ∼= Sk

(
g
(p)∞

ab

)/({
xp

}
x∈g(p)∞

)
= F

[
Γab

]
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where gab is simply g with trivialized Lie bracket and Γab is the same algebraic group

as Γ but with trivial Poisson bracket: this comes essentially like in §6.2, roughly because{
ν x , ν y

}
:=

(
ν−1[ν x , ν y ]

)∣∣∣
ν=0

=
(
ν−1 ·ν3[x, y]g

)∣∣∣
ν=0

=
(
ν ·ν [x, y]g

)∣∣∣
ν=0

= 0 (x, y ∈ g).

Finally, we have
(
H ′(ν−1)

)∨(ν−1) =
〈{

(ν − 1)pn−1 x(pn)
∣∣∣ x ∈ g , n ∈ N

}〉
& H and

(
H ′(ν)

)∨(ν) =
〈{

νpn−1 x(pn)
∣∣∣ x ∈ g , n ∈ N

}〉
& H , by direct computation. For H∨(ν−1)

we have the same features as in §5.7: the analysis therein can be repeated, the upshot de-
pending on the nature of G (or of g, essentially, in particular on its p–lower central series).

§ 7 Second example: quantum SL2, SLn, finite and affine Kac-Moody groups

7.1 The classical setting. Let k be any field of characteristic p ≥ 0 . Let G :=
SL2(k) ≡ SL2 ; its tangent Lie algebra g = sl2 is generated by f , h, e (the Chevalley
generators) with relations [h, e] = 2 e, [h, f ] = −2f , [e, f ] = h . The formulas δ(f) =
h ⊗ f − f ⊗ h , δ(h) = 0 , δ(e) = h ⊗ e − e ⊗ h , define a Lie cobracket on g which gives
it a structure of Lie bialgebra, corresponding to a structure of Poisson group on G. These
formulas give also a presentation of the co-Poisson Hopf algebra U(g) (with the standard
Hopf structure). If p > 0 , the p–operation in sl2 is given by e[p ] = 0 , f [p ] = 0 , h[p ] = h .

On the other hand, F [SL2] is the unital associative commutative k–algebra with gen-
erators a, b, c, d and the relation ad− bc = 1 , and Poisson Hopf structure given by

∆(a) = a⊗ a + b⊗ c , ∆(b) = a⊗ b + b⊗ d , ∆(c) = c⊗ a + d⊗ c , ∆(d) = c⊗ b + d⊗ d

ε(a) = 1 , ε(b) = 0 , ε(c) = 0 , ε(d) = 1 , S(a) = d , S(b) = −b , S(c) = −c , S(d) = a

{a, b} = b a , {a, c} = c a , {b, c} = 0 , {d, b} = −b d , {d, c} = −c d , {a, d} = 2 b c .

The dual Lie bialgebra g∗ = sl2
∗ is the Lie algebra with generators f, h, e , and relations

[h, e] = e, [h, f ] = f, [e, f ] = 0 , with Lie cobracket given by δ(f ) = 2(f ⊗ h − h ⊗ f ),
δ(h) = e ⊗ f − f ⊗ e, δ(e) = 2(h ⊗ e − e ⊗ h) (we choose as generators f := f∗ , h := h∗ ,
e := e∗ , where

{
f∗, h∗, e∗

}
is the basis of sl2

∗ which is the dual of the basis {f, h, e} of
sl2 ). This again yields also a presentation of U (sl2∗) . If p > 0 , the p–operation in sl2

∗

is given by e[p ] = 0 , f [p ] = 0 , h[p ] = h . The simply connected algebraic Poisson group
whose tangent Lie bialgebra is sl2

∗ can be realized as the group of pairs of matrices (the
left subscript s meaning “simply connected”)

sSL2
∗ =

{((
z−1 0
y z

)
,

(
z x
0 z−1

)) ∣∣∣∣∣ x, y ∈ k, z ∈ k \ {0}
}
≤ SL2 × SL2 .

This group has centre Z :=
{
(I, I), (−I,−I)

}
, so there is only one other (Poisson) group

sharing the same Lie (bi)algebra, namely the quotient aSL2
∗ := sSL2

∗
/

Z (the adjoint
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of sSL2
∗ , as the left subscript a means). Therefore F

[
sSL2

∗] is the unital associative
commutative k–algebra with generators x, z±1, y, with Poisson Hopf structure given by

∆(x) = x⊗ z−1 + z ⊗ x , ∆
(
z±1

)
= z±1 ⊗ z±1 , ∆(y) = y ⊗ z−1 + z ⊗ y

ε(x) = 0 , ε
(
z±1

)
= 1 , ε(y) = 0 , S(x) = −x , S

(
z±1

)
= z∓1 , S(y) = −y

{x, y} =
(
z2 − z−2

)/
2 ,

{
z±1, x

}
= ±x z±1 ,

{
z±1, y

}
= ∓ z±1y

(N.B.: with respect to this presentation, we have f = ∂y

∣∣
e
, h = z ∂z

∣∣
e
, e = ∂x

∣∣
e
, where e

is the identity element of sSL2
∗ ). Moreover, F

[
aSL2

∗] can be identified with the Poisson
Hopf subalgebra of F

[
sSL2

∗] spanned by products of an even number of generators — i.e.
monomials of even degree: this is generated, as a unital subalgebra, by xz, z±2, and z−1y.

In general, we shall consider g = gτ a semisimple Lie algebra, endowed with the Lie
cobracket — depending on the parameter τ — given in [Ga1], §1.3; in the following we
shall also retain from [loc. cit.] all the notation we need: in particular, we denote by Q,
resp. P , the root lattice, resp. the weight lattice, of g , and by r the rank of g .

7.2 The5 QrUEAs Uq(g) . We turn now to quantum groups, starting with the sl2 case.
Let R be any domain, ~ ∈ R \ {0} an element such that R

/
~R = k ; moreover, letting

q := ~+1 we assume that q be invertible in R, i.e. there exists q−1 = (~+ 1)−1 ∈ R . E.g.,
one can pick R := k

[
q, q−1

]
for an indeterminate q and ~ := q − 1 , then F (R) = k(q) .

Let Uq(g) = Uq(sl2) be the associative unital F (R)–algebra with (Chevalley-like) gen-
erators F , K±1, E, and relations

KK−1 = 1 = K−1K , K±1F = q∓2FK±1 , K±1E = q±2EK±1 , EF−FE =
K −K−1

q − q−1
.

This is a Hopf algebra, with Hopf structure given by

∆(F ) = F ⊗K−1 + 1⊗ F , ∆
(
K±1

)
= K±1 ⊗K±1 , ∆(E) = E ⊗ 1 + K ⊗ E

ε(F ) = 0 , ε
(
K±1

)
= 1 , ε(E) = 0 , S(F ) = −FK, S

(
K±1

)
= K∓1, S(E) = −K−1E .

Then let Uq(g) be the R–subalgebra of Uq(g) generated by F , H :=
K − 1
q − 1

,

Γ :=
K −K−1

q − q−1
, K±1, E. From the definition of Uq(g) one gets a presentation of Uq(g)

as the associative unital algebra with generators F , H, Γ , K±1, E and relations

KK−1 = 1 = K−1K , K±1H = HK±1 , K±1Γ = ΓK±1 , HΓ = ΓH

(q−1)H = K−1 ,
(
q−q−1

)
Γ = K−K−1 , H

(
1+K−1

)
=

(
1+q−1

)
Γ , EF−FE = Γ

K±1F = q∓2FK±1 , HF = q−2FH − (q + 1)F , ΓF = q−2FΓ − (
q + q−1

)
F

K±1E = q±2EK±1 , HE = q+2EH + (q + 1)E , ΓE = q+2EΓ +
(
q + q−1

)
E

5In §§7–9 we should use notation Uq−1(g) and Fq−1[G] , after Remark 1.5 (for ~ = q − 1 ); instead,
we write Uq(g) and Fq [G] to be consistent with the standard notation in use for these quantum algebras.
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and with a Hopf structure given by the same formulas as above for F , K±1, and E plus

∆(Γ ) = Γ ⊗K + K−1 ⊗ Γ , ε(Γ ) = 0 , S(Γ ) = −Γ
∆(H) = H ⊗ 1 + K ⊗H , ε(H) = 0 , S(H) = −K−1H .

Note also that K = 1+(q−1)H and K−1 = K−(
q−q−1

)
Γ = 1+(q−1)H−(

q−q−1
)
Γ ,

hence Uq(g) is generated even by F , H, Γ and E alone. Further, notice that

Uq(g) = free F (R)–module over
{

F aKzEd
∣∣∣ a, d ∈ N, z ∈ Z

}
(7.1)

Uq(g) = R–span of
{

F aHbΓ cEd
∣∣∣ a, b, c, d ∈ N

}
inside Uq(g) (7.2)

which implies that F (R)⊗RUq(g) = Uq(g) . Moreover, definitions imply at once that Uq(g)
is torsion-free, and also that it is a Hopf R–subalgebra of Uq(g) . Therefore Uq(g) ∈ HA ,
and in fact Uq(g) is even a QrUEA, whose semiclassical limit is U(g) = U(sl2) , with the
generators F , K±1, H, Γ , E respectively mapping to f , 1, h, h, e ∈ U(sl2) .

It is also possible to define a “simply connected” version of Uq(g) and Uq(g), obtained
from the previous ones — referred to as the “adjoint (type) ones” — as follows. For Uq(g),
one simply adds a square root of K±1, call it L±1, as new generator; for Uq(g) one adds

the new generators L±1 and also D :=
L− 1
q − 1

. Then the same analysis as before shows

that Uq(g) is another quantization (containing the “adjoint” one) of U(g) .
In the general case of semisimple g , let Uq(g) be the Lusztig-like quantum group —

over R — associated to g = gτ as in [Ga1], namely Uq(g) := UM
q,ϕ(g) with respect to the

notation in [loc. cit.], where M is any intermediate lattice such that Q ≤ M ≤ P (this is
just a matter of choice, of the type mentioned in the statement of Theorem 2.2(c)): this is
a Hopf algebra over F (R), generated by elements Fi , Mi, Ei for i = 1, . . . , r =: rank (g) .
Then let Uq(g) be the unital R–subalgebra of Uq(g) generated by the elements Fi, Hi :=
Mi − 1
q − 1

, Γi :=
Ki −K−1

i

q − q−1
, M±1

i , Ei , where the Ki = Mαi are suitable product of Mj ’s,

defined as in [Ga1], §2.2 (whence Ki, K−1
i ∈ Uq(g) ). From [Ga1], §§2.5, 3.3, we have that

Uq(g) is the free F (R)–module with basis the set of monomials

{ ∏

α∈Φ+

F fα
α ·

n∏

i=1

Kzi
i ·

∏

α∈Φ+

Eeα
α

∣∣∣∣ fα, eα ∈ N , zi ∈ Z , ∀ α ∈ Φ+, i = 1, . . . , n

}

while Uq(g) is the R–span inside Uq(g) of the set of monomials

{ ∏

α∈Φ+

F fα
α ·

n∏

i=1

Hti
i ·

n∏

j=1

Γ
cj

j ·
∏

α∈Φ+

Eeα
α

∣∣∣∣ fα, ti, cj , eα ∈ N ∀ α ∈ Φ+, i, j = 1, . . . , n

}

(hereafter, Φ+ is the set of positive roots of g, each Eα , resp. Fα , is a root vector attached
to α ∈ Φ+, resp. to −α ∈ (−Φ+), and the products of factors indexed by Φ+ are ordered
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with respect to a fixed convex order of Φ+, see [Ga1]), whence (as for n = 2 ) Uq(g) is a
free R–module. In this case again Uq(g) is a QrUEA, with semiclassical limit U(g) .

7.3 Computation of Uq(g)′ and specialization Uq(g)′
q→1−−−→F [G∗] . We begin

with the simplest case g = sl2 . From the definition of Uq(g) = Uq(sl2) we have (∀n ∈ N)

δn(E) = (id− ε)⊗n(
∆n(E)

)
= (id− ε)⊗n

( ∑n
s=1K

⊗(s−1) ⊗ E ⊗ 1⊗(n−s)
)

=

= (id− ε)⊗n(
K⊗(n−1) ⊗ E

)
= (K − 1)⊗(n−1) ⊗ E = (q − 1)n−1 ·H⊗(n−1) ⊗ E

from which δn

(
(q − 1)E

) ∈ (q − 1)n
Uq(g) \ (q − 1)n+1

Uq(g) , whence (q − 1)E ∈ Uq(g)′,
whereas E /∈ Uq(g)′. Similarly, (q − 1)F ∈ Uq(g)′, whilst F /∈ Uq(g)′. As for generators
H, Γ , K±1, we have ∆n(H) =

∑n
s=1 K⊗(s−1) ⊗ H ⊗ 1⊗(n−s), ∆n

(
K±1

)
=

(
K±1

)⊗n,

∆n(Γ ) =
∑n

s=1 K⊗(s−1) ⊗ Γ ⊗ (
K−1

)⊗(n−s), hence for δn = (id− ε)⊗n ◦∆n we have

δn(H) = (q − 1)n−1 ·H⊗n , δn
(
K−1

)
= (q − 1)n · (−K−1H)

⊗n

δn(K) = (q − 1)n ·H⊗n , δn(Γ ) = (q − 1)n−1 ·
n∑

s=1
(−1)n−s

H⊗(s−1)⊗Γ ⊗ (
HK−1

)⊗(n−s)

for all n ∈ N , so that (q− 1)H, (q− 1)Γ , K±1 ∈ Uq(g)′ \ (q− 1)Uq(g)′ . Therefore Uq(g)′

contains the subalgebra U ′ generated by (q− 1)F , K, K−1, (q− 1)H, (q− 1)Γ , (q− 1)E .
On the other hand, using (7.2) a thorough — but straightforward — computation along
the same lines as above shows that any element in Uq(g)′ does necessarily lie in U ′ (details
are left to the reader: everything follows from definitions and the formulas above for ∆n ).
Thus Uq(g)′ is nothing but the subalgebra of Uq(g) generated by Ḟ := (q− 1)F , K, K−1,
Ḣ := (q − 1)H, Γ̇ := (q − 1)Γ , Ė := (q − 1)E ; notice also that the generator Ḣ is
unnecessary, for Ḣ = K − 1 . As a consequence, Uq(g)′ can be presented as the unital
associative R–algebra with generators Ḟ , Γ̇ , K±1, Ė and relations

KK−1 = 1 = K−1K, K±1Γ̇ = Γ̇K±1,
(
1 + q−1

)
Γ̇ = K −K−1, ĖḞ − Ḟ Ė = (q − 1)Γ̇

K −K−1 =
(
1 + q−1

)
Γ̇ , K±1Ḟ = q∓2ḞK±1 , K±1Ė = q±2ĖK±1

Γ̇ Ḟ = q−2Ḟ Γ̇ − (q − 1)
(
q + q−1

)
Ḟ , Γ̇ Ė = q+2ĖΓ̇ + (q − 1)

(
q + q−1

)
Ė

with Hopf structure given by

∆
(
Ḟ

)
= Ḟ ⊗K−1 + 1⊗ Ḟ , ε

(
Ḟ

)
= 0 , S

(
Ḟ

)
= −ḞK

∆
(
Γ̇

)
= Γ̇ ⊗K + K−1 ⊗ Γ̇ , ε

(
Γ̇

)
= 0 , S

(
Γ̇

)
= −Γ̇

∆
(
K±1

)
= K±1 ⊗K±1 , ε

(
K±1

)
= 1 , S

(
K±1

)
= K∓1

∆
(
Ė

)
= Ė ⊗ 1 + K ⊗ Ė , ε

(
Ė

)
= 0 , S

(
Ė

)
= −K−1Ė .

When q → 1 , an easy direct computation shows that this gives a presentation of the
function algebra F

[
aSL2

∗], and the Poisson structure that F
[
aSL2

∗] inherits from this
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quantization process is exactly the one coming from the Poisson structure on aSL2
∗ : in

fact, there is a Poisson Hopf algebra isomorphism

Uq(g)′
/

(q − 1) Uq(g)′
∼=−−−→F

[
aSL2

∗] (
⊆ F

[
sSL2

∗] )

given by: Ė mod (q − 1) 7→ xz , K±1 mod (q − 1) 7→ z±2 , Ḣ mod (q − 1) 7→ z2 − 1 ,
Γ̇ mod (q − 1) 7→ (

z2 − z−2
)/

2 , Ḟ mod (q − 1) 7→ z−1y . In other words, Uq(g)′

specializes to F
[
aSL2

∗] as a Poisson Hopf algebra. Note that this was predicted by

Theorem 2.2(c) when Char (k) = 0 , but our analysis now proved it also for Char (k) > 0 .

Note that we got the adjoint Poisson group dual of G = SL2 , that is aSL2
∗ ; a different

choice of the initial QrUEA leads us to the simply connected one, i.e. sSL2
∗. Indeed, if

we start from the “simply connected” version of Uq(g) (see §7.2) the same analysis shows
that Uq(g)′ is like above but for containing also the new generators L±1, and similarly
when specializing q at 1: thus we get the function algebra of a Poisson group which is
a double covering of aSL2

∗, namely sSL2
∗. So changing the QrUEA quantizing g we get

two different QFAs, one for each of the two connected Poisson algebraic groups dual of
SL2, i.e. with tangent Lie bialgebra sl2

∗ ; this shows the dependence of the group G? (here
denoted G∗ since g×=g∗) in Theorem 2.2(c) on the choice of the QrUEA (for a fixed g).

With a bit more careful study, exploiting the analysis in [Ga1], one can treat the general
case too: we sketch briefly our arguments — restricting to the simply laced case, to simplify
the exposition — leaving to the reader the (straightforward) task of filling in details.

So now let g = gτ be a semisimple Lie algebra, as in §7.1, and let Uq(g) be the QrUEA
introduced in §7.2: our aim again is to compute the QFA Uq(g)′ .

The same computations as for g = sl(2) show that δn(Hi) = (q − 1)n−1 · H⊗n
i and

δn(Γi) = (q − 1)n−1 ·∑n
s=1 (−1)n−s

H
⊗(s−1)
i ⊗ Γi ⊗

(
HiK

−1
i

)⊗(n−s)
, which gives

Ḣi := (q − 1)Hi ∈ Uq(g)′ \ (q − 1)Uq(g)′ and Γ̇i := (q − 1)Γi ∈ Uq(g)′ \ (q − 1)Uq(g)′ .

As for root vectors, let Ėγ := (q − 1)Eγ and Ḟγ := (q − 1)Fγ for all γ ∈ Φ+ :
using the same type of arguments as in [Ga1]6, §5.16, we can prove that Eα 6∈ Uq(g)′

but Ėα ∈ Uq(g)′ \ (q − 1) Uq(g)′ . In fact, let Uq(b+) and Uq(b−) be quantum Borel
subalgebras, and UM

ϕ,≥ , UM

ϕ,≥ , UM

ϕ,≤ , UM

ϕ,≤ their R–subalgebras defined in [Ga1], §2: then
both Uq(b+) and Uq(b−) are Hopf subalgebras of Uq(g); in addition, letting M ′ be the
lattice between Q and P dual of M (in the sense of [Ga1], §1.1, there exists an F (R)–valued
perfect Hopf pairing between Uq(b±) and Uq(b∓) — one built up on M and the other on M ′

— such that UM

ϕ,≥ =
(
UM′

ϕ,≤
)•

, UM

ϕ,≤ =
(
UM′

ϕ,≥
)•

, UM

ϕ,≥ =
(
UM′

ϕ,≤
)•

, and UM

ϕ,≤ =
(
UM′

ϕ,≥
)•

.

6Note that in [Ga1] the assumption Char (|) = 0 is made throughout: nevertheless, this hypothesis is
not necesary for the analysis we are concerned with right now!
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Now,
(
q − q−1

)
Eα ∈ UM

ϕ,≥ =
(
UM′

ϕ,≤
)•

, hence — since UM′
ϕ,≤ is an algebra — we have

∆
((

q − q−1
)
Eα

)
∈

(
UM′

ϕ,≤ ⊗ UM′
ϕ,≤

)•
=

(
UM′

ϕ,≤
)•
⊗

(
UM′

ϕ,≤
)•

= UM

ϕ,≥ ⊗ UM

ϕ,≥ . Therefore, by

definition of UM

ϕ,≥ and by the PBW theorem for it and for UM′
ϕ,≤ (cf. [Ga1], §2.5) we have

that ∆
((

q−q−1
)
Eα

)
is an R–linear combination like ∆

((
q−q−1

)
Eα

)
=

∑
r A

(1)
r ⊗A

(2)
r

in which the A
(j)
r ’s are monomials in the Mj ’s and in the Eγ ’s, where Eγ :=

(
q− q−1

)
Eγ

for all γ ∈ Φ+ : iterating, we find that ∆`
((

q − q−1
)
Eα

)
is an R–linear combination

∆`
((

q − q−1
)
Eα

)
=

∑
r A(1)

r ⊗A(2)
r ⊗ · · · ⊗A(`)

r (7.3)

in which the A
(j)
r ’s are again monomials in the Mj ’s and in the Eγ ’s. Now, we distinguish

two cases: either A
(j)
r does contain some Eγ (∈ (

q − q−1
)
Uq(g)

)
, thus ε

(
A

(j)
r

)
= A

(j)
r ∈

(q − 1)Uq(g) whence (id− ε)
(
A

(j)
r

)
= 0 ; or A

(j)
r does not contain any Eγ and is only a

monomial in the Mt’s, say A
(j)
r =

∏n
t=1 Mmt

t : then (id − ε)
(
A

(j)
r

)
=

∏n
t=1 Mmt

t − 1 =
∏n

t=1

(
(q − 1) Ht + 1

)mt − 1 ∈ (q − 1) Uq(g) . In addition, for some “Q–grading reasons”
(as in [Ga1], §5.16), in each one of the summands in (7.3) the sum of all the γ’s such
that the (rescaled) root vectors Eγ occur in any of the factors A

(1)
r , A

(2)
r , . . . , A

(n)
r must

be equal to α: therefore, in each of these summands at least one factor Eγ does occur.
The conclusion is that δ`

(
Eα

) ∈ (
1 + q−1

)
(q − 1)` Uq(g)⊗` (the factor

(
1 + q−1

)
being

there because at least one rescaled root vector Eγ occurs in each summand of δ`

(
Eα

)
,

thus providing a coefficient
(
q − q−1

)
the term

(
1 + q−1

)
is factored out of), whence

δ`

(
Ėα

) ∈ (q− 1)` Uq(g)⊗` . More precisely, we have also δ`

(
Ėα

) 6∈ (q− 1)`+1 Uq(g)⊗` , for
we can easily check that ∆`

(
Ėα

)
is the sum of Mα ⊗ Mα ⊗ · · · ⊗ Mα ⊗ Ėα plus other

summands which are R–linearly independent of this first term: but then δ`

(
Ėα

)
is the

sum of (q − 1)`−1
Hα ⊗Hα ⊗ · · · ⊗Hα ⊗ Ėα (where Hα := Mα−1

q−1 is equal to an R–linear
combination of products of Mj ’s and Ht’s) plus other summands which are R–linearly
independent of the first one, and since Hα⊗Hα⊗· · ·⊗Hα⊗ Ėα 6∈ (q−1)2 Uq(g)⊗` we can
conclude as claimed. Therefore δ`

(
Ėα

) ∈ (q − 1)` Uq(g)⊗` \ (q − 1)`+1 Uq(g)⊗` , whence
we get Ėα := (q − 1)Eα ∈ Uq(g)′ \ (q − 1)Uq(g)′ ∀ α ∈ Φ+ . An entirely similar analysis
yields also Ḟα := (q − 1)Fα ∈ Uq(g)′ \ (q − 1)Uq(g)′ ∀ α ∈ Φ+ .

Summing up, we have found that Uq(g)′ contains for sure the subalgebra U ′ generated
by Ḟα , Ḣi , Γ̇i , Ėα for all α ∈ Φ+ and all i = 1, . . . , n . On the other hand, using (7.2)
a thorough — but straightforward — computation along the same lines as above shows
that any element in Uq(g)′ must lie in U ′ (details are left to the reader). Thus finally
Uq(g)′ = U ′ , so we have a concrete description of Uq(g)′.

Now compare U ′ = Uq(g)′ with the algebra UM
ϕ (g) in [Ga1], §3.4 (for ϕ = 0 ), the

latter being just the R–subalgebra of Uq(g) generated by the set
{

Fα,Mi, Eα

∣∣ α ∈ Φ+, i =
1, . . . , n

}
. First of all, by definition, we have UM

ϕ (g) ⊆ U ′ = Uq(g)′ ; moreover,
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Ḟα ≡ 1
2

Fα , Ėα ≡ 1
2

Eα , Γ̇i ≡ 1
2

(
Ki −K−1

i

)
mod (q − 1)UM

ϕ (g) ∀ α, ∀ i .

Then

(
Uq(g)′

)
1

:= Uq(g)′
/

(q − 1)Uq(g)′ = UM

ϕ (g)
/

(q − 1)UM

ϕ (g) ∼= F
[
G∗M

]

where G∗M is the Poisson group dual of G = Gτ with centre Z(G∗M) ∼= M
/
Q and

fundamental group π1(G∗M) ∼= P
/
M , and the isomorphism (of Poisson Hopf algebras)

on the right is given by [Ga1], Theorem 7.4 (see also references therein for the original
statement and proof of this result). In other words, Uq(g)′ specializes to F

[
G∗M

]
as a

Poisson Hopf algebra, as prescribed by Theorem 2.2. By the way, notice that in the present
case the dependence of the dual group G? = G∗M on the choice of the initial QrUEA (for
fixed g) — mentioned in the last part of the statement of Theorem 2.2(c) — is evident.

By the way, the previous discussion applies as well to the case of g an untwisted affine
Kac-Moody algebra: one just has to substitute any quotation from [Ga1] — referring to
some result about finite Kac-Moody algebras — with a similar quotation from [Ga3] —
referring to the corresponding analogous result about untwisted affine Kac-Moody algebras.

7.4 The identity
(
Uq(g)′

)∨
= Uq(g) . In the present section we check that part of

Theorem 2.2(b) claiming that, when p = 0 , one has H ∈ QrUEA =⇒ (
H ′)∨ = H for

H = Uq(g) as above. In addition, our proof now will work for the case p > 0 as well. Of
course, we start once again from g = sl2 .

Since ε
(
Ḟ

)
= ε

(
Ḣ

)
= ε

(
Γ̇

)
= ε

(
Ė

)
= 0 , the ideal J := Ker

(
ε : Uq(g)′ −−→ R

)

is generated by Ḟ , Ḣ, Γ̇ , and Ė . This implies that J is the R–span of
{

ḞϕḢκΓ̇ γĖη
∣∣∣

(ϕ, κ, γ, η) ∈ N4\{(0, 0, 0, 0)}
}

. Now I := Ker
(
Uq(g)′

ε−³ R
q 7→1−−−³k

)
= (q−1)·Uq(g)′+J ,

therefore we get that
(
Uq(g)′

)∨
:=

∑
n≥0

(
(q − 1)−1

I
)n

is generated, as a unital R-

subalgebra of Uq(g), by the elements (q − 1)−1
Ḟ = F , (q − 1)−1

Ḣ = H, (q − 1)−1
Γ̇ = Γ ,

(q − 1)−1
Ė = E, hence it coincides with Uq(g), q.e.d.

An entirely similar analysis works in the “adjoint” case as well; and also, mutatis mu-
tandis, for the general semisimple or affine Kac-Moody case.

7.5 The quantum hyperalgebra Hyp q(g). Let G be a semisimple (affine) algebraic
group, with Lie algebra g, and let Uq(g) be the quantum group considered in the previous
sections. Lusztig introduced (cf. [Lu1-2]) a “quantum hyperalgebra”, i.e. a Hopf subalgebra
of Uq(g) over Z

[
q, q−1

]
whose specialization at q = 1 is exactly the Kostant’s Z–integer

form UZ(g) of U(g) from which one gets the hyperalgebra Hyp (g) over any field k of
characteristic p > 0 by scalar extension, namely Hyp (g) = k ⊗Z UZ(g) . In fact, to be
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precise one needs a suitable enlargement of the algebra given by Lusztig, which is given
in [DL], §3.4, and denoted by Γ (g). Now we study Drinfeld’s functors (at ~ = q − 1 ) on
Hyp q(g) := R⊗Z[q,q−1] Γ (g) (with R like in §7.2), taking as sample the case of g = sl2 .

Let g = sl2 . Let Hyp Zq (g) be the unital Z
[
q, q−1

]
–subalgebra of Uq(g) (say the one

of “adjoint type” defined like above but over Z
[
q, q−1

]
) generated the “quantum divided

powers” F (n) := Fn
/

[n]q! ,
(

K ; c

n

)
:=

n∏
s=1

qc+1−sK − 1
qs − 1

, E(n) := En
/

[n]q! (for all n ∈

N , c ∈ Z ) and by K−1, where [n]q! :=
∏n

s=1 [s]q and [s]q =
(
qs − q−s

)/(
q− q−1

)
for all

n, s ∈ N . Then (cf. [DL]) this is a Hopf subalgebra of Uq(g), and Hyp Zq (g)
∣∣∣
q=1

∼= UZ(g) ;

therefore Hyp q(g) := R ⊗Z[q,q−1] Hyp Zq (g) (for any R like in §7.2, with k := R
/
~R and

p := Char (k) ) specializes at q = 1 to the k–hyperalgebra Hyp (g). Moreover, among all
the

(
K; c

n

)
’s it is enough to take only those with c = 0 . From now on we assume p > 0 .

Using formulas for the iterated coproduct in [DL], Corollary 3.3 (which uses the opposite
coproduct than ours, but this doesn’t matter), and exploiting the PBW-like theorem for
Hyp q(g) (see [DL] again) we see by direct inspection that Hyp q(g)′ is the unital R–
subalgebra of Hyp q(g) generated by K−1 and the “rescaled quantum divided powers”

(q − 1)n
F (n) , (q − 1)n

(
K; 0

n

)
and (q − 1)n

E(n) for all n ∈ N . Since [n]q!
∣∣∣
q=1

= n! = 0

iff p
∣∣∣n , we argue that Hyp q(g)′

∣∣∣
q=1

is generated by the corresponding specializations

of (q − 1)ps

F (ps) , (q − 1)ps
(

K; 0
ps

)
and (q − 1)ps

E(ps) for all s ∈ N : in particular this

shows that the spectrum of Hyp q(g)′
∣∣∣
q=1

has dimension 0 and height 1, and its cotangent

Lie algebra J
/

J 2 — where J is the augmentation ideal of Hyp q(g)′
∣∣∣
q=1

— has basis
{

(q−1)ps

F (ps), (q−1)ps
(

K; 0
ps

)
, (q−1)ps

E(ps) mod (q−1)Hyp q(g)′ mod J 2
∣∣∣ s ∈ N

}
.

Furthermore,
(
Hyp q(g)′

)∨ is generated by (q − 1)ps−1
F (ps) , (q − 1)ps−1

(
K; 0
ps

)
, K−1

and (q − 1)ps−1
E(ps) for all s ∈ N : in particular we have that

(
Hyp q(g)′

)∨ $ Hyp q(g) ,

and
(
Hyp q(g)′

)∨∣∣∣
q=1

is generated by the cosets modulo (q − 1) of the previous elements,

which do form a basis of the restricted Lie bialgebra k such that
(
Hyp q(g)′

)∨∣∣∣
q=1

= u(k) .

We performed the previous study using the “adjoint” version of Uq(g) as starting point:
instead, we can use as well its “simply connected” version, thus obtaining a “simply con-
nected version of Hyp q(g)” which is defined exactly like before but for using L±1 instead
of K±1 throughout; up to these changes, the analysis and its outcome will be exactly
the same. Note that all quantum objects involved — namely, Hyp q(g), Hyp q(g)′ and(
Hyp q(g)′

)∨ — will strictly contain the corresponding “adjoint” quantum objects; on the
other hand, the semiclassical limit is the same in the case of Hyp q(g) (giving Hyp (g),
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in both cases) and in the case of
(
Hyp q(g)′

)∨ (giving u(k), in both cases), whereas the
semiclassical limit of Hyp q(g)′ in the “simply connected” case is a (countable) covering of
that in the “adjoint” case.

The general case of semisimple or affine Kac-Moody g can be dealt with similarly,
with analogous outcome. Indeed, Hyp Zq (g) is defined as the unital Z

[
q, q−1

]
–subalgebra

of Uq(g) (defined like before but over Z
[
q, q−1

]
) generated by K−1

i and the “quantum

divided powers” (in the above sense) F
(n)
i ,

(
Ki; c

n

)
, E

(n)
i for all n ∈ N , c ∈ Z and i =

1, . . . , rank (g) (notation of §7.2, but now each divided power relative to i is built upon qi,
see [Ga1]). Then (cf. [DL]) this is a Hopf subalgebra of Uq(g) with Hyp Zq (g)

∣∣∣
q=1

∼= UZ(g) ,

so Hyp q(g) := R ⊗Z[q,q−1] Hyp Zq (g) (for any R like before) specializes at q = 1 to the

k–hyperalgebra Hyp (g); and among the
(

Ki; c
n

)
’s it is enough to take those with c = 0 .

Again a PBW-like theorem holds for Hyp q(g) (see [DL]), where powers of root vec-

tors are replaced by quantum divided powers like F
(n)
α ,

(
Ki; c

n

)
·K−Ent(n/2)

i and E
(n)
α ,

for all positive roots α of g (each divided power being relative to qα, see [Ga1]) both in
the finite and in the affine case. Using this and the same type of arguments as in §7.3
— i.e. the perfect graded Hopf pairing between quantum Borel subalgebras — we see by
direct inspection that Hyp q(g)′ is the unital R–subalgebra of Hyp q(g) generated by the

K−1
i ’s and the “rescaled quantum divided powers” (qα − 1)n

F
(n)
α , (qi − 1)n

(
Ki; 0

n

)
and

(qα − 1)n
E

(n)
α for all n ∈ N . Since [n]qα

!
∣∣∣
q=1

= n! = 0 iff p
∣∣∣n , one argues like before

that Hyp q(g)′
∣∣∣
q=1

is generated by the corresponding specializations of (qα − 1)ps

F
(ps)
α ,

(qi − 1)ps
(

Ki; 0
ps

)
and (qα − 1)ps

E
(ps)
α for all s ∈ N and all positive roots α : this

shows that the spectrum of Hyp q(g)′
∣∣∣
q=1

has (dimension 0 and) height 1, and its cotan-

gent Lie algebra J
/

J 2 (where J is the augmentation ideal of Hyp q(g)′
∣∣∣
q=1

) has basis
{

(qα−1)ps

F
(ps)
α , (qi−1)ps

(
Ki; 0

ps

)
, (qα−1)ps

E(ps) mod (q−1)Hyp q(g)′ mod J 2
∣∣∣ s ∈ N

}
.

Moreover,
(
Hyp q(g)′

)∨ is generated by (qα − 1)ps−1
F

(ps)
α , (qi − 1)ps−1

(
Ki; 0

ps

)
, K−1

i

and (qα − 1)ps−1
E

(ps)
α for all s , i and α : in particular

(
Hyp q(g)′

)∨ $ Hyp q(g) , and(
Hyp q(g)′

)∨∣∣∣
q=1

is generated by the cosets modulo (q−1) of the previous elements, which

in fact form a basis of the restricted Lie bialgebra k such that
(
Hyp q(g)′

)∨∣∣∣
q=1

= u(k) .

7.6 The QFA Fq[G] . In this and the following sections we pass to look at Theorem
2.2 the other way round: namely, we start from QFAs and produce QrUEAs.

We begin with G = SLn , with the standard Poisson structure, for which an especially
explicit description of the QFA is available. Namely, let Fq[SLn] be the unital associative
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R–algebra generated by { ρij | i, j = 1, . . . , n } with relations

ρijρik = q ρikρij , ρikρhk = q ρhkρik ∀ j < k, i < h

ρilρjk = ρjkρil , ρikρjl − ρjlρik =
(
q − q−1

)
ρilρjk ∀ i < j, k < l

detq(ρij) :=
∑

σ∈Sn

(−q)l(σ)
ρ1,σ(1)ρ2,σ(2) · · · ρn,σ(n) = 1 .

This is a Hopf algebra, with comultiplication, counit and antipode given by

∆(ρij) =
n∑

k=1

ρik ⊗ ρkj , ε(ρij) = δij , S(ρij) = (−q)i−j
detq

(
(ρhk)k 6=i

h6=j

)

for all i, j = 1, . . . , n . Let Fq[SLn] := F (R)⊗R Fq[SLn] . The set of ordered monomials

M :=

{
∏
i>j

ρ
Nij

ij

∏
h=k

ρNhk

hk

∏
l<m

ρNlm

lm

∣∣∣∣ Nst ∈ N ∀ s, t ; min
{
N1,1, . . . , Nn,n

}
= 0

}
(7.4)

is an R–basis of Fq[SLn] and an F (R)–basis of Fq[SLn] (cf. [Ga2], Theorem 7.4, and [Ga7],

Theorem 2.1(c)). Moreover, Fq[SLn] is a QFA (at ~ = q−1 ), with Fq[SLn]
q→1−−→F [SLn] .

7.7 Computation of Fq[G]∨ and specialization Fq[G]∨
q→1−−−→U(g×) . In this sec-

tion we compute Fq[G]∨ and its semiclassical limit (= specialization at q = 1 ). Note that

M ′ :=

{
∏
i>j

ρ
Nij

ij

∏
h=k

(ρhk − 1)Nhk
∏

l<m

ρNlm

lm

∣∣∣∣ Nst ∈ N ∀ s, t ; min
{
N1,1, . . . , Nn,n

}
= 0

}

is an R–basis of Fq[SLn] and an F (R)–basis of Fq[SLn]; then, from the definition of the
counit, it follows that M ′ \ {1} is an R–basis of Ker

(
ε : Fq[SLn] −→ R

)
. Now, by

definition I := Ker

(
Fq[SLn]

ε−−−³R
q 7→1−−−³k

)
, whence I = Ker (ε) + (q − 1) · Fq[SLn] ;

therefore
(
M ′ \ {1}) ∪ {

(q − 1) · 1}
is an R–basis of I, hence (q − 1)−1

I has R–basis

(q − 1)−1 · (M ′ \ {1}) ∪ {1} . The outcome is that Fq[SLn]∨ :=
∑

n≥0

(
(q − 1)−1

I
)n

is
just the unital R–subalgebra of Fq[SLn] generated by

{
rij :=

ρij − δij

q − 1

∣∣∣∣ i, j = 1, . . . , n

}
.

Then one can directly show that this is a Hopf algebra, and that Fq[SLn]∨
q→1−−−→U(sln∗)

as predicted by Theorem 2.2. Details can be found in [Ga2], §§ 2, 4, looking at the algebra
F̃q[SLn] considered therein, up to the following changes. The algebra which is considered

in [loc. cit.] has generators
(
1 + q−1

)δij ρij − δij

q − q−1
( i, j = 1, . . . , n ) instead of our rij ’s

(they coincide iff i = j ) and also generators ρii = 1 + (q − 1) rii ( i = 1, . . . , n ); then the
presentation in §2.8 of [loc. cit.] must be changed accordingly; computing the specialization
then goes exactly the same, and gives the same result — specialized generators are rescaled,
though, compared with the standard ones given in [loc. cit.], §1.
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We sketch the case of n = 2 (see also [FG]). Using notation a := ρ1,1 , b := ρ1,2 ,
c := ρ2,1 , d := ρ2,2 , we have the relations

a b = q b a , a c = q c a , bd = q db , c d = q d c ,

b c = c b , a d− d a =
(
q − q−1

)
b c , a d− q b c = 1

holding in Fq[SL2] and in Fq[SL2], with

∆(a) = a⊗ a + b⊗ c, ∆(b) = a⊗ b + b⊗ d, ∆(c) = c⊗ a + d⊗ c, ∆(d) = c⊗ b + d⊗ d

ε(a) = 1, ε(b) = 0, ε(c) = 0, ε(d) = 1, S(a) = d, S(b) = −q−1b, S(c) = −q+1c, S(d) = a .

Then the elements H+ := r1,1 =
a− 1
q − 1

, E := r1,2 =
b

q − 1
, F := r2,1 =

c
q − 1

and

H− := r2,2 =
d− 1
q − 1

generate Fq[SL2]
∨: these generators have relations

H+E = q EH+ + E , H+F = q FH+ + F , EH− = q H−E + E , FH− = q H−F + F ,

EF = FE , H+H− −H−H+ =
(
q − q−1

)
EF , H− + H+ = (q − 1)

(
q EF −H+H−

)

and Hopf operations given by

∆(H+) = H+ ⊗ 1 + 1⊗H+ + (q − 1)
(
H+ ⊗H+ + E ⊗ F

)
, ε(H+) = 0 , S(H+) = H−

∆(E) = E ⊗ 1 + 1⊗ E + (q − 1)
(
H+ ⊗ E + E ⊗H−

)
, ε(E) = 0 , S(E) = −q−1E

∆(F ) = F ⊗ 1 + 1⊗ F + (q − 1)
(
F ⊗H+ + H− ⊗ F

)
, ε(F ) = 0 , S(F ) = −q+1F

∆(H−) = H− ⊗ 1 + 1⊗H− + (q − 1)
(
H− ⊗H− + F ⊗ E

)
, ε(H−) = 0 , S(H−) = H+

from which one easily checks that Fq[SL2]
∨ q→1−−−→U(sl2∗) as co-Poisson Hopf algebras,

for a co-Poisson Hopf algebra isomorphism

Fq[SL2]
∨
/

(q − 1)Fq[SL2]
∨ ∼=−−−→ U(sl2∗)

exists, given by: H± mod (q − 1) 7→ ±h , E mod (q − 1) 7→ e , F mod (q − 1) 7→ f ;
that is, Fq[SL2]

∨ specializes to U(sl2∗) as a co-Poisson Hopf algebra, q.e.d.
Finally, the general case of any semisimple group G = Gτ , with the Poisson structure

induced from the Lie bialgebra structure of g = gτ , can be treated in a different way.
Following [Ga1], §§5–6, Fq[G] can be embedded into a (topological) Hopf algebra Uq(g∗) =
UM

q,ϕ(g∗) , so that the image of the integer form Fq[G] lies into a suitable (topological)
integer form UM

q,ϕ(g∗) of Uq(g∗) . Now, the analysis given in [loc. cit.], when carefully
read, shows that Fq[G]∨ = Fq[G] ∩ UM

q,ϕ(g∗)∨ ; moreover, the latter (intersection) algebra
“almost” coincides — it is its closure in a suitable topology — with the integer form Fq[G]
considered in [loc. cit.]: in particular, they have the same specialization at q = 1 . Since
in addition Fq[G] does specialize to U(g∗), the same is true for Fq[G]∨, q.e.d.

The last point to stress is that, once more, the whole analysis above is valid for p :=
Char (k) ≥ 0 , i.e. also for p > 0 , which was not granted by Theorem 2.2.
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7.8 The identity
(
Fq[G]∨

)′
= Fq[G] . In this section we verify the validity of that

part of Theorem 2.2(b) claiming that H ∈ QFA =⇒ (
H∨)′ = H for H = Fq[G] as

above; moreover we show that this holds for p > 0 too. We begin with G = SLn .

From ∆(ρij) =
n∑

k=1

ρi,k⊗ρk,j , we get ∆N (ρij) =
n∑

k1,... ,kN−1=1

ρi,k1 ⊗ρk1,k2 ⊗· · ·⊗ρkN−1,j ,

by repeated iteration, whence a simple computation yields

δN (rij) =
n∑

k1,... ,kN−1=1

(q − 1)−1 ·((q−1) ri,k1⊗(q−1) rk1,k2⊗· · ·⊗(q−1) rkN−1,j

) ∀ i, j

so that

δN

(
(q − 1)rij

) ∈ (q − 1)N
Fq[SLn]∨ \ (q − 1)N+1

Fq[SLn]∨ ∀ i, j . (7.5)

Now, consider again the set M ′ :=
{ ∏

i>j

ρ
Nij

ij

∏
h=k

(ρhk − 1)Nhk
∏

l<m

ρNlm

lm

∣∣∣∣ Nst ∈ N ∀ s, t ;

min
{

N1,1, . . . , Nn,n

}
= 0

}
: since this is an R–basis of Fq[SLn], we have also that

M ′′ :=

{
∏
i>j

r
Nij

ij

∏
h=k

rNhk

hk

∏
l<m

rNlm

lm

∣∣∣∣ Nst ∈ N ∀ s, t ; min
{

N1,1, . . . , Nn,n

}
= 0

}

is an R–basis of Fq[SLn]∨. This and (7.5) above imply that
(
Fq[SLn]∨

)′
is the uni-

tal R–subalgebra of Fq[SLn] generated by the set
{

(q − 1)rij

∣∣ i, j = 1, . . . , n
}

; since
(q − 1) rij = ρij − δij , the latter algebra does coincide with Fq[SLn] , as expected.

For the general case of any semisimple group G = Gτ , the result can be obtained again
by looking at the immersions Fq[G] ⊆ Uq(g∗) and Fq[G] ⊆ UM

q,ϕ(g∗) , and at the identity

Fq[G]∨ = Fq[G] ∩ UM
q,ϕ(g∗)∨ (cf. §7.6); if we try to compute

(
UM

q,ϕ(g∗)∨
)′

(noting that
(UM

q,ϕ(g∗)
)∨ is a QrUEA), we have just to apply much the like methods as for Uq(g)′ ,

thus finding a similar result; then from this and the identity Fq[G]∨ = Fq[G] ∩ UM
q,ϕ(g∗)∨

we eventually find
(
Fq[G]∨

)′
= Fq[G] , q.e.d.

We’d better point out once more that the previous analysis is valid for p := Char (k) ≥
0 , i.e. also for p > 0 , so the outcome is stronger than what ensured by Theorem 2.2.

Remark: Formula (7.4) gives an explicit R–basis M of Fq[SL2]. By direct computation
one sees that δn(µ) ∈ Fq[SL2]

⊗n \ (q − 1)Fq[SL2]
⊗n for all µ ∈ M \ {1} and n ∈ N ,

whence Fq[SL2]
′ = R·1 , which implies

(
Fq[SL2]

′)
F

= F (R)·1 $ Fq[SL2] (cf. the Remark

after Corollary 4.6) and also
(
Fq[SL2]

′)∨ = R · 1 $ Fq[SL2] .

7.9 Drinfeld’s functors and L–operators for Uq(g) when g is classical. Let now
k have characteristic zero, and let g be a finite dimensional semisimple Lie algebra over
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k whose simple Lie subalgebra are all of classical type. It is known from [FRT2] that in
this case UP

q (g) (where the subscript P means that we are taking a “simply-connected”
quantum group) admits an alternative presentation, in which the generators are the so-
called L–operators, denoted l

(ε)
i,j with ε = ±1 and i, j ranging in a suitable set of indices

(see [FRT2], §2). Now, if we consider instead the R–subalgebra H generated by the L–
operators, we get at once from the very description of the relations between the l

(ε)
i,j ’s given

in [FRT2] that H is a Hopf R–subalgebra of UP
q (g), and more precisely it is a QFA for

the connected simply-connected dual Poisson group G? .
When computing H∨, it is generated by the elements (q − 1)−1

l
(ε)
i,j ; even more, the

elements (q − 1)−1
l
(+)
i,i+1 and (q − 1)−1

l
(−)
i+1,i are enough to generate. Now, Theorem 12 in

[FRT2] shows that these latter generators are simply multiples of the Chevalley generators
of UP

q (g) (in the sense of Jimbo, Drinfeld, etc.), by a coefficient ±qs
(
1 + q−1

)
, for some

s ∈ Z , times a “toral” generator: this proves directly that H∨ is a QrUEA associated to g ,
that is the dual Lie bialgebra of G∗, as prescribed by Theorem 2.2. Conversely, if we start
from UP

q (g), again Theorem 12 of [FRT2] shows that the
(
q − q−1

)−1
l
(ε)
i,j ’s are quantum

root vectors in UP
q (g). Then when computing UP

q (g)′ we can shorten a lot the analysis in
§5.3, because the explicit expression of the coproduct on the L–operators given in [FRT2]
— roughly, ∆ is given on them by a standard “matrix coproduct” — tells us directly that
all the

(
1 + q−1

)−1
l
(ε)
i,j ’s do belong to UP

q (g)′, and again by a PBW argument we conclude

that UP
q (g)′ is generated by these rescaled L–operators, i.e. the

(
1 + q−1

)−1
l
(ε)
i,j .

Therefore, we can say in short that shifting from H to H∨ or from UP
q (g) to UP

q (g)′

essentially amounts — up to rescaling by irrelevant factors (in that they do not vanish at
q = 1 ) — to switching from the presentation of UP

q (g) via L–operators (after [FRT2]) to
the presentation of Serre-Chevalley type (after Drinfeld and Jimbo), and conversely. See
also the analysis in [Ga7] for the cases g = gln and g = sln .

7.10 The cases Uq(gln) , Fq[GLn] and Fq[Mn] . In [Ga2], §5.2, a certain algebra
Uq(gln) is considered as a quantization of gln ; due to their strict relationship, from the
analysis we did for the case of sln one can easily deduce a complete description of Uq(gln)′

and its specialization at q = 1 , and also verify that
(
Uq(gln)′

)∨ = Uq(gln) .
Similarly, we can consider the unital associative R–algebra Fq[Mn] with generators

ρij (i, j = 1, . . . , n ) and relations ρijρik = q ρikρij , ρikρhk = q ρhkρik (for all j < k ,
i < h ), ρilρjk = ρjkρil , ρikρjl − ρjlρik =

(
q − q−1

)
ρilρjk (for all i < j , k < l )

— i.e. like for SLn , but for skipping the last relation. This is the celebrated standard
quantization of F [Mn], the function algebra of the variety Mn of (n × n)–matrices over
k : it is a k–bialgebra, whose structure is given by formulas ∆(ρij) =

∑n
k=1 ρik ⊗ ρkj ,

ε(ρij) = δij (for all i, j = 1, . . . , n ) again, but it is not a Hopf algebra. The quantum
determinant detq(ρij) :=

∑
σ∈Sn

(−q)l(σ)
ρ1,σ(1) ρ2,σ(2) · · · ρn,σ(n) is central in Fq[Mn], so

by standard theory we can extend Fq[Mn] by adding a formal inverse to detq(ρij) , thus
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getting a larger algebra Fq[GLn] := Fq[Mn]
[
detq(ρij)

−1] : this is now a Hopf algebra,

with antipode S(ρij) = (−q)i−j
detq

(
(ρhk)k 6=i

h 6=j

)
(for all i, j = 1, . . . , n ), the well-known

standard quantization of F [GLn], due to Manin (see [Ma]).
Applying Drinfeld’s functor ( )∨ w.r.t. ~ := (q − 1) at Fq[GLn] we can repeat stepwise

the analysis made for Fq[SLn]: then we have that Fq[GLn]∨ is generated by the rij ’s and
(q − 1)−1(

detq(ρij)−1
)
, the sole real difference being the lack of the relation detq(ρij) = 1 ,

which implies one relation less among the rij ’s inside Fq[GLn]∨, hence also one relation
less among their cosets modulo (q − 1). The outcome is pretty similar, in particular
Fq[GLn]∨

∣∣∣
q=1

= U(gln
∗) (cf. [Ga2], §6.2). Even more, we can do the same with Fq[Mn] :

things are even easier, because we have only the rij ’s alone which generate Fq[Mn]∨, with
no relation coming from the relation detq(ρij) = 1 ; nevertheless at q = 1 the relations

among the cosets of the rij ’s are exactly the same as in the case of Fq[GLn]∨
∣∣∣
q=1

, whence

we get Fq[Mn]∨
∣∣∣
q=1

= U(gln
∗) . In particular, we get that Fq[Mn]∨

∣∣∣
q=1

is a Hopf algebra,

although both Fq[Mn] and Fq[Mn]∨ are only bialgebras, not Hopf algebras: so this gives

a non-trivial explicit example of what claimed in the first part of Theorem 3.7.

Finally, an analysis of the relationship between Drinfeld functors and L–operators about
UP

q (gln) can be done again, exactly like in §7.9, leading to entirely similar results.

§ 8 Third example: quantum three-dimensional Euclidean group

8.1 The classical setting. Let k be any field of characteristic p ≥ 0 . Let G :=
E2(k) ≡ E2 , the three-dimensional Euclidean group; its tangent Lie algebra g = e2 is
generated by f , h, e with relations [h, e] = 2e, [h, f ] = −2f , [e, f ] = 0 . The formulas
δ(f) = h⊗ f − f ⊗ h , δ(h) = 0 , δ(e) = h⊗ e− e⊗ h , make e2 into a Lie bialgebra, hence
E2 into a Poisson group. These also give a presentation of the co-Poisson Hopf algebra
U(e2) (with standard Hopf structure). If p > 0 , we consider on e2 the p–operation given
by e[p ] = 0 , f [p ] = 0 , h[p ] = h .

On the other hand, the function algebra F [E2] is the unital associative commutative
k–algebra with generators b, a±1, c, with Poisson Hopf algebra structure given by

∆(b) = b⊗ a−1 + a⊗ b , ∆
(
a±1

)
= a±1 ⊗ a±1 , ∆(c) = c⊗ a + a−1 ⊗ c

ε(b) = 0 , ε
(
a±1

)
= 1 , ε(c) = 0 , S(b) = −b , S

(
a±1

)
= a∓1 , S(c) = −c

{
a±1, b

}
= ±a±1b ,

{
a±1, c

}
= ±a±1c , {b, c} = 0

We can realize E2 as E2 =
{

(b, a, c)
∣∣ b, c ∈ k, a ∈ k \ {0}}

, with group operation

(b1, a1, c1) · (b2, a2, c2) =
(
b1a

−1
2 + a1b2 , a1a2 , c1a2 + a−1

1 c2

)
;
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in particular the centre of E2 is simply Z :=
{
(0, 1, 0), (0,−1, 0)

}
, so there is only one

other connected Poisson group having e2 as Lie bialgebra, namely the adjoint group aE2 :=
E2

/
Z (the left subscript a stands for “adjoint”). Then F [aE2] coincides with the Poisson

Hopf subalgebra of F [aE2] spanned by products of an even number of generators, i.e.
monomials of even degree: as a unital subalgebra, this is generated by ba, a±2, and a−1c.

The dual Lie bialgebra g∗ = e2
∗ is the Lie algebra with generators f, h, e , and relations

[h, e] = 2e, [h, f ] = 2f, [e, f ] = 0 , with Lie cobracket given by δ(f ) = f ⊗ h − h ⊗ f,
δ(h) = 0, δ(e) = h⊗ e− e⊗h (we choose as generators f := f∗ , h := 2h∗ , e := e∗ , where{
f∗, h∗, e∗

}
is the basis of e2

∗ which is the dual of the basis {f, h, e} of e2 ). If p > 0 ,
the p–operation of e2

∗ is given by e[p ] = 0 , f [p ] = 0 , h[p ] = h . All this again gives a
presentation of U (e2∗) too. The simply connected algebraic Poisson group with tangent
Lie bialgebra e2

∗ can be realized as the group of pairs of matrices

sE2
∗ :=

{((
z−1 0
y z

)
,

(
z x
0 z−1

)) ∣∣∣∣∣ x, y ∈ k, z ∈ k \ {0}
}

;

this group has centre Z :=
{
(I, I), (−I,−I)

}
, so there is only one other (Poisson) group

with Lie (bi)algebra e2
∗ , namely the adjoint group aE2

∗ := sE2
∗
/

Z .

Therefore F
[
sE2

∗] is the unital associative commutative k–algebra with generators x,
z±1, y, with Poisson Hopf structure given by

∆(x) = x⊗ z−1 + z ⊗ x , ∆
(
z±1

)
= z±1 ⊗ z±1 , ∆(y) = y ⊗ z−1 + z ⊗ y

ε(x) = 0 , ε
(
z±1

)
= 1 , ε(y) = 0 , S(x) = −x , S

(
z±1

)
= z∓1 , S(y) = −y

{x, y} = 0 ,
{
z±1, x

}
= ±z±1x ,

{
z±1, y

}
= ∓z±1y

(N.B.: with respect to this presentation, we have f = ∂y

∣∣
e
, h = z ∂z

∣∣
e
, e = ∂x

∣∣
e
, where

e is the identity element of sE2
∗ ). Moreover, F

[
aE2

∗] can be identified with the Poisson
Hopf subalgebra of F

[
sE2

∗] spanned by products of an even number of generators, i.e.
monomials of even degree: this is generated, as a unital subalgebra, by xz, z±2, and z−1y.

8.2 The QrUEAs Us
q (e2) and Ua

q (e2) . We turn now to quantizations: the situation
is much similar to the sl2 case, so we follow the same pattern, but we stress a bit more the
occurrence of different groups sharing the same tangent Lie bialgebra.

Let R be a domain and let ~ ∈ R \ {0} and q := ~+ 1 ∈ R be like in §7.2.
Let Uq(g) = Us

q(e2) (where the superscript s stands for “simply connected”) be the
associative unital F (R)–algebra with generators F , L±1, E, and relations

LL−1 = 1 = L−1L , L±1F = q∓1FL±1 , L±1E = q±1EL±1 , EF = FE .

This is a Hopf algebra, with Hopf structure given by

∆(F ) = F ⊗ L−2 + 1⊗ F , ∆
(
L±1

)
= L±1 ⊗ L±1 , ∆(E) = E ⊗ 1 + L2 ⊗ E

ε(F ) = 0 , ε
(
L±1

)
= 1 , ε(E) = 0 , S(F ) = −FL2, S

(
L±1

)
= L∓1, S(E) = −L−2E .
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Then let Us
q (e2) be the R–subalgebra of Us

q(e2) generated by F , D± :=
L±1 − 1
q − 1

,

E. From the definition of Us
q(e2) one gets a presentation of Us

q (e2) as the associative
unital algebra with generators F , D±, E and relations

D+E = qED+ + E , FD+ = qD+F + F , ED− = qD−E + E , D−F = qFD− + F

EF = FE , D+D− = D−D+ , D+ + D− + (q − 1)D+D− = 0

with a Hopf structure given by

∆(E) = E ⊗ 1 + 1⊗ E + 2(q − 1)D+ ⊗ E + (q − 1)2 ·D2
+ ⊗ E

∆(D±) = D± ⊗ 1 + 1⊗D± + (q − 1) ·D± ⊗D±

∆(F ) = F ⊗ 1 + 1⊗ F + 2(q − 1)F ⊗D− + (q − 1)2 · F ⊗D2
−

ε(E) = 0 , S(E) = −E − 2(q − 1)D−E − (q − 1)2D2
−E

ε(D±) = 0 , S(D±) = D∓
ε(F ) = 0 , S(F ) = −F − 2(q − 1)FD+ − (q − 1)2FD2

+ .

The “adjoint version” of Us
q(e2) is the unital subalgebra Ua

q (e2) generated by F , K±1 :=
L±2, E, which is clearly a Hopf subalgebra. It also has an R–integer form Ua

q (e2), the

unital R–subalgebra generated by F , H± :=
K±1 − 1

q − 1
, E : this has relations

EF = FE , H+E = q2EH+ + (q + 1)E , FH+ = q2H+F + (q + 1)F , H+H− = H−H+

EH− = q2H−E + (q + 1)E , H−F = q2FH− + (q + 1)F , H+ + H− + (q − 1)H+H− = 0

and it is a Hopf subalgebra, with Hopf operations given by

∆(E) = E ⊗ 1 + 1⊗E + (q − 1) ·H+ ⊗E , ε(E) = 0 , S(E) = −E − (q − 1)H−E

∆(H±) = H± ⊗ 1 + 1⊗H± + (q − 1) ·H± ⊗H± , ε(H±) = 0 , S(H±) = H∓

∆(F ) = F ⊗ 1 + 1⊗ F + (q − 1) · F ⊗H− , ε(F ) = 0 , S(F ) = −F − (q − 1)FH+ .

It is easy to check that Us
q (e2) is a QrUEA, whose semiclassical limit is U(e2) : in fact,

mapping the generators F mod (q−1), D± mod (q−1), E mod (q−1) respectively to
f , ±h

/
2, e ∈ U(e2) gives an isomorphism Us

q (e2)
/

(q − 1)Us
q (e2)

∼=−→U(e2) of co-Poisson
Hopf algebras. Similarly, Ua

q (e2) is a QrUEA too, with semiclassical limit U(e2) again:

here a co-Poisson Hopf algebra isomorphism Ua
q (e2)

/
(q− 1)Ua

q (e2) ∼= U(e2) is given
mapping F mod (q−1), H± mod (q−1), E mod (q−1) respectively to f , ±h, e ∈ U(e2) .

8.3 Computation of Uq(e2)
′ and specialization Uq(e2)

′ q→1−−−→F
[
E2
∗] . This sec-

tion is devoted to compute Us
q (e2)

′ and Ua
q (e2)

′, and their specialization at q = 1 : ev-
erything goes on as in §7.3, so we can be more sketchy. From definitions we have, for
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any n ∈ N , ∆n(E) =
∑n

s=1 K⊗(s−1) ⊗ E ⊗ 1⊗(n−s), so δn(E) = (K − 1)⊗(n−1) ⊗ E =
(q − 1)n−1 · H⊗(n−1)

+ ⊗ E , whence δn

(
(q − 1)E

) ∈ (q − 1)n
Ua

q (e2) \ (q − 1)n+1
Ua

q (e2)
thus (q − 1)E ∈ Ua

q (e2)
′, whereas E /∈ Ua

q (e2)
′. Similarly, we have (q − 1)F , (q − 1)H± ∈

Ua
q (e2)

′ \ (q − 1)Ua
q (e2)

′ . Therefore Ua
q (e2) contains the subalgebra U ′ generated by

Ḟ := (q − 1)F , Ḣ± := (q − 1)H±, Ė := (q − 1)E . On the other hand, Ua
q (e2)

′ is

clearly the R–span of the set
{

F aHb
+Hc

−Ed
∣∣∣ a, b, c, d ∈ N

}
: to be precise, the set

{
F aHb

+K−[b/2]Ed
∣∣∣ a, b, d ∈ N

}
=

{
F aHb

+

(
1 + (q − 1)H−

)[b/2]
Ed

∣∣∣ a, b, d ∈ N
}

is an R–basis of Ua
q (e2)

′; therefore, a straightforward computation shows that any element
in Ua

q (e2)
′ does necessarily lie in U ′ , thus Ua

q (e2)
′ coincides with U ′ . Moreover, since

Ḣ± = K±1 − 1 , the unital algebra Ua
q (e2)

′ is generated by Ḟ , K±1 and Ė as well.
The previous analysis — mutatis mutandis — ensures also that Us

q (e2)
′ coincides with

the unital R–subalgebra U ′′ of Us
q(e2) generated by Ḟ := (q − 1)F , Ḋ± := (q − 1)D±,

Ė := (q − 1)E ; in particular, Us
q (e2)

′ ⊃ Ua
q (e2)

′ . Moreover, as Ḋ± = L±1 − 1 , the unital
algebra Us

q (e2)
′ is generated by Ḟ , L±1 and Ė as well. Thus Us

q (e2)
′ is the unital associative

R–algebra with generators F := LḞ , L±1 := L±1, E := ĖL−1 and relations

LL−1 = 1 = L−1L , EF = FE , L±1F = q∓1FL±1 , L±1E = q±1EL±1

with Hopf structure given by

∆(F) = F ⊗ L−1 + L ⊗ F , ∆
(L±1

)
= L±1 ⊗ L±1 , ∆(E) = E ⊗ L−1 + L ⊗ E

ε(F) = 0 , ε
(L±1

)
= 1 , ε(E) = 0 , S(F) = −F , S

(L±1
)

= L∓1 , S(E) = −E .

As q → 1 , this yields a presentation of the function algebra F
[
sE2

∗], and the Poisson
bracket that F

[
sE2

∗] earns from this quantization process coincides with the one coming
from the Poisson structure on sE2

∗ : namely, there is a Poisson Hopf algebra isomorphism

Us
q (e2)

′
/

(q − 1)Us
q (e2)

′ ∼=−−−→F
[
sE2

∗]

given by E mod (q − 1) 7→ x , L±1 mod (q − 1) 7→ z±1 , F mod (q − 1) 7→ y . That is,
Us

q (e2)
′ specializes to F

[
sE2

∗] as a Poisson Hopf algebra, as predicted by Theorem 2.2.
In the “adjoint case”, from the definition of U ′ and from Ua

q (e2)
′ = U ′ we find that

Ua
q (e2)

′ is the unital associative R–algebra with generators Ḟ , K±1, Ė and relations

KK−1 = 1 = K−1K , ĖḞ = Ḟ Ė , K±1Ḟ = q∓2ḞK±1 , K±1Ė = q±2ĖK±1

with Hopf structure given by

∆
(
Ḟ

)
= Ḟ ⊗K−1 + 1⊗ Ḟ , ∆

(
K±1

)
= K±1 ⊗K±1 , ∆

(
Ė

)
= Ė ⊗ 1 + K ⊗ Ė

ε
(
Ḟ

)
= 0 , ε

(
K±1

)
= 1 , ε

(
Ė

)
= 0 , S

(
Ḟ

)
= −ḞK , S

(
K±1

)
= K∓1, S

(
Ė

)
= −K−1Ė .
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The conclusion is that a Poisson Hopf algebra isomorphism

Ua
q (e2)

′
/

(q − 1)Ua
q (e2)

′ ∼=−−−→F
[
aE2

∗] (
⊂ F

[
sE2

∗])

exists, given by Ė mod (q−1) 7→ xz , K±1 mod (q−1) 7→ z±2 , Ḟ mod (q−1) 7→ z−1y ,
i.e. Ua

q (e2)
′ specializes to F

[
aE2

∗] as a Poisson Hopf algebra, according to Theorem 2.2.
To finish with, note that all this analysis (and its outcome) is entirely characteristic-free.

8.4 The identity
(
Uq(e2)

′)∨ = Uq(e2) . The goal of this section is to check that part
of Theorem 2.2(b) claiming that H ∈ QrUEA =⇒ (

H ′)∨ = H both for H = Us
q (e2) and

H = Ua
q (e2) . In addition, the proof below will work for Char (k) = 0 and Char (k) > 0

too, thus giving a stronger result than predicted by Theorem 2.2(b).
First, Us

q (e2)
′ is clearly a free R–module, with basis

{
FaLdEc

∣∣∣ a, c ∈ N, d ∈ Z
}

,

hence the set B :=
{
Fa(L±1 − 1)bEc

∣∣∣ a, b, c ∈ N
}

, is an R–basis as well. Second, as

ε(F) = ε
(L±1 − 1

)
= ε(E) = 0 , the ideal J := Ker

(
ε : Us

q (e2)
′ −→ R

)
is the span of

B \ {1}. Now I := Ker
(
Us

q (e2)
′ ε−−³ R

q 7→1−−−³k
)

= J + (q − 1) · Us
q (e2)

′ , therefore
(
Us

q (e2)
′)∨ :=

∑
n≥0

(
(q − 1)−1

I
)n

is generated — as a unital R–subalgebra of Us
q(e2) —

by (q − 1)−1F = LF , (q − 1)−1(L − 1) = D+, (q − 1)−1(L−1 − 1
)

= D−, (q − 1)−1E =
EL−1, hence by F , D±, E, so it coincides with Us

q (e2), q.e.d.
The situation is entirely similar for the adjoint case: one simply has to change F , L±1,

E respectively with Ḟ , K±1, Ė, and D± with H±, then everything goes through as above.

8.5 The quantum hyperalgebra Hyp q(e2). Like for semisimple groups, we can
define “quantum hyperalgebras” attached to e2 mimicking what done in §7.5. Namely,
we can first define a Hopf subalgebra of Us

q(e2) over Z
[
q, q−1

]
whose specialization at

q = 1 is exactly the Kostant-like Z–integer form UZ(e2) of U(e2) (generated by divided
powers, and giving the hyperalgebra Hyp (e2) over any field k by scalar extension, namely
Hyp (e2) = k⊗Z UZ(e2) ), and then take its scalar extension over R .

To be precise, let Hyp s,Z
q (e2) be the unital Z

[
q, q−1

]
–subalgebra of Us

q(e2) (defined like

above but over Z
[
q, q−1

]
) generated by the “quantum divided powers” F (n) := Fn

/
[n]q! ,

(
L ; c

n

)
:=

n∏
r=1

qc+1−rL− 1
qr − 1

, E(n) := En
/

[n]q! (for all n ∈ N and c ∈ Z , with notation

of §7.5) and by L−1. Comparing with the case of sl2 one easily sees that this is a Hopf sub-
algebra of Us

q(e2), and Hyp s,Z
q (e2)

∣∣∣
q=1

∼= UZ(e2) ; thus Hyp s
q(e2) := R⊗Z[q,q−1]Hyp s,Z

q (e2)

(for any R like in §8.2, with k := R
/
~R and p := Char (k) ) specializes at q = 1 to the

k–hyperalgebra Hyp (e2). In addition, among all the
(

L ; c
n

)
’s it is enough to take only

those with c = 0 . From now on we assume p > 0 .
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Again a strict comparison with the sl2 case — with some shortcuts, since the defin-
ing relations of Hyp s

q(e2) are simpler! — shows us that Hyp s
q(e2)

′ is the unital R–
subalgebra of Hyp s

q(e2) generated by L−1 and the “rescaled quantum divided powers”

(q−1)n
F (n) , (q−1)n

(
L ; 0

n

)
and (q−1)n

E(n) for all n ∈ N . It follows that Hyp s
q(e2)

′
∣∣∣
q=1

is generated by the corresponding specializations of (q − 1)pr

F (pr) , (q − 1)pr
(

L ; 0
pr

)
and

(q − 1)pr

E(pr) for all r ∈ N : this proves that the spectrum of Hyp s
q(e2)

′
∣∣∣
q=1

has dimen-

sion 0 and height 1, and its cotangent Lie algebra has basis
{

(q−1)pr

F (pr), (q−1)pr
(

L ; 0
pr

)
,

(q−1)pr

E(pr) mod (q− 1)Hyp s
q(g)′ mod J 2

∣∣∣ r ∈ N
}

(where J is the augmentation

ideal of Hyp s
q(e2)

′
∣∣∣
q=1

, so that J
/

J 2 is the aforementioned cotangent Lie bialgebra).

Moreover,
(
Hyp s

q(e2)
′)∨ is generated by (q − 1)pr−1

F (pr) , (q − 1)pr−1
(

L ; 0
pr

)
, L−1 and

(q − 1)pr−1
E(pr) (for all r ∈ N ): in particular

(
Hyp s

q(e2)
′)∨ $ Hyp s

q(e2) , and finally(
Hyp s

q(e2)
′)∨∣∣∣

q=1
is generated by the cosets modulo (q − 1) of the elements above, which

in fact form a basis of the restricted Lie bialgebra k such that
(
Hyp s

q(e2)
′)∨∣∣∣

q=1
= u(k) .

All this analysis was made starting from Us
q(e2), which gave “simply connected quantum

objects”. If we start instead from Ua
q(e2), we get “adjoint quantum objects” following the

same pattern but for replacing everywhere L±1 by K±1 : apart from these changes, the
analysis and its outcome will be exactly the same. Like for sl2 (cf. §7.5), all the adjoint
quantum objects — i.e. Hyp a

q (e2), Hyp a
q (e2)

′ and
(
Hyp a

q (e2)
′)∨ — will be strictly contained

in the corresponding simply connected quantum objects; nevertheless, the semiclassical
limits will be the same in the case of Hyp q(e2) (always yielding Hyp (e2) ) and in the case
of

(
Hyp q(e2)

′)∨ (giving u(k), in both cases), while the semiclassical limit of Hyp q(e2)
′ in

the simply connected case will be a (countable) covering of that in the adjoint case.

8.6 The QFAs Fq[E2] and Fq[aE2] . In this and the following sections we look at
Theorem 2.2 starting from QFAs, to get QrUEAs out of them.

We begin by introducing a QFA for the Euclidean groups E2 and aE2 . Let Fq[E2] be
the unital associative R–algebra with generators a±1, b, c and relations

a b = q b a , a c = q c a , b c = c b

endowed with the Hopf algebra structure given by

∆
(
a±1

)
= a±1 ⊗ a±1 , ∆(b) = b⊗ a−1 + a⊗ b , ∆(c) = c⊗ a + a−1 ⊗ c

ε
(
a±1

)
= 1 , ε(b) = 0 , ε(c) = 0 , S

(
a±1

)
= a∓1 , S(b) = −q−1 b , S(c) = −q+1 c .

Define Fq[aE2] as the R–submodule of Fq[E2] spanned by the products of an even
number of generators, i.e. monomials of even degree in a±1, b, c : this is a unital subalgebra
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of Fq[E2], generated by β := b a, α±1 := a±2, and γ := a−1c . Let also Fq[E2] :=(
Fq[E2]

)
F

and Fq[aE2] :=
(
Fq[aE2]

)
F

, which have the same presentation than Fq[E2]
and Fq[aE2] but over F (R). Essentially by definition, both Fq[E2] and Fq[aE2] are QFAs
(at ~ = q − 1 ), whose semiclassical limit is F [E2] and F [aE2] respectively.

8.7 Computation of Fq[E2]
∨ and Fq[aE2]

∨ and specializations Fq[E2]
∨ q→1−−−→U(g∗)

and Fq[aE2]
∨ q→1−−−→U(g∗) . In this section we go and compute Fq[G]∨ and its semiclassical

limit (i.e. its specialization at q = 1 ) for both G = E2 and G = aE2 .
First, Fq[E2] is free over R, with basis

{
bbaacc

∣∣∣ a ∈ Z, b, c ∈ N
}

, so the set Bs :={
bb(a±1 − 1)acc

∣∣∣ a, b, c ∈ N
}

is an R–basis as well. Second, since ε(b) = ε
(
a±1 − 1

)
=

ε(c) = 0 , the ideal J := Ker
(
ε : Fq[E2] −−→ R

)
is the span of Bs \ {1} . Now I :=

Ker
(
Fq[E2]

ε−−−³ R
q 7→1−−−³k

)
= J+(q−1)·Fq[E2] , thus Fq[E2]

∨ :=
∑

n≥0

(
(q−1)−1

I
)n

turns out to be the unital R–algebra (subalgebra of Fq[E2]) with generators D± :=
a±1 − 1
q − 1

, E :=
b

q − 1
, and F :=

c
q − 1

and relations

D+E = qED+ + E , D+F = qFD+ + F , ED− = qD−E + E , FD− = qD−F + F

EF = FE , D+D− = D−D+ , D+ + D− + (q − 1)D+D− = 0

with a Hopf structure given by

∆(E) = E ⊗ 1 + 1⊗ E + (q − 1)
(
E ⊗D− + D+ ⊗ E

)
, ε(E) = 0 , S(E) = −q−1E

∆(D±) = D± ⊗ 1 + 1⊗D± + (q − 1) ·D± ⊗D± , ε(D±) = 0 , S(D±) = D∓
∆(F ) = F ⊗ 1 + 1⊗ F + (q − 1)

(
F ⊗D+ + D− ⊗ F

)
, ε(F ) = 0 , S(F ) = −q+1F .

This implies that Fq[E2]
∨ q→1−−−→U(e2∗) as co-Poisson Hopf algebras, for a co-Poisson Hopf

algebra isomorphism
Fq[E2]

∨
/

(q − 1)Fq[E2]
∨ ∼=−−−→U(e2∗)

exists, given by D± mod (q − 1) 7→ ±h
/
2 , E mod (q − 1) 7→ e , F mod (q − 1) 7→ f ;

thus Fq[E2]
∨ does specialize to U(e2∗) as a co-Poisson Hopf algebra, q.e.d.

Similarly, if we consider Fq[aE2] the same analysis works again. In fact, Fq[aE2] is

free over R, with basis Ba :=
{

βb(α±1 − 1)a
γc

∣∣∣ a, b, c ∈ N
}

; therefore, as above the

ideal J := Ker
(
ε : Fq[aE2] → R

)
is the span of Ba \ {1} . Now, we have I :=

Ker
(
Fq[aE2]

ε−−−³ R
q 7→1−−−³k

)
= J+(q−1)·Fq[aE2] , so Fq[aE2]

∨ :=
∑

n≥0

(
(q−1)−1

I
)n

is nothing but the unital R–algebra (subalgebra of Fq[aE2] ) with generators H± :=
α±1 − 1
q − 1

, E′ :=
β

q − 1
, and F ′ :=

γ

q − 1
and relations

E′F ′=q−2F ′E′, H+E′=q2E′H+ +(q +1)E′, H+F ′=q2F ′H+ +(q +1)F ′, H+H−=H−H+

E′H− = q2H−E′ + (q + 1)E′, F ′H− = q2H−F ′ + (q + 1)F ′, H+ + H− + (q− 1)H+H− = 0
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with a Hopf structure given by

∆(E′) = E′⊗1+1⊗E′+(q−1) ·H+⊗E′ , ε(E′) = 0 , S(E′) = −E′−(q−1)H−E′

∆(H±) = H±⊗ 1 + 1⊗H± + (q− 1) ·H±⊗H± , ε(H±) = 0 , S(H±) = H∓

∆(F ′) = F ′⊗1+1⊗F ′+(q−1) ·H−⊗F ′ , ε(F ′) = 0 , S(F ′) = −F ′−(q−1)H+F ′ .

This implies that Fq[aE2]
∨ q→1−−−→U(e2∗) as co-Poisson Hopf algebras, for a co-Poisson

Hopf algebra isomorphism

Fq[aE2]
∨
/

(q − 1)Fq[aE2]
∨ ∼=−−−→U(e2∗)

is given by H± mod (q − 1) 7→ ±h , E′ mod (q − 1) 7→ e , F ′ mod (q − 1) 7→ f ; so
Fq[aE2]

∨ too specializes to U(e2∗) as a co-Poisson Hopf algebra, as expected.

We finish noting that, once more, this analysis (and its outcome) is characteristic-free.

8.8 The identities
(
Fq[E2]

∨)′
= Fq[E2] and

(
Fq[aE2]

∨)′
= Fq[aE2] . In this section

we verify for the QFAs H = Fq[E2] and H = Fq[aE2] the validity of the part of Theorem
2.2(b) claiming that H ∈ QFA =⇒ (

H∨)′ = H . Once more, our arguments will prove
this result for Char (k) ≥ 0 , thus going beyond what forecasted by Theorem 2.2.

By induction we find formulas ∆n(E) =
∑

r+s+1=n a⊗r ⊗ E ⊗ (
a−1

)⊗s, ∆n(D±) =∑
r+s+1=n

(
a±1

)⊗r ⊗D±⊗ 1⊗s, and ∆n(F ) =
∑

r+s+1=n

(
a−1

)⊗r ⊗E⊗ a⊗s: these imply

δn(E) =
∑

r+s+1=n
(a− 1)⊗r ⊗ E ⊗ (

a−1 − 1
)⊗s

= (q − 1)n−1 ∑
r+s+1=n

D+
⊗r ⊗ E ⊗D−⊗s

δn(D±) =
(
a±1 − 1

)⊗(n−1) ⊗D± = (q − 1)n−1
D±⊗n

δn(F ) =
∑

r+s+1=n

(
a−1 − 1

)⊗r ⊗ E ⊗ (a− 1)⊗s = (q − 1)n−1 ∑
r+s+1=n

D−⊗r ⊗ E ⊗D+
⊗s

which gives Ė := (q − 1)E, Ḋ± := (q − 1)D±, Ḟ := (q − 1)F ∈ (
Fq[E2]

∨)′ \ (q − 1)·
·(Fq[E2]

∨)′
. So

(
Fq[E2]

∨)′
contains the unital R–subalgebra A′ generated (inside Fq[E2] )

by Ė, Ḋ± and Ḟ ; but Ė = b, Ḋ± = a±1 − 1, and Ḟ = c, thus A′ is just Fq[E2]. Since

Fq[E2]
∨ is the R–span of

{
EeD

d+
+ D

d−
− F f

∣∣∣ e, d+, d−, f ∈ N
}

, one easily sees — using the

previous formulas for ∆n — that in fact
(
Fq[E2]

∨)′
= A′ = Fq[E2] , q.e.d.

When dealing with the adjoint case, the previous arguments go through again: in
fact,

(
Fq[aE2]

∨)′
turns out to coincide with the unital R–subalgebra A′′ generated (inside

Fq[aE2] ) by Ė′ := (q− 1)E′ = β , Ḣ± := (q− 1)H± = α±1− 1 , and Ḟ ′ := (q− 1)F ′ = γ ;
but this is also generated by β, α±1 and γ, thus it coincides with Fq[aE2], q.e.d.
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§ 9 Fourth example: quantum Heisenberg group

9.1 The classical setting. Let k be any field of characteristic p ≥ 0 . Let G :=
Hn(k) = Hn , the (2 n + 1)–dimensional Heisenberg group; its tangent Lie algebra g = hn

is generated by { fi, h, ei | i = 1, . . . , n } with relations [ei, fj ] = δijh, [ei, ej ] = [fi, fj ] =
[h, ei] = [h, fj ] = 0 (∀ i, j = 1, . . . n ). The formulas δ(fi) = h ⊗ fi − fi ⊗ h , δ(h) = 0 ,
δ(ei) = h⊗ei−ei⊗h (∀ i = 1, . . . n ) make hn into a Lie bialgebra, which yields Hn with a
structure of Poisson group; these same formulas give also a presentation of the co-Poisson
Hopf algebra U(hn) (with the standard Hopf structure). When p > 0 we consider on hn

the p–operation uniquely defined by e
[p ]
i = 0 , f

[p ]
i = 0 , h[p ] = h (for all i = 1, . . . , n ),

which makes it into a restricted Lie bialgebra. The group Hn is usually realized as the
group of all square matrices

(
aij

)
i,j=1,...,n+2;

such that aii = 1 ∀ i and aij = 0 ∀ i, j such
that either i > j or 1 6= i < j or i < j 6= n+2 ; it can also be realized as Hn = kn×k×kn

with group operation given by
(
a′, c′, b′

) · (a′′, c′′, b′′) =
(
a′ + a′′, c′ + c′′ + a′ ∗ b′′, b′ + b′′

)
,

where we use vector notation v = (v1, . . . , vn) ∈ kn and a′ ∗ b′′ :=
∑n

i=1 a′ib
′′
i is the

standard scalar product in kn ; in particular the identity of Hn is e = (0, 0, 0) and the
inverse of a generic element is given by

(
a, c, b

)−1 =
(−a ,−c + a ∗ b ,−b

)
. Therefore, the

function algebra F [Hn] is the unital associative commutative k–algebra with generators
a1, . . . , an, c, b1, . . . , bn, and with Poisson Hopf algebra structure given by

∆(ai) = ai ⊗ 1 + 1⊗ ai , ∆(c) = c⊗ 1 + 1⊗ c +
∑n

`=1a` ⊗ b` , ∆(bi) = bi ⊗ 1 + 1⊗ bi

ε(ai) = 0 , ε(c) = 0 , ε(bi) = 0 , S(ai) = −ai , S(c) = −c +
∑n

`=1a`b` , S(bi) = −bi

{ai, aj} = 0 , {ai, bj} = 0 , {bi, bj} = 0 , {c , ai} = ai , {c , bi} = bi

for all i, j = 1, . . . , n . (N.B.: with respect to this presentation, we have fi = ∂bi

∣∣
e
,

h = ∂c

∣∣
e
, ei = ∂ai

∣∣
e
, where e is the identity element of Hn ). The dual Lie bialgebra

g∗ = hn
∗ is the Lie algebra with generators fi, h, ei , and relations [h, ei] = ei, [h, fi] = fi,

[ei, ej ] = [ei, fj ] = [fi, fj ] = 0 , with Lie cobracket given by δ(fi) = 0, δ(h) =
∑n

j=1(ej ⊗
fj − fj ⊗ ej), δ(ei) = 0 for all i = 1, . . . , n (we take fi := f∗i , h := h∗ , ei := e∗i , where{

f∗i , h∗, e∗i | i = 1, . . . , n
}

is the basis of hn
∗ which is the dual of the basis { fi, h, ei | i =

1, . . . , n } of hn ). This again gives a presentation of U(hn
∗) too. If p > 0 then hn

∗ is
a restricted Lie bialgebra with respect to the p–operation given by e [p ]

i = 0 , f [p ]
i = 0 ,

h[p ] = h (for all i = 1, . . . , n ). The simply connected algebraic Poisson group with tangent
Lie bialgebra hn

∗ can be realized (with k? := k \ {0} ) as sHn
∗ = kn × k? × kn , with

group operation
(
α̇, γ̇, β̇

) · (α̌, γ̌, β̌
)

=
(
γ̌α̇ + γ̇−1α̌, γ̇γ̌, γ̌β̇ + γ̇−1β̌

)
; so the identity of

sHn
∗ is e = (0, 1, 0) and the inverse is given by

(
α, γ, β

)−1 =
(−α, γ−1,−β

)
. Its centre

is Z
(
sHn

∗) =
{
(0, 1, 0), (0,−1, 0)

}
=: Z , so there is only one other (Poisson) group with

tangent Lie bialgebra hn
∗ , that is the adjoint group aHn

∗ := sHn
∗
/

Z .

It is clear that F
[
sHn

∗] is the unital associative commutative k–algebra with generators
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α1, . . . , αn, γ±1, β1, . . . , βn, and with Poisson Hopf algebra structure given by

∆(αi) = αi ⊗ γ + γ−1 ⊗ αi , ∆
(
γ±1

)
= γ±1 ⊗ γ±1, ∆(βi) = βi ⊗ γ + γ−1 ⊗ βi

ε(αi) = 0 , ε
(
γ±1

)
= 1 , ε(βi) = 0 , S(αi) = −αi , S

(
γ±1

)
= γ∓1, S(βi) = −βi

{αi, αj} = {αi, βj} = {βi, βj} = {αi, γ} = {βi, γ} = 0 , {αi, βj} = δij

(
γ2 − γ−2

)/
2

for all i, j = 1, . . . , n (N.B.: with respect to this presentation, we have fi = ∂βi

∣∣
e
,

h = 1
2 γ ∂γ

∣∣
e
, ei = ∂αi

∣∣
e
, where e is the identity element of sHn

∗ ), and F
[
aHn

∗] can be
identified — as in the case of the Euclidean group — with the Poisson Hopf subalgebra of
F

[
aHn

∗] which is spanned by products of an even number of generators: this is generated,
as a unital subalgebra, by αiγ, γ±2, and γ−1βi ( i = 1, . . . , n ).

9.2 The QrUEAs Us
q (hn) and Ua

q (hn) . We switch now to quantizations. Once
again, let R be a domain and let ~ ∈ R \ {0} and q := 1 + ~ ∈ R be like in §7.2.

Let Uq(g) = Us
q(hn) be the unital associative F (R)–algebra with generators Fi, L±1,

Ei (i = 1, . . . , n ) and relations

LL−1 = 1 = L−1L , L±1F = FL±1 , L±1E = EL±1 , EiFj − FjEi = δij
L2 − L−2

q − q−1

for all i, j = 1, . . . , n ; we give it a structure of Hopf algebra, by setting (∀ i, j = 1, . . . , n )

∆(Ei) = Ei ⊗ 1 + L2 ⊗ Ei , ∆
(
L±1

)
= L±1 ⊗ L±1, ∆(Fi) = Fi ⊗ L−2 + 1⊗ Fi

ε(Ei) = 0 , ε
(
L±1

)
= 1 , ε(Fi) = 0 , S(Ei) = −L−2Ei, S

(
L±1

)
= L∓1, S(Fi) = −FiL

2

Note that
{ ∏n

i=1 F ai
i ·Lz ·∏n

i=1 Edi
i

∣∣∣ z ∈ Z, ai, di ∈ N, ∀ i
}

is an F (R)–basis of Us
q(hn).

Now, let Us
q (hn) be the unital R–subalgebra of Us

q(hn) generated by F1, . . . , Fn,

D :=
L− 1
q − 1

, Γ :=
L− L−2

q − q−1
, E1, . . . , En . Then Us

q (hn) can be presented as the associa-

tive unital algebra with generators F1, . . . , Fn, L±1, D, Γ , E1, . . . , En and relations

DX = XD , L±1X = XL±1 , ΓX = XΓ , EiFj − FjEi = δijΓ

L = 1 + (q − 1)D , L2 − L−2 =
(
q − q−1

)
Γ , D(L + 1)

(
1 + L−2

)
=

(
1 + q−1

)
Γ

for all X ∈ {
Fi, L

±1, D, Γ, Ei

}
i=1,...,n

and i, j = 1, . . . , n ; furthermore, Us
q (hn) is a Hopf

subalgebra (over R), with

∆(Γ ) = Γ ⊗ L2 + L−2 ⊗ Γ , ε(Γ ) = 0 , S(Γ ) = −Γ
∆(D) = D ⊗ 1 + L⊗D , ε(D) = 0 , S(D) = −L−1D .

Moreover, from relations L = 1 + (q − 1)D and L−1 = L3 − (
q − q−1

)
LΓ it follows that

Us
q (hn) = R–span of

{
n∏

i=1

F ai
i ·DbΓ c ·

n∏
i=1

Edi
i

∣∣∣∣ ai, b, c, di ∈ N, ∀ i = 1, . . . , n

}
(9.1)
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The “adjoint version” of Us
q(hn) is the unital subalgebra Ua

q (hn) generated by Fi, K±1 :=
L±2, Ei (i = 1, . . . , n), which is clearly a Hopf subalgebra. It also has an R–integer form

Ua
q (hn), namely the unital R–subalgebra generated by F1 , . . . , Fn , K±1, H :=

K − 1
q − 1

,

Γ :=
K −K−1

q − q−1
, E1, . . . , En : this has relations

HX = XH , K±1X = XK±1 , ΓX = XΓ , EiFj − FjEi = δijΓ

K = 1 + (q − 1)H , K −K−1 =
(
q − q−1

)
Γ , H

(
1 + K−1

)
=

(
1 + q−1

)
Γ

for all X ∈ {
Fi,K

±1,H, Γ, Ei

}
i=1,...,n

and i, j = 1, . . . , n , and Hopf operations given by

∆(Ei) = Ei ⊗ 1 + K ⊗ Ei , ε(Ei) = 0 , S(Ei) = −K−1Ei

∆
(
K±1

)
= K±1 ⊗K±1 , ε

(
K±1

)
= 1 , S

(
K±1

)
= K∓1

∆(H) = H ⊗ 1 + K ⊗H , ε(H) = 0 , S(H) = −K−1H
∆(Γ ) = Γ ⊗K−1 + K ⊗ Γ , ε(Γ ) = 0 , S(Γ ) = −Γ
∆(Fi) = Fi ⊗K−1 + 1⊗ Fi , ε(Fi) = 0 , S(Fi) = −FiK

+1

for all i = 1, . . . , n. One can easily check that Us
q (hn) is a QrUEA, with U(hn) as

semiclassical limit: in fact, mapping the generators Fi mod (q − 1), L±1 mod (q − 1),
D mod (q − 1) , Γ mod (q − 1) , Ei mod (q − 1) respectively to fi, 1, h

/
2, h, ei ∈

U(hn) yields a co-Poisson Hopf algebra isomorphism between Us
q (hn)

/
(q−1)Us

q (hn) and
U(hn). Similarly, Ua

q (hn) is a QrUEA too, again with limit U(hn) , for a co-Poisson Hopf

algebra isomorphism between Ua
q (hn)

/
(q − 1)Ua

q (hn) and U(hn) is given by mapping

the generators Fi mod (q − 1), K±1 mod (q − 1), H mod (q − 1), Γ mod (q − 1), Ei

mod (q − 1) respectively to fi, 1, h, h, ei ∈ U(hn).

9.3 Computation of Uq(hn)′ and specialization Uq(hn)′
q→1−−−→F

[
Hn

∗] . Here we
compute Us

q (hn)′ and Ua
q (hn)′, and their semiclassical limits, along the pattern of §7.3.

Definitions give, for any n ∈ N , ∆n(Ei) =
∑n

s=1 (L2)⊗(s−1) ⊗ Ei ⊗ 1⊗(n−s), hence
δn(Ei) = (q − 1)n−1 ·D⊗(n−1)⊗Ei so δn

(
(q−1)E

) ∈ (q − 1)n
Us

q (hn)\(q − 1)n+1
Us

q (hn)
whence Ėi := (q − 1) Ei ∈ Us

q (hn)′, whereas Ei /∈ Us
q (hn)′; similarly, we have Ḟi :=

(q − 1)Fi, L±1, Ḋ := (q − 1)D = L − 1, Γ̇ := (q − 1)Γ ∈ Us
q (hn)′ \ (q − 1)Us

q (hn)′, for
all i = 1, . . . , n . Therefore Us

q (hn)′ contains the subalgebra U ′ generated by Ḟi, L±1, Ḋ,
Γ̇ , Ėi ; we conclude that in fact Us

q (hn)′ = U ′ : this is easily seen — like for SL2 and for
E2 — using the formulas above along with (9.1). As a consequence, Us

q (hn)′ is the unital
R–algebra with generators Ḟ1, . . . , Ḟn, L±1, Ḋ, Γ̇ , Ė1, . . . , Ėn and relations

ḊẊ = ẊḊ , L±1Ẋ = ẊL±1 , Γ̇ Ẋ = ẊΓ̇ , ĖiḞj − ḞjĖi = δij(q − 1)Γ̇

L = 1 + Ḋ , L2 − L−2 =
(
1 + q−1

)
Γ̇ , Ḋ(L + 1)

(
1 + L−2

)
=

(
1 + q−1

)
Γ̇
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for all Ẋ ∈ {
Ḟi, L

±1, Ḋ, Γ̇ , Ėi

}
i=1,...,n

and i, j = 1, . . . , n , with Hopf structure given by

∆
(
Ėi

)
= Ėi ⊗ 1 + L2 ⊗ Ėi , ε

(
Ėi

)
= 0 , S

(
Ėi

)
= −L−2Ėi ∀ i = 1, . . . , n

∆
(
L±1

)
= L±1 ⊗ L±1 , ε

(
L±1

)
= 1 , S

(
L±1

)
= L∓1

∆
(
Γ̇

)
= Γ̇ ⊗ L2 + L−2 ⊗ Γ̇ , ε

(
Γ̇

)
= 0 , S

(
Γ̇

)
= −Γ

∆
(
Ḋ

)
= Ḋ ⊗ 1 + L⊗ Ḋ , ε

(
Ḋ

)
= 0 , S

(
Ḋ

)
= −L−1Ḋ

∆
(
Ḟi

)
= Ḟi ⊗ L−2 + 1⊗ Ḟi , ε

(
Fi

)
= 0 , S

(
Ḟi

)
= −ḞiL

2 ∀ i = 1, . . . , n .

A similar analysis shows that Ua
q (hn)′ coincides with the unital R–subalgebra U ′′ of

Ua
q (hn) generated by Ḟi, K±1, Ḣ := (q − 1)H, Γ̇ , Ėi (i = 1, . . . , n); in particular,

Ua
q (hn)′ ⊂ Us

q (hn)′ . Therefore Ua
q (hn)′ can be presented as the unital associative R–

algebra with generators Ḟ1, . . . , Ḟn, Ḣ, K±1, Γ̇ , Ė1, . . . , Ėn and relations

ḢẊ = ẊḢ , K±1Ẋ = ẊK±1 , Γ̇ Ẋ = ẊΓ̇ , ĖiḞj − ḞjĖi = δij(q − 1)Γ̇

K = 1 + Ḣ , K −K−1 =
(
1 + q−1

)
Γ̇ , Ḣ

(
1 + K−1

)
=

(
1 + q−1

)
Γ̇

for all Ẋ ∈ {
Ḟi,K

±1, K̇, Γ̇ , Ėi

}
i=1,...,n

and i, j = 1, . . . , n , with Hopf structure given by

∆
(
Ėi

)
= Ėi ⊗ 1 + K ⊗ Ėi , ε

(
Ėi

)
= 0 , S

(
Ėi

)
= −K−1Ėi ∀ i = 1, . . . , n

∆
(
K±1

)
= K±1 ⊗K±1 , ε

(
K±1

)
= 1 , S

(
K±1

)
= K∓1

∆
(
Γ̇

)
= Γ̇ ⊗K + K−1 ⊗ Γ̇ , ε

(
Γ̇

)
= 0 , S

(
Γ̇

)
= −Γ

∆
(
Ḣ

)
= Ḣ ⊗ 1 + K ⊗ Ḣ , ε

(
Ḣ

)
= 0 , S

(
Ḣ

)
= −K−1Ḣ

∆
(
Ḟi

)
= Ḟi ⊗K−1 + 1⊗ Ḟi , ε

(
Fi

)
= 0 , S

(
Ḟi

)
= −ḞiK ∀ i = 1, . . . , n .

As q → 1 , the presentation above yields an isomorphism of Poisson Hopf algebras

Us
q (hn)′

/
(q − 1)Us

q (hn)′
∼=−−−→F

[
sHn

∗]

given by Ėi mod (q−1) 7→ αiγ
+1 , L±1 mod (q−1) 7→ γ±1 , Ḋ mod (q−1) 7→ γ−1 , Γ̇

mod (q− 1) 7→ (
γ2−γ−2

)/
2 , Ḟi mod (q− 1) 7→ γ−1βi . In other words, the semiclassical

limit of Us
q (hn)′ is F

[
sHn

∗] , as predicted by Theorem 2.2(c) for p = 0 . Similarly, when
considering the “adjoint case”, we find a Poisson Hopf algebra isomorphism

Ua
q (hn)′

/
(q − 1)Ua

q (hn)′
∼=−−−→F

[
aHn

∗] (
⊂ F

[
sHn

∗])

given by Ėi mod (q−1) 7→ αiγ
+1 , K±1 mod (q−1) 7→ γ±2 , Ḣ mod (q−1) 7→ γ2−1 ,

Γ̇ mod (q − 1) 7→ (
γ2 − γ−2

)/
2 , Ḟi mod (q − 1) 7→ γ−1βi . That is to say, Ua

q (hn)′ has

semiclassical limit F
[
aHn

∗] , as predicted by Theorem 2.2(c) for p = 0 .
We stress the fact that this analysis is characteristic-free, so we get in fact that its

outcome does hold for p > 0 as well, thus “improving” Theorem 2.2(c) (like in §§7–8).
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9.4 The identity
(
Uq(hn)′

)∨
= Uq(hn) . In this section we verify the part of Theorem

2.2(b) claiming, for p = 0 , that H ∈ QrUEA =⇒ (
H ′)∨ = H , both for H = Us

q (hn) and
for H = Ua

q (hn) . In addition, the same arguments will prove such a result for p > 0 too.

To begin with, using (9.1) and the fact that Ḟi, Ḋ, Γ̇ , Ėi ∈ Ker
(
ε : Us

q (hn)′ −³ R
)

we
get that J := Ker (ε) is the R–span of M\{1} , where M is the set in the right-hand-side of

(9.1). Since
(
Us

q (hn)′
)∨

:=
∑

n≥0

(
(q−1)−1

I
)n

with I := Ker
(
Us

q (hn)′
ε−³ R

q 7→1−−−³k
)

=

J + (q − 1) · Us
q (hn)′ we have that

(
Us

q (hn)′
)∨

is generated — as a unital R–subalgebra
of Us

q(hn) — by (q − 1)−1
Ḟi = Fi , (q − 1)−1

Ḋ = D , (q − 1)−1
Γ̇ = Γ , (q − 1)−1

Ėi = Ei

(i = 1, . . . , n), so it coincides with Us
q (hn), q.e.d. In the adjoint case the procedure is

similar: one changes L±1, resp. Ḋ, with K±1, resp. Ḣ, and everything works as before.

9.5 The quantum hyperalgebra Hyp q(hn). Like in §§7.5 and 8.5, we can define
“quantum hyperalgebras” associated to hn . Namely, first we define a Hopf subalgebra of
Us

q(hn) over Z
[
q, q−1

]
whose specialization at q = 1 is the natural Kostant-like Z–integer

form UZ(hn) of U(hn) (generated by divided powers, and giving the hyperalgebra Hyp (hn)
over any field k by scalar extension), and then take its scalar extension over R .

To be precise, let Hyp s,Z
q (hn) be the unital Z

[
q, q−1

]
–subalgebra of Us

q(hn) (defined like

above but over Z
[
q, q−1

]
) generated by the “quantum divided powers” F

(m)
i := Fm

i

/
[m]q! ,

(
L ; c

m

)
:=

n∏
r=1

qc+1−rL− 1
qr − 1

, E
(m)
i := Em

i

/
[m]q! (for all m ∈ N , c ∈ Z and i = 1, . . . , n ,

with notation of §7.5) and by L−1. Comparing with the case of sl2 — noting that for
each i the quadruple (Fi, L, L−1, Ei) generates a copy of Us

q(sl2) — we see at once that

this is a Hopf subalgebra of Us
q(hn), and Hyp s,Z

q (hn)
∣∣∣
q=1

∼= UZ(hn) ; thus Hyp s
q(hn) :=

R ⊗Z[q,q−1] Hyp s,Z
q (hn) (for any R like in §8.2, with k := R

/
~R and p := Char (k) )

specializes at q = 1 to the k–hyperalgebra Hyp (hn). Moreover, among all the
(

L ; c
n

)
’s it

is enough to take only those with c = 0 . From now on we assume p > 0 .

Pushing forward the close comparison with the case of sl2 we also see that Hyp s
q(hn)′

is the unital R–subalgebra of Hyp s
q(hn) generated by L−1 and the “rescaled quantum

divided powers” (q−1)m
F

(m)
i , (q−1)m

(
L ; 0
m

)
and (q−1)m

E
(m)
i , for all m ∈ N and

i = 1, . . . , n . It follows that Hyp s
q(hn)′

∣∣∣
q=1

is generated by the specializations at q = 1

of (q − 1)pr

F
(pr)
i , (q − 1)pr

(
L ; 0
pr

)
and (q − 1)pr

E
(pr)
i , for all r ∈ N , i = 1, . . . , n :

this proves directly that the spectrum of Hyp s
q(hn)′

∣∣∣
q=1

has dimension 0 and height

1, and its cotangent Lie algebra has basis
{

(q−1)pr

F
(pr)
i , (q−1)pr

(
L ; 0
pr

)
, (q−1)pr

E
(pr)
i

mod (q−1) Hyp s
q(g)′ mod J 2

∣∣∣ r ∈ N , i = 1, . . . , n
}

(with J being the augmentation
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ideal of Hyp s
q(hn)′

∣∣∣
q=1

, so that J
/

J 2 is the aforementioned cotangent Lie bialgebra).

Finally,
(
Hyp s

q(hn)′
)∨ is generated by (q − 1)pr−1

F
(pr)
i , (q − 1)pr−1

(
L ; 0
pr

)
, L−1 and

(q − 1)pr−1
E

(pr)
i (for r ∈ N , i = 1, . . . , n ): in particular

(
Hyp s

q(hn)′
)∨ $ Hyp s

q(hn) , and(
Hyp s

q(hn)′
)∨∣∣∣

q=1
is generated by the cosets modulo (q − 1) of the elements above, which

form indeed a basis of the restricted Lie bialgebra k such that
(
Hyp s

q(hn)′
)∨∣∣∣

q=1
= u(k) .

The previous analysis stems from Us
q(hn), and so gives “simply connected quantum ob-

jects”. Instead we can start from Ua
q (hn), thus getting “adjoint quantum objects”, moving

along the same pattern but for replacing L±1 by K±1 throughout: apart from this, the
analysis and its outcome are exactly the same. Like for sl2 (cf. §7.5), all the adjoint quan-
tum objects — i.e. Hyp a

q (hn), Hyp a
q (hn)′ and

(
Hyp a

q (hn)′
)∨ — will be strictly contained

in the corresponding simply connected quantum objects; however, the semiclassical limits
will be the same in the case of Hyp q(g) (giving Hyp (hn), in both cases) and in the case
of

(
Hyp q(g)′

)∨ (always yielding u(k)), whereas the semiclassical limit of Hyp q(g)′ in the
simply connected case will be a (countable) covering of the limit in the adjoint case.

9.6 The QFA Fq[Hn] . Now we look at Theorem 2.2 the other way round, i.e. from
QFAs to QrUEAs. We begin by introducing a QFA for the Heisenberg group.

Let Fq[Hn] be the unital associative R–algebra with generators a1, . . . , an, c, b1, . . . ,
bn, and relations (for all i, j = 1, . . . , n )

aiaj = ajai , aibj = bjai , bibj = bjbi , c ai = ai c + (q − 1) ai , c bj = bj c + (q − 1) bj

with a Hopf algebra structure given by (for all i, j = 1, . . . , n )

∆(ai) = ai ⊗ 1 + 1⊗ ai , ∆(c) = c⊗ 1 + 1⊗ c +
n∑

j=1

a` ⊗ b` , ∆(bi) = bi ⊗ 1 + 1⊗ bi

ε(ai) = 0 , ε(c) = 0 , ε(bi) = 0 , S(ai) = −ai , S(c) = −c +
n∑

j=1

a`b` , S(bi) = −bi

and let also Fq[Hn] be the F (R)–algebra obtained from Fq[Hn] by scalar extension. Then

B :=
{ ∏n

i=1 aai
i ·cc ·∏n

j=1 bbj

j

∣∣∣ ai, c, bj ∈ N ∀ i, j
}

is an R–basis of Fq[Hn], hence an F (R)–
basis of Fq[Hn]. Moreover Fq[Hn] is a QFA (at ~ = q−1) with semiclassical limit F [Hn] .

9.7 Computation of Fq[Hn]∨ and specialization Fq[Hn]∨
q→1−−−→U(hn

∗) . This
section is devoted to compute Fq[Hn]∨ and its semiclassical limit (at q = 1 ).

Definitions imply that B \ {1} is an R–basis of J := Ker
(
ε : Fq[Hn] ³ R

)
, so

(
B \

{1})∪{
(q−1) ·1}

is an R–basis of I := Ker
(
Fq[Hn]

ε−³ R
q 7→1−−−³k

)
, for I = J +(q−1) ·

Fq[Hn] . Therefore Fq[Hn]∨ :=
∑

n≥0

(
(q − 1)−1

I
)n

is nothing but the unital R–algebra
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(subalgebra of Fq[Hn]) with generators Ei :=
ai

q − 1
, H :=

c
q − 1

, and Fi :=
bi

q − 1
( i = 1, . . . , n ) and relations (for all i, j = 1, . . . , n )

EiEj = EjEi , EiFj = FjEi , FiFj = FjFi , HEi = EiH + Ei , HFj = FjH + Fj

with Hopf algebra structure given by (for all i, j = 1, . . . , n )

∆(Ei) = Ei⊗1+1⊗Ei , ∆(H) = H⊗1+1⊗H+(q−1)
n∑

j=1

Ej⊗Fj , ∆(Fi) = Fi⊗1+1⊗Fi

ε(Ei) = ε(H) = ε(Fi) = 0 , S(Ei) =−Ei , S(H) =−H +(q−1)
n∑

j=1

EjFj , S(Fi) =−Fi .

At q = 1 this implies that Fq[Hn]∨
q→1−−−→U(hn

∗) as co-Poisson Hopf algebras, for a
co-Poisson Hopf algebra isomorphism

Fq[Hn]∨
/

(q − 1)Fq[Hn]∨
∼=−−−→U(hn

∗)

exists, given by Ei mod (q− 1) 7→ ±ei , H mod (q− 1) 7→ h , Fi mod (q− 1) 7→ fi , for
all i, j = 1, . . . , n ; so Fq[Hn]∨ specializes to U(hn

∗) as a co-Poisson Hopf algebra, q.e.d.

9.8 The identity
(
Fq[Hn]∨

)′
= Fq[Hn] . Finally, we check the validity of the part of

Theorem 2.2(b) claiming, when p = 0 , that H ∈ QFA =⇒ (
H∨)′ = H for the QFA

H = Fq[Hn] . Once more the proof works for all p ≥ 0 , so we do improve Theorem 2.2(b).
First of all, from definitions induction gives, for all m ∈ N ,

∆m(Ei) =
∑

r+s=m−1
1⊗r ⊗ Ei ⊗ 1⊗s , ∆m(Fi) =

∑
r+s=m−1

1⊗r ⊗ Fi ⊗ 1⊗s ∀ i = 1, . . . , n

∆m(H) =
∑

r+s=m−1
1⊗r ⊗H ⊗ 1⊗s +

m∑
i=1

m∑
j,k=1
j<k

1⊗(j−1) ⊗ Ei ⊗ 1⊗(k−j−1) ⊗ Fi ⊗ 1⊗(m−k)

so that δm(Ei) = δ`(H) = δm(Fi) = 0 for all m > 1, ` > 2 and i = 1, . . . , n ; moreover,
for Ėi := (q − 1)Ei = ai , Ḣ := (q − 1)H = c , Ḟi := (q − 1)Fi = bi (i = 1, . . . , n) one has

δ1

(
Ėi

)
= (q−1)Ei , δ1

(
Ḣ

)
= (q−1)H, δ1

(
Ḟi

)
= (q−1)Fi ∈ (q−1)Fq[Hn]∨\(q − 1)2Fq[Hn]∨

δ2

(
Ḣ

)
= (q − 1)2

∑n
i=1 Ei ⊗ Fi ∈ (q − 1)2

(
Fq[Hn]∨

)⊗2 \ (q − 1)3
(
Fq[Hn]∨

)⊗2
.

The outcome is that Ėi = ai, Ḣ = c, Ḟi = bi ∈
(
Fq[Hn]∨

)′
, so the latter algebra

contains the one generated by these elements, that is Fq[Hn]. Even more, Fq[Hn]∨ is

clearly the R–span of the set B∨ :=
{ ∏n

i=1 Eai
i ·Hc ·∏n

j=1 F
bj

j

∣∣∣ ai, c, bj ∈ N ∀ i, j
}

, so

from this and the previous formulas for ∆n one gets that
(
Fq[Hn]∨

)′
= Fq[Hn] , q.e.d.
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§ 10 Fifth example: non-commutative Hopf algebra of formal diffeomorphisms

10.1 The goal: from “quantum symmetries” to “classical (geometrical) sym-
metries”. The purpose of this section is to give a highly significant example of how the
global quantum duality principle — more precisely, the crystal duality principle of §5 —
may be applied. We consider a concrete sample, taken from the theory of non-commutative
renormalization of quantum electro-dynamics (=QED) performed by Brouder and Frabetti
in [BF2]. This is just one of several possible examples of the same type: indeed, several
cases of Hopf algebras built out of combinatorial data have been introduced in last years
both in (co)homological theories (see for instance [LR] and [Fo1–3], and references therein)
and in renormalization studies (starting with [CK1]). In most cases these Hopf algebras
are neither commutative nor cocommutative, and our discussion apply almost verbatim to
them, giving analogous results. So the present analysis of the “toy model” Hopf algebra
of [BF2], can be taken more in general as a pattern for all those cases. See also [Ga6].

Note that the Hopf algebras under study are usually thought of as “generalized sym-
metries” (or “quantum symmetries”, in physicists’ terminology); well, the crystal duality
principle tells us how to get out of them — via 1-parameter deformations! — “classical
geometric symmetries”, i.e., Poisson groups and Lie bialgebras; in other words, in a sense
this method yields the classical geometrical counterparts of a quantum symmetry object.

10.2 The classical data. Let k be a fixed field of characteristic zero.
Consider the set Gdif :=

{
x +

∑
n≥1 an xn+1

∣∣ an ∈ k ∀ n ∈ N+

}
of all formal series

starting with x : endowed with the composition product, this is a group, which can be seen
as the group of all “formal diffeomorphisms” f : k −→ k such that f(0) = 0 and f ′(0) = 1
(i.e. tangent to the identity), also known as the Nottingham group (see, e.g., [Ca] and
references therein). In fact, Gdif is an infinite dimensional (pro)affine algebraic group, whose
function algebra F

[Gdif
]

is generated by the coordinate functions an (n ∈ N+). Giving to
each an the weight7 ∂(an) := n , we have that F

[Gdif
]

is an N–graded Hopf algebra, with
polynomial structure F

[Gdif
]

= k[a1, a2, . . . , an, . . . ] and Hopf algebra structure given by

∆(an) = an ⊗ 1 + 1⊗ an +
∑n−1

m=1
am ⊗Qm

n−m(a∗) , ε(an) = 0

S(an) = −an −
∑n−1

m=1
am S

(
Qm

n−m(a∗)
)

= −an −
∑n−1

m=1
S(am)Qm

n−m(a∗)

where Q`
t(a∗) :=

∑t
k=1

(
`+1
k

)
P

(k)
t (a∗) and P

(k)
t (a∗) :=

∑
j1,...,jk>0

j1+···+jk=t

aj1 · · · ajk
(the sym-

metric monic polynomial of weight m and degree k in the indeterminates aj ’s) for all m,
k, ` ∈ N+ , and the formula for S(an) gives the antipode by recursion. From now on, to
simplify notation we shall use notation G := Gdif and G∞ := G = Gdif . Note also that

7We say weight instead of degree because we save the latter term for the degree of polynomials.
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the tangent Lie algebra of Gdif is just the Lie subalgebra W1
≥1 = Span

({ dn |n ∈ N+ }
)

of the one-sided Witt algebra W1 := Der
(
k[t]

)
= Span

({
dn := tn+1 d

dt

∣∣ n ∈ N∪ {−1}})
.

In addition, for all ν ∈ N+ the subset Gν :=
{

f ∈ G ∣∣ an(f) = 0, ∀ n ≤ ν
}

is
a normal subgroup of G ; the corresponding quotient group Gν := G/Gν is unipotent,
with dimension ν and function algebra F

[Gν

]
(isomorphic to) the Hopf subalgebra of

F
[G]

generated by a1, . . . , aν . In fact, the Gν ’s form exactly the lower central series of G
(cf. [Je2]). Moreover, G is (isomorphic to) the inverse (or projective) limit of these quotient
groups Gν (ν ∈ N+), hence G is pro-unipotent; conversely, F [G] is the direct (or inductive)
limit of the direct system of its graded Hopf subalgebras F [Gν ] (ν ∈ N+). Finally, the
set Godd :=

{
f ∈ Gdif

∣∣ a2n+1(f) = 0 ∀ n ∈ N+

}
is another normal subgroup of Gdif

(the group of odd formal diffeomorphisms8 after [CK3]), whose function algebra F
[Godd

]

is (isomorphic to) the quotient Hopf algebra F
[Gdif

]/({
a2n−1

}
n∈N+

)
. The latter has the

following description: denoting again the cosets of the a2n’s with the like symbol, we have
F

[Godd
]

= k[a2, a4, . . . , a2n, . . . ] with Hopf algebra structure

∆(a2n) = a2n ⊗ 1 + 1⊗ a2n +
∑n−1

m=1
a2m ⊗ Q̄m

n−m(a2∗) , ε(a2n) = 0

S(a2n) = −a2n −
∑n−1

m=1
a2m S

(
Q̄m

n−m(a∗)
)

= −a2n −
∑n−1

m=1
S(a2m) Q̄m

n−m(a2∗)

where Q̄`
t(a2∗) :=

∑t
k=1

(
2`+1

k

)
P̄

(k)
t (a2∗) and P̄

(k)
t (a2∗) :=

∑
j1,...,jk>0

j1+···+jk=t

a2j1 · · · a2jk
for all

m, k, ` ∈ N+ . For each ν ∈ N+ we can consider also the normal subgroup Gν ∩Godd and
the corresponding quotient Godd

ν := Godd
/(Gν ∩ Godd

)
: then F

[Godd
ν

]
is (isomorphic to)

the quotient Hopf algebra F
[Godd

]/({
a2n−1

}
(2n−1)∈Nν

)
, in particular it is the Hopf sub-

algebra of F
[Godd

]
generated by a2, . . . , a2 [ν/2] . All the F

[Godd
ν

]
’s are graded Hopf (sub)al-

gebras forming a direct system with direct limit F
[Godd

]
; conversely, the Godd

ν ’s form an
inverse system with inverse limit Godd. In the sequel we write G+ := Godd and G+

ν := Godd
ν .

For each ν ∈ N+ , set Nν := {1, . . . , ν} ; set also N∞ := N+ . For each ν ∈ N+ ∪ {∞} ,
let Lν = L(Nν) be the free Lie algebra over k generated by {xn}n∈Nν

and let Uν = U(Lν)
be its universal enveloping algebra; let also Vν = V (Nν) be the k–vector space with basis
{xn}n∈Nν

, and let Tν = T (Vν) be its associated tensor algebra. Then there are canonical
identifications U(Lν) = T (Vν) = k

〈{xn |n ∈ Nν }
〉
, the latter being the unital k–algebra

of non-commutative polynomials in the set of indeterminates {xn}n∈Nν
, and Lν is just the

Lie subalgebra of Uν = Tν generated by {xn}n∈Nν
. Moreover, Lν has a basis Bν made of

Lie monomials in the xn’s (n ∈ Nν), like [xn1 , xn2 ], [[xn1 , xn2 ], xn3 ], [[[xn1 , xn2 ], xn3 ], xn4 ],
etc.: details can be found e.g. in [Re], Ch. 4–5. In the sequel I shall use these identifications
with no further mention. We consider on U(Lν) the standard Hopf algebra structure
given by ∆(x) = x ⊗ 1 + 1 ⊗ x , ε(x) = 0 , S(x) = −x for all x ∈ Lν , which is also

8The fixed-point set of the group homomorphism Φ : G → G , f 7→ Φ(f)
�
x 7→ �

Φ(f)
�
(x) := −f(−x)

�
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determined by the same formulas for x ∈ {xn}n∈Nν
alone. By construction ν ≤ µ implies

Lν ⊆ Lµ , whence the Lν ’s form a direct system (of Lie algebras) whose direct limit is
exactly L∞ ; similarly, U(L∞) is the direct limit of all the U(Lν)’s. Finally, with Bν we
shall mean the obvious PBW-like basis of U(Lν) w.r.t. some fixed total order ¹ of Bν ,
namely Bν :=

{
xb

∣∣ b = b1 · · · bk ; b1, . . . , bk ∈ Bν ; b1 ¹ · · · ¹ bk

}
.

The same construction applies to define the corresponding “odd” objects, based on
{xn}n∈N+

ν
, with N+

ν := Nν ∩ 2N, instead of {xn}n∈Nν
(for each ν ∈ N ∪ {∞} ). Thus

we have L+
ν = L(N+

ν ) , U+
ν = U(L+

ν ) , V +
ν = V (N+

ν ) , T+
ν = T (V +

ν ) , with the obvious
canonical identifications U(L+

ν ) = T (V +
ν ) = k

〈{xn |n ∈ N+
ν }

〉
; moreover, L+

ν has a basis
B+

ν made of Lie monomials in the xn’s (n ∈ N+
ν ), etc. The L+

ν ’s form a direct system
whose direct limit is L+

∞ , and U(L+
∞) is the direct limit of all the U(L+

ν )’s.

Warning : in the sequel, we shall often deal with subsets {yb}b∈Bν
(of some algebra) in

bijection with Bν , the fixed basis of Lν . Then we shall write things like yλ with λ ∈ Lν :
this means we extend the bijection {yb}b∈Bν

∼= Bν to Span
({yb}b∈Bν

) ∼= Lν by linearity,
so that yλ

∼= ∑
b∈Bν

cb b iff λ =
∑

b∈Bν
cb b ( cb ∈ k ). The same kind of convention will

be applied with B+
ν instead of Bν and L+

ν instead of Lν .

10.3 The noncommutative Hopf algebra of formal diffeomorphisms. For all
ν ∈ N+ ∪{∞} , let Hν be the Hopf k–algebra given as follows: as a k–algebra it is simply
Hν := k

〈{an |n ∈ Nν }
〉

(the k–algebra of non-commutative polynomials in the set of
indeterminates {an}n∈Nν

), and its Hopf algebra structure is given by (for all n ∈ Nν )

∆(an) = an ⊗ 1 + 1⊗ an +
∑n−1

m=1
am ⊗Qm

n−m(a∗) , ε(an) = 0

S(an) = −an −
∑n−1

m=1
am S

(
Qm

n−m(a∗)
)

= −an −
∑n−1

m=1
S(am) Qm

n−m(a∗)
(10.1)

(notation like in §10.2) where the latter formula yields the antipode by recursion. Moreover,
Hν is in fact an N–graded Hopf algebra, once generators have been given degree — in the
sequel called weight — by the rule ∂(an) := n (for all n ∈ Nν ). By construction the
various Hν ’s (for all ν ∈ N+ ) form a direct system, whose direct limit is H∞ : the latter
was originally introduced9 in [BF2], §5.1 (with k = C ), under the name Hdif .

Similarly, for all ν ∈ N+ ∪ {∞} we set Kν := k
〈{an |n ∈ N+

ν }
〉

(where N+
ν :=

Nν ∩ (2N) ): this bears a Hopf algebra structure given by (for all 2n ∈ N+
ν )

∆(a2n) = a2n ⊗ 1 + 1⊗ a2n +
∑n−1

m=1
a2m ⊗ Q̄m

n−m(a2∗) , ε(a2n) = 0

S(a2n) = −a2n −
∑n−1

m=1
a2m S

(
Q̄m

n−m(a2∗)
)

= −a2n −
∑n−1

m=1
S(a2m) Qm

n−m(a2∗)

(notation of §10.2). Indeed, this is an N–graded Hopf algebra where generators have degree
— called weight — given by ∂(an) := n (for all n ∈ N+

ν ). All the Kν ’s form a direct

9However, the formulas in [BF2] give the opposite coproduct, hence change the antipode accordingly;
we made the present choice to make these formulas “fit well” with those for F

�Gdif
�

(see below).
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system with direct limit K∞ . Finally, for each ν ∈ N+
ν there is a graded Hopf algebra

epimorphism Hν −−³ Kν given by a2n 7→ a2n , a2m+1 7→ 0 for all 2n, 2m + 1 ∈ Nν .

Definitions and §10.2 imply that

(Hν

)
ab

:= Hν

/([Hν ,Hν

]) ∼= F
[Gν

]
, via an 7→ an ∀ n ∈ Nν

as N–graded Hopf algebras: in other words, the abelianization of Hν is nothing but F
[Gν

]
.

Thus in a sense one can think at Hν as a non-commutative version (indeed, the “coarsest”
one) of F

[Gν

]
, hence as a “quantization” of Gν itself: however, this is not a quantization in

the sense we mean in this paper, for F
[Gν

]
is attained through abelianization, not through

specialization (of some deformation parameter). Similarly we have also

(Kν

)
ab

:= Kν

/([Kν ,Kν

]) ∼= F
[G+

ν

]
, via a2n 7→ a2n ∀ 2n ∈ N+

ν

as N–graded Hopf algebras: in other words, the abelianization of Kν is just F
[G+

ν

]
.

Note that
(Hν

)∨ = Hν =
(Hν

)′ (notation of §5.1) becauseHν is graded and connected:
therefore applying the crystal duality principle to Hν we’ll end up with (5.5), which means
we can deform Hν in four different ways to Hopf algebras bearing some (Poisson-type)
geometrical content; and similarly for Kν . In particular we’ll describe the Poisson groups
G+ and G?

−, and their cotangent Lie bialgebras g×+ and g−, attached to Hν and to Kν in
this way. We perform the analysis explicitly for Hν ; the case Kν is the like, and we leave
to the reader the easy task to fill in details.

We follow the recipe in §§5.1–4. Let’s drop the subscript ν (which stands fixed) and
write H := Hν . Let R := k[~] , and set H~ := H[~] ≡ k[~]⊗k H : this is a Hopf algebra
over k[~], namely H~ = k[~]

〈{an |n ∈ Nν }
〉

with Hopf structure given by (10.1) again.
More precisely, we have H[~] ∈ HA w.r.t. the ground ring R := k[~] (a PID). Then
F (R) = k(~) , and (H~)F := k(~)⊗k[~] H~ = k(~)⊗k H = H(~) = k(~)

〈{an |n ∈ Nν }
〉
.

10.4 Drinfeld’s algebra H~∨ :=
(H[~]

)∨
. By the method in §5 leading to the Crystal

Duality Principle, we can apply Drinfeld’s functors at the prime ~ ∈ k[~] to H~ := H[~] .
We begin with H~∨ :=

∑
n≥0 ~−nJn

( ⊆ (H~)F = H(~)
)
, where J := Ker

(
εH~ :H~ −→

k[~]
)
. We’ll describe H~∨ explicitly, thus checking that it is really a QrUEA, as predicted

by Theorem 2.2(a); then we’ll look at its specialization at ~ = 1 , and finally we’ll study(H~∨
)′ and its specializations at ~ = 0 and ~ = 1 . The outcome will be an explicit

description of the diagram of deformations (5.3) for H = H (= Hν ).

For all n ∈ Nν , set xn := ~−1an . Then clearly H~∨ is the k[~]–subalgebra of H(~)
generated by the set {xn}n∈Nν

, and thus H~∨ = k[~]
〈{xn |n ∈ Nν }

〉
. Moreover,
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∆(xn) = xn⊗1 + 1⊗xn +
∑n−1

m=1

∑m

k=1
~k

(
n−m + 1

k

)
xn−m ⊗ P (k)

m (x∗) , ε(xn) = 0

S(xn) = −xn −
∑n−1

m=1

∑m

k=1
~k

(
n−m + 1

k

)
xn−m S

(
P (k)

m (x∗)
)

=

= −xn −
∑n−1

m=1

∑m

k=1
~k

(
n−m + 1

k

)
S(xn−m) P (k)

m (x∗)

(10.2)

for all n ∈ Nν , due to (10.1); from this one sees by hands that the following holds:

Proposition 10.5. Formulas (10.2) make H~∨ = k[~]
〈{xn, |n ∈ Nν }

〉
into a graded

Hopf k[~]–algebra, embedded into H(~) := k(~)⊗kH as a graded Hopf subalgebra. More-
over, H~∨ is a deformation of H, for its specialization at ~ = 1 is isomorphic to H, i.e.

H~∨
∣∣∣
~=1

:= H~∨
/

(~−1)H~∨ ∼= H via xn mod (~−1)H~∨ 7→ an (∀ n ∈ Nν )

as graded Hopf algebras over k . ¤

Remark: The previous result shows that H~ is a deformation of H, which is “recovered”

as specialization limit (of H~) at ~ = 1 . The next result instead shows that H~ is also a

deformation of U(Lν), which is “recovered” as specialization limit at ~ = 0 . Altogether,
this gives the left-hand-side of (5.3) for H = H := Hν , with g− = Lν .

Theorem 10.6. H~∨ is a QrUEA at ~ = 0 . Namely, the specialization limit of H~∨ at
~= 0 is H~∨

∣∣∣
~=0

:= H~∨
/
~H~∨ ∼= U(Lν) via xn mod ~H~∨ 7→ xn for all n ∈ Nν ,

thus inducing on U(Lν) the structure of co-Poisson Hopf algebra uniquely given by the Lie
bialgebra structure on Lν given by δ(xn) =

∑n−1
`=1 (` + 1) x` ∧ xn−` (for all n ∈ Nν) 10. In

particular in the diagram (5.3) for H = H (= Hν) we have g− = Lν .
Finally, the grading d given by d(xn) := 1 (n ∈ N+) makes H~∨

∣∣∣
~=0

∼= U(Lν) into a

graded co-Poisson Hopf algebra; similarly, the grading ∂ given by ∂(xn) := n (n ∈ N+)
makes H~∨

∣∣∣
~=0

∼= U(Lν) into a graded Hopf algebra and Lν into a graded Lie bialgebra.

Proof. First observe that since H~∨ = k[~]
〈{xn |n ∈ Nν }

〉
and U(Lν) = T (Vν) =

k
〈{xn |n ∈ Nν }

〉
mapping xn mod ~H~∨ 7→ xn (∀ n ∈ Nν ) does really define an

isomorphism of algebras Φ : H~∨
/
~H~∨ ∼= U(Lν) . Second, formulas (10.2) give

∆(xn) ≡ xn ⊗ 1 + 1⊗ xn mod ~
(
H~∨ ⊗H~∨

)

ε(xn) ≡ 0 mod ~ k[~] , S(xn) ≡ −xn mod ~H~∨

10Hereafter, I use notation a ∧ b := a⊗ b− b⊗ a .
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for all n ∈ Nν ; comparing with the standard Hopf structure of U(Lν) this shows that Φ
is in fact an isomorphism of Hopf algebras too. Finally, as H~∨

∣∣∣
~=0

is cocommutative, a
Poisson co-bracket is defined on it by the standard recipe in Remark 1.5: applying it yields

δ(xn) :=
(
~−1

(
∆(xn)−∆op(xn)

))
mod ~

(
H~∨ ⊗H~∨

)
=

=
∑n−1

m=1

(
n−m+1

1

)
xn−m ∧ P (1)

m (x∗) =
∑n−1

`=1 (` + 1) x` ∧ xn−` ∀ n ∈ Nν . ¤

10.7 Drinfeld’s algebra
(H~∨

)′
. I look now at the other Drinfeld’s functor (at ~ ),

and consider
(H~∨

)′ :=
{

η ∈ H~∨
∣∣∣ δn(η) ∈ ~n

(H~∨
)⊗n ∀ n ∈ N

}
(⊆ H~∨ ). Theorem

2.2 tells us that
(H~∨

)′ is a Hopf k[~]–subalgebra of H~∨, and the specialization of
(H~∨

)′

at ~ = 0 , that is
(H~∨

)′∣∣∣
~=0

:=
(H~∨

)′/~ (H~∨
)′ , is the function algebra of a connected

algebraic Poisson group GLν

?
dual to GLν , the latter being the connected simply-connected

Poisson algebraic group with tangent Lie bialgebra Lν . In other words,
(H~∨

)′∣∣∣
~=0

must

be isomorphic (as a Poisson Hopf algebra) to F
[
GLν

?], where GLν

? is connected and has

cotangent Lie bialgebra Lie
(
GLν

?) = Lν . Therefore we must prove that
(H~∨

)′∣∣∣
~=0

is a

commutative Hopf k–algebra, it has no non-trivial idempotents, and
(
co-Lie

(
GLν

?) :=
)

J0

/
J 2

0
∼= Lν as Lie bialgebras, where J0 := Ker

(
ε :

(H~∨
)′∣∣∣
~=0
−→ k

)
. We prove all this

directly, via explicit description of
(H~∨

)′ and its specialization at ~ = 0 .
Step I: A direct check shows that x̃n := ~xn = an ∈

(H~∨
)′ , for all n ∈ Nν . Indeed,

we have of course δ0(x̃n) = ε(x̃n) ∈ ~0H~∨ and δ1(x̃n) = x̃n − ε(x̃n) ∈ ~1H~∨ . More-
over, δ2(x̃n) =

∑n−1
m=1 x̃n−m ⊗Qn−m

m (x̃∗) =
∑n−1

m=1

∑m
k=1 ~k+1

(
n−m+1

k

)
xn−m ⊗ P

(k)
m (x∗) ∈

~2
(
H~∨ ⊗H~∨

)
. Since in general δ` =

(
δ`−1 ⊗ id

) ◦ δ2 for all ` ∈ N+ , we have

δ`(x̃n) =
(
δ`−1 ⊗ id

)(
δ2(x̃n)

)
=

n−1∑
m=1

m∑

k=1

~k

(
n−m + 1

k

)
δ`−1(xn−m)⊗ P (k)

m (x∗)

whence induction gives δ`(x̃n) ∈ ~`
(H~∨

)⊗` for all ` ∈ N , thus x̃n ∈
(H~∨

)′ , q.e.d.

Step II: By Theorem 2.2(a) we have that
(H~∨

)′∣∣∣
~=0

is commutative: this means [a, b] ≡
0 mod ~

(H~∨
)′ , that is [a, b] ∈ ~ (H~∨

)′ hence also ~−1[a, b] ∈ (H~∨
)′ , for all a, b ∈(H~∨

)′ . In particular, we get ˜[xn,xm] := ~ [xn,xm] = ~−1[x̃n, x̃m] ∈ (H~∨
)′ for all n,

m ∈ Nν , whence iterating (and recalling Lν is generated by the xn’s) we get x̃ := ~x ∈(H~∨
)′ for every x ∈ Lν . Hereafter we identify Lν with its image via the embedding

Lν ↪→ U(Lν) = k
〈{xn}n∈Nν

〉
↪→ k[~]

〈{xn}n∈Nν

〉
= H~∨ given by xn 7→ xn (n ∈ Nν ).

Step III: The previous step showed that, if we embed Lν ↪→ U(Lν) ↪→ H~∨ via xn 7→
xn (for all n ∈ Nν ) we find L̃ν := ~Lν ⊆ (H~∨

)′ . Let
〈L̃ν

〉
be the k[~]–subalgebra

of
(H~∨

)′ generated by L̃ν : then
〈L̃ν

〉 ⊆ (H~∨
)′ , because

(H~∨
)′ is a subalgebra. In

particular, if bb ∈ H~∨ is the image of any b ∈ Bν (cf. §10.2) we have b̃b := ~bb ∈
(H~∨

)′ .
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Step IV: Conversely to Step III, we have
〈L̃ν

〉 ⊇ (H~∨
)′ . In fact, let η ∈ (H~∨

)′ ;
then there are unique d ∈ N , η+ ∈ H~∨ \ ~H~∨ such that η = ~dη+ ; set also ȳ := y

mod ~H~
∨ ∈ H~

∨
/
~H~

∨ for all y ∈ H~
∨ . As H~∨ = k[~]

〈{xn |n ∈ Nν }
〉

there is a

unique ~–adic expansion of η+, namely η+ = η0 + ~ η1 + · · · + ~s ηs =
∑s

k=0 ~k ηk with
all ηk ∈ k

〈{xn |n ∈ Nν }
〉

and η0 6= 0 . Then η̄+ = η̄0 := η0 mod ~H~∨ ; thus Lemma
4.2(d) gives ∂(η̄0) ≤ d , where now ∂(η̄0) denotes the degree of η̄0 for the standard filtration
of U(Lν). By the PBW theorem, ∂(η̄0) is also the degree of η̄0 as a polynomial in the x̄b’s,
hence also of η0 as a polynomial in the xb’s (b ∈ Bν): then ~d η0 ∈

〈L̃ν

〉 ⊆ (H~∨
)′ (using

Step III ), hence we find

η(1) := ~d+1
(
η1 + ~ η2 + · · ·+ ~s−1 ηs

)
= η − ~d η0 ∈

(H~∨
)′

.

Thus we can apply our argument again, with η(1) instead of η. Iterating we find ∂(η̄k) ≤ d+

k , whence ~d+k ηk ∈
〈L̃ν

〉 (
⊆ (H~∨

)′) for all k , thus η =
∑s

k=0 ~d+k ηk ∈ 〈L̃ν

〉
, q.e.d.

An entirely similar analysis clearly works with K~ taking the role of H~, with similar
results (mutatis mutandis). On the upshot, we get the following description:

Theorem 10.8. (a) With notation of Step II in §10.7 (and [a, c ] := a c− c a ), we have

(H~∨
)′ =

〈
L̃ν

〉
= k[~]

〈{
b̃b

}
b∈Bν

〉/({[
b̃b1 , b̃b2

]
− ~ ˜[

bb1 ,bb2

] ∣∣∣ ∀ b1, b2 ∈ Bν

})
.

(b)
(H~∨

)′ is a graded Hopf k[~]–subalgebra of H~∨ , and H is naturally embedded into(H~∨
)′ as a graded Hopf subalgebra via H ↪−−→ (H~∨

)′ , an 7→ x̃n (for all n ∈ Nν).

(c)
(H~∨

)′∣∣∣
~=0

:=
(H~∨

)′/~ (H~∨
)′ = F

[
GLν

?] , where GLν

? is an infinite dimensional

connected Poisson algebraic group with cotangent Lie bialgebra isomorphic to Lν (with the
graded Lie bialgebra structure of Theorem 10.6). Indeed,

(H~∨
)′∣∣∣
~=0

is the free Poisson

(commutative) algebra over Nν , generated by all the x̃n

∣∣
~=0

(n ∈ Nν ) with Hopf struc-

ture given by (10.1) with x̃∗ instead of a∗ . Thus
(H~∨

)′∣∣∣
~=0

is the polynomial algebra

k
[{βb }b∈Bν

]
generated by a set of indeterminates {βb }b∈Bν

in bijection with the ba-
sis Bν of Lν , so GLν

? ∼= ABν

k (a (pro)affine k–space) as algebraic varieties. Finally,

F
[
GLν

?] =
(H~∨

)′∣∣∣
~=0

∼= k
[{βb }b∈Bν

]
bears the natural algebra grading d of polyno-

mial algebras and the Hopf algebra grading inherited from
(H~∨

)′, respectively given by
d
(
b̃b

)
= 1 and ∂

(
b̃b

)
=

∑k
i=1 ni for all b = [[· · · [[xn1 , xn2 ], xn3 ], · · · ], xnk

] ∈ Bν .

(d) F
[Gν

]
is naturally embedded into

(H~∨
)′∣∣∣
~=0

= F
[
GLν

?] as a graded Hopf subal-

gebra via µ : F
[Gν

]
↪−−→ (H~∨

)′∣∣∣
~=0

= F
[
GLν

?] , an 7→
(
x̃n mod ~

(H~∨
)′) (for all

n ∈ Nν ); moreover, F
[Gν

]
freely generates F

[
GLν

?] as a Poisson algebra. Thus there is an
algebraic group epimorphism µ∗ : GLν

?−−³ Gν , that is GLν

? is an extension of Gν .
(e) Mapping

(
x̃n mod ~

(H~∨
)′) 7→ an (for all n ∈ Nν) gives a well-defined graded
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Hopf algebra epimorphism π : F
[
GLν

?]−−³ F
[Gν

]
. Thus there is an algebraic group

monomorphism π∗ : Gν ↪−−→ GLν

? , that is Gν is an algebraic subgroup of GLν

? .
(f) The map µ is a section of π, hence π∗ is a section of µ∗ . Thus GLν

? is a semidirect
product of algebraic groups, namely GLν

? = Gν nNν where Nν := Ker (µ∗) E GLν

? .
(g) The analogues of statements (a)–(f) hold with K instead of H , with X+ instead of

X for all X = Lν , Bν ,Nν , µ, π,Nν , and with GL+
ν

? instead of GLν

?.

Proof. (a) This part follows directly from Step III and Step IV in §10.7.
(b) To show that

(H~∨
)′ is a graded Hopf subalgebra we use its presentation in (a). But

first observe that by construction an = x̃n (for all n ∈ Nν ), so H embeds into
(H~∨

)′
via an embedding which is compatible with the Hopf operations: then this will be a Hopf
algebra monomorphism, up to proving that

(H~∨
)′

is a Hopf subalgebra (of H~∨ ).
Now, εH~∨ obviously restricts to give a counit for

(H~∨
)′. Second, we show that

∆
((H~∨

)′) ⊆ (H~∨
)′ ⊗ (H~∨

)′ , so ∆ restricts to a coproduct for
(H~∨

)′. Indeed, each
b ∈ Bν is a Lie monomial, say b = [[[. . . [xn1 , xn2 ], xn3 ], . . . ], xnk

] for some k, n1, . . . ,
nk ∈ Nν , where k is its Lie degree: by induction on k we’ll prove ∆

(
b̃b

) ∈ (H~∨
)′⊗(H~∨

)′
(with b̃b := ~bb = ~ [[[. . . [xn1 ,xn2 ],xn3 ], . . . ],xnk

] ).
If k = 1 then b = xn for some n ∈ Nν . Then b̃b = ~xn = an and

∆
(
b̃b

)
= ∆(an) = an⊗1+1⊗an+

n−1∑
m=1

an−m⊗Qn−m
m (a∗) ∈ Hdif⊗Hdif ⊆ (H~∨

)′⊗(H~∨
)′

.

If k > 1 then b = [b−, xn] for some n ∈ Nν and some b− ∈ Bν expressed by a Lie
monomial of degree k − 1 . Then b̃b = ~ [b−,xn] =

[
b̃−,xn

]
and

∆
(
b̃b

)
= ∆

([
b̃−,xn

])
=

[
∆

(
b̃−

)
, ∆(xn)

]
= ~−1

[
∆

(
b̃−

)
, ∆(an)

]
=

= ~−1

[ ∑
(eb−)

b̃−(1) ⊗ b̃−(2) , an ⊗ 1 + 1⊗ an +
∑n−1

m=1
an−m ⊗Qn−m

m (a∗)
]

=

=
∑

(eb−)
~−1

[
b̃−(1) , an

]
⊗ b̃−(2) +

∑
(eb−)

b̃−(1) ⊗ ~−1
[
b̃−(2) , an

]
+

+
∑

(eb−)

n−1∑
m=1

(
~−1

[
b̃−(1) , an−m

]
⊗ b̃−(2) Qn−m

m (a∗) + b̃−(1) an−m⊗~−1
[
b̃−(2) , Qn−m

m (a∗)
])

where we used the standard Σ–notation for ∆
(
b̃−

)
=

∑
(eb−) b̃−(1) ⊗ b̃−(2) . By inductive

hypothesis we have b̃−(1), b̃−(2) ∈
(H~∨

)′ ; then since also a` ∈
(H~∨

)′ for all ` and since(H~∨
)′ is commutative modulo ~ we have

~−1
[
b̃−(1) , an

]
, ~−1

[
b̃−(2) , an

]
, ~−1

[
b̃−(1) , an−m

]
, ~−1

[
b̃−(2) , Qn−m

m (a∗)
]
∈ (H~∨

)′
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for all n and (n−m) above: so the previous formula gives ∆
(
b̃b

) ∈ (H~∨
)′⊗ (H~∨

)′ , q.e.d.
Finally, for the antipode we proceed as above. Let b ∈ Bν be the Lie monomial

b = [[[. . . [xn1 , xn2 ], xn3 ], . . . ], xnk
] , so b̃b = ~bb = ~ [[[. . . [xn1 ,xn2 ],xn3 ], . . . ],xnk

] . We
prove that S

(
b̃b

) ∈ (H~∨
)′ by induction on the degree k .

If k = 1 then b = xn for some n , so b̃b = ~xn = an and

S
(
b̃b

)
= S(an) = −an −

∑n−1

m=1
an−m S

(
Qn−m

m (a∗)
) ∈ Hdif ⊆ (H~∨

)′
, q.e.d.

If k > 1 then b = [b−, xn] for some n ∈ Nν and some b− ∈ Bν which is a Lie monomial
of degree k − 1 . Then b̃b = ~ [b−,xn] =

[
b̃−,xn

]
= ~−1

[
b̃−,an

]
and so

S
(
b̃b

)
= S

([
b̃−,xn

])
= ~−1

[
S(an), S

(
b̃−

)] ∈ ~−1
[(H~∨

)′
,
(H~∨

)′] ⊆ (H~∨
)′

using the fact S(an) = S
(
x̃n

)
= S

(
b̃xn

) ∈ (H~∨
)′ (by the case k = 1 ) along with the

inductive assumption S
(
b̃−

) ∈ (H~∨
)′ and the commutativity of

(H~∨
)′ modulo ~ .

(c) As a consequence of (a),
(H~∨

)′∣∣∣
~=0

is a polynomial k–algebra, namely

(H~∨
)′∣∣∣
~=0

= k
[{

βb

}
b∈B

]
with βb := b̃b mod ~

(H~∨
)′ for all b ∈ Bν .

So
(H~∨

)′∣∣∣
~=0

is the algebra of regular functions F [Γ ] of some (affine) algebraic variety Γ ;

as
(H~∨

)′ is a Hopf algebra the same is true for
(H~∨

)′∣∣∣
~=0

= F [Γ ] , so Γ is an (affine)

algebraic group; and since F [Γ ] =
(H~∨

)′∣∣∣
~=0

is a specialization limit of
(H~∨

)′, it is

endowed with a Poisson structure too, hence Γ is a Poisson (affine) algebraic group.

We compute the cotangent Lie bialgebra of Γ . First, me := Ker
(
εF [Γ ]

)
=

({
βb

}
b∈Bν

)

(the ideal generated by the βb’s) by construction, so me
2 =

({
βb1βb2

}
b1,b2∈Bν

)
. Therefore

the cotangent Lie bialgebra Q
(
F [Γ ]

)
:= me

/
me

2 as a k–vector space has basis
{

βb

}
b∈Bν

where βb := βb mod me
2 for all b ∈ Bν . For its Lie bracket we have (cf. Remark 1.5)

[
βb1 , βb2

]
:=

{
βb1 , βb2

}
mod me

2 =
(
~−1

[
b̃b1 , b̃b2

]
mod ~

(H~∨
)′) mod me

2 =

=
(
~−1~2

[
bb1 ,bb2

]
mod ~

(H~∨
)′) mod me

2 =
(
~b[b1,b2] mod ~

(H~∨
)′) mod me

2 =

=
(
b̃[b1,b2] mod ~

(H~∨
)′) mod me

2 = β[b1,b2] mod me
2 = β[b1,b2] ,

thus the k–linear map Ψ : Lν −→ me

/
me

2 defined by b 7→ βb for all b ∈ Bν is a Lie

algebra isomorphism. As for the Lie cobracket, using the general identity δ = ∆ − ∆op
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mod
(
me

2 ⊗ F [Γ ] + F [Γ ]⊗me
2
)

(written mod m̂e
2 for short) we get, for all n ∈ Nν ,

δ
(
βxn

)
=

(
∆−∆op

)
(βxn

)mod m̂e
2 =

((
∆−∆op

)
(x̃n)mod ~

((H~∨
)′⊗ (H~∨

)′))mod m̂e
2 =

=
((

an ∧ 1 + 1 ∧ an +
∑n−1

m=1
an−m ∧Qn−m

m (a∗)
)

mod ~
(H~′ ⊗H~′

))
mod m̂e

2 =

=
(

βxn
∧ 1 + 1 ∧ βxn

+
∑n−1

m=1
βxn−m

∧Qn−m
m (βx∗)

)
mod m̂e

2 =

=
(∑n−1

m=1
βxn−m

∧Qn−m
m (βx∗)

)
mod m̂e

2 =

=
(∑n−1

m=1

∑m

k=1

(
n−m + 1

k

)
βxn−m

∧ P (k)
m (βx∗)

)
mod m̂e

2 =

=
(∑n−1

m=1

(
n−m + 1

1

)
βxn−m ∧ P (1)

m (βx∗)
)

mod m̂e
2 =

=
∑n−1

m=1

(
n−m + 1

1

)
βxn−m

∧ βxm
=

∑n−1

`=1
(` + 1) βx`

∧ βxn−`

because — among other things — one has P
(k)
m (βx∗) ∈ me

2 for all k > 1 : therefore

δ
(
βxn

)
=

∑n−1

`=1
(` + 1) βx`

∧ βxn−`
∀ n ∈ Nν . (10.3)

Since Lν is generated (as a Lie algebra) by the xn’s, the last formula shows that the map
Ψ : Lν −→ me

/
me

2 given above is also an isomorphism of Lie bialgebras, q.e.d.

Finally, the statements about gradings of
(H~∨

)′∣∣∣
~=0

should be trivially clear.

(d) The part about Hopf algebras is a direct consequence of (a) and (b), noting that the
x̃n’s commute modulo ~

(H~∨
)′ , since

(H~∨
)′∣∣∣
~=0

is commutative. Then, taking spectra

(i.e. sets of characters of each Hopf algebras) we get (functorially) an algebraic group
morphism µ∗ : GLν

?−−→ Gν , which in fact happens to be onto because, due to the special
polynomial form of these algebras, each character of F

[Gν

]
does extend to a character of

F
[
GLν

?] , hence the former does arise from restriction of the latter.

(e) Due to the explicit description of F
[
GLν

?] coming from (a) and (b), mapping
(
x̃n

mod ~
(H~∨

)′) 7→ an (for all n ∈ Nν) clearly yields a well-defined Hopf algebra epimor-

phism π : F
[
GLν

?]−−³ F
[Gν

]
(w.r.t. the trivial Poisson bracket on the right-hand-side)

is again a routine matter. Then taking spectra gives a monomorphism π∗ : Gν ↪−−→ GLν

?

of algebraic groups as required.
(f) The map µ is a section of π by construction. Then clearly π∗ is a section of µ∗ ,

which implies GLν

? = Gν nNν (with Nν := Ker (µ∗) E GLν

? ) by general theory.
(g) This ought to be clear from the whole discussion, for all arguments apply again —

mutatis mutandis — when starting with K instead of H ; details are left to the reader. ¤
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Remark: Roughly speaking, we can say that the extension F
[Gν

]
↪−−→ F

[
GLν

?] is
performed simply by adding to F

[Gν

]
a free Poisson structure, which happens to be com-

patible with the Hopf structure. Then the Poisson bracket starting from the “elementary”
coordinates an (for n ∈ Nν ) freely generates new coordinates {an1 , an2},

{{an1 , an2}, an3

}
,

etc., thus enlarging F
[Gν

]
and generating F

[
GLν

?]. At the group level, this means that
Gν freely Poisson-generates the Poisson group GLν

? : technically speaking, new 1-parameter
subgroups, which are build up in a “Poisson-free” manner from those attached to the an’s,
are freely “pasted” to Gν , thus expanding it and so building up GLν

? . Then the algebraic
group epimorphism GLν

? µ∗−−³ Gν is just a “forgetful map”: it kills the new 1-parameter
subgroups and is injective (hence an isomorphism) on the subgroup generated by the old
ones. On the other hand, definitions imply that F

[
GLν

?]/({
F

[
GLν

?]
, F

[
GLν

?]}) ∼= F
[Gν

]
,

and with this identification the map F
[
GLν

?] π−−³ F
[Gν

]
is just the canonical map, which

“mods out” all Poisson brakets {f1, f2}, for f1, f2 ∈ F
[
GLν

?] .

10.9 Specialization limits. So far, we have already pointed out (by Proposition 10.5,
Theorem 10.6, Theorem 10.8(c)) the following specialization limits of H~∨ and

(H~∨
)′ :

H~∨ ~→1−−−→ H , H~∨ ~→0−−−→ U(Lν) ,
(H~∨

)′ ~→0−−−→ F
[
GLν

?]

as graded Hopf k–algebras, with some (co-)Poisson structures in the last two cases. As for
the specialization limit of

(H~∨
)′ at ~ = 1 , Theorem 10.8 implies that it is H. Indeed, by

Theorem 10.8(b) H embeds into
(H~∨

)′ via an 7→ x̃n (for all n ∈ Nν ): then

[an,am] =
[
x̃n, x̃m

]
= ~ ˜[xn,xm] ≡ ˜[xn,xm] mod (~−1)

(H~∨
)′ (∀ n, m ∈ Nν

)

whence, due to the presentation of
(H~∨

)′ by generators and relations in Theorem 10.8(a),

(H~∨
)′∣∣∣
~=1

:=
(H~∨

)′/(~−1)
(H~∨

)′ = k
〈
x̃1, x̃2, . . . , x̃n, . . .

〉
= k

〈
a1,a2, . . . , an, . . .

〉

(where c := c mod (~−1)
(H~∨

)′ ) as k–algebras, and the Hopf structure is exactly the
one of H because it is given by the like formulas on generators. In a nutshell, we have

(H~∨
)′ ~→1−−−→ H

as Hopf k–algebras. Therefore we got the bottom part of the diagram of deformations
(5.5), corresponding to (5.3), for H = H (:= Hν) : it is

U(Lν) = H~∨
∣∣∣
~=0

0←~→1←−−−−→
H~∨

H~∨
∣∣∣
~=1

= H =
(H~∨

)′∣∣∣
~=1

1←~→0←−−−−→
(H~∨)′

(H~∨
)′∣∣∣
~=0

= F
[
GLν

?]

or simply U(Lν) 0←~→1←−−−−−−→
H~∨

H 1←~→0←−−−−−−→
(H~∨)′

F
[
GLν

?] . Therefore H is intermediate
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between the (Poisson-type) “geometrical symmetries” U(Lν) and F
[
GLν

?], hence the geo-
metrical meaning of the latters should shed some light on it; in turn, the physical meaning
of H should have some reflect on the physical meaning of both U(Lν) and F

[
GLν

?].

10.10 Drinfeld’s algebra H~′ :=
(H[~]

)′
. From now on we shall deal with Drinfeld’s

functors in the opposite order: first ( )′, and then ( )∨. Like in §2.1, define H~′ :=
{

η ∈
H~

∣∣ δn(η) ∈ ~nH~⊗n ∀ n ∈ N} ( ⊆ H~
)
. We shall describe H~′ explicitly, thus checking

that it is really a QFA, as predicted by Theorem 2.2(a); then we’ll look at its specialization
at ~ = 0 and at ~ = 1 , and finally we’ll study

(H~′
)∨ and its specializations at ~ = 0

and ~ = 1 . The outcome will be an explicit description of (5.4) for H = H (= Hν , with
ν ∈ N ∪ {∞} fixed as before).

Let D := D(H) =
{
Dn

}
n∈N =

{
Ker

(
δn : H −→ (Hdif)⊗n

)}
n∈Nν

be the Hopf algebra
filtration of H as considered in §5.1. Then by Lemma 5.2, we have

H~′ = R~D(H) := k[~] ·D0 + ~ k[~] ·D1 + · · ·+ ~n k[~] ·Dn + · · ·
so we only need to compute the filtration D . The idea is to describe it in combinatorial
terms, based on the non-commutative polynomial nature of H .

As before, we proceed in steps.

10.11 Gradings and filtrations: Let ∂− be the unique Lie algebra grading of Lν

given by ∂−(αn) := n− 1 + δn,1 (for all n ∈ Nν ). Let also d be the standard Lie algebra
grading associated with the central lower series of Lν : in down-to-earth terms, d is defined
by d

(
[· · · [[xs1 , xs2 ], . . . xsk

]
)

= k−1 on any Lie monomial of Lν . Since both ∂− and d are
Lie algebra gradings, their difference (∂−− d) is a Lie algebra grading too. Let

{
Fn

}
n∈N

be the Lie algebra filtration associated with the grading (∂− − d ); then the down-shifted
filtration T :=

{
Tn := Fn−1

}
n∈N is again a Lie algebra filtration of Lν . There is a

unique algebra filtration on U(Lν) extending T , which we denote by Θ =
{
Θn

}
n∈N ; as a

matter of notation, we set also Θ−1 := {0} . Finally, for each y ∈ U(Lν) \ {0} there is a
unique τ(y) ∈ N with y ∈ Θτ(y) \ Θτ(y)−1 ; in particular, we have τ(b) = ∂−(b) − d(b) ,
τ(b b′) = τ(b) + τ(b′) and τ

(
[b, b′]

)
= τ(b) + τ(b′)− 1 for all b, b′ ∈ Bν .

We can explicitly describe Θ. Indeed, let us fix any total order ¹ on the basis Bν of
§10.2: then X :=

{
b := b1 · · · bk

∣∣∣ k ∈ N , b1, . . . , bk ∈ Bν , b1 ¹ · · · ¹ bk

}
is a k–

basis of U(Lν), by the PBW theorem. It follows that Θ induces a set-theoretic filtration
X =

{Xn

}
n∈N of X with Xn := X ∩ Θn =

{
b := b1 · · · bk

∣∣∣ k ∈ N , b1, . . . , bk ∈ Bν , b1 ¹
· · · ¹ bk , τ(b ) = τ(b1)+ · · ·+ τ(bk) ≤ n

}
, and also that Θn = Span

(Xn

)
for all n ∈ N .

Let us define α1 := a1 and αn := an − a1
n for all n ∈ Nν \ {1} . This “change of

variables” — which switch from the an’s to their “differentials”, in a sense — will be the
key to achieve a complete description of the filtration D ; in turn, this will pass through a
close comparison among H and U(Lν) .
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By definition H = Hν is the free associative algebra over {an}n∈Nν
, hence — by defini-

tion of the α’s — also over {αn}n∈Nν
; so we have an algebra isomorphism Φ : H

∼=
↪−³ U(Lν)

given by αn 7→ xn (∀ n ∈ Nν ). Via Φ we pull back all data and results about grad-
ings, filtrations, PBW bases and so on mentioned above for U(Lν) ; in particular we set
αb := Φ(xb) = αb1 · · ·αbk

(for all b1, . . . , bk ∈ Bν ), An := Φ(Xn) (for all n ∈ N ) and
A := Φ(X ) =

⋃
n∈NAn . For gradings on H we stick to the like notation, i.e. ∂−, d and τ ,

and similarly for the filtration Θ .
Finally, for all a ∈ H\{0} we set also κ (a) := k iff a ∈ Dk \Dk−1 (with D−1 := {0} ).
Our goal is to prove an identity of filtrations, namely D = Θ , or equivalently κ = τ . In

fact, this would give to the Hopf filtration D, which is defined intrinsically in Hopf algebraic
terms, an explicit combinatorial description, namely the one of Θ explained above.

Lemma 10.12. For all `, t ∈ N , t ≥ 1 , we have (notation of §10.11)
Z`

t (α∗) :=
(
Q`

t(a∗)−
(
`+t

t

)
a1

t
)
∈ Θt−1 and Q`

t(a∗) ∈ Θt \Θt−1 .

Proof. When t = 1 definitions give Q`
1(a∗) = (`+1)a1 ∈ Θ1 and so Z`

1(α∗) = (`+1) a1−(
`+1
1

)
a1 = 0 ∈ Θ0 , for all ` ∈ N . Similarly, when ` = 0 we have Q0

t (a∗) = at ∈ Θt and
so Z0

t (α∗) = at −
(
1
1

)
a1

t = αt ∈ Θt−1 (by definition), for all t ∈ N+ .
When ` > 0 and t > 1 , we can prove the claim using two independent methods.
First method: The very definitions imply that the following recurrence formula holds:

Q`
t(a∗) = Q`−1

t (a∗) +
∑t−1

s=1
Q`−1

t−s(a∗)as + at ∀ ` ≥ 1 , t ≥ 2 .

From this formula we argue

Z`
t (α∗) := Q`

t(a∗) −
(
`+t

t

)
a1

t = Q`−1
t (a∗) +

∑t−1
s=1Q

`−1
t−s(a∗)as + at −

(
`+t

t

)
a1

t =

= Z`−1
t (a∗) +

(
`−1+t

t

)
a1

t +
∑t−1

s=1

(
Z`−1

t−s (a∗) +
(
`−1+t−s

t−s

)
a1

t−s
)

as + at −
(
`+t

t

)
a1

t =

= Z`−1
t (a∗) +

(
`−1+t

t

)
α1

t +
∑t−1

s=1Z
`−1
t−s (a∗)

(
αs + α1

s
)
+

+
∑t−1

s=1

(
`−1+t−s

t−s

)
α1

t−s
(
αs + α1

s
)

+
(
αt + α1

t
) − (

`+t
t

)
α1

t =

= Z`−1
t (a∗) +

∑t−1
s=1Z

`−1
t−s (a∗)

(
αs + α1

s
)

+
∑t−1

s=1

(
`−1+t−s

t−s

)
α1

t−s αs + αt +

+
∑t−1

s=1

(
`−1+t−s

t−s

)
α1

t−s α1
s + α1

t +
(
`−1+t

t

)
α1

t − (
`+t

t

)
α1

t =

= Z`−1
t (a∗) +

∑t−1
s=1Z

`−1
t−s (a∗)

(
αs + α1

s
)

+
∑t−1

s=1

(
`−1+t−s

t−s

)
α1

t−s αs + αt +

+
(∑t

r=0

(
`−1+r

`−1

) − (
`+t

t

))
α1

t =

= Z`−1
t (a∗) +

∑t−1
s=1Z

`−1
t−s (a∗)

(
αs + α1

s
)

+
∑t−1

s=1

(
`−1+t−s

t−s

)
α1

t−s αs + αt

because of the classical identity
(
`+t
`

)
=

∑t
r=0

(
`−1+r

`−1

)
. Then induction upon ` and the

very definitions allow to conclude that all summands in the final sum belong to Θt−1, hence
Z`

t (α∗) ∈ Θt−1 as well. Finally, this implies Q`
t(a∗) = Z`

t (α∗) +
(
`+t

t

)
α1

t ∈ Θt \Θt−1 .
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Second method: Q`
t(a∗) :=

∑t
s=1

(
`+1

s

)
P

(s)
t (a∗) =

∑t
s=1

(
`+1

s

)∑
j1,...,js>0

j1+···+js = t

aj1 · · ·ajs
,

by definition; then expanding the aj ’s as a1 = α1 and aj = αj + α1
j (for j > 1 ) we find

that Q`
t(a∗) = Q`

t

(
α∗ + α1

∗) is a linear combination of monomials α(j1) · · ·α(js) with
j1, . . . , js > 0 , j1 + · · ·+js = t , α(jr) ∈

{
αjr

, α1
jr

}
for all r . Let Q− be the linear combi-

nation of those monomials such that (α(j1), α(j2), . . . , α(js)

) 6= (
α1

j1 , α1
j2 , . . . , α1

js
)
; for

the remaining monomials we have αj1 ·αj2 · · ·αjs = α1
j1+···+js = α1

t , hence their linear
combination giving Q+ := Q`

t(a∗)−Q− is a multiple of α1
t, say Q+ = N α1

t .
Now we compute this coefficient N . First, by construction N is nothing but N =

Q`
t(1∗) = Q`

t(1, 1, . . . , 1, . . . ) where the latter means the (positive integer) value of the
polynomial Q`

t when all its indeterminates are set equal to 1. Thus we compute Q`
t(1∗) .

Recall that the Q`
t’s enter in the definition of the coproduct of F

[Gdif
]
: the latter is

dual to the (composition) product of series in Gdif, thus if {an}n∈N+ and {bn}n∈N+ are two
countable sets of commutative indeterminates then
(

x +
∑+∞

n=1 an xn+1
)
◦

(
x +

∑+∞
m=1 bm xm+1

)
:=

:=
((

x +
+∞∑
m=1

bm xm+1
)

+
+∞∑
n=1

an

(
x +

+∞∑
m=1

bm xm+1
)n+1

)
= x +

+∞∑
k=0

ck xk+1

with ck = Q0
k(b∗) +

∑k
r=1 ar · Qr

k−r(b∗) (cf. §10.2). Specializing a` = 1 and ar = 0 for
all r 6= ` we get ct+` = Q0

t+`(b∗) + Q`
t(b∗) = bt+` + Q`

t(b∗) . In particular setting b∗ = 1∗
we have that 1 + Q`

t(1∗) is the coefficient c`+t of x`+t+1 in the series

(
x + x`+1

) ◦
(

x +
∑+∞

m=1 xm+1
)

=

=
(
x + x`+1

) ◦ (
x · (1− x)−1) = x · (1− x)−1 +

(
x · (1− x)−1)`+1

=

=
∑+∞

m=0 xm+1 + x`+1
(∑+∞

m=0 xm
)`+1

=
∑+∞

m=0 xm+1 + x`+1 ∑+∞
n=0

(
`+n

`

)
xn =

=
∑`−1

s=0 xs+1 +
∑+∞

s=`

(
1 +

(
s
`

))
xs+1 ;

therefore 1 + Q`
t(1∗) = c`+t = 1 +

(
`+t
`

)
, whence Q`

t(1∗) =
(
`+t
`

)
. As an alternative

approach, one can prove that Q`
t(1∗) =

(
`+t
`

)
by induction using the recurrence formula

Q`
t(x∗) = Q`−1

t (x∗) +
∑t−1

s=1 Q`−1
t−s(x∗)xs + xt and the identity

(
`+t
`

)
=

∑t
s=0

(
`+t−1
`−1

)
.

The outcome is N = Q`
t(1∗) =

(
`+t
`

)
(for all t, ` ), thus Q`

t(a∗)−
(
`+t
`

)
at = Q−+Q+−(

`+t
`

)
at = Q−+N at−

(
`+t
`

)
at = Q− . Now, by definition τ(αjr ) = jr−1 and τ

(
α1

jr
)

=
jr . Therefore if α(jr) ∈

{
αjr ,α1

jr
}

(for all r = 1, . . . , s ) and (α(j1),α(j2), . . . , α(js)) 6=(
α1

j1 , α1
j2 , . . . , α1

js
)
, then τ

(
α(j1) · · ·α(js)

) ≤ j1 + · · · + js − 1 = t − 1 . Then by
construction τ(Q−) ≤ t−1 , whence, since Z`

t (α∗) := Q`
t(a∗)−

(
`+t
`

)
at = Q− , we get also

τ
(
Z`

t (α∗)
) ≤ t−1 , i.e. Z`

t (α∗) ∈ Θt−1 , so Q`
t(a∗) = Z`

t (α∗) +
(
`+t

t

)
α1

t ∈ Θt\Θt−1 . ¤
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Proposition 10.13. Θ is a Hopf algebra filtration of H .

Proof. By construction (cf. §10.11) Θ is an algebra filtration; so to check it is Hopf too
we are left only to show that (?) ∆(Θn) ⊆ ∑

r+s=n Θr ⊗ Θs (for all n ∈ N ), for then
S(Θn) ⊆ Θn (for all n ) will follow from that by recurrence (and Hopf algebra axioms).

By definition Θ0 = k · 1H ; then ∆(1H) = 1H ⊗ 1H proves (?) for n = 0 . For n = 1
definitions tell that Θ1 is nothing but the direct sum of Θ0 with the (free) Lie (sub)algebra
(ofH ) generated by {α1, α2}. Since ∆(α1) = α1⊗1+1⊗α1 and ∆(α2) = α2⊗1+1⊗α2

(directly from definitions) and since

∆
(
[x, y]

)
=

[
∆(x),∆(y)

]
=

∑
(x),(y)

(
[x(1), y(1)]⊗ x(2)y(2) + x(1)y(1) ⊗ [x(2), y(2)]

)

(for all x, y ∈ H ) we argue that (?) holds for n = 1 too.
Further on, for every n > 1 we have (setting Qn

0 (a∗) = 1 = a0 for short)

∆(αn) = ∆(an)−∆
(
a1

n
)

=
∑n

k=0 ak ⊗Qk
n−k(a∗)−

∑n
k=0

(
n
k

)
a1

k ⊗ a1
n−k =

=
∑n

k=2 αk ⊗Qk
n−k(a∗) +

∑n−1
k=0 α1

k ⊗ Zk
n−k(α∗)

hence ∆(αn) ∈ ∑
r+s=n−1 Θr⊗Θs due to Lemma 10.12 (and to αm ∈ Θm−1 for m > 1 ).

Finally, as ∆
(
[x, y]

)
=

[
∆(x),∆(y)

]
=

∑
(x),(y)

(
[x(1), y(1)]⊗x(2)y(2)+x(1)y(1)⊗[x(2), y(2)]

)

and similarly ∆(x y) = ∆(x)∆(y) =
∑

(x),(y) x(1)y(1) ⊗ x(2)y(2) (for x, y ∈ H ), we have
that ∆ does not increase (∂− − d ) : as Θ is exactly the (algebra) filtration induced by
(∂− − d ) , it is a Hopf algebra filtration as well. ¤

Lemma 10.14. (notation of §10.11)
(a) κ (a) ≤ ∂(a) for every a ∈ H \ {0} which is ∂(a)–homogeneous.
(b) κ (a a′) ≤ κ (a) + κ (a′) and κ

(
[a, a′]

)
< κ (a) + κ (a′) for all a, a′ ∈ H \ {0} .

(c) κ (αn) = ∂−(αn) = τ(αn) for all n ∈ Nν .
(d) κ

(
[αr, αs]

)
= ∂−(αr) + ∂−(αs)− 1 = τ

(
[αr, αs]

)
for all r, s ∈ Nν with r 6= s .

(e) κ (αb) = ∂−(αb)− d(αb) + 1 = τ(αb) for every b ∈ Bν .
(f) κ (αb1αb2 · · ·αb`

) = τ(αb1αb2 · · ·αb`
) for all b1, b2, . . . , b` ∈ Bν .

(g) κ
(
[αb1 , αb2 ]

)
= κ (αb1) + κ (αb2)− 1 = τ

(
[αb1 , αb2 ]

)
, for all b1, b2 ∈ Bν .

Proof. (a) Let a ∈ H\{0} be ∂(a)–homogeneous. Since H is graded, we have ∂
(
δ`(a)

)
=

∂(a) for all ` ; moreover, δ`(a) ∈J⊗` (with J := Ker (εH) ) by definition, and ∂(y) > 0
for each ∂–homogeneous y ∈ J \ {0} . Then δ`(a) = 0 for all ` > ∂(a) , whence the claim.

(b) This is just a reformulation of Lemma 3.4(c).
(c) By part (a) we have κ(an) ≤ ∂(an) = n . Moreover, by definition δ2(an) =∑n−1
k=1 ak⊗Qk

n−k(a∗) , thus δn(an) = (δn−1⊗δ1)
(
δ2(an)

)
=

∑n−1
k=1 δn−1(ak)⊗δ1

(
Qk

n−k(a∗)
)

by coassociativity. Since δ`(am) = 0 for ` > m , Qn−1
1 (a∗) = na1 and δ1(a1) = a1 , we
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have δn(an) = δn−1(an−1)⊗ (na1) , thus by induction δn(an) = n!a1
⊗n ( 6= 0 ), whence

κ(an) = n . But also δn(a1
n) = n!a1

⊗n . Thus δn(αn) = δn(an)− δn(a1
n) = 0 for n > 1 .

Clearly κ(α1) = 1 . For the general case, for all ` ≥ 2 we have

δ`−1(a`) = (δ`−2 ⊗ δ1)
(
δ2(a`)

)
=

∑`−1

k=1
δ`−2(ak)⊗ δ1

(
Qk

`−1−k(a∗)
)

which, thanks to the previous analysis, gives

δ`−1(a`) = δ`−2(a`−2)⊗
(

(`− 1)a2 +
(

`− 1
2

)
a1

2

)
+ δ`−2(a`−1)⊗ `a1 =

= (`− 1)! · a1
⊗(`−2) ⊗

(
a2 +

`− 1
2

· a1
2

)
+ ` · δ`−2(a`−1)⊗ a1 .

Iterating we get, for all ` ≥ 2 (with
(−1

2

)
:= 0 , and changing indices)

δ`−1(a`) =
∑`−1

m=1

` !
m + 1

· a1
⊗(m−1) ⊗

(
a2 +

m− 1
2

· a1
2

)
⊗ a1

⊗(`−1−m) .

On the other hand, we have also

δ`−1

(
a1

`
)

=
∑`−1

m=1

` !
2
· a1

⊗(m−1) ⊗ a1
2 ⊗ a1

⊗(`−1−m) .

Therefore, for δn−1(αn) = δn−1(an)− δn−1(a1
n) (for all n ∈ Nν , n ≥ 2 ) the outcome is

δn−1(αn) =
∑n−1

m=1

n!
m + 1

· a1
⊗(m−1) ⊗ (

a2 − a1
2
)⊗ a1

⊗(n−1−m) =

=
∑n−1

m=1

n!
m + 1

·α1
⊗(m−1) ⊗α2 ⊗α1

⊗(n−1−m) ;
(10.5)

in particular δn−1(αn) 6= 0 , whence αn 6∈ Dn−2 and so κ(αn) = n− 1 , q.e.d.
(d) Let r 6= 1 6= s . From (b)–(c) we get κ

(
[αr, αs]

)
< κ(αr) + κ(αs) = r + s− 2 . In

addition, we prove now that δr+s−3

(
[αr, αs]

) 6= 0 , which yields (d). Lemma 3.4(b) gives

δr+s−3

(
[αr, αs]

)
=

∑

Λ∪Y ={1,...,r+s−3}
Λ∩Y 6=∅

[
δΛ(αr), δY (αs)

]
=

∑

Λ∪Y ={1,...,r+s−3}
Λ∩Y 6=∅, |Λ|=r−1, |Y |=s−1

[
jΛ

(
δr−1(αr)

)
, jY

(
δs−1(αs)

)]
.

Using (10.5) in the form δ`−1(a`) =
∑`−1

m=1
` !
2 ·α2⊗α1

⊗(`−2)+α1⊗η` (for some η` ∈ H ),
and counting how many Λ’s and Y ’s exist with 1 ∈ Λ and {1, 2} ⊆ Y , and — conversely
— how many of them exist with {1, 2} ⊆ Λ and 1 ∈ Y , we argue

δr+s−3

(
[αr, αs]

)
= cr,s ·[α2, α1]⊗α2⊗α1

⊗(r+s−5) + α1⊗ϕ1 + α2⊗ϕ2 + [α2, α1]⊗α1⊗ψ
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for some ϕ1, ϕ2 ∈ H⊗(r+s−4) , ψ ∈ H⊗(r+s−5) , and with

cr,s =
r!
2
· s!

3
·
(

r + s− 5
r − 2

)
− s!

2
· r!

3
·
(

s + r − 5
s− 2

)
=

2
3

(
r

2

)(
s

2

)
(s− r)(r + s− 5)! 6= 0 .

In particular δr+s−3

(
[αr, αs]

)
= cr,s · [α2, α1]⊗α2 ⊗α1

⊗(r+s−5) + l.i.t. , where “l.i.t.”
stands for some further terms which are linearly independent of [α2,α1]⊗α2⊗α1

⊗(r+s−5)

and cr,s 6= 0 . Then δr+s−3

(
[αr, αs]

) 6= 0 , q.e.d.
Finally, if r > 1 = s (and similarly if r = 1 < s ) things are simpler. Indeed, again (b)

and (c) together give κ
(
[αr, α1]

)
< κ(αr) + κ(α1) = (r − 1) + 1 = r , and we prove that

δr−1

(
[αr, α1]

) 6= 0 . Like before, Lemma 3.4(b) gives (since δ1(α1) = α1 )

δr−1

(
[αr, α1]

)
=

∑

Λ∪Y ={1,2,...,r−1}
Λ∩Y 6=∅, |Λ|=r−1, |Y |=1

[
δΛ(αr), δY (α1)

]
=

r−1∑

k=1

[
δr−1(αr), 1⊗(k−1)⊗α1⊗1⊗(r−1−k)

]
=

=
r−1∑
m=1

r!
m + 1

·α1
⊗(m−1) ⊗ [α2,α1]⊗α1

⊗(n−1−m) 6= 0 , q.e.d.

(e) We perform induction upon d(b) : the cases d(b) = 0 and d(b) = 1 are dealt with
in parts (c) and (d) of the claim, thus we can assume d(b) ≥ 2 , so that b =

[
b′, x`

]
for

some ` ∈ Nν and some other b′ ∈ Bν with d(b′) = d(b)− 1 ; then τ(αb) = τ
(
[αb′ , α`]

)
=

τ(αb′) + τ(α`)− 1 , directly from definitions. Moreover τ(α`) = κ (α`) by part (c), and
τ(αb′) = κ (αb′) by inductive assumption.

From (b) we have κ(αb) = κ
(
[αb′ , α`]

) ≤ κ(αb′) + κ(α`) − 1 = τ(αb′) + τ(α`) − 1 =
τ(αb) , i. e. κ(αb) ≤ τ(αb) ; we must prove the converse, for which it is enough to show

δτ(αb)(αb) = cb · [ · · · [ [α1, α2],α2], . . . , α2︸ ︷︷ ︸
d(b)+1

]⊗α2 ⊗α1
⊗(τ(αb)−2) + l.i.t. (10.6)

for some cb ∈ k \ {0} , where “l.i.t.” means the same as before.
Since τ(αb) = τ

(
[αb′ ,α`]

)
= τ(αb′) + `− 2 , computation via Lemma 3.4(b) gives

δτ(αb)(αb) = δτ(αb)

(
[αb′ , α`]

)
=

∑

Λ∪Y ={1,...,τ(αb)}
Λ∩Y 6=∅

[
δΛ(αb′), δY (α`)

]
=

=
∑

Λ∪Y ={1,...,τ(αb)} , Λ∩Y 6=∅
|Λ|=τ(αb′ ) , |Y |=`−1

[
jΛ

(
δτ(αb′ )(αb′)

)
, jY

(
δ`−1(α`)

)]
=

=
∑

Λ∪Y ={1,...,τ(αb)} , Λ∩Y 6=∅
|Λ|=τ(αb′ ) , |Y |=`−1

[
jΛ

(
cb′ [ · · · [α1,α2], . . . , α2︸ ︷︷ ︸

d(b′)+1

]⊗α2⊗α1
⊗(τ(αb′)−2)

)
, jY

(
` !
2 α2⊗α1

⊗(`−2)
)]

+ l.i.t. =

= cb′ · ` !
2
·
(

τ(αb)− 2
`− 2

)
· [ [ · · · [[α1, α2], α2], . . . , α2], α2︸ ︷︷ ︸

d(b′)+1+1 = d(b)+1

]⊗α2 ⊗α1
⊗(τ(αb)−2) + l.i.t.
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(using induction about αb′); this proves (10.6) with cb = cb′ · ` !
2 ·

(
τ(αb)−2

`−2

)
6= 0 .

Thus (10.6) holds, yielding δτ(αb)(αb) 6= 0 , hence κ(αb) ≥ τ(αb) , q.e.d.
(f) The case ` = 1 is proved by part (e), so we can assume ` > 1 . By part (b) and the

case ` = 1 we have κ (αb1αb2 · · ·αb`
) ≤ ∑`

i=1 κ (αbi
) =

∑`
i=1 τ(αbi

) = τ(αb1αb2 · · ·αb`
) ;

so we must only prove the converse inequality. We begin with ` = 2 and d(b1) = d(b2) = 0 ,
so αb1 = αr , αb2 = αs , for some r, s ∈ Nν .

If r = s = 1 then κ(αr) = κ(αs) = κ(α1) = 1 , by part (c). Then

δ2(α1 α1) = δ2(a1 a1) = (id− ε)⊗2∆
(
a1

2
)

= 2 · a1 ⊗ a1 = 2 ·α1 ⊗α1 6= 0

so that κ(α1 α1) ≥ 2 = κ(α1) + κ(α1) , hence κ(α1 α1) = κ(α1) + κ(α1) , q.e.d.
If r > 1 = s (and similarly if r = 1 < s ) then κ(αr) = r − 1 , κ(αs) = κ(α1) = 1 , by

part (c). Then Lemma 3.4(b) gives

δr(αr α1) =
∑

Λ∪Y ={1,...,r}
|Λ|=r−1 , |Y |=1

δΛ(αr) δY (α1) =

=
r∑

m=1

∑

k<m

r!
m + 1

· (α1
⊗(k−1) ⊗ 1⊗α1

⊗(m−1−k) ⊗α2 ⊗α1
⊗(r−1−m)

)×

× (
1⊗(k−1) ⊗α1 ⊗ 1⊗(r−k)

)
+

+
r∑

m=1

∑

k>m

r!
m + 1

· (α1
⊗(m−1) ⊗α2 ⊗α1

⊗(k−1−m) ⊗ 1⊗α1
⊗(r−1−k)

)×

× (
1⊗(k−1) ⊗α1 ⊗ 1⊗(r−k)

)
=

=
∑r

m=1

r!
m + 1

·α1
⊗(m−1) ⊗α2 ⊗α1

⊗(r−1−m) 6= 0

so that κ(αr α1) ≥ r = κ(αr) + κ(α1) and so κ(αr α1) = κ(αr) + κ(α1) , q.e.d.
Finally let r, s > 1 (and r 6= s ). Then κ(αr) = r − 1 , κ(αs) = s − 1 , by part (c);

then Lemma 3.4(b) gives

δr+s−2

(
αr αs

)
=

∑

Λ∪Y ={1,...,r+s−2}
|Λ|=r−1 , |Y |=s−1

δΛ(αr) · δY (αs) =
∑

Λ∪Y ={1,...,r+s−2}
|Λ|=r−1 , |Y |=s−1

jΛ
(
δr−1(αr)

) · jY

(
δs−1(αs)

)
.

Using (10.5) in the form δt−1(at) =
∑t−1

m=1
t !
2 ·α2⊗α1

⊗(t−2) +α1⊗ ηt (for some ηt ∈ H
and t ∈ {r, s} ) and counting how many Λ’s and Y ’s exist with 1 ∈ Λ and 2 ∈ Y and
viceversa — actually, it is a matter of counting (r − 2, s− 2)-shuffles — we argue

δr+s−2

(
αr αs

)
= er,s ·α2 ⊗α2 ⊗α1

⊗(r+s−4) + α1 ⊗ ϕ

for some ϕ ∈ H⊗(r+s−3) and with

er,s =
r!
2
· s!

2
·
((

r + s− 4
r − 2

)
+

(
s + r − 4

s− 2

))
=

r! s!
2

·
(

r + s− 4
r − 2

)
6= 0 .
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In particular δr+s−2

(
αr αs

)
= er,s ·α2 ⊗α2 ⊗α1

⊗(r+s−4) + l.i.t. , where “l.i.t.” stands
again for some further terms which are linearly independent of α2⊗α2⊗α1

⊗(r+s−4) and
er,s 6= 0 . Then δr+s−2

(
αr αs

) 6= 0 , so κ(αr α1) ≥ r + s− 2 = κ(αr) + κ(α1) , q.e.d.
Now let again ` = 2 but d(b1), d(b2) > 0 . Set κi := κ(αbi

) for i = 1, 2 . Applying
(10.6) to b = b1 and b = b2 (and reminding τ ≡ κ ) gives

δκ1+κ2(αb1 αb2) =
∑

Λ∪Y ={1,...,κ1+κ2}
δΛ(αb1) δY (αb2) =

∑

Λ∪Y ={1,...,κ1+κ2}
|Λ|=κ1, |Y |=κ2

jΛ
(
δκ1(αb1)

)
jY

(
δκ2(αb2)

)
=

=
∑

Λ∪Y ={1,...,κ1+κ2}
|Λ|=κ1, |Y |=κ2

jΛ

(
cb1 · [ · · · [ [α1, α2], α2], . . . , α2︸ ︷︷ ︸

d(b1)+1

]⊗α2 ⊗α1
⊗(κ1−2) + l.i.t.

)
×

× jY

(
cb2 · [ · · · [ [α1,α2], α2], . . . , α2︸ ︷︷ ︸

d(b2)+1

]⊗α2 ⊗α1
⊗(κ2−2) + l.i.t.

)
=

= cb1 cb2 · 2
(

κ1 + κ2 − 4
κ1 − 2

)
×

× [ · · · [ [α1, α2],α2], . . . , α2︸ ︷︷ ︸
d(b1)+1

]⊗ [ · · · [ [α2, α1],α2], . . . , α2︸ ︷︷ ︸
d(b2)+1

]⊗α2⊗α2⊗α1
⊗(κ1+κ2−4) + l.i.t.

which proves the claim for ` = 2 . In addition, we can take this last result as the basis of
induction (on ` ) to prove the following: for all b := (b1, . . . , b`) ∈ Bν

` , one has

δ|κ|

( ∏̀

i=1

αbi

)
= cb

( ⊗̀

i=1

[ · · · [ [α1, α2], α2], . . . , α2︸ ︷︷ ︸
d(bi)+1

]

)
⊗α2

⊗` ⊗α1
⊗(|κ|−2 `) + l.i.t. (10.7)

for some cb ∈ k\{0} , with |κ| := ∑`
i=1 κi and κi := κ(αbi) ( i = 1, . . . , ` ). The induction

step, from ` to (` + 1), amounts to compute (with κ`+1 := κ(αb`+1) )

δ|κ|+κ`+1(αb1 · · ·αb`
·αb`+1) =

∑

Λ∪Y ={1,...,|κ|+κ`+1}
δΛ(αb1 · · ·αb`

) δY (αb`+1) =

=
∑

Λ∪Y ={1,...,|κ|+κ`+1}
|Λ|=|κ|, |Y |=κ`+1

jΛ
(
δ|κ|(αb1 · · ·αb`

)
) · jY

(
δκ`+1(αb`+1)

)
=

=
∑

Λ∪Y ={1,...,|κ|+κ`+1}
|Λ|=|κ|, |Y |=κ`+1

jΛ

(
cb ·

( ⊗̀

i=1

[ · · · [ [α1,α2], α2], . . . , α2︸ ︷︷ ︸
d(bi)+1

]

)
⊗α2

⊗`⊗α1
⊗(|κ|−2 `) + l.i.t.

)
×

× jY

(
cb`+1 · [ · · · [ [α1, α2], α2], . . . , α2︸ ︷︷ ︸

d(b`+1)+1

]⊗α2 ⊗α1
⊗(κ`+1−2) + l.i.t.

)
=
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= cb cb`+1 · (` + 1)
(|κ|+ κ`+1 − 2 (` + 1)

|κ| − 2 `

)
·
(⊗̀

i=1

[ · · · [ [α1, α2], α2], . . . , α2︸ ︷︷ ︸
d(bi)+1

]

)
⊗

⊗ [ · · · [ [α1, α2],α2], . . . , α2︸ ︷︷ ︸
d(b`+1)+1

]⊗α2
⊗(`+1) ⊗α1

⊗(|κ|+κ`+1−2 (`+1)) + l.i.t.

which proves (10.7) for (b , b`+1) with c(b ,b`+1) = cb cb`+1 · (` + 1)
(
|κ|+κ`+1−2 (`+1)

|κ|−2 `

)
6= 0 .

Finally, (10.7) yields δ|κ|(αb1 · · ·αb`
) 6= 0 , so κ(αb1 · · ·αb`

)≥κ(αb1) + · · ·+ κ(αb`
), q.e.d.

(g) Part (d) proves the claim for d(b1) = d(b2) = 0 , that is b1, b2 ∈ {xn}n∈N . More-
over, when b2 = xn ∈ {xm}m∈Nν

we can replicate the proof of part (d) to show that
κ
(
[αb1 , αb2 ]

)
= κ

(
[αb1 , αn]

)
= ∂−

(
[αb1 , αn]

) − d
(
[αb1 ,αn]

)
: but the latter is exactly

τ
(
[αb1 ,αb2 ]

)
, q.e.d. Everything is similar if b1 = xn ∈ {xm}m∈Nν

.
Now let b1, b2 ∈ Bν \ {xn}n∈Nν

. Then (b) gives κ
(
[αb1 , αb2 ]

) ≤ κ (αb1)+κ (αb2)− 1 =
τ
(
[αb1 ,αb2 ]

)
. Applying (10.6) to b = b1 and b = b2 we get, for κi := κ(αbi) ( i = 1, 2 )

δκ1+κ2−1

(
[αb1 , αb2 ]

)
=

∑

Λ∪Y ={1,...,κ1+κ2−1}
Λ∩Y 6=∅

[
δΛ(αb1), δY (αb2)

]
=

=
∑

Λ∪Y ={1,...,κ1+κ2−1}
|Λ|=κ1, |Y |=κ2

[
jΛ

(
δκ1(αb1)

)
, jY

(
δκ2(αb2)

)]
=

=
∑

Λ∪Y ={1,...,κ1+κ2}
|Λ|=κ1, |Y |=κ2

[
jΛ

(
cb1 · [ · · · [ [α1, α2],α2], . . . , α2︸ ︷︷ ︸

d(b1)+1

]⊗α2 ⊗α1
⊗(κ1−2) + l.i.t.

)
×

× jY

(
cb2 · [ · · · [ [α1, α2], α2], . . . , α2︸ ︷︷ ︸

d(b2)+1

]⊗α2 ⊗α1
⊗(κ2−2) + l.i.t.

)]
=

= cb1 cb2 · 2
(

κ1 + κ2 − 4
κ1 − 2

)
×

× [
[ · · · [ [α1, α2], α2], . . . , α2︸ ︷︷ ︸

d(b1)+1

], [ · · · [ [α1, α2], α2], . . . , α2︸ ︷︷ ︸
d(b2)+1

]
]⊗α2⊗α2⊗α1

⊗(κ1+κ2−4) + l.i.t.

(note that d(bi) ≥ 1 because bi 6∈
{

xn

∣∣ n ∈ Nν

}
for i = 1, 2 ). In particular this means

δκ1+κ2−1

(
[αb1 , αb2 ]

) 6= 0 , thus κ
(
[αb1 , αb2 ]

) ≥ κ (αb1) + κ (αb2)− 1 = τ
(
[αb1 ,αb2 ]

)
. ¤

Lemma 10.15. Let V be a k–vector space, and ψ ∈ Hom k
(
V, V ∧ V ) . Let L(V ) be the

free Lie algebra over V , and ψdL ∈ Hom k
(L(V ),L(V )∧L(V )

)
the unique extension of ψ

from V to L(V ) by derivations, i.e. such that ψdL
∣∣
V

= ψ and ψdL
(
[x, y]

)
=

[
x⊗1+1⊗x,

ψdL(y)
]
+

[
ψdL(x), y⊗1+1⊗y

]
= x.ψdL(y)−y.ψdL(x) in the L(V )–module L(V )∧L(V ) ,

∀x, y ∈ L(V ) . Let K := Ker (ψ) : then Ker
(
ψdL

)
= L(K) , the free Lie algebra over K .
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Proof. For each z ∈ L(V ) set z⊗ := z ⊗ 1 + 1 ⊗ z . Let I be a complement of
K inside V , so that V = K ⊕ I , and ψ

∣∣
I

is injective while ψ
∣∣
K

= 0K . Let BK

and BI be bases of K and I respectively; then there is a basis of L(V ) made of Lie
monomials of the form xi :=

[[ · · · [ · · · [[xi1 , xi2

]
, xi3

]
. . . , xis

]
. . . , xik−1

]
, xik

]
(with i =

(i1, i2, i3, . . . , is, . . . , ik−1, ik) ) for some xir
∈ BK ∪ BI : for these Lie monomials defini-

tions yield ψdL(xi ) =
∑

xis∈BI

[[ · · · [ · · · [[x⊗i1 , x⊗i2
]
, x⊗i3

]
. . . , ψ(xis

)
]
. . . , x⊗ik−1

]
, x⊗ik

]
. In

addition, since ψ
∣∣
I

is injective the set
{

z⊗
}

z∈BI∪BK
∪ {

ψ(b) }
b∈BI

is linearly independent.
Then the set of all Lie monomials yi :=

[[ · · · [ · · · [[y •i1 , y •i2
]
, y •i3

]
. . . , y •is

]
. . . , y •ik−1

]
, y •ik

]

with the same i ’s which give the basis of L(V ) and with y •j ∈
{
x⊗j , ψ(xj)

}
is again a lin-

early independent set inside L(V ) ∧ L(V ) . Therefore, for a general x =
∑

i ci xi ∈ L(V )
we have ψdL(x) =

∑
i ci

∑
xis∈BI

[[ · · · [ · · · [[x⊗i1 , x⊗i2
]
, x⊗i3

]
. . . , ψ(xis)

]
. . . , x⊗ik−1

]
, x⊗ik

]
;

thus if ψdL(x) = 0 we necessarily have ci = 0 for all i which sport at least one xis ∈ BI .
The outcome is that x ∈ Ker (ψdL) implies x =

∑
i : xis∈BK ( ∀ s) ci xi ∈ L(K) ; thus

Ker (ψdL) ⊆ L(K) , and the converse inclusion is clear because ψdL is a derivation. ¤

Lemma 10.16. The Lie cobracket δ of U(Lν) preserves τ . That is, for each ϑ ∈ U(Lν) in
the expansion δ2(ϑ) =

∑
b1,b 2∈B cb1,b 2

αb1
⊗αb 2

(w.r.t. the basis B⊗B , where B is a PBW

basis as in §10.2 w.r.t. some total order of Bν) we have τ
(
b̂ 1

)
+τ

(
b̂ 2

)
= τ(ϑ) for some b̂ 1,

b̂ 2 with cb̂1,b̂ 2
6= 0 , so τ

(
δ(ϑ)

)
:= max

{
τ(b 1) + τ(b 2)

∣∣ cb1,b 2
6= 0

}
= τ(ϑ) if δ(ϑ) 6= 0 .

Proof. It follows from Proposition 10.13 that τ
(
δ(ϑ)

) ≤ τ(ϑ) ; so δ : U(Lν) −→ U(Lν)⊗2

is a morphism of filtered algebras, hence it naturally induces a morphism of graded algebras
δ : GΘ

(
U(Lν)

)−−−→ GΘ

(
U(Lν)

)⊗2 (notation of §§5.3–4). Therefore proving the claim
is equivalent to showing that Ker

(
δ
)

= GΘ∩Ker(δ)

(
Ker (δ)

)
=: Ker (δ) , the latter being

thought of as naturally embedded into GΘ

(
U(Lν)

)
.

By construction, τ(x y−y x) = τ
(
[x, y]

)
< τ(x)+τ(y) for x, y ∈ U(Lν) , so GΘ

(
U(Lν)

)

is commutative: indeed, it is clearly isomorphic — as an algebra — to S(Vν), the symmetric
algebra over Vν . Moreover, δ acts as a derivation, that is δ(x y) = δ(x)∆(y) + ∆(x) δ(y)
(for all x, y ∈ U(Lν) ), thus the same holds for δ too. Like in Lemma 10.15, since
GΘ

(
U(Lν)

)
is generated by GΘ∩Lν (Lν) =: Lν it follows that Ker

(
δ
)

is the free (asso-

ciative sub)algebra over Ker
(
δ
∣∣
Lν

)
, in short Ker

(
δ
)

=
〈
Ker

(
δ
∣∣
Lν

)〉
.

Now, by definition δ(xn) =
∑n−1

`=1 (` + 1) x` ∧ xn−` (cf. Theorem 10.6) is a sum of
τ– homogeneous terms of τ– degree equal to (n − 1) = τ(xn) . Since in addition δ enjoys
δ
(
[x, y]

)
=

[
x ⊗ 1 + 1 ⊗ x, δ(y)

]
+

[
δ(x), y ⊗ 1 + 1 ⊗ y

]
(for all x, y ∈ Lν ) we have

that δ
∣∣
Lν

is even τ– homogeneous, which means that δ
(
τ(z)

)
either is zero or can be

written as a sum whose summands are all τ– homogeneous terms of τ–degree equal to
τ(z) , for any τ–homogeneous z ∈ Lν ; this implies that the induced map δ

∣∣
Lν

enjoys

δ
∣∣
Lν

(
ϑ

)
= 0 ⇐⇒ δ(ϑ) = 0 for any ϑ ∈ Lν , whence Ker

(
δ
∣∣
Lν

)
= Ker

(
δ
∣∣
Lν

)
. On the

upshot we get Ker
(
δ
)

=
〈
Ker

(
δ
∣∣
Lν

)〉
=

〈
Ker

(
δ
∣∣
Lν

) 〉
= Ker (δ) , q.e.d. ¤
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Proposition 10.17. D = Θ , that is Dn = Θn for all n ∈ N , or κ = τ . Therefore,
given any total order ¹ in Bν , the set A≤n = A ∩Θn = A ∩Dn of ordered monomials

A≤n =
{

αb = αb1 · · ·αbk

∣∣∣ k ∈ N , b1, . . . , bk ∈ Bν , b1 ¹ · · · ¹ bk , τ(b ) ≤ n
}

is a k–basis of Dn , and An :=
(A≤n mod Dn−1

)
is a k–basis of Dn

/
Dn−1 (∀ n ∈ N ).

Proof. Clearly the claim about the A≤n’s and the claim about the An’s are equivalent, and
either of these claims is equivalent to D = Θ . Note also that An :=

(A≤n mod Dn−1

)
=(A≤n \ A≤n−1 mod Dn−1

)
, where clearly A≤n \ A≤n−1 =

{
αb ∈ A

∣∣ τ(b ) = n
}

.
By Lemma 10.14(f) we have A≤n = A⋂

Θn ⊆ A⋂
Dn ⊆ Dn ; since A is a basis, A≤n

is linearly independent and is a k–basis of Θn (by definition): so Θn ⊆ Dn for all n ∈ N .

n = 0 : By definition D0 := Ker(δ1) = k · 1H =: Θ0 , spanned by A≤0 = {1H} , q.e.d.

n = 1 : Let η′ ∈ D1 := Ker(δ2) . Let B be a PBW-like basis of H~∨ = U(Lν) as
mentioned in Lemma 10.16; expanding η′ w.r.t. the basis A we have η′ =

∑
αb∈A cb αb =∑

b∈B cb αb . Then we have also η := η′ −∑
τ(b )≤1 cb αb =

∑
τ(b )>1 cb αb ∈ D1 because

αb ∈ A1 ⊆ Θ1 ⊆ D1 whenever τ(b ) ≤ 1 .
Now, α1 := a1 and αs := as − a1

s = ~
(
xs + ~s−1x1

s
)

for all s ∈ Nν \ {1} yield

η =
∑

b∈B , τ(b )>1cb αb =
∑

b∈B , τ(b )>1 ~
g(b ) cb

(
xb + ~χb

) ∈ H~∨

for some χb ∈ H~∨ : hereafter we set g(b ) := k for each b = b1 · · · bk ∈ B (i.e. g(b ) is the
degree of b as a monomial in the bi’s). If η 6= 0 , let g0 := min

{
g(b )

∣∣ τ(b ) > 1 , cb 6= 0
}

;
then g0 > 0 , η+ := ~−g0 η ∈ H~∨ \ ~H~∨ and

0 6= η+ =
∑

g(b )=g0

cb xb =
∑

g(b )=g0

cb xb ∈ H~∨
/
~H~∨ = U(Lν) .

Now δ2(η) = 0 yields δ2

(
η+

)
= 0 , thus

∑
g(b )=g0

cb xb = η+ ∈ P
(
U(Lν)

)
= Lν ;

therefore all PBW monomials occurring in the last sum do belong to Bν (and g0 = 1 ).
In addition, δ2(η) = 0 also implies δ2(η+) = 0 which yields also δ

(
η+

)
= 0 for the

Lie cobracket δ of Lν arising as semiclassical limit of ∆H~∨ (see Theorem 10.6); therefore
η+ =

∑
b∈Bν

cb xb is an element of Lν killed by the Lie cobracket δ, i.e. η+ ∈ Ker (δ) .
Now we apply Lemma 10.15 to V = Vν , L(V ) = L(Vν) =: Lν and ψ = δ

∣∣
Vν

, so
that ψdL = δ . From the formulas for δ in Theorem 10.6 we see that K := Ker (ψ) =
Ker

(
δ
∣∣
Vν

)
= Span

({x1, x2}
)
, hence L(K) = L(

Span
({x1, x2}

))
: by definition the last

space is nothing but Span
({

xb

∣∣ b ∈ Bν ; τ(b) = 1
})

, thus eventually via Theorem 10.6

we get Ker (δ) = L(K) = Span
({

xb

∣∣ b ∈ Bν ; τ(b) = 1
})

.
Since η+ ∈ Ker (δ) = Span

({
xb

∣∣ b ∈ Bν ; τ(b) = 1
})

we have η+ =
∑

b∈Bν

τ(b)=1

cb xb ;

but cb = 0 whenever τ(b) ≤ 1 , by construction of η : thus η+ = 0 , a contradiction. The
outcome is η = 0 , whence finally η′ ∈ Θ1 , q.e.d.
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n > 1 : We must show that Dn = Θn , while assuming by induction that Dm = Θm for
all m < n . Let η =

∑
b∈B cb αb ∈ Dn ; then τ(η) = max

{
τ(b )

∣∣ cb 6= 0
}

. If δ2(η) = 0
then η ∈ D1 = Θ1 by the previous analysis, and we’re done. Otherwise, δ2(η) 6= 0 and
τ
(
δ2(η)

)
= τ(η) by Lemma 10.16. On the other hand, since D is a Hopf algebra filtration

we have δ2(η) ∈ ∑
r+s=n
r,s>0

Dr ⊗Ds =
∑

r+s=n
r,s>0

Θr ⊗Θs , thanks to the induction; but then

τ
(
δ2(η)

) ≤ n , by definition of τ . Thus τ(η) = τ
(
δ2(η)

) ≤ n , which means η ∈ Θn . ¤

Theorem 10.18. For any b ∈ Bν set α̂b := ~κ(αb) αb = ~ τ(b) αb .
(a) The set of ordered monomials

Â≤n :=
{

α̂b := α̂b1 · · · α̂bk

∣∣∣ k ∈ N , b1, . . . , bk ∈ B , b1 ¹ · · · ¹ bk , κ (αb ) = τ(b ) ≤ n
}

is a k[~ ]–basis of D′
n = Dn

(H~′
)

= ~nDn . So Â :=
⋃

n∈N Â≤n is a k[~ ]–basis of H~′ .

(b) H~′ = k[~ ]
〈{

α̂b

}
b∈Bν

〉/({ [
α̂b1 , α̂b2

]− ~ α̂[b1,b2]

∣∣∣ ∀ b1, b2 ∈ Bν

})
.

(c) H~′ is a graded Hopf k[~ ]–subalgebra of H~ .
(d) H~′

∣∣∣
~=0

:= H~′
/
~H~′ = H̃ = F

[
ΓLν

?] , where ΓLν

? is a connected Poisson algebraic

group with cotangent Lie bialgebra isomorphic to Lν (as a Lie algebra) with the graded Lie
bialgebra structure given by δ(xn) = (n− 2)xn−1 ∧ x1 (for all n ∈ Nν). Indeed, H~′

∣∣∣
~=0

is the free Poisson (commutative) algebra over Nν , generated by all the ᾱn := α̂n

∣∣
~=0

(n ∈ Nν ) with Hopf structure given (for all n ∈ Nν) by

∆
(
ᾱn

)
= ᾱn ⊗ 1 + 1⊗ ᾱn +

n−1∑

k=2

(
n

k

)
ᾱk ⊗ ᾱn−k

1 +
n−1∑

k=1

(k + 1) ᾱ k
1 ⊗ ᾱn−k

S
(
ᾱn

)
= − ᾱn −

n−1∑

k=2

(
n

k

)
S

(
ᾱk

)
ᾱn−k

1 −
n−1∑

k=1

(k + 1) S
(
ᾱ1

)k
ᾱn−k , ε

(
ᾱn

)
= 0 .

Thus H~′
∣∣∣
~=0

is the polynomial algebra k
[{ ηb }b∈Bν

]
generated by a set of indeterminates

{ ηb }b∈Bν
in bijection with Bν , so ΓLν

? ∼= ABν

k as algebraic varieties.

Finally, H~′
∣∣∣
~=0

= F
[
ΓLν

?] = k
[{ ηb }b∈Bν

]
is a graded Poisson Hopf algebra w.r.t. the

grading ∂(ᾱn) = n (inherited from H~′) and w.r.t. the grading induced from κ = τ (on
H), and a graded algebra w.r.t. the (polynomial) grading d(ᾱn) = 1 (for all n ∈ N+).

(e) The analogues of statements (a)–(d) hold with K instead of H , with X+ instead of
X for all X = Lν , Bν ,Nν , and with ΓL+

ν

? instead of ΓLν

? .

Proof. (a) This follows from Proposition 10.17 and the characterization of H~′ in §10.10.
(b) This is a direct consequence of claim (a) and Lemma 10.14(g).
(c) Thanks to claims (a) and (b), we can look atH~′ as a Poisson algebra, whose Poisson

bracket is given by {x, y } := ~−1[x, y] = ~−1(x y−y x) (for all x, y ∈ H~′ ); then H~′ itself
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is the free associative Poisson algebra generated by
{

α̂n

∣∣ n ∈ N}
. Clearly ∆ is a Poisson

map, therefore it is enough to prove that ∆
(
α̂n

) ∈ H~′⊗H~′ for all n ∈ N+ . This is clear
for α1 and α2 which are primitive; as for n > 2 , we have, like in Proposition 10.13,

∆
(
α̂n

)
=

∑n
k=2 ~

k−1αk ⊗ ~n−kQk
n−k(a∗) +

∑n−1
k=0 ~

kα1
k ⊗ ~n−k−1Zk

n−k(α∗) =

=
∑n

k=2 α̂k ⊗ ~n−kQk
n−k(a∗) +

∑n−1
k=0 α̂ k

1 ⊗ ~n−k−1Zk
n−k(α∗) ∈ H~′ ⊗H~′

(10.8)

thanks to Lemma 10.12 (with notations used therein). In addition, S
(H~′

) ⊆ H~′ also
follows by induction from (10.8) because Hopf algebra axioms along with (10.8) give

S
(
α̂n

)
= −α̂n −

∑n−1
k=2 S

(
α̂k

)
~n−kQk

n−k(a∗) −
∑n−1

k=1 S
(
α̂ k

1

)
~n−k−1Zk

n−k(α∗) ∈ H~′

for all n ∈ Nν (using induction). The claim follows.
(d) Thanks to (a) and (b), H~′

∣∣∣
~=0

is a polynomial k–algebra as claimed, over the set

of indeterminates
{

ᾱb := α̂b

∣∣
~=0

( ∈ H~′
∣∣
~=0

) ∣∣ b ∈ Bν

}
. Furthermore, in the proof of (c)

we noticed that H~′ is also the free Poisson algebra generated by
{

α̂n

∣∣ n ∈ N}
; therefore

H~′
∣∣∣
~=0

is the free commutative Poisson algebra generated by
{

ᾱn := α̌xn

∣∣
~=0

∣∣ n ∈ N}
.

Then formula (10.8) — for all n ∈ Nν — describes uniquely the Hopf structure of H~′,
hence the formula it yields at ~ = 0 will describe the Hopf structure of H~′

∣∣
~=0

.
Expanding ~n−kQk

n−k(a∗) in (10.8) w.r.t. the basis Â in (a) we find a sum of terms of
τ–degree less or equal than (n − k), and the sole one achieving equality is α̂n−k

1 , which
occurs with coefficient

(
n
k

)
: similarly, when expanding ~n−k−1Zk

n−k(α∗) in (10.8) w.r.t. Â
all summands have τ–degree less or equal than (n − k − 1), and equality holds only for
α̂n−k , whose coefficient is (k + 1) . Therefore for some η ∈ H~′

∣∣
~=0

we have

∆
(
α̂n

)
=

∑n
k=2 α̂k ⊗

(
n

k

)
α̂n−k

1 +
∑n−1

k=0 (k + 1) α̂ k
1 ⊗ α̂n−k + ~ η ;

this yields the formula for ∆, from which the formula for S follows too as usual.
Finally, let Γ := Spec

(H~′
∣∣
~=0

)
be the algebraic Poisson group such that F

[
Γ

]
=

H~′
∣∣
~=0

, and let γν := coLie (Γ ) be its cotangent Lie bialgebra. Since H~′
∣∣
~=0

is Poisson
free over

{
ᾱn

}
n∈Nν

, as a Lie algebra γν is free over
{

dn := ᾱn mod m2
}

n∈Nν
(where

m := JH~′|~=0 ), so γν
∼= Lν , via dn 7→ xn(n ∈ N+) as a Lie algebra. The Lie cobracket is

δγν

(
dn

)
= (∆−∆op)

(
ᾱn

)
mod m⊗ =

=
n−1∑
k=2

(
n

k

)
ᾱk ∧ ᾱn−k

1 +
n−1∑
k=1

(k + 1) ᾱ k
1 ∧ ᾱn−k mod m⊗ =

=
(

n

n− 1

)
ᾱn−1 ∧ ᾱ1 + 2 ᾱ1 ∧ ᾱn−1 mod m⊗ =

= (n− 2) ᾱn−1 ∧ ᾱ1 mod m⊗ = (n− 2) dn−1 ∧ d1 ∈ γ ⊗ γ

where m⊗ :=
(
m2⊗H~′|~=0 +m⊗m+H~′|~=0⊗m2

)
, whence Γ = ΓLν

? as claimed in (d).

Finally, the statements about gradings of H~′
∣∣∣
~=0

= F
[
ΓLν

?] hold by construction.
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(e) This should be clear from the whole discussion, since all arguments apply again —
mutatis mutandis — when starting with K instead of H ; we leave details to the reader. ¤

10.19 Drinfeld’s algebra
(H~′

)∨
. I look now at the other Drinfeld’s functor at

~ , and consider
(H~′

)∨ :=
∑

n∈N ~−nJ ′n , where J ′ := JH~′ . Theorem 2.2 tells us
that

(H~′
)∨ is a Hopf k[~ ]–subalgebra of H~, and the specialization of

(H~′
)∨ at ~ = 0 ,

i.e.
(H~′

)∨∣∣∣
~=0

:=
(H~′

)∨/~ (H~′
)∨ , is the universal enveloping algebra of the cotangent

Lie bialgebra of the connected algebraic Poisson group which is the spectrum of H~′
∣∣∣
~=0

,

that is exactly ΓLν

? . Thanks to Theorem 10.18, this means
(H~′

)∨∣∣∣
~=0

= U(Lν) as co-

Poisson Hopf k–algebras, the Lie cobracket of Lν being the one given in Theorem 10.18(d).

Therefore we must show that
(H~′

)∨∣∣∣
~=0

is a cocommutative Hopf k–algebra, it is gen-
erated by its primitive elements, and the latter set inherits a Lie bialgebra structure iso-
morphic to that of γν := coLie

(
ΓLν

?) . We prove all this directly, via an explicit description
of

(H~′
)∨ and its specialization at ~ = 0 , provided in the following

Theorem 10.20. For any b ∈ Bν set α̌b := ~κ(αb)−1 αb = ~ τ(b)−1 αb = ~−1 α̂b .

(a)
(H~′

)∨ = k[~ ]
〈{

α̌b

}
b∈Bν

〉/({ [
α̌b1 , α̌b2

]− α̌[b1,b2]

∣∣∣ ∀ b1, b2 ∈ Bν

})
.

(b)
(H~′

)∨ is a graded Hopf k[~ ]–subalgebra of H~ .

(c)
(H~′

)∨∣∣∣
~=0

:=
(H~′

)∨/
~

(H~′
)∨ ∼= U

(Lν

)
as co-Poisson Hopf algebra, where Lν

bears the Lie bialgebra structure given by δ(xn) = (n− 2)xn−1 ∧ x1 (for all n ∈ Nν).
Finally, the grading d given by d(xn) := 1 (n ∈ N+) makes

(H~′
)∨∣∣∣
~=0

= U(Lν) into a

graded co-Poisson Hopf algebra, and the grading ∂ given by ∂(xn) := n (n ∈ N+) makes(H~′
)∨∣∣∣
~=0

= U(Lν) into a graded Hopf algebra and Lν into a graded Lie bialgebra.

(d) The analogues of statements (a)–(c) hold with K , L+
ν , B+

ν and N+
ν respectively

instead of H , L+
ν , Bν and N+

ν .

Proof. (a) This follows from Theorem 10.18(b) and the very definition of
(H~′

)∨ in §10.19.

(b) This is a direct consequence of claim (a) and Theorem 10.18(c).

(c) It follows from claim (a) that mapping α̌b

∣∣
~=0

7→ b (∀ b ∈ Bν ) yields a well-

defined algebra isomorphism Φ :
(H~′

)∨∣∣∣
~=0

∼=
↪−−³ U

(Lν) . In addition, when expanding

~n−kQk
n−k(a∗) in (10.8) w.r.t. the basis A (see Proposition 10.17) we find a sum of terms

of τ–degree less than or equal to (n− k), and equality is achieved only for αn−k
1 , which

occurs with coefficient
(
n
k

)
: similarly, the expansion of ~n−k−1Zk

n−k(α∗) in (10.8) yields
a sum of terms whose τ–degree is less or equal than (n − k − 1), with equality only for
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αn−k , whose coefficient is (k + 1) . Thus using the relation α̂s = ~ α̌s ( s ∈ N+ ) we get

∆
(
α̌n

)
= α̌n⊗1 + 1⊗ α̌n +

∑n−1
k=2 α̌k⊗~n−kQk

n−k(a∗) +
∑n−1

k=1 α̌ k
1 ⊗~n−1Zk

n−k(α∗) =

= α̌n⊗1 + 1⊗α̌n +
∑n−1

k=2 ~
n−k α̌k⊗

(
n

k

)
α̌n−k

1 +
∑n−1

k=1 ~
k (k+1) α̌ k

1 ⊗α̌n−k + ~2 η =

= α̌n ⊗ 1 + 1⊗ α̌n + ~
(
n α̌n−1 ⊗ α̌1 + 2 α̌1 ⊗ α̌n−1

)
+ ~2 χ

for some η, χ ∈ (H~′
)∨⊗(H~′

)∨ . It follows that ∆
(
α̌n

∣∣
~=0

)
= α̌n

∣∣
~=0

⊗1 + 1⊗α̌n

∣∣
~=0

for
all n ∈ Nν . Similarly we have S

(
α̌n

∣∣
~=0

)
= −α̌n

∣∣
~=0

and ε
(
α̌n

∣∣
~=0

)
= 0 for all n ∈ Nν ,

thus Φ is an isomorphism of Hopf algebras too. In addition, the Poisson cobracket of(H~′
)∨∣∣∣
~=0

inherited from
(H~′

)∨ is given by

δ
(
α̌n

∣∣
~=0

)
=

(
~−1(∆−∆op)

(
α̌n

))
mod ~

(H~′
)∨ ⊗ (H~′

)∨ =

=
(
n α̌n−1 ∧ α̌1 + 2 α̌1 ∧ α̌n−1

)
mod ~

(H~′
)∨⊗ (H~′

)∨ = (n− 2) α̌n−1

∣∣
~=0

∧ α̌1

∣∣
~=0

hence Φ is also an isomorphism of co-Poisson Hopf algebras, as claimed.
The statements on gradings of

(H~′
)∨∣∣∣
~=0

= U(Lν) should be clear by construction.

(d) This should be clear from the whole discussion, as all arguments apply again —
mutatis mutandis — when starting with K instead of H ; details are left to the reader. ¤

10.21 Specialization limits. So far, Theorem 10.18(d) and Theorem 10.20(c) prove
the following specialization results for H~′ and

(H~′
)∨ respectively:

H~′ ~→0−−−→ H̃ ∼= F
[
ΓLν

?]
,

(H~′
)∨ ~→0−−−→ U(Lν)

as graded Poisson or co-Poisson Hopf k–algebras. In addition, Theorem 10.18(b) implies
that H~′ ~→1−−−→H′ = H as graded Hopf k–algebras. Indeed, by Theorem 10.18(b) H (or
even H~) embeds as an algebra into H~′, via αn 7→ α̂n (for all n ∈ Nν ): then

[αn,αm] 7→ [
α̂n, α̂m

]
= ~ α̂[xn,xm] ≡ α̂[xn,xm] mod (~−1)H~′

(∀ n, m ∈ Nν

)

thus, thanks to the presentation of H~′ by generators and relations in Theorem 10.18(b),
H is isomorphic to H~′

∣∣∣
~=1

:= H~′
/

(~−1)H~′ = k
〈
α̂1

∣∣
~=1

, α̂2

∣∣
~=1

, . . . , α̂n

∣∣
~=1

, . . .
〉
,

as a k–algebra, via αn 7→ α̂n

∣∣
~=1

. Moreover, the Hopf structure of H~′
∣∣∣
~=1

is given by

∆
(
α̂n

∣∣
~=1

)
=

∑n
k=2 α̂k⊗~n−kQk

n−k(a∗)+
∑n−1

k=0 α̂ k
1 ⊗~n−1Zk

n−k(α∗) mod (~−1)H~′⊗H~′ .

Now, Qk
n−k(a∗) = Qk

n−k(α∗ + α1
∗) = Qk

n−k(α∗) for some polynomial Qk
n−k(α∗) in

the αi’s; let Qk
n−k(α∗) =

∑
s T s,k

n−k(α∗) be the splitting of Qk
n−k into τ–homogeneous

summands (i.e., each T s,k
n−k(α∗) is a homogeneous polynomial of τ–degree s ): then

~n−kQk
n−k(a∗) = ~n−kQk

n−k(α∗) = ~n−k∑
sT s,k

n−k(α∗) =
∑

s~
n−k−sT s,k

n−k(α̂∗)
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with n− k− s > 0 for all s (by construction). Since clearly ~n−k−sT s,k
n−k(α̂∗) ≡ T s,k

n−k(α̂∗)
mod (~ − 1)H~′ , we find ~n−k Qk

n−k(a∗) = ~n−kQk
n−k(α∗) =

∑
s~n−k−s T s,k

n−k(α̂∗) ≡∑
sT s,k

n−k(α̂∗) mod (~ − 1)H~′ = Qk
n−k(α̂∗) , for all k and n . Similarly we deduce that

~n−1Zk
n−k(α∗) ≡ Zk

n−k(α̂∗) mod (~− 1)H~′ , for all k and n . The outcome is that

∆
(
α̂n

∣∣
~=1

)
=

∑n
k=2 α̂k⊗~n−kQk

n−k(α∗)+
∑n−1

k=0 α̂ k
1 ⊗~n−1Zk

n−k(α∗) mod(~−1)H~′⊗H~′ =

=
∑n

k=2 α̂k ⊗Qk
n−k(α̂∗) +

∑n−1
k=0 α̂ k

1 ⊗ Zk
n−k(α̂∗) mod (~− 1)H~′ ⊗H~′ .

On the other hand, we have ∆(αn) =
∑n

k=2 αk⊗Qk
n−k(α∗) +

∑n−1
k=0 α k

1 ⊗Zk
n−k(α∗)

in H. Thus the graded algebra isomorphism Ψ : H
∼=

↪−−³H~′
∣∣∣
~=1

given by αn 7→ α̂n

∣∣
~=1

preserves the coproduct too. Similarly, Ψ respects the antipode and the counit, hence it is
a graded Hopf algebra isomorphism. In a nutshell, we have (as graded Hopf k–algebras)

H~′ ~→1−−−→ H′ = H .

Similarly, Theorem 10.20 implies that
(H~′

)∨ ~→1−−−→H as graded Hopf k–algebras.
Indeed, Theorem 10.20(a) shows that

(H~′
)∨ ∼= k[~ ] ⊗k U(Lν) as graded associative

algebras, via α̌n 7→ xn (n ∈ Nν ), in particular
(H~′

)∨ is the free associative k[~ ]–algebra
over

{
α̌n

}
n∈Nν

; then specialization yields a graded algebra isomorphism

Ω :
(H~′

)∨∣∣∣
~=1

:=
(H~′

)∨/(~−1)
(H~′

)∨ ∼=
↪−−³H , α̌n

∣∣
~=1

7→ αn .

As for the Hopf structure, in
(H~′

)∨∣∣∣
~=1

it is given by

∆
(
α̌n

∣∣
~=1

)
=

∑n
k=2 α̌k

∣∣
~=1

⊗ ~n−kQk
n−k(α∗)

∣∣
~=1

+
∑n−1

k=0 α̌ k
1

∣∣
~=1

⊗ ~n−2Zk
n−k(α∗)

∣∣
~=1

.

As before, split Qk
n−k(a∗) as Qk

n−k(a∗) =
∑

s T s,k
n−k(α∗) , and split each T s,k

n−k(α̂∗) into
homogeneous components w.r.t. the total degree in the α̂i’s, say T s,k

n−k(α̂∗) =
∑

rYs,k
r,n(α̂∗) :

then ~n−k−sT s,k
n−k(α̂∗) = ~n−k−s

∑
rYs,k

r,n(α̂∗) =
∑

r~n−k−s+rYs,k
r,n(α̌∗) , because α̂∗ =

~ α̌∗ . As ~n−k−s+rYs,k
r,n(α̌∗) ≡ Ys,k

r,n(α̌∗) mod (~− 1)
(H~′

)∨ , we eventually get

~n−kQk
n−k(a∗) =

∑
s,r~

n−k−s+rYs,k
r,n(α̌∗) ≡

∑
s,rYs,k

r,n(α̌∗) mod(~−1)
(H~′

)∨= Qk
n−k(a∗) .

for all k and n . Similarly ~n−1Zk
n−k(α∗) ≡ Zk

n−k(α∗) mod (~− 1)
(H~′

)∨ (∀ k , n). Thus

∆
(
α̌n

∣∣
~=1

)
=

∑n
k=2 α̌k

∣∣
~=1

⊗ ~n−kQk
n−k(α∗)

∣∣
~=1

+
∑n−1

k=0 α̌ k
1

∣∣
~=1

⊗ ~n−2Zk
n−k(α∗)

∣∣
~=1

=

=
∑n

k=2 α̌k

∣∣
~=1

⊗Qk
n−k(α∗)

∣∣
~=1

+
∑n−1

k=0 α̌ k
1

∣∣
~=1

⊗ Zk
n−k(α∗)

∣∣
~=1

.

On the other hand, one has ∆(αn) =
∑n

k=2 αk ⊗Qk
n−k(α∗) +

∑n−1
k=0 α k

1 ⊗Zk
n−k(α∗)

in H, thus the algebra isomorphism Ω :
(H~′

)∨∣∣∣
~=1

∼=
↪−−³H given by α̂n

∣∣
~=1

7→ αn also
preserves the coproduct; similarly, it also respects the antipode and the counit, hence it is
a graded Hopf algebra isomorphism. In a nutshell, we have (as graded Hopf k–algebras)

(H~′
)∨ ~→1−−−→ H .
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Therefore we have filled in the top part of the diagram of deformations (5.5), corre-
sponding to (5.4), for H = H (:= Hν) : it reads

F
[
ΓLν

?] = H~′
∣∣∣
~=0

0←~→1←−−−−→
H~′

H~′
∣∣∣
~=1

= H =
(H~′

)∨∣∣∣
~=1

1←~→0←−−−−→
(H~′)∨

(H~′
)∨∣∣∣
~=0

= U(Lν)

or simply F
[
ΓLν

?] 0←~→1←−−−−−−→
H~′

H 1←~→0←−−−−−−→
(H~′)∨

U(Lν) , where Lν is given the Lie bial-

gebra structure of Theorem 10.18/20 and ΓLν

? is the corresponding dual Poisson group
mentioned in Theorem 10.18. Thus H is intermediate between the (Poisson-type) “geo-

metrical symmetries” F
[
ΓLν

?]
and U(Lν), so their geometrical meaning should shed some

light on it; conversely, the physical meaning of H should have some reflect on the physical
meaning of both F

[
ΓLν

?] and U(Lν) .

Remark: The analysis in §10.9 and §10.21 yields a complete description of the defor-
mation features of H via H~ and Drinfeld’s functors drawn in (5.5). In particular

G+ = ΓLν

?
, k+ ≡ g×+ =

(Lν , δ∗
)

, g− =
(Lν , δ•

)
, K− ≡ G?

− = GLν

? (10.9)

(as Char (k) = 0 ) where δ∗ and δ• denote the Lie cobracket on Lν defined respectively
in Theorems 10.18/20 and in Theorem 10.6. Next result shows that the four objects in
(10.9) are really different, though they share some common feature.

Theorem 10.22.
(a)

(H~∨
)′ ∼= H~′ as Poisson k[~ ]–algebras, but

(H~∨
)′ 6∼= H~′ as Hopf k[~ ]–algebras.

(b)
(Lν , δ∗

) ∼=
(Lν , δ•

)
as Lie algebras, but

(Lν , δ∗
) 6∼=

(Lν , δ•
)

as Lie bialgebras.
(c) GLν

? ∼= ΓLν

? as (algebraic) Poisson varieties, but GLν

? 6∼= ΓLν

? as (algebraic) groups.
(d) The analogues of statements (a)–(c) hold with K and L+

ν instead of H and Lν .

Proof. It follows from Theorem 10.8(a) that
(H~∨

)′ can be seen as a Poisson Hopf algebra,
with Poisson bracket given by {x, y } := ~−1[x, y] = ~−1(x y−y x) (for all x, y ∈ (H~∨

)′ );
then

(H~∨
)′ is the free Poisson algebra generated by

{
b̃xn = x̃n = an

∣∣∣ n ∈ N
}

; since
an = αn + (1 − δ1,n) α1

n and αn = an − (1 − δ1,n)a1
n (n ∈ N+ ) it is also (freely)

Poisson-generated by
{

αn

∣∣ n ∈ N}
. We also saw that H~′ is the free Poisson algebra over{

α̂n

∣∣ n ∈ N}
; thus mapping αn 7→ α̂n (∀n ∈ N ) does define a unique Poisson algebra

isomorphism Φ :
(H~∨

)′ ∼=−→H~′ , given by α̃b := ~−d(b)αb 7→ α̂b , for all b ∈ Bν . This
proves the first half of (a), and then also (taking semiclassical limits and spectra) of (c).

The group structure of either GLν

? or ΓLν

? yields a Lie cobracket onto the cotangent space
at the unit point of the above, isomorphic Poisson varieties: this cotangent space identifies
with Lν , and the two cobrackets are given respectively by δ•(xn) =

∑n−1
`=1 (`+1) x`∧xn−`

for GLν

? (by Theorem 10.8) and by δ∗(xn) = (n−2)xn−1∧x1 for ΓLν

? (by Theorem 10.18),
for all n ∈ Nν . It follows that Ker (δ•) = {0} 6= Ker (δ∗) , which implies that the two
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Lie coalgebra structures on Lν are not isomorphic. This proves (b), and also means that
GLν

? 6∼= ΓLν

? as (algebraic) groups, hence F
[
GLν

?] 6∼= F
[
ΓLν

?] as Hopf k–algebras, and so(H~∨
)′ 6∼= H~′ as Hopf k[~ ]–algebras, which ends the proof of (c) and (a) too.

Finally, claim (d) should be clear: one applies the like arguments mutatis mutandis,
and everything follows as before. ¤

10.23 Generalizations. Plenty of features of H = Hdif are shared by a whole bunch
of graded Hopf algebras, which usually arose in connection with some physical problem or
some (co)homological construction, and all bear a nice combinatorial content; essentially,
most of them can be described as “formal series” over indexing sets — replacing N —
of various (combinatorial) nature: planar trees (with or without labels), forests, graphs,
Feynman diagrams, etc. Besides the ice-breaking examples given by Connes and Kreimer
(cf. [CK1–3]), which are all commutative or cocommutative Hopf algebras, other non-
commutative non-cocommutative examples (like the one of Hdif ) are introduced in [BF1–
2], roughly through a “disabelianization process” applied to the commutative Hopf algebras
of Connes and Kreimer. The most general analysis and wealth of examples in this context
is due to Foissy (see [Fo1–3]), who also makes — in other terms — an interesting (although
less deep than ours) study of the operators δn’s and of the functor H 7→ H ′ (H ∈ HAk).
Other examples, issued out of topological motivations, can be found in the works of Loday
et al.: see e.g. [LR], and references therein.

When performing the like analysis, as we did for H, for a graded Hopf algebra H of the
afore mentioned type, the arguments used for H apply essentially the same, up to minor

changes, and give much the same results. To give an example, the Hopf algebras considered
by Foissy are non-commutative polynomial, say H = k

〈{xi}i∈I
〉

for some index set I :
then one finds Ĥ = H~∨

∣∣
~=0

= U(g−) = U(LI) where LI is the free Lie algebra over I .
This opens the way to apply the crystal duality principle to all these graded Hopf

algebras of great interest for their applications in mathematical physics or in topology (or
whatever), with the simplest case of Hdif playing the role of a toy model which realizes a
clear and faithful pattern for many common features of all Hopf algebras of this kind.
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