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1. Introduction

The so-called “quantum groups” appear in literature in two forms: either quan-
tised universal enveloping algebras (in short, QUEA’s) over some Lie algebra g ,
or quantised function algebras over some Lie or algebraic group G. In both cases,
“quantised” is meant in two possible ways, namely:

— a formal one, where we consider topological Hopf algebras, say Uℏ(g) or
Fℏ[[G]] , over the ring k[[ℏ]] of formal power series in the deformation parameter ℏ ,

— a polynomial one, where we consider standard Hopf algebras, Uq(g) or Fq[G] ,
over a base ring where an element q takes the role of “deformation parameter”, e.g.
k(q) or k

[
q , q−1

]
(the ring of rational functions or Laurent polynomials in q ).

In either case, the quantisation canonically defines, as “semiclassical limit”, an
additional Poisson structure on the underlying geometrical object, namely a Lie
cobracket on g — turning the latter into a Lie bialgebra — and a Poisson bracket
on G—making it into a Poisson (Lie or algebraic) group; see [Dr] or [CP] for details.

One can also consider multiparametric quantisations, involving several parame-
ters: nevertheless, only one of them “rules” the quantisation, whereas the others are
responsible for the induced Poisson structure at the semiclassical limit. A typical
procedure to produce such quantisations involve Hopf-theoretical deformations, ei-
ther via twists or via 2–cocycles: one starts with a uniparametric quantisation, and
then applying a deformation (by twist or by 2–cocycle) ends up with a multiparametr
quantisation, whose “extra parameters” come from the twist or the 2–cocycle in-
volved in the process (cf. e.g., [GG3], [GG4] and references therein for more details).

All the above applies as well, up to technicalities, to the context of “quantum
supergroups”, i.e. quantisations of Lie superalgebras and supergroups.

In the present paper, we deal with the general linear Lie superalgebra and super-
group, that is gln and GLn endowed with some “parity”. In this setup, uniparametric
quantised universal enveloping superalgebras (in short, QUESA’s) have been intro-
duced in [Ya1] (in great generality) in a formal version, and then taken up again in
[Zha] in polynomial form. Starting from that, multiparametric QUESA’s have been
constructed in [GGP] via the process of deformation by twist explained above.

Our goal is to work out the dual side, i.e. to introduce suitable dual objects to
the QUESA’s for gl pn mentioned above, in all their variants — uniparametric or
multiparametric, formal or polynomial.

In the uniparametric setting, we start from Yamane’s QUESA Uℏ
(
gl pn

)
, where the

superscript “ p ” accounts for the underlying parity. Through a direct approach, we
construct its full linear dual, which is concretely realised as a topological Hopf super-
algebra Fℏ

[[
GL p

n

]]
with a non-degenerate Hopf pairing with Uℏ

(
gl pn

)
. In particular,

we find that this Fℏ
[[
GL p

n

]]
is indeed a quantum formal series Hopf superalgebra
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(in short, QFSHA) as we were looking for: we provide for it an explicit presentation
by generators and relations and a suitable PBW-like theorem.

For the multiparametric side of the story, we rely on the uniparametric one and re-
sort to a deformation procedure. Indeed, as every multiparametric QUESA UΦ

ℏ
(
gl pn

)
from [GGP] is obtained from Yamane’s QUESA Uℏ

(
gl pn

)
via deformation by some

twist FΦ , one can get the dual
(
UΦ
ℏ
(
gl pn

))∗
as deformation of

(
Uℏ

(
gl pn

))∗
by the

2–cocycle σΦ corresponding to FΦ . But
(
UΦ
ℏ
(
gl pn

))∗
= Fℏ

[[
GL p

n

]]
, the uniparamet-

ric QFSHA that we just constructed; so we only have to compute the deformation(
Fℏ

[[
GL p

n

]])
σΦ

. The final outcome is a multiparametric QFSHA F Φ
ℏ
[[
GL p

n

]]
for

which we find a presentation by generators and relations and a PBW-like theorem.

After achieving our goal for formal quantisations, we obtain the parallel result
for polynomial ones in a very simple way — roughly, selecting suitable subalgebras
inside Fℏ

[[
GL p

n

]]
(for the uniparametric case) and F Φ

ℏ
[[
GL p

n

]]
(for the multipara-

metric one). In particular, for the latter we discuss a bit its direct comparison with
Manin’s multiparametric QFSA’s introduced in [Ma].
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