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ABSTRACT. In this paper we describe the effect on quantum groups — namely,
both QUEA’s and QFSHA’s — of deformations by twist and by 2—cocycles, show-
ing how such deformations affect the semiclassical limit.

As a second, more important task, we discuss how these deformation procedures
can be extended, via a formal variation of the original recipes, using quasi-twists
and quasi-2-cocycles. These new recipes seemingly should make no sense at all, yet
we prove that they do work, thus providing more general deformation procedures.
Later on, we explain the underlying motivation: this comes from Quantum Duality
Principle, through which every “quasi-twist/2—cocycle” for a given quantum group
can be seen as a standard twist/2-cocycle for another quantum group, associated
to the original one via the appropriate Drinfeld functor.

Finally, we consider standard constructions involving R—(co)matrices for Hopf
algebras. First we adapt them to quantum groups, then we show that they extend
to the case of quasi—-R—(co)matrices, and finally we discuss how these constructions
interact with the Quantum Duality Principle. This also yields new symmetries for
the underlying pair of dual Poisson (formal) groups that one gets by specialization.
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1. INTRODUCTION

In Hopf algebra theory, there exists a well-established theory of “deformations”
that are produced via specific tools, namely twists in one case and 2—cocycles in the
other case. Given a Hopf algebra H, a twist for it is a suitable element F € H® H ,
while (dually) a 2-cocycle is a suitable 2-form o € (H ® H)". Deformation by F
provides H with a new Hopf algebra structure, by modifying the coproduct (and the
antipode) but not the product, while deformation by ¢ endows H with yet another
Hopf structure by changing the product (and the antipode) but not the coproduct.

Quantum groups are Hopf algebras of special type, in two versions: QUEAs (=
quantized universal enveloping algebras) and QFSHAs (= quantized formal series
Hopf algebras). Roughly speaking, a QUEA is a (topological) Hopf algebra Uy, over
the k—algebra of formal power series k[[%]] such that Uy := U, /R Uy is isomorphic to
U(g) for some Lie algebra g. Then U(g) inherits from Uy, a Poisson cobracket, which
makes it into a co-Poisson Hopf algebra, hence g bears a Lie cobracket making it
into a Lie bialgebra. One then says that U} is a quantization of the co-Poisson Hopf
algebra U(g), or just of the Lie bialgebra g. Dually, a QFSHA is a (topological)
Hopf algebra F, over k[[]] such that F, := F; /R F} is isomorphic to F[[G]] for some
formal algebraic group G. Then F[[G]] inherits from F}, a Poisson bracket, which
makes it into a Poisson Hopf algebra, thus G bears a Poisson structure which makes
it into a formal Poisson (algebraic) group. One says then that Fj is a quantization
of the Poisson Hopf algebra F[[G]], or just of the (formal) Poisson group G .

As a general philosophy, from any Hopf-theoretical notion — at the quantum level
— one typically infers a Lie-theoretical counterpart — at the semiclassical level.
When dealing with deformations, this leads to devising suitable notions of “twists”
and “2—cocycles” for Lie bialgebras as well as “deformations” (of Lie bialgebras) by
them. In particular, a deformation by twist yields a new Lie bialgebra structure
where only the Lie cobracket is modified, whereas deformation by 2—cocycle defines
yet another, similar structure where only the Lie bracket is changed.

Via this recipe, we expect the following: when we deform (as a Hopf algebra) a
quantization Uy of g by a twist which is trivial modulo A, we get a quantization
of g', the latter being a deformation by twist (as a Lie bialgebra) of g: moreover,
the (Lie) twist working on g is “induced” by the (Hopf) twist that works upon Uy,
namely the former (Lie) twist is the “semiclassical limit” of the latter (Hopf) twist.

Dually, the following also should hold: when we deform (as a Hopf algebra) a
quantization Fy of G by a 2—cocycle which is trivial modulo A, we get a quantization
of G’ the latter being a (formal) Poisson group whose cotangent Lie bialgebra is a
deformation by 2-cocycle of g* := Lie(G)" : moreover, the (Lie) 2—cocycle acting on
g* is “induced” by the (Hopf) 2—cocycle that acts on F},, namely the former (Lie)
2—cocycle is the “semiclassical limit”, in some sense, of the latter (Hopf) 2—cocycle.

Nevertheless, neither of the two results mentioned above seems to be published
anywhere in literature (to the best of the authors’ knowledge, say). Therefore, as a
first contribution in this paper we provide a full, complete statement and proof for
the above sketched results, turning them into well-established theorems.

As a second step — our main contribution in this paper — we extend the notions
of (Hopf) twist and 2—cocycle, as well as the construction of (Hopf) deformations
by them, to a wider setup. Namely, we introduce the notions of quasi—twist for a
QFSHA and of quasi—2-cocycle for a QUEA: roughly speaking, a quasi-twist for
F} has the formal Hopf properties of a twist but has the form exp (h_lgo) , while
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any twist (trivial modulo %) looks like exp (h*'¢) — and similarly for the link
between quasi—2—cocycles and 2—cocycles. Thus even the very definition of these
“quasi-objects”, at least in this form, seems to be problematic — as multiplying by
h~! is meaningless. In spite of this, we show that the recipe defining deformations
still makes sense if we replace “twists” with “quasi—twists”, resp. “2—cocycles” with
“quasi—2—cocycles”. Moreover, we can describe the semiclassical limit of these de-
formations (by “quasi—objects”), again in terms of deformations of Lie bialgebras by
some (Lie) twist, resp. 2—cocycle, that can be explicitly read out as the semiclassi-
cal limit of the quantum (Hopf) quasi—twist, resp. quasi—2—cocycle, that we started
with. In a nutshell, we find the perfect “quasi—versions” of the results mentioned
above for standard quantum group deformations, i.e. those by twist or by 2—cocycle.

The fact that “deformations by quasi—objects” do make sense can be explained
in light of the Quantum Duality Principle (=QDP). In fact, the latter provides
functorial recipes (via Drinfeld’s functors) which turn any QUEA into a QFSHA
and any QFSHA into a QUEA. Then, through the QDP lens, every “quasi-twist”
for a QFSHA, resp. every “quasi—2—cocycle” for a QUEA, is just a sheer standard
twist, resp. 2—cocycle, for the QUEA, resp. the QFSHA, obtained when applying
the appropriate Drinfeld functor. In this way, our deformations “by quasi—objects”
turn out to be tightly related with standard ones, but applied to different quantum
groups. Nevertheless, one still has to prove that the (standard) deformation applied
to the new quantum group can actually be adapted to the original quantum group.

Finally, we consider some constructions of morphisms that, in general Hopf algebra
theory, are provided by R—matrices or p—comatrices. We apply these constructions
to quantum groups, showing that their outcome is much finer than expected from the
general theory, and bringing to light their geometrical meaning at the semiclassical
level. In addition, we improve those results as follows: we introduce the notions of
quasi-R-matrices and quasi-o—comatrices (much in the same spirit as with quasi—
twists and quasi-2-cocycles), and then we extend the construction of the above
morphisms to quasi-R—matrices and quasi—p—comatrices, again involving the QDP.

The paper is organized as follows.

In §2 we quickly recall the material we work with. In §3we present the bulk of the
paper First we study deformations by twist and by 2—cocycles, then we introduce
quasi—2—cocycles and quasi—twists and the procedures of deformations by these. All
this material is discussed again in §4] in light of the Quantum Duality Principle.
Finally, in §5| we study the morphisms associated with R—matrices or p—comatrices
in the case of quantum groups, also explaining their meaning at the semiclassical
limit. Moreover, we extend those constructions and results to the newly minted
notions of quasi—R—matrices and quasi—p—comatrices.

N.B.: alonger version of this work, including full-detailed computations, is avail-
able on-line as electronic preprint [GaGa3].
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2. QUANTUM GROUPS, QUANTUM DUALITY PRINCIPLE, AND DEFORMATIONS

In this section we recap the basic notions we deal with in this paper: Lie bialge-
bras, quantum groups, deformations of both, and the Quantum Duality Principle.

2.1. Lie bialgebras and Lie deformations.

In this subsection we recall some definitions and basic facts about Lie bialgebras
and their deformations. For a more detailed treatment we refer to [CP], [Mj].
Throughout the paper, k will be a field of characteristic zero.

2.1.1. Generalities. A Lie bialgebrais a triple (g; [, |, d) such that (g,[, ]) is
a Lie algebra over k, (g,d) is a Lie coalgebra with Lie cobracket 6 : g — gA g, i.e.
0% g" Ag* —> g is a Lie algebra bracket on g* ), and the two structures are linked
by the constraint that § is a 1-cocycle for the Chevalley-Eilenberg cohomology of
the Lie algebra (g; [, ]) with coefficients in gAg:

6([z,y]) = ad, (6(y)) —ad, (6(z)) =
= [z, 9] @y +y @ [2,91] — [y 20)] © 2 — 2 © [y, 2]

using Sweedler’s-like notation §(x) = xp; ® xpy for any = € g. We write also
Z2

(2.1)

rAy:=2"Yz®y—y®x) and thus we identify gAg with the subspace (g ® g)
Finite-dimensional Lie bialgebras are self-dual, in the sense that (g; [, ], 5) is
a Lie bialgebra if and only if (g* R ]*) is so; the latter is called the dual Lie
bialgebra to ( g;[, 1,0 ) . This also holds in the infinite-dimensional case, up to
technicalities. We denote a Lie bialgebra simply by g, and by g* its dual.
Given r =7 ®ry in g® g, we write 797 =72 ®7r; and 712 =1 M1,
T3 =1Rr ®@ry r3=r1®1l®r€ gogg. For s =35 ® sy € g®g we define

[, s]] :== [r12,513] + [r12, S2.3] + [r1.3, S2.3)

= [r1,51] @ ®@ 59+ 71 @ [1,51] ® 52471 @ 51 @ [1r2, 5]

2.1.2. Deformations of Lie bialgebras. In this work, we are mainly interested
in two kinds of deformations, where either the Lie cobracket or the Lie bracket alone
is deformed. A general theory of deformations for Lie bialgebras using cohomology
theory exists, see e.g. [CG], [MW], and references therein for more details.

Let (g; [, ], d) bea Lie bialgebra and ¢ € g® g be such that
ad, (0 ®id)(c) + c.p. + [[c,c]]) = 0, ady(c+ca1) =0 Vaeeg (22

where ad, denotes the standard adjoint action of x and c.p. means cyclic permu-
tations on the tensor factors of the previous summand. Then

¢ :=0-0(c) , ie. 0%x) := 0(x) —ady(c) Vxeg (2.3)

defines a new Lie cobracket 6¢: g — gAg on (g; [, ]) making (g;[,], )
into a new Lie bialgebra (cf. [Mj, Theorem 8.1.7]).

Definition 2.1.3. An element ¢ € g® g satisfying (2.2)) is called a twist of the Lie
bialgebra g, and the corresponding Lie bialgebra g¢ := (g; [, ],0¢) is called a
deformation by twist or twist deformation of g. &

Remark 2.1.4. We are adopting here conventions that are slightly different from
those in [Mj], yet equivalent. Indeed, we choose to define the deformed Lie cobracket

in as 0°:=0 — 0(c), whereas Majid’s definition is §°:= 4§ + J(c) .
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Now we introduce a deformation of the Lie bracket. Let (g; [, ], 5) be a Lie
bialgebra and v € Homy(g ® g,k ). We identify Homy(g® g.k) = (g®g)" =
g* ® g* for finite-dimensional g; up to technicalities, the outcome is the same in
the infinite-dimensional case too. Dualizing the notion of twist for g* we obtain the
notion of 2—cocycle: condition with g* replacing g and ~ in the role of ¢ yields

ady(0.() +1[v,7]l.) =0, ady(v+7,) =0 Veeg (24

where v,, :=~7 and (0,(y))(a,b,c) = y([a,b],c) + c.p.. Similarly, [ , ]], has
the same meaning as above but with respect to g*.

For any « satisfying (2.4), the map [ , |, : gA g —— g given by
[z, y], = [z, ] + y(ep,y) 2 — (v, ) Y Vryecg (2.5)

defines a new Lie bracket on the Lie coalgebra (g; (5) making (g; [, ]v’ 5) into
a new Lie bialgebra (cf. [Mj, Exercise 8.1.8]).

Definition 2.1.5. Every v € Homk(g A g,k) that obeys (2.4) is called a 2-cocy-
cle of the Lie bialgebra g, and the Lie bialgebra g, :== (g; [, Jy §) is called a
deformation by 2—cocycle or 2—cocycle deformation) of g. &

Remark 2.1.6. Another observation, dual to Remark applies to our given
definition of 2—cocycle and of 2—cocycle deformation. Again, our notion of 2—cocycle
is different from, yet equivalent to, Majid’s because any v € (g ® g)* is a 2—cocycle
in our sense if and only if its opposite —~v is a 2—cocycle in Majid’s, and viceversa.

The following result, which is standard, formalizes the fact that the notions of
“twist” and of “2—cocycle” for Lie bialgebras are devised to be dual to each other.

Proposition 2.1.7. Let g be a Lie bialgebra, and g* the dual Lie bialgebra.

(a) Let ¢ be a twist for g, and 7. the image of ¢ in (g ®g)" for the natural
composed embedding g R g — ¢ QR g** —— (g* ® g*)* . Then 7. is a 2-cocycle
for g* , and there exists a canonical isomorphism (g*)% = (gc)* .

(b) Let v be a 2-cocycle for g; assume that g is finite-dimensional, and let c., be
the image of x in the natural identification (g®g)" = g* ® g*. Then ¢, is a twist
for g*, and there exists a canonical isomorphism (g*)Cv = (g,y)* . U

2.2. Hopf algebra deformations and R—(co)matrices.
We recall some notions on deformations for Hopf algebras. We mainly refer to [Ral,
and to [Ks|, [CP] and [KS] for topological Hopf algebras, using standard notation.

There exist two standard methods to deform Hopf algebras, leading to so-called
“2—cocycle deformations” and to “twist deformations”: hereafter we recall both.

Definition 2.2.1. Let H be a bialgebra (possibly topological, over some commuta-
tive ground ring), and let F € H ® H. Then:

(a) F is said to be unitary if

(e®@id)(F) =1 = (id®e€)(F) (2.6)
(b) F is called a twist if it is invertible in H ® H , it is unitary, and

(c) Fis called a (quantum) R-matriz if it is invertible in H ® H and
(A@Zd)(./—") = FizFoz (Zd@A)(JT") = Fi3Fi (28)
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(d) F is called a (quantum) R-matriz twist if it complies both (b) and (¢) above

(e) F is said to be a solution of the quantum Yang-Baxter equation (=QYBE) if
Fio Fi13 Foz = Faz Fiz3 Fio (2.9)

Remarks 2.2.2. (a) If H is a Hopf algebra (including a topological one) and there
exists F € H ® H which is invertible and such that
FA(z) F' = A(2) VaeeH (2.10)

then H is said to be quasicocommutative. If in addition F obeys also , then H is
said to be quasitriangular. Indeed, the standard notion of “R-matrix” in literature
usually demands the constraint besides condition . Any “R-matrix” as
in Definition [2.2.1](c) is called “weak R-matrix” in [Ch], Definition 1.1.

(b) Every R-matrix as in Definition [2.2.1|(c) above is automatically unitary, cf.
[Ch], Lemma 1.2. Conversely, if F is unitary and enjoys (2.8)), then it is invertible
too, hence it is an R—matrix. In short, the two conditions are equivalent.

(¢) If R is an R—matrix for H, then so is (R*1)21 = (Rm)fl; moreover, Raq
and R~ are R-matrices for H°? and HP alike — see [Mj], [Ra].

(d) Formulas (2.7) and (2.8]) jointly imply (2.9)), while (2.8)) and (2.9)) imply (2.7)).

2.2.3. Deformations by twist. Let H be a bialgebra (over some ring k), and let
F € H® H be a twist for it — as in Definition 2.2.1)(b). Then H bears a second
bialgebra structure, denoted H” and called twist deformation of the old one, with
the old product, unit and counit, but with a new “twisted” coproduct A* given by

A (x) = FA(x) F? VareH

If in addition H is a Hopf algebra with antipode &, then this “twisted” bialgebra
HY is again a Hopf algebra with antipode S” given by

S7(z) == vS(z)v! VxeH

where v := Y ~S(f]) f; — with > - fi ® f§ = F~' — is invertible in H (see,
[CP, §4.2.E], for further details). When H is in fact a topological bialgebra or Hopf
algebra, then the same notions still make sense, and the related results apply again.

We present now the dual picture:

Definition 2.2.4. Let H be a bialgebra, and let o € (H®2)*. Then:
(a) o is said to be unitary if
o(a,1) = e(a) = o(1,a) Vae H (2.11)

(b) o is called a 2-cocycle if it is (convolution) invertible in (H®?)", it is unitary,
and such that

o(aqy, bay) ola@be).¢) = a(buy,cqy) ola, beyce) (2.12)

for all a,b,c € H — where we abuse of notation identifying o & (H ®H )* with the
corresponding k—bilinear map p: H x H — k, and we adapt notation accordingly;

(c) o is called a (quantum) o-comatriz if it is (convolution) invertible in (H®?)"
and — for all a,b,c € H — we have

olab,c) = J(a,c(l))a(b,c(Q)) , o(a,bc) = J(a(l),c) O'(Cl(g),b) (2.13)

(d) o is called a (quantum) o—comatriz 2—cocycle if it complies with (b) and (c);
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(e) o is said to be a solution of the quantum Yang-Bazter equation (=QYBE) if

019 X013 %0923 — 093 X013 * 012 (214)

where hereafter “

x” denotes the convolution product.
Remarks 2.2.5. (a) If H is a Hopf algebra and there exists o € (H ® H)" which
is (convolution) invertible and such that

ocxmro = mg, (2.15)

then H is said to be quasicommutative. If in addition ¢ obeys also , then H
itself is said to be coquasitriangular. Indeed, the standard notion of “p—comatrix”,
or “dual R—matrix”, in literature usually demands besides . Following
[Ch], one might also use terminology “weak o—comatrix”, or “weak dual R—matrix”.

(b) Every p—matrix as in Definition [2.2.4(c) above is unitary. Conversely, if p
is unitary and enjoys (2.13]), then it is (convolution) invertible too, hence it is a
o—comatrix (cf. [Mj], Lemma 2.2.2). In short, the two conditions are equivalent.

(¢) Much like for R—matrices, if p is a p—comatrix for H, then so is (p‘1)21 =

-1 _ . .
(pzl) : moreover, py; and p~! are o-comatrices for H°P and HP alike.

(d) Formulas (Z12) and (213) imply ([Z-14), while [2-13) and @14 yield (12).

2.2.6. Deformations by 2—cocycles. Let H be a bialgebra (over some ring k),
and let 0 € (H® H)" be a 2-cocycle. Then H bears a second bialgebra structure,
denoted H, and called 2—cocycle deformation of the old one, with the old coproduct,
counit and unit, but with new product m, =o*mx*oc~': H® H — H given by

my(a,b) = a-5b = a(any, b)) ae) bey o (ag), b)) VabeHl

If in addition H is a Hopf algebra with antipode &, then this “deformed” bialgebra
H, is again a Hopf algebra with antipode S, , which in detail reads

Sg(a) = J(a(l),S(a(g))) S(a(g)) U_l(S(a(4)),a(5)) VaeH

(see [Doi] for more details). If H is a topological bialgebra or Hopf algebra, all this
construction applies again, as well as the related results, up to technicalities.

The two notions of “2—cocycle” and of “twist”, as well as the corresponding defor-
mations, are so devised as to be dual to each other with respect to Hopf duality (cf.
[Mj]), also in the setup of topological Hopf algebras as with QUEA’s and QFSHA’s.
The same holds for the notions of “p—comatrix” and of “R-matrix”. All this is
recorded in the following result, whose proof is trivial (an exercise in Hopf theory):

Proposition 2.2.7. Let H be a Hopf algebra (possibly topological), and H* its dual
Hopf algebra (possibly in topological sense).

(a) Let F be a twist, resp. an R-matriz, for H, and o, the image of F in
(H® H)* for the natural embedding H ® H — H* @ H* —— (H* ®H*)*.
Then o, is a 2-cocycle, resp. a p—comatriz, for H*. Moreover, in the first case

there exists a canonical Hopf algebra isomorphism (H*)U i (Hf)* .
F

(b) Let o be a 2—cocycle, resp. a p—comatriz, for H ; assume that we have a natural
identification (H ® H)" = H* ® H* (e.q., if H is finite-dimensional), and let F,
be the image of o in H* @ H* wvia this identification. Then F, is a twist, resp. an

R-matriz, for H* . Moreover, in the first case there exists a canonical Hopf algebra

isomorphism (H*)f“ =~ (Ha) . O



8 GASTON ANDRES GARCIA, FABIO GAVARINI

2.2.8. Hopf morphisms from R—matrices and p—comatrices. Let H be a Hopf
algebra, possibly in topological sense. We assume that its (possibly topological)
finite dual H* is a Hopf algebra as well (possibly in a topological sense).

Hereafter we recall some well-known constructions, somewhat shortly: further
details can be found, e.g., in [CP], [KS] and [Mj].

Proposition 2.2.9. (cf. [GaGa3d] for a proof)

(a) Every R-matrix R = R1®@Ry (using Sweedler’s-like notation) for H provides
two Hopf algebra morphisms

<6732[‘[*—>[‘[C0p (77'%7](7?,1)732) , 6>R:H*_>H0p (77'—)7317](732))

— —
(b) If R is an R—-matriz for H, and R~ is its inverse, th(zl> Or , resp. Pr, is

<_
convolution invertible, with convolution inverse ®Ppr-1, resp. Pr-1. Il
The previous result has its dual counterpart, whose proof is again straightforward:

Proposition 2.2.10.
(a) FEvery o—comatriz p for H provides two Hopf algebra morphisms

§p:H—>(H*)COp, O pll, =) @::H—>(H*)Op, C— p(—,0)

<_
(b) _])f p is a o—comatriz for H, and p~' is its (convolutiozz_) inverse, then W,

resp. W, , is convolution invertible, with convolution inverse W,-1, resp. V,-1. []

P
Remark 2.2.11. Inasmuch as any R—matrix, resp. any g—comatrix, for H is a o—
comatrix, resp. an R—matrix, for the dual Hopf algebra H* — cf. Proposition [4.1.2]

— applying Proposition to H* we get Proposition [2.2.10] and, conversely,

applying Proposition [2.2.10| to H* we get Proposition In the same spirit, the
following result about Hopf algebras in duality follows from the very definitions:

Proposition 2.2.12. Let K and I" be two Hopf algebras (over the same ground ring,
and possibly topological) that are dual to each other, say I' = K* and K =I'* for
suitably defined dual functors ()" and ()*. Let also R = p be an R-matriz for K
and a o—comatriz for I' — applying Proposition [2.2.7]. Then for the morphisms in
Proposition [2.2.9 and Proposition we have canonical identifications

br=", : K'=——(I"= K)* | $p=0,: K'=I—— ("= K)® O

2.3. Quantum groups.

We recall hereafter the basic notions on quantum groups, in the shape of either
quantized universal enveloping algebras (=QUEA’s) or quantized formal series Hopf
algebras (=QFSHA’s) — both being Hopf algebras in a topological sense.

2.3.1. Classical and quantum preliminaries. Hereafter we fix a base field k of
characteristic zero. We recall the following from [CP].

For any Lie algebra g over k , its universal enveloping algebra U(g) has a canonical
structure of Hopf algebra, which is cocommutative and connected. If g is also a
Lie bialgebra, with Lie cobracket ¢, then § uniquely extends to define a Poisson
cobracket ¢ : U(g) — U(g) ® U(g), just by imposing that it fulfill the co-Leibnitz
identity d(zy) = d(x) A(y) + A(x) 6(y) . Conversely, if the Hopf algebra U(g) is
actually even a Hopf co-Poisson algebra, then its Poisson co-bracket § maps g into
g ® g, thus yielding a Lie cobracket for g that makes the latter into a Lie bialgebra.
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Dually, let GG be any formal algebraic group G over k: by this we loosely mean that
G is the spectrum of its formal function algebra F[[G]], the latter being a topological
Hopf algebra which is commutative and I-adically complete, where I := Ker(e) is
the augmentation ideal of F[[G]]. Then G is a (formal) Poisson group if and only if
its formal function algebra F[[G]] is a Poisson (formal) Hopf algebra, with respect
to some Poisson bracket { , }. In this case, the cotangent space [ / I? of G has a
Lie bracket induced by { , } via [z,y] := {2/,y'} (mod I?) for all z,y € I/I?
with # = 2’ (mod I?), y =y (mod I?): this makes I /I? into a Lie algebra, but
its dual g = Lie(G) := (I/[2 )* is also a Lie algebra (the tangent Lie algebra to G')
and the two structures are compatible, so that g*:= 1 / I? is a Lie bialgebra indeed.

We come now to quantizations of the previous co-Poisson/Poisson structures.

Let T3 be the category whose objects are all topological k[[h]]-modules which
are topologically free (i.e. isomorphic to V[[h]] for some k—vector space V', with the
h—adic topology) and with morphisms the k[[h]]-linear maps (then automatically
continuous). This is a tensor category for the product T} ® T, which is the separated
h—adic completion of the algebraic tensor product T @y 12 (for all T1, Ty € Tz ).

Let Pz be the category whose objects are all topological k[[h]|-modules isomor-
phic to modules of the type k[[h]]” for some set E: these are complete w.r.t. to
the weak topology and whose morphisms in Pz are the k[[h]]-linear continuous
maps. This is a tensor category w.r.t. the tensor product P, ® P, defined to be the
completion of the algebraic tensor product Py @y P2 w.r.t. the weak topology:
therefore P; 2 k[[h]]™ (i = 1, 2) yields P, & P, = Kk[[h]]"*" (for all P,, P, € Pg).

Note that the objects of Ty and of Py are complete and separated w.r.t. the h—

adic topology, so one has X = X[[h]] for every such object X, with X, := X/hX :

We denote by HA 5 the subcategory of Tz whose objects are all the Hopf algebras
in 75 and whose morphisms are all the Hopf algebra morphisms in 7. Similarly,
we call HAz the subcategory of Pz whose objects are all the Hopf algebras in
Pz and whose morphisms are all the Hopf algebra morphisms in Pg. To simplify
notation, we shall usually drop the subscripts “~” and “~” from the symbol “®”.

Finally, when dealing with any k([i]]-module M by such notation as O(h*) we
shall mean any (unspecified) element belonging to h#° M , for all s,n € N; in other
words, for any x € M by writing x = (’)(hs) we mean that z =0 (mod hSM) .

We are ready now to define quantum groups, in two different incarnations:

2.3.2. Quantized Universal Enveloping Algebras (=QUEA’s). Retain no-
tation as in §2.3.1] above. A quantized universal enveloping algebra — or QUEA in
short — is a (topological) Hopf algebra Uy in HAg such that U := Uh/h U, is a
connected, cocommutative Hopf algebra over k — or, equivalently, U, is isomorphic
to an enveloping algebra U(g) for some Lie algebra g. Then the formula

A(z') — AP (2)

h
— where z’ € Uy, is any lift of © € g — defines a co-Poisson structure on Uy = U(g) ,
hence a Lie bialgebra structure on g. In this case, we say that Uy, is a quantization
of the co-Poisson Hopf algebra U(g) , or (with a slight abuse of language) of the Lie
bialgebra g; conversely, U(g) — or just g alone — is the semiclassical limit of Uy, .
We summarize it writing Uy(g) := Uy . In the following, we denote by QUEA the
full subcategory of H.Ag whose objects are all of the QUEAs.

o(z) = mod )’iUh@2 (2.16)
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2.3.3. Quantized Formal Series Hopf Algebras (=QFSHA'’s). Retain again
notation as in §2.3.1 above. A quantized formal series Hopf algebra — or QFSHA
in short — is a (topological) Hopf algebra Fj in HAg such that Fy := Fh/h Fy is
a commutative, [-adically complete topological Hopf algebra over k , where I is the
augmentation ideal — or, equivalently, F{ is isomorphic to the algebra of functions
for some formal algebraic group F[[G]]. Then the formula
!, A

{z,y} = % mod h Fj, (2.17)
— where 2’,y € Fj, are lifts of 2,y € F[[G]] — defines a Poisson bracket in
F[[G]], thus making G into a (formal) Poisson group. In this case, we say that Fj
is a quantization of the Poisson Hopf algebra F[[G]], or (stretching a point) of the
formal Poisson group G ; conversely, F[[G]] — or just G alone — is the semiclassical

limit of F;,. We summarize it writing F;[[G]] := Fj. In the following, we denote
by QFSHA the full subcategory of HAz whose objects are all of the QFSHAs.

2.3.4. Equivalence and duality between quantizations. If H;, H,, are two
QUEA’s, respectively two QFSHA’s, we say that H; is equivalent to Hy, and we
write H; = Hy, if there is an isomorphism ¢ : H; = H, (in QUEA, resp. in
QFSHA) such that ¢ = id mod h. In particular, in both cases the semiclassical
limit of either H; or H, is the same.

By their very construction, the categories QUEA and Q FSHA are dual to each
other (w. r. to the natural, topological linear duality functors in both directions). In
detail, by dual of any U, € QUEA , denoted U;", we take the set of all k[[h]]-linear
functions from Uy to k|[[A]] (which are automatically continuous w. r. to the h-adic
topology): this is naturally an object in QFSH.A. On the other hand, by dual
of any F, € QFSHA, denoted F;*, we take the set of all maps from Fj to k[[A]]
that are continuous with respect to the fi-adic topology on k[[A]] and to the I;—adic
topology on Fj , with I, :== hFh—i-Ker(th) ; this £} is an object in QUEA . Finally,
()" and ()" are contravariant functors inverse to each other — cf. [Gal].

We finish this part with a trivial, technical result, that we will use several times:

Lemma 2.3.5. Let H be a Hopf algebra (possibly topological). We denote by | , |
the commutator operation in H, and write H' := Ker(€¢). Then:

(a) There exists a splitting into direct sum H =k @& HT . With respect to that
splitting, every z € H uniquely splits into z = e(2)+21 with 2t :=2—e(z) € HT.
(b) Forany x,y € H we have [z,y] = [z*,y*] —see(a) —so [H,H]|C H".
(c) Assume that H = F3[[G]] is a QFSHA, with J, := H". Then we have
[H,H] = [JE,JE] C hJy, and more in general (for all k,ri,7r9,73,..., 7%, s € Ny )

k
% D0 T D ) ) € ) T 5, g
i=1
(d) We have A(z) = €(2)-1®1 4+ 27®1 4+ 127 + (2’(1))+ ® (2(2))+ for
any z € H, oralso A(z) = —€(2)-1®1 4+ 201+ 1®z + (z(l))+ ® (2(2))+
In particular, for V := A — A this yields

V(=) = (20) @ ()"~ () ® ;)" € Ker(H)* O
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2.4. The Quantum Duality Principle.

We recall hereafter the main facets of the so-called “Quantum Duality Princi-
ple”, which establishes an equivalence between the category of QUEA’s and that of
QFSHA'’s (whereas linear duality provides an antiequivalence); cf. [Gal] for details.

Definition 2.4.1. (Drinfeld’s functors) We define Drinfeld’s functors from QUEA
to QFSH.A and viceversa as follows:

(a) Let U(g) be any QUEA, and assume for simplicity that g is finite-dimensio-
nal. Let ¢ : k[[A]] —— Ux(g) and € : Un(g) —— Kk[[A]] be its unit and counit
maps; moreover, for every n € N set 6, := (id —¢ 0 €)*" 0o A=Y — mapping Uy(g)
to Uy(g)®". Then we define

Un@) = {n€Uile)| du(n) € " Un()™" Ve N |

This defines the functor (), from QUEA to QFSHA, onto objects: then onto
morphisms it is clearly defined by taking restriction.

(b) Let F,[[G]] be any QFSHA, and assume for simplicity that G be finite-
dimensional. Let €, : Fj[[G]] —— Kk[[R]] be its counit map, and consider also
Ip, ey = h FR[[G]] + Ker(er) . Then we define

Fh[[G]]V := h—adic completion of ano hin]}:;[[a]]

This defines the functor ()", from QFSHA to QUEA, onto objects: onto mor-
phisms, we define it via scalar extension — from kl[[A]] to k((h)) — followed by
restriction and completion. &

The main result about the above “Drinfeld’s functors” is the following:

Theorem 2.4.2. (“The quantum duality principle”; cf. [Dr], [Gall)

(a) The assignments H +— H' and H — HY respectively define functors of
tensor categories QUEA —— QFSHA and QFSHA —— QUEA, that are
inverse to each other, thus yielding an equivalence of catefories.

(b) For all Un(g) € QUEA and all Fy[[G]] € QFSHA one has

Uilg) [hUig) = FIIGT) . RIG) /REIC]Y = Ug)
that is, if Uy(g) is a quantization of U(g) then Uy(g) is a quantization of F[[G*]],
and if Fy[[G]] is a quantization of F[[G]] then Fu[[G]]" is a quantization of U(g*).
(c) Both Drinfeld’s functors preserve equivalence, that is Hy = Hy implies that
H, = H, and H,Y = H,’' in either case. O

Drinfeld’s functors are dual to each other, namely (cf. [Gall, notation as in §2.3.4)

(Un(9)")" = (Un(g)')" and  (R[G]")" = (FlG]") (2.18)

On the other hand, it is worth stressing a strong asymmetry between these func-

tors. Indeed, the definition of F}[[G]]" is pretty concrete (through an explicit gener-

ating procedure) whereas that of Uy(g)’ is somewhat implicit (it is described as the

set of solution of a system of countably many equations). However, an alternative
description for Uy(g)’ exists, namely the following (cf. [(Ga2, Proposition 3.1.2]):

Proposition 2.4.3. For any k-basis {¥;},c; of @, there are y; € Uy(g) such that:
(a) e(y;) =0, (yi mod hUh(g)) =7y, and y;:=hy; € Uh(g)/ Jorall 1€ 1;
(b) Un(g) is the completion of the unital K[[h]]-subalgebra of Uy(g) generated

by all the x}’s with respect to its I}—adic topology, where I}, is the ideal (in that
subalgebra) generated by h and all the «’s, so that Uy(g) =k[[{z}},c;U{n}]] . O
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3. DEFORMATIONS OF QUANTUM GROUPS

This section is dedicated to explore the effect of deformations of quantum groups,
either by twist or by 2-cocycle, seeting the cases of QUEA’s and QFSHA’s apart.

3.1. Deformations by twist of QUEA’s.

In this subsection we consider deformations by twist of QUEA’s (the easier case,
in a sense). We begin with a technical result, whose proof is left to the reader:

Lemma 3.1.1. (cf. [GaGa3|]) Let H be an h—adically complete Hopf algebra over
k[[A]], and let consider an element of the form F = exp(hy) € H ® H, with
0 =1 ®py € H®? | such that (e ®id)(F)=1= (id®e)(F ). Then

€(p1) ®pa =0, 01 ®e(p2) =0, (1) ®e(pa) = 0

As a consequence, one can assume p1 = i, pa = p; € Ker(e), so ¢ € Ker(e)®?.

We are now ready for our first meaningful result:

Theorem 3.1.2. Let Uy(g) be a QUEA over g = (g; [, ],08). Let F € Uh(g)®2
be a twist for Uy(g) such that F =1 (mod hUh(g)®2> ; then k:=h1llog(F) €
U;L(g)@)2 , and F =exp (hk) . Last, we set K, := Kk — ka1 . Then we have:

(a) K is antisymmetric, i.e. —k = ko1, iff F is orthogonal, i.e. F~' = Fy1;

(b) the element ¢ := Fq = K, (mod ﬁUﬁ(g)®2> belongs to g® g, and it is an
antisymmetric twist element for the Lie bialgebra g ;

(c) the deformation (Uh(g))JT of Un(g) by the twist F is a QUEA for the Lie
bialgebra g¢ = (g; [, ], 50) which is the deformation of g by the twist ¢; in a
nutshell, we have (Uh(g))JT =~ Un(g°) .

Proof. (a) This follows from standard identities for exponentials and for logarithms.

(b) We fix hereafter the notation U, := Uy(g) and J, := Ker(eUh), and we
write k € U,?Q with Sweedler’s like o—notation kK = kK1 ® Ky . By LemAma we
can assume (as we shall do henceforth) that ki, ke € Jj, hence k € Jh®2 )

Now we consider the identity Fi» (A ®id)(F) = Fos (id ® A)(F) . Writing
F =exp (ht1 @ ko) and A(k,) = e @ K (s =1,2) this reads

exp(hm@@@l) eXp(ﬁH§1)®ﬁ§2)®@> = eXp(h1®/€1®f€2) exp(hm@,fgl)@/g?))

Now taking h—adic expansion in both sides of this last identity, at order 0 — in A
—weget 1®1®1=1®1®1, hence from order 1 we get the non-trivial identity

K1 ® Ko ® 1+ /#) ® /%2) ® Ko 1® K @Ky + K1 ® /fgl) ® /<a§2) (3.1)

"

where hereafter any symbol = means “congruent modulo A™ Uh®3 ” (forany n € N).
Then taking (3.1)) modulo & we get

Femel +FRYermPer = 10k +tRmemP erm?® (3.2
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) _

b

where hereafter 7 := =z (mod h) and we took into account that g 7. @ for all

sii€{1,2}. Now, v’ @« = A(%;) with 7 € Uy /hU, = U(g) has the form

HURY = Hel+ 107 + 7 @F; " (3.3)
for some Ii;s(i) € Ker(eyq) — i € {1,2} — having the following property: if
we denote by U(g), the n-th piece in the canonical filtration of U(g) and for any
x € U(g), \U(g),_, weset O(x) :=n, then in (3.3) we have 8(?3(1)> S I(Ry) .
Now, using (3.3) to re-write (3.2]) we find, after cancelling out three summands on
both sides, that /?1(1) X /?1(2 RFs = F li_g(l) ® /?2(2) , and then the condition
8(/?3(1)) S 0(/{_5) forces /4:;1(1) ® /{;( ) =0 = (1) ® Ra 52, Thus (3.3 reads
ARy) =RYeF,® =K ®1+1®F,; this means &, € g€ (C U(g)) — for
se{l,2} —SO R=R Q@R €gR®g, hence c:=F, €gRg.

Now we have to prove that ¢ is an antisymmetric twist for the Lie bialgebra g.
Keeping notation from above, since k; € g we have

Alrs) = r:®1 4+ 1@k, + hell @kl (3.4)

I

with &, e, ¥ -7, P or; 1 = §(&;) being the Lie cobracket of &;, by assumption.
When we plug (3.4) in the Ai-adic expansion of the identity

exp(h K1 QKo ® 1) exp <h /#) ® H?)lig) = exp (h 1®Kk® /<;2) exp (h K& rigl) ® m§2)>

we find that at order 2 — in A — it implies an identity

mlermPlor + K12'R13+ Ki2-ka3 = Ki® R e R @+ R23Ri12 +hRasFRig (3.5)

where each %; , as usual, is the tensor in g®* which sports the ;1’s in position i, the
Ko's in position j, and a (repeated) tensor factor 1 in the last remaining position.

Now let us consider k[Sg} , the group algebra over k of the symmetric group
Sy, the “antisymmetrizer” Altz := (id —(12) — (23) — (31) + (123) 4+ (321)) in
k Sg] , and the natural action of k[Sg] onto U (g)®3. Let Altz act on the identity
(3.5): a sheerly straightforward calculation shows that the outcome, using notation
c:=R, = K — Ka1, eventually is

(d®id)(c) + c.p. + [[c,c]] = 0

This means exactly that ¢ is a twist for the Lie bialgebra g, as in Definition [2.1.3]
which is obviously antisymmetric (by construction), q.e.d.

(¢) Due to the peculiar form of the twist — namely, its being trivial modulo
h — it is easy to see that the Hopf algebra Uh(g)JT is again a QUEA, over some

bialgebra g, i.e. Uh(g)f/h Un(g)” = U(g), and even that one has § = g as Lie

algebras. In fact, since the twist F is trivial modulo /i, we have that Uy(g)/hUs(g)

and Uy(g / hUy(g)” are isomorphic as Hopf algebras; in particular, then, Uj( g)]:
itself is again a QUEA on the same Lie algebra g from Uj(g) but possibly inducing
on g a different Lie cobracket. Indeed, what is actually affected, a priori, is the
co-Poisson structure on the semiclassical limit — hence the Lie cobracket on g —
which in general on Uh(g)f/h Un(g)” will be different from that on Un(g)/hUn(g)
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Let us compute the Lie coalgebra structure of g given by (2.16). Given x € g,
let 2 € Uy(g)” be any lift of x: using obvious notation, its twisted coproduct is

A (r) = FA@)F ! =€ (x@l—l—l@x—l—hzix[f]@x[;]—i—O(h?))e_h“ —
= (1®1+fm) <x®1+1®x+hzix[ﬂ®$g]> (1®1—h/{)—|—0(h2) =

=r®1+ 1®x+h(zix[f] ® 2}l —adz(m)) + 0(1?)
On the other hand, the opposite twisted coproduct is
(A7) (2) = (Floy A (@) (Fa = el A%(x) e =
=2®l+1@a+h (Zi ) @z — adx(n271)> + 0(1?)
Thus, by the very definition of the cobracket — as in (2.16)) — we have
67 (z) = 6(z) + (ady (ko1 — &) (mod k) = d(z) —ad,(c) = §%(x)
hence g is the twist deformation by c of the Lie bialgebra g, as claimed. O

Observation 3.1.3. Let us point out that the twists F considered in Theorem
above are those of “trivial type”, as they are the identity modulo A. This
ensures that twisting Uy(g) by such an F does not affect the Hopf structure of the
semiclassical limit; in particular, it still is of the form U (ﬁ) , with g equal to g as a
Lie algebra but with a different Lie coalgebra structure. A more general twist might
be “unfit”, i.e. the deformed Hopf algebra Uﬁ(g)f might no longer be a QUEA.

We present now a concrete example, taken from [GaGa2], where formal “multi-
parameter” QUEASs are studied in detail.

Example 3.1.4. Let n € Ny and I :={1,...,n}. We fix a free k[[i]]-module
of finite rank ¢, and we pick subsets ITIY := {T;F,T[}ielg h, II:= {ai}iel Chr =
Homy (b, k[[]]) . Let P € M, (k[[A]]) be any (nxn)-matrix with entries in k[[1]] .
A realization of P over k[[h]] of rank ¢ is a triple R := (b, II,IIV) where a;(T}") =
pij, aj(T;) =pji (Vi,jel), and :={S;:=2"(T;"+ T, ) (mod hb)}ie[ is
k-linearly independent as a subset in § :=h / hb.

Let A := (aij)z‘,jel

associated diagonal matrix D := (di 6ij)

€ M, (k) be a symmetrisable generalized Cartan matrix, with
ijer - We say that a matrix P € M, (k[[R]])
is of Cartan type with corresponding Cartan matrix A if P, := 27! (P+PT) = DA .

A formal multiparameter quantum universal enveloping algebra (=FoMpQUEA)
with multiparameter P and realization R is the unital, associative, topological, hA—
adically complete k|[[h]]-algebra Up?h( g) generated by the k[[h]]-submodule h and all
E;, F; (for all i € I'), with relations (for all T, 7", 7" € b, i,j € 1)

TE]' — EJT = +Oéj<T)Ej TF} — F}T = —Oéj(T) Fj

+ p—
o ThTH _ o—hT;

T =T1T'T | E;F; — FE; = 0, +1_ -1
4; 4;
l—aij
1—a;; - —a;j—k ; ] 3.6
S [ g -0 ) 09
k=0 4

l—aij

i 7

1_0/1" — 7(11']'7’{ . .
O I e e I )

B
I
o
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By [GaGa2, Theorem 4.3.2], every FoMpQUEA Upzzh(g) bears a structure of topo-
logical Hopf algebra over k[[A]] — with coproduct taking values into the h-adically
completed tensor product U (g) ® UR(g) — given by (VT € b, £ € 1)

’ K[[p)]

AB) =B+ @B, A(T)=To1+10T, A(F) =Foe " +10F,
e(Be) =0 e(T) =0, e(Fy) =0
S(E:) = e MY E, | S(T) = -T, S(F) = —F et

Furthermore, by [GaGa2l, Theorem 6.1.4], U (g) is a quantized universal envelop-
ing algebra whose semiclassical limit is U (gg) , where g® is a Lie multiparameter Lie
bialgebra. In particular, writing again T', F; and F; for the “specialized” images of
the generators T' € h and E; , F; (i € I), the Lie algebra structure of g% is given by
(3.6]) with the commutator replaced by the (Lie) bracket and the quantum Serre rela-
tions by the adjoint actions ad(E;)' % (E;) = 0 and ad(F,)'*/(F;) = 0, whereas
the Lie cobracket is given by 6(T) =0, (5(EZ) =2T "NE;, §(E) =2T7ANF;.

For example, if we take P := DA, r := rk(DA) and R = (f) L Hv) a
realization of DA, where rk(h) = 2n—r and T;" =T, inIIY, forall i € I, one has
that UJ% ;(g) is the “quantum double version” of the usual Drinfeld’s QUEA Uy (9,)
for the Kac-Moody algebra g, associated with the Cartan matrix A; in particular,

its semiclassical limit is U (gﬁ{D) , where g'" is the “Manin double version” of g, .

Now take any k|[[h]]-basis {Hg}geg of h where |G| =rk(h) =t. Taking

Jo = X0 _ b Hy @ Hy € hoh C UR(H) @ UL (h)

for any antisymmetric matrix ® = (¢; ;) € 50, (k[[A]]) , the element

1<4,5<n
F@ — eh2713<1> = exp <h271227k:1¢ng9®Hk)

in U (b) ® U, (b) is actually a twist for U (g). For i € I, define the elements
Lo, = 127! X k= €i(Hg) Sty g Ko, = e 127! Xk i (Ho) iy Then, the

new coproduct in (Upizh( g))ﬁb is given by

A(E) = Ei® Ly + MK @ B, (Viel)
A'(T) =T®l1+1eT (VTeh)
A*(F) = FioLyie " + KgioF (Viel)

while the “twisted” antipode S7® can be deduced from the twisted coproduct (see
[GaGad]) and the counit €® := e is actually invariant.

With respect to the semiclassical limit, Jg := Jg (mod h) is actually a (toral)
twist for the Lie bialgebra g% . The deformed Lie cobracket is given by the formula

55@(@ = d(z) - adz(ib) = 0(x) - Ztg,k:1¢_fﬂc ([x, Hg] ® Hp + Hy ® [%HkD
— for all z € g¥, with ¢, := ¢, (mod A) — that on generators reads
3 (E) =2T¢, AE;, 8*(T)=0, &*(F)=2Ty,AF;, Yiel,Teh
where T&:i =T+ Z;k:1¢_@@i([{g) Hy forall iel.

In conclusion, one may consider the deformation (g;ii)g“’ of g® by the (Lie) twist
Jo, as well as the deformation (Upﬁ(g))ﬁ) of Up%(g) by the (Hopf) twist Fp . By
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[GaGa2l, Theorem 6.2.2], we know that (Upﬁ(g))ﬂ) is a QUEA, with semiclassical
limit U ((a%)™) = U(a52) : indeed, (UF(a))™ = U4 (0) and (aF)™ = a2 -

3.2. Deformations by 2-cocycle of QFSHA’s.

We consider now deformations by 2-cocycle of QFSHA’s. The outcome is, in
short, the dual counterpart of Theorem above.

Theorem 3.2.1.
Let F3[[G]] be a QFSHA over the Poisson group G, with tangent Lie bialgebra g =

(g;[,],0). Let o be a 2-cocycle for Fy[[G]] s.t. o = ** <mod h (Fh[[G]]®2>*> ;
then s := h'log, (o) € (Fh[[G]]éz)*, where “log,” is the logarithm with respect

to the convolution product, and o = exp, (h g) . Last, we set ¢, :=¢ — ¢o1. Then:

(a) < is antisymmetric, i.e. s31 = —¢, iff o is orthogonal, i.e. 091 =01 ;

(b) the element S, := g, (mod h (Fh[[G]]ézy) provides a well-defined element
(e (g* ® g*)>k =g ® g that is an antisymmetric 2-cocycle for the Lie bialgebra g*;

(¢c) letting ¢ be as in claim (b), the deformation (Fy[[G]]), of Fil[G]] by the 2-
cocycle o is a QFSHA for the formal Poisson group G, with cotangent Lie bialgebra

Lie(Ge)" = (g = (0" ([ L) o)
which is the deformation of g* by the 2-cocycle ( ; in short, (Fh[[G]])U = FillGe]] -
Proof. (a) This is obvious, just by construction.
(b) First, we prove that T, = ¢, (mod h(Fh[[G]]®2>*> yields a uniquely
defined element ( € (g* ® g*)* =g®g. We realize g* as g* = m/m2 with m:=

Ker(e, ), hence g*®g* = (m/m?) @ (m/m?) = (m®m)/(m®m2 +m?®m) ,
thus we have to prove that the function ¢ := ¢, (mod ) kills m@m?+m?@m,

hence induces ¢ defined onto (g* ® g*)* = (m ® m)/(m @m?+m?® m) by the

recipe (¢ (u ® v) = G, (u®w) for each u,v € m. In fact, since ¢, is antisymmetric
it is enough to prove that ¢, (m ® m2) = 0; in turn, this amounts to showing that
qa(a,bc) = 0 V oa,bce€ J:= Ker(thHG”) (3.7)

For the given a,b,c € Jj, := Ker(eFrHGH) , the 2—cocycle nature of o gives
(b cay) ola,beyce) = olaw ba)) o(ae b ,c) (38)
Now we expand o = €®* + 1 > ¢ ®@¢" + O(h?) (cf. §2.3.1|for notation “ O (h?)”)
S
using sort of Sweedler’s-like notation ¢ = > ¢’ ®¢” for ¢; this and (3.8]) yield
S

e(a) e(b) e(c) + h (z /(@) (be) + ela) T0) g"(c)) + o) =
— (@) ed) () + (L (@b)s"(c) + (@) (B ele)) + O(r)
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which implies also A" ¢'(a)s"(be) + O(h?) = kY '(ab)<"(c) + O(R?) whence
S S
s(a,be) = 3 (a)<"(be) = 2 (ab)<"(e) = <(ab,c)  (39)
S o

Recall also that Fj[[G]] is commutative modulo A, so that zy = yu for all
x,y € Fp[|G]]. Using this along with several instances of (3.9)) one gets

s(a,be) =clab,c) =¢(ba,c) =c(b,ac) =¢(b,ca) = c(be,a)
from which we eventually conclude that
Saa,bc) = ¢(a,bc) — ¢(be, a) = ¢(be,a) — s(be,a) = 0 q.e.d.

As a second step, we note that ( is antisymmetric, by construction, since ¢, is.

Third, we need to prove that ( : g* ® g* —— k satisfies the remaining condition
of (2.4). Expanding o as o = exp,(hs) = €2 + h¢ + h*¢*?/2 + O(R*) and

plugging this into (3.8]), we find, for all a,b,c € J; := Ker(eFH[G]]) again,

(6(%) e(e) + sy em) + 72 (b s ey ) 5 (b ) /2 + O hg))
: (6(@)6(*)(2)) €(c@) + hela, b ce) +
+ 1260y by e ) s (20 bop ey ) /2 + O (hS)) =
= (E(aa)) e(by) +hs(aqy b)) +h*s ( (1)»b<1>(1)) <(a<1>(2)»b<1><2)> /2+(9(h3)) :
: (E(a@)) ¢(be)) e(c) + hc(aw b, c) +
+ 1 (a@)(l)b(z)(m ) (a@) b)) ) / 2+ 0( h3)>

then multiplying, truncating at order 3, and recalling that €(a) =0 = €(c), we get
sla,bc) — ¢lab,c) + h (§*2(a,bc)/2 — ¢*(ab,c)/2 +

+ by em) (@b ) = sl bo) s(ae be ¢) )

Now let k[S;] act onto F[[G ]1%* and consider in particular the action of the
antisymmetrizer Alty == (id—(12) — (23) — (31) + (123) + (321)) onto the
equation in (3.10]), which yields a new equation: denoting equation (3.10) by ® =0,
we will write Alt3(®) = 0 for the newly found equation. To see the latter explicitly,
we compute the left-hand member Alt3(®): a first contribution is

Alts( 1" line in (3.10)) =
= ¢(a,bc) —¢(b,ac) —g(a,cb) —g(c,ba) + s(c,ab) + ¢(b,ca) —

(3.10)
0

2

3.11
- g(ab,c) s(ba,c) + s(ac,b) + ¢s(cb,a) — s(ca,b) —¢(bec,a) = (8:11)

= Gla,b,c]) + «(b,le,a]) + slc,la,b]) = <la,b,c]) + cp.
where notation [u,v] :=uv—uvu is used to denote the usual commutator. Modulo

i, such a commutator in Fj[[G]] yields the Poisson bracket in F[[G]], hence we
can write [u,v] = h{ﬂ,ﬁ}/ where we write z := (z mod A F,[[G]]) for each
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z € Fy[[G]] and f':= some lift in F}[[G]] of any e F[[G]], i.e. ' =f; note that
f" is only defined up to A* F;[[G]], yet that is enough for us. Then (3.11]) turns into

Al (1° tine in (310) = 1 (i(a,{,2}) + cp.) (3.12)

Looking at (3.10]), this entails that the hi—-adic expansion of Alt3(®) has zero term
at order 0, while at order 1 it also has a contribution coming from (|3.12)).

Now we go and compute the contribution to Alt3(®) issuing from the third line
in (3.10). Again, direct calculations give

Altg(f)’rd line in " = ga( a(l) ,b(l)) ga(c s a(g) b(g)) + C.p. (3.13)
Since one always has © = e(z) + 4 with z, := (v — €(z)) € Ker(e), applying this
to each element x € {a,b,c} occurring in (3.13]), then expanding everything and
taking into account that ¢, (Jy, J;?) - 0 = < J2, Jy) — cf. (3.7) — we obtain

Alts (3™ line in (3.10)) - ga(a,b(/})) (¢, bfy) + cp.

where we make use of short-hand notation :va) ® a:(/;) =21) @ T2) — T(2) @ T(1) -

Finally, we go and compute the contribution to Alt3(®) issuing from the second
line in (3.10]). Dropping the coefficients h and 1 / 2 we find the following:

Alt5(2" line in (3.10)) = Alt3(s**(a,bc) — ¢**(b,ac)) =
= ¢®(a,[b,c]) +2(b,[c,a]) + s**(c,[a,b]) —
— g*Q([b,c],a) — §*2([c,a],b) — §*2([a,b],c)
which in turn implies Alts(s*?(a,bc) — ¢**(b,ac)) = O(h) — since [u,v] =

O(h) for all u,v € F;[[G]]. The outcome then is that the contribution to Alt;(®)
given by the second line in (3.10) is trivial modulo h?.

Summing up, the outcome of the previous analysis is that

ga(a,{l_a,é}/> + cp. + Ca(a,ba)) ga(c,b(/;)) + c.p. 0

h

Taking the latter modulo A Fy[[G]] we find, for the elements @,b,¢ € F[[G]],
w(@ {0,e}) + ep + s@00)) sa(.00)) + ep. = 0

Now recall that for = € J; with 7 := (z mod A F;[[G]]) and x := (Z mod m?)
we have 6(x) = X@) ® Xé) for the induced Lie cobracket of g* =m / m? computed

on x, by definition; this means that, using our previously established notation

d(x) 1= xp] ®@ X, the last formula above yields

C(a, [b,C]) + c.p. + C(a,b[l]) C(C,b[g}) 4+ cp. =0 (3.14)
Finally, the antisymmetry of ¢ gives ((a,[b,c]) + c.p. = —(([a,b],c) + c.p.,
while a straightforward check shows that ¢(a,bp)) (¢, by) +cp. = —[[¢, (], -

Therefore, ((3.14)) is equivalent to
C([a,b],c) + cp. + [[¢,C]], =0
which means that ¢ is indeed a (strong type of) 2—cocycle for g*, q.e.d.

(¢) Let us consider the deformed algebra (F,[[G]])_ , which coincides with F,[[G]]
as a k[[h]]-module but is endowed with the deformed multiplication “ - ” defined by

CL(-7 b = 0'((1(1), b(l)) a(g) b(g) O'_1 (a(g), b(g)) i a, be Fh[[GH (315)
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As o is of the form o = exp, (h g) , it follows from that the deformed multipli-
cation “ . 7 coincides with the old one modulo 7, i.e. a b = ab (mod K F,[[G]]) .
Thus (Fy[[G]]), is again a QFSHA, say (F4[[G]]), = Fi[[G(]]. Then, in order
to prove that the new group G(,) is indeed G¢ it is enough to show that the Lie
bracket induced in m,/m?2 — where m, := Ker(eF“G(a)”) —is [, ],

Let us take a.,b € ma/m ; then we can pick a,b € J, = Ker(e such

o

Fh[[G]])

that a=a <mod (R + Jh)) and b=b (mod (hJy+ th)) . Now, using the

expansion o = exp,(h¢) = €? + h¢ + O(kh?) , formula (3.15) turns into

a b = (elam)e(bw) + hslam, b)) aw be) (€(ae)e(bs) + s (ae), b)) +
+O(1) = ab + h(s(on) bw) ae be) — o bos(ae be) ) + O®?)

Therefore, using “[ , |7 and “[ , |” to denote the commutator with respect to the
new and the old multiplication, we also have (using that a() b % bisy as) )

a.b], = azb—bsa = ab+ h(s(an.by) aebe — an by s(ae be)) +
+0(1?) = ba — b (s, aw) by ae) — buy o s(be),a@) ) + O(F) =
= [a,b] + h<—<a(a<2>7b<2))a<1) by — (b, aw) b a(z)) + O(1?)

Recall that [a,b] h{a b} where hereafter we write T := x (mod th)
and f’ to denote any hft in Jj, of some given f in J,, as we did before; similarly, we
have [a,b], = h {E,Z_) }/U Then modulo A our previous computations give

{a.b}, = {@.b} - (A be)aw by — Su(be).aw) be e (3.16)
For each « € {d(,),b(s) |s=1,2} we have z = e(x )+x+ with 2 := (z —€(2)) €
Jy . Using this in (3.16|) along with E(Jg) 5(1?) = 0 = = b(s , we get an equivalence
modulo m? = m? (noting that m =m, as kfmodules) namely

{ab}y, = {a.b} - u(aw,be)amwb
= {a,0} — (@), be)an (b)) — Sul(@o).be) (@) b
—Ca( aw) by e(@e) — Sa(bay.aw) e(be) ae =

= {a,b} — (Su(a2) b )au)—@a(a(l) b)%)) (Sa(D, )b<2>—<a(b(2>=a)5<1>)

where the element in last line actually belongs to m = m,. When we reduce all this
modulo m? =m?, we eventually end up with

W — Sa(b),aw) beyae =

m2

21

o)

[a,bl,) = [a,bl. = ((ap,b) ay — C(bp,a)bey = ([a,b],),
thus(cf. Definition the Lie bracket we were looking for is just ([ , ]*)C : O

Observation 3.2.2. We would better point out that the 2-cocycles o considered
in Theorem above are those of “trivial-modulo-A-type”, in that they are the
identity modulo i. With this assumption, deforming F,[[G]] by such a o does not
affect the Hopf structure of the semiclassical limit; in particular, it still reads as
F HGH , with G being the same formal group as G but with a different Poisson
structure. A more general 2-cocycle might be “unfit”, in that the deformed Hopf
algebra (F[[G]]), may no longer be a QFSHA, in general.
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Example 3.2.3. Let G := GL,(k) be the general linear group over k, and
g := gl,(k) its tangent Lie algebra. It is well-known — cf. [Dr], [CP] — that a
quantization of g is provided by the QUEA Uj,(g) = Uh( g[n(k)) defined as follows:
it is the unital, associative, h—adically complete k[[%]]-algebra with generators
F17F27"'7Fn717F17F27“'7Fn71JFn7E17E27"'7En71
and relations (for all 4,5 € {1,...,n—1}, k.t € {1l,...,n})
D, 1) =0, [, ] = =05 F [Tk, Ej] = +0, B

eh(Fi—Fi+1) _ eh(Fi+1_Fi)

[Ei Fj] = 0 e —

[E;,E;] =0, [Fi, Fj] =0 Vi, j:ili—jl>1

E'E;— (¢q+q¢ ") E E;E;+ E;E} =0 Voi,jili—jl=1
F'F;—(q+q ) EF;Fi+FF =0 Vi, jili—jl=1.
where [X,Y]:= XY —Y X. The (topological) Hopf algebra structure is given by
AF) = FeTm 1) 1o F,, S(F) = —F"Blin) - ¢(F) =0

Aly) = el+1® T}, S(Iy) = —1I%, €ly) =0
AE) =E®l+ ) gE  SE) = —e"lin-1)E €(E;) =0

It is also well-known — cf. [Dr], [CP] — that a quantization of G := GL,(k)
is provided by the QFSHA F,[[G]] = Fy[[GL,(k)]] defined as follows: it is the
unital, associative, I;—adically complete k[[h]]-algebra generated by the elements of
the set {xij | i,j=1,...,n+ 1} arranged in a g—matrix, with q := exp(h), with
I, being the ideal generated by {h,xm yee ,xn,n} ; this is a quick way to say that
the given generators obey the relations

Tij Tikk = qTik Tij Tk Thk = q Thk Tik Viji<k,i<h
Ti Tjg, = Tjg T4l Tik Tjl — Tj1 Tike = (q - q_l) T4l Tk Vi<jg, k<l
whereas A, € and S are given (in matrix formulation) by
7=1,...,n; L J=1,...,n; 7=1,...,n;
A 2) = s e ) S
=l (5 \I= L g J=Lleem =Ly T
€ (xij>i:1 ..... ny ) T ( i’)i:1 ,,,,, n (mij)izl ..... n ) T (xij)izl ..... n;
which in down-to-earth terms read, for all i,5 =1,...,n,
. oot
Aryg) = Tioww @y 5 €(zyg) = 05, S(xy) = (=9 Dy <(xhk)h¢;>
where D, is the quantum determinant, defined on any square ¢g-matrix of size ¢ by
J=1,...4 l
D, <(xij)i:1 77777 g;> = ZJES[(_(]) (0)5171,0(1) L2,0(2) """ Le,o(L)

We have also explicit identifications F,[[G]] = Ux(g)* as well as Uy(g) = F3[[G]]”,
which can be described via the Hopf pairing ( , ) : F;[[G]] x Un(g) — k[[R]]
uniquely given by the following values on generators:

(ij, Te) = 610, (@ij,Er) = 0415050 o (wij,Fr) = 04165 (3.17)

Now consider in U,(g) ® Uy(g) the element F := exp <h2_1 > kit Pen L ®Fk>
that is a twist for U;(g) By Proposition [2.2.7|(a), we can see this F as a 2-cocycle
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o, for Uy(g)" = F,[[G]], simply given by evaluation at F , namely
0, BICN X BG] — K] . (6.0) o (¢, F)  (318)
Now, from (3.18) and (3.17)), direct calculation gives

+o00o hm 2—m n Xm
O (gﬁi:r 7*”5&’1) = 2_30 < Al (xi,r ® xé,h) ) (Zt, et Qe Lt @ Fk) >

m)

KXm
Let us consider < Alm=1) (9€i,r @ @y, h) ; (Z? o1 Qe 11 @ Fk) > . Definitions give

(m—1) n om
A (zi,r @ 20,1) (Ztykzl Gri Lt ® Fk) =

n

Xm
= z <xi,81 ®$f,61 ®"'®x8m71,r®xemf1,hv (22k=1 (bt,krt@Fk) > =

S1yeeey Sm—1=1
€1y, em—1=1

= Z H ZZkzl ¢t,/€ <x8571,sc ) I—;f> <:L‘€C71,ec 7Fk‘ >

where we set sg =1, S, :=71, € :={, e, := h. Now, the formulas in (3.17))
guarantee that <IL‘8671750 , Ft> <‘/L‘ecflvec , Fk> = 0 whenever s._1 # s. or e._1 # e.;
therefore, from the previous computation one eventually gets

+oo pm 9—m " m
o, (i, xen) = Gipbon > T <Zt,k:1 Gur (wii, 13) (oo, Iy >) =
m=0 .
+oo pm Q—m
= OipOph D ——— (¢i0)™ = iy 0o exp (R27 i) = 0, Opp € ¥0e/?
m=0 m!
ie. o, (:Em ,x&h) = i, 00 ehbie/2 Voi,r,t,hef{l,...,n} (3.19)

Using this formula, the deformed product in Fj[[G HG; can be described as follows:

Liyj o Ll = o-}'(('ri,j)(l)7 (xﬂ,t)u)) (xz}j)(z) (xf,t)(z) 0;1(($i,j)(3)» (W,t)(g)) =

-1 h(ig— bje)/2
= 0, (i, Tee) Tig e 0 (25, 2e) = MO0 g gy
. B(b: »—bi1)/2 .o
ie. TijorTop = € ($i,0 = 4.0)/ Ti j Tot Vi, jlte{l,....n} (3.20)

Note that this formula shows how the new, deformed product is equivalent modulo
h to the old one: this happens because we work with 2—cocycles of the form exp (h g)
where ¢. By this same reason, any set of elements which generate, as an algebra,
the QFSHA under exam, will also generate it w.r.t. the new, deformed product. For
this reason, is enough to describe FhHGHa}. as the latter is generated (w.r.t.

the new product) by the z; ;’s, just like F,[[G]] was (with the old product).

Let us now see how ((3.20)) yields a new Poisson bracket in the semiclassical limit of
Fh[[GHa}. . With notation Z, , := z,,, (mod AF,[[G]] ), such a Poisson bracket

oF

(i, we,e] o
h
[xi,j 7l'£,t] . — (i —dj1)/2 Ti Tt — el (@it = ¢i0)/2 TgtTij =

— N(bie—054)/2 [xz}j 7$Z,t] + (eh(¢i,e —$5,0)/2 _ (¢t _¢i,2)/2> Ty Ty

is given by {Ei,j,fm}g = z (mod hFhHGHaf> . Now
F

hence expanding the exponentials we get
= (1 + h((ﬁu - ¢j,t>/2) [SCi,j ,xé,t] +h (Qbi,f - ¢j,t) Tyt Tij + O(hz)

[l’i,j ) xé,t} or
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from which we eventually get
{f@j 7f€,t}g}_ = {fi,j ,Ef}t} -+ (ai,l - g_bjﬂf) Tg,tTiJ (321)

where {EZ j ,Eg’t} denotes the old (undeformed) Poisson bracket and we used that
[Ei, j ,@,t} = 0 and deformed and undeformed product do coincide modulo A .

In addition, the formula also induces a concrete description of the modified
Lie bracket in the cotangent Lie bialgebra g* :=m / m?, where m is the augmentation
ideal of F, h[[G]]af . Indeed, the latter has as k-basis the set of cosets (modulo m?)

{Xm‘ = (T;; — 0; ;) mod m*|i,j= 1,...,n}
and for these elements from (3.21]) we deduce the deformed Lie bracket as given by

[xi.5 7X€»t}gf = [xijoxed] o [Xiixed] _ (%5, %0 0] Vi#jg, L#1
[Xi,mX&t}U? = [Xm,Xz,t} + (514 - 5”) Xo,t VE#£L
[Xi,j aXE,K] oy = [Xi,i 7X€,t:| + <$i,[ - q_bj,é) Xi,j A Z?é]

3.3. Deformations by quasi-2-cocycle of QUEA’s.

This subsection is dedicated to deformations by quasi-2-cocycle of QUEA’s. The
result we achieve is somewhat surprising, as we are “stretching the standard recipe”,
as the 2-cocycles that we use to deform our Hopf k|[[h]]-algebras are valued in the field
k((h)) rather than in k[[A]] . Thus, a priori nothing guarantees that the recipe would
just work and produce a new Hopf algebra over k[[h]]; nonetheless, we eventually
find quite a meaningful result, which says that the standard procedure of deformation
by twist for QUEA’s can be extended somewhat beyond its natural borders.

We begin with two ancillary results.

Lemma 3.3.1. Let Uy, := Uy(g) be any QUEA, and J, = Ker(eUﬁ) . For every
z € Uy, there exists N € N such that 0,(z) € hmax(”’N)*NJh‘@” for every n € N.

Proof. By Theorem [2.4.2](a), applying ()" after ()’ to the QUEA U, we get U, =
(Uh’)v . therefore, letting I} := hU; + Kez(eUf;) , this last identity reads

Uy = h-adic completion of > A~ (I;)" = h-adic completion of J h™"(1})"
n>0 n>0

In particular, this implies that for our z € Uy(g) there exist some N € N and
2 e (Irg)N such that z = RNz’ (mod hU,(g)) . Now, given n € N we have
0,(2') € B"U®" because 2’ € (I}:)N CU/,and also 6,(2) € > &%, (L)

s1t-tspn=N
because I} is a Hopf ideal; moreover, Kel(eUh() C hU; again by construction, hence
I; € hU/. In the end, all this yields §,(z") € AmaxnN) &  therefore 6,(z) €
fymax(n,N) =N J2" as claimed. O

We fix now some more notation: namely, we denote by “log,” and “exp,” the
logarithm and the exponential w.r.t. the convolution product, whenever defined.

Lemma 3.3.2. Let Un(g) be any QUEA, and let x be a Kk[[h]]-bilinear form on
Un(g) such that x(z,1) =0=x(1,z) for any z € Uy(g); denote also by the same
symbol x the scalar extension of x to a k((h))-bilinear form for the k((h))—vector
space Ux(g) = k((h)) Qupry Un(g) . Then:
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(a) the formal expression o = exp, (hflx) uniquely provides a well-defined,
k((h))—valued bilinear form for Ux(g) ;
() o(2,1) = (=) = o(1,2) for any 2 € Unlg) ;
(¢c) o is orthogonal, i.e. oo1= 07", iff x is antisymmetric, i.e. Xa1 = —X .
Proof. (a) Fix notation Uj := Uy(g) and J; := Ker(eUh) . For any z € Uy, set
zi=¢(z), 2V =z—¢€(z)=2—2%2€ Jy, hence z=2z"+2 (3.22)
The assumption x(z,1) =0= x(1,z) for z € Uy(g) implies (for all u,v € Uy)
X, v) = x(ur+a,vt+9) = x(uh,0") (3.23)

1

Now, for any a,b € Uy, the formula o = exp, (h* X) = ano hfnx*"/n! gives

o(a,b) = Sso i " Tlix (@ be) /7! = Losoh " TILx (0, 0F) /nt (3:24)

where we took into account that y**(u,v) = Hlex(u(s),v(s)) = [1= (e Uy Vs ))

for each u,v € Uy, k € N, by definitions along with (3.23). Now we notice that
®Pyaj = dn(a) and &b = 6,(), hence Lemma above guarantees that

h_”l:[x( ,bﬁg ) € porntmaxtnA)=Atmax(nB)=B (v p e N, ), whence in particular

h‘"EX( 1,05) € A ABIK(R] ¥ one Ny

n (3.25)
T Ix(ady b)) € RmUTPK[B] ¥ on> A+ B
=1

where A € N, resp. B € N, plays for a, resp. for b, the role of N for z in Lemma

above; by this, the formal expansion for o(a,b) in (3.24]) yields a well defined
element in k[[A]], hence o is a well-defined k(())—bilinear form of Uy(g) as claimed.

(b—c) Both claims are obvious, by construction, as they follow from standard

identities for formal exponentials. O

The previous result leads us to introduce the following notion:

Definition 3.3.3. Let Uy(g) be a QUEA, and Uy(g) := k((R)) @ Un(g) - Note that
Ux(g) has a natural “Hopf algebra structure” of Uy(g) induced by scalar extension
from Up(g) — so that, in particular, the “coproduct” takes values in k((%)) @]

(Uh,(El) ®k[[h]} Uh(Q)) rather than in Uy(g) ®in) Un(g) -
We call quasi-2-cocycle of Ux(g) any k((h))-bilinear form o of U(g) which has

the form o := exp,(h'x) for some k[[#]]-bilinear form x € (Uﬁ(g)@)* of Us(g)

such that x(z,1) = 0 = x(1,2) for all z € Ux(g), and in addition enjoys the
2—cocycle properties with respect to the above “Hopf algebra structure” of Uy(g) .

Remark 3.3.4. The notion of “quasi-2-cocycle” for a QUEA Uj,(g) can also be
cast in the following, equivalent shape. Recall that Fj[[G]] := Un(g)" is a QFSHA

(cf. §2.3.4), and then (Uh(g)@)* = Up(a)" ®Un(g)" = F[[G] & F[G]]. Given

€ <Uh(g)®2>* as in Definition|3.3.3/above, the condition x(z,1) =0 = x(1,z2) for
all z € Uy(g) means that X € Jrc) R ‘]Fh[[G”lWith Jrc) = Ker(th[[G”) , hence
we have x € B2 ( F[[G”)®2 C n? (Fh[[G]]V)®2 where Jp oy = b7l k@) and
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Fi[[G]])Y is the QUEA defined in out of Fy[[G]]. Thus, it follows that h~'x €
h (Fﬁ[[G]]V)®2, so o :=exp,(h x) is a well-defined element in (Fh[[GHV)@)Z.
Now, the requirement that o := exp, (hil)() be a quasi-2-cocycle for Uy(g) in

the sense of Definition above is equivalent to the property of o being a twist
element for F3[[G]]" — which makes perfectly sense in sight of Proposition [2.2.7]

Clearly, every 2-cocycle for Uy(g) is a quasi-2-cocycle as well; the converse, instead,
is not true, in general (counterexamples do exist). However, the key point is that
every quasi-2-cocycle still provides a well-defined deformation by 2-cocycle of Un(g).

Theorem 3.3.5. Let Uy(g) be a QUEA, and o = exp,(h™'x) a quasi-2-cocycle for
it, as in Definition[3.3.5 Then the procedure of 2-cocycle deformation by o applied
to Un(g) actually restricts to Ux(g), making the latter into a new QUEA.

Proof. First of all, we explain the statement itself. By definitions and by Lemma
We can perform the deformation by o onto the Uy(g) := k((h)) & Ux(g) . Our
statement then claims the resulting deformed Hopf structure onto Uy(g) “restricts”
to a deformation of Uy(g) itself: in turn, this amounts to claiming that Uy(g) is
closed for the o-deformed product in (Uﬁ( g))a — so we tackle this last problem.

Fix notation Uy := Uy(g), Ju := Ker(Uy), J; := Ker(U}) and J, := h™'J/,
where U} := U,(g)’ is given in Definition [2.4.1|(a). As it was mentioned in the proof
of Lemma m, Theorem ( a) implies that U, = (Uh’)v , that is

Uy = h-adic completion of Y =" (I;)"
n>0

where I} := hU/ + Keey/) = hU/ + J;; then a moment’s thought shows that the
previous expression of Uj reads also

U, = h-adic completion of Y 7" (J/)" = h-adic completion of S J" (3.26)

n>0 n>0

Note also that J; is a Hopf ideal in U}, and J; C h.J, (by construction); thus for
2 € J/N (with N € N), acting like in the proof of Lemma one gets

5"(2/) € thh@n m <ZZiNi=N ®?:1Jf:Ni> g hmaX(mN)Jh@n (327)

Again, for any z € U, we retain notation as in (3.22)) above, that is
+

2i=¢(z), 2t =z—¢€z)=2—2¢€ Jy, hence z=2z"+2 (3.28)

and we recall also that for all u,v € U, we have
X(u,v) = x(ut+a,v"+0) = x(uh,v") (3.29)
Thanks to (3.26]), in order to prove that Un(g) =: Uy is closed for the o—deformed

product . it is enough to show that JhA B th C > jhn for any A, B e N, .
n>0

To begin with, we pick a € J,* = h~4J/* and b e J,® = h=BJ/®; by definition,
a;b = o(a); b)) ae be o™ (aw) be)

whence expanding the formal formula o = exp, (h_lx) => . So X / nl —
much like in the proof of Lemma [3.3.2| — we get

a:b = 3, (=) ()T X (aq), bay) ag) bey X (a@) be) =

= a-b+ ;Oﬁ*(t“) (=1 ()7 ™} (e, by) a@ be) X (ag), b)) (
t+€>

3.30)
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where we took into account coassociativity and counitality properties.

Let us analyze each summand in the very last line in (3.30). From the identities
« k
X, v) =TTy x(ues), ve) = e Cx(uf Uy (S)) — cf. (3.29) — we get

X" (e, b)) a@) by X (a@), b)) =
t l
= }ZIX(%’%)) at+1) be+1) H ( (t+144) bz;+1+j))

t+4 t t+2

The map J;41: U®(t+£)—> Uh® (t+é+1), ® xg > ( & x8>®1®( & xs) , together
s=1 s=1 s=t+1

with the expansion in (3.28) gives

t ¢ max - £+1
(iga(z)) ®a(t+1) ® (j§1a(+t+1+j)) = Gipera(a) € RUCTEHLA AUrL@(H )

t a : ] max - l+1
<i§1az§)) © e @ (j§1a<+t+1+j>> = Jer1(0e(a)) € h oA Uh®(t+ =
so that, summing up,

t
<i§1aa)> Bar1 @ ( ® a(t+1+y)) = Oy41(a) + Je1 (Or4e(a)) € pmax(t6.A4) =4 Uh®(t+£+1)

— like in the proof of Lemma [3.3.1] — and similarly with b, resp. B, replacing a,
resp. A. Eventually, for all ¢+ ¢ > 0 this gives

X" (e, bay) ag) by X (a3), b)) =

= X" (aqy, b)) @ by X (a@), b)) + X" (aqy, bay) ay bey X (a@), be) (331
where for the two summands in second line, writing n : =t + ¢, we have
X" (aqy: bay) @ by X (a@), b)) =
f[ X( ) a(t41) b4 Tﬁ;X (CL(J;C), b&)) e pmax(nA) —Atmax(n.B) U® (n+1)
X" (@(na bay) adyy by X (a@), be) =
N ﬁl X (00, 06 @) biern) :lj;X(a(ﬁc), A I e A

Let us now assume that A :=1, sothat n:=t+¢ >0 implies n :==t+{ >1=A.
Then the last estimates read
X" (a1, b)) A by X (a), b)) €
X (aqy bay) aly bey X (a), b)) €
The term in the second line, when plugged in and then in , yields the
contribution t, e' " x(agy, bay) aa) by X* (@), b)) € hmxnB)=B U? (nt1)

so for growing n these elements sum up to a convergent series in U, and we are
done. As to the term in the first line, we split it into

n—14max(n,B) —B 77 ® (n+1)
pr i max(n,B) =B 17

Bt max(n,B) —B Uh® (n+1) (332)

X (aqy, bay) @ bey X (ap), be)) =
= X""(aqy, b)) Qe by X (a@), be) + X (aa) bay) de) bl X (a@), b))

Then for the first summand we have (almost by definition, or acting as before)

X (aqy, bay) A by X (as), b)) = x T (a,b)

(3.33)
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so when we plug every such term in (3.31)) and then in (3.30)), they sum up to

V4 -1 -1 _x ~ 7 *
S ieeso (=D @) THE) T X (aq), by) G be) X (ag), b)) =

just because of the combinatorial identity 37 (—1)* (Z) =0.
t+4=n

Finally, we have to dispose of the summands of type
X" (aqy, b)) G bl X (am), b)) (3.34)
for which the analogue of the first identity in (3.32)) holds true, namely

X" (aqy: by) Gy bipy X (a), b)) € hntmexmibB =B et (3.35)

where n :=t + £, taking into account that 8,,,(b) € ™ +LBE) =B (1)
Then we have to distinguish two cases, depending on n =t 4 £.
First we assume n:=t+{¢> B. Then n—1+ max(n+1,B) —B > n, hence
the first identity in yields X*t( b(l)) ac) b ) X" ( ( ), bs) ) € h” U®(n+1)
and then, when plugged in , and Subsequently in and in - th1s

provides to the expansion of @ b a contribution of the form

-n <_1)Z « ~ * L —nrn7r®(n+l) ® (n+1)
h o X t(a(1)>b(1)) a(2) ba)x (a(3),b(3)) € h""h Uh = Uh

— which is fair! — hence we are done with it.

Then we are left with the case n :=t+ ¢ < B —1 . Tracking backwards our
construction, all these case provide to (3.30)) a contribution of the form

L
6 (_1) * -~ Y
tg;lh “ 1o X t(a(l)ub(l))a@) b?;)x (a(g),b(g)) -

. ) (3.36)
-l (-1 (IZ) X (a), by) @) by X (a): b))

With no loss of generality, we can assume that a #Z 0, b # 0 (mod hUh) .
Then for their corresponding cosets @,b € Uh/h U, = U(g) we have a € U(g),

and b € U(g),, where {U(g),} neN. is the standard, coradical filtration of U(g),
and also &;(a) # 0 as well as 0,(b) # 0 for 1 < n < B — cf. [Gal], Lemma
3.3. Moreover, we recall that U, := Uy(g) is cocommutative modulo hUy, as it
is a QUEA: in particular, this implies that (5n(l_)) is a symmetric tensor — for
1 <n < B — hence we can write d,(b) in the form

0a(b) = by ® -+ @by = By @+ @By + On(R') (3:37)

(for 1 <n < B) where 81y ®---® By — using some o—notation of sort, as usual
— is some symmetric tensor in U,2™ and hereafter O, (hs) stands for some element
in B*UZ", for every s,n € N. Then plugging (3.37)) in (3.34) we find

t+0+1
X (aqy, bay) @) b X (a@), be) = HX( 12 08) (t+1>b<+t+1)k112x(a?k>’b?}c)) -

t4-04+1

= HX(CLZ),B@) (t+1) t+1 H X( k) + Ol(htw)

=1 k=t+2
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t+4+1

t
forall t+¢ < B—1, with [] X( ,ﬁ ) a1y Busny 11 X(a?}ﬂ), 5(k>) € Ry, .
i=1 2

Therefore, the contribution to given in (3.36) now reads

B1 1 n\ . R )
ot o (1) (g) X" (aq), by) @ by X (a@) b)) =
11 _ n+1 0
- Z Fh > (-1 ( ) HX( Biiy) Gy Berry 11 x(a k),ﬁac)) + O1(R°)
n=1 t+l=n k=t+2
where in the last formula we have
B-1 1 B o (n t n n+1 .
5t 5 U () el 86) e By TT x(ayofis) € 070
n=1 tHt=n i=1 k=t+2

Now, observe that, setting n : =t + ¢, we can re-write

t n+1
1_[1 X(a?;), 6(1’)) Q(t+1) t+1 A 1;[ 2X< ) = @(5n(a) & B<1> R ® 5<n+1>) (3.38)
1= +

with @ :=po (x®'®idj’ @x®" ") 0,41 mapping Uh®2(”+1) to Uy, where
(1) Sny1:UYS Crtl) Uy @) s the “shuffle” map
TR QT QYR QUnQUYUny1 H T1RYRT2 R Y2 @+ @ Ty @Yy @ Y1

and, considering k|[[A]] as embedded into Uy via the unit map,
(2) w:UP™ —— U, is the obvious (n—fold iterated) multiplication by scalars.
Now recall that 8y®- - -®/8,41) represents a tensor in o—notation, so more explic-
itly we might write 31y®---® B41) = Ziv 1 Bs1 @ Bs nt1; so in the formula we are
n+1
dealing with what is written as a product Hx( ag, B ) a(t+1) <t+1>k_112)<(az;), 5<k>)

n+1

is actually a sum of several products as H X( gy, , Bs, 1) A1) Bs,e41 11 X( 755,]@) )
i=1 k=t+2
But then recall that this tensor [, - ® B+ 25:1 Bsi @ Bs,nt1 1s sym-
n+1
metric, therefore, the various products H X( (1)758 Z) A1) Bs,e1 11 X(a&),ﬁsﬁk)
] k=t+2

actually all coincide: letting C,, be thelr ‘common value”, we deduce that

PO S )()Hx( Biiy) Qi) Bresny nﬁlx( Buwy) =

n=1 n! t+l=n k=t+2
()
= h~ -1 C, =0
nz—:l n' (t—{—% n< ) 6
again because of the identity > (—1)" <Z> =0.
t+l=n

Thus, also the last contributions to given in actually belong to Uy, .
To sum up, we have proved that (for all a € J,' =h~'J!, be J,FE =hBJ/P)
a.b=a-b+z with z € Jy (3.39)
and similarly (for all a € J,' = h'J}, be J,® =hBJ/P) also
b.a="b-a+ux with x € Jj (3.40)
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Let <jﬁ>u:[[h” the unital k[[h]]-subalgebra of (Un(g)), := (k((R) @y Un), gen-
erated by Jy. Now recall that J, := h~'J/ with J; := Ker(U/); then U/ =
Ji @k[[A]] - 1, which implies A(J)) C J/®1+ J/® J/ +1®J/ . Then also
A(jh) C jﬁ 1+ jh ® jh +1® jh . As the coalgebra structure is the same in Uy(g)
and (Un(g)), , it follows that <‘7h>;[[h]] is a Hopf k[[h]]-subalgebra inside (Ux(g)), -

By repeated use of (3.39)) or (3.40) alike, we find that <jh>;[[ﬁ“ CU,= <j¢,,>k[[h]] .

Now observe that the original product “-” in Uy, := Ux(g) and Ug(g) can be

obtained from *.” through deformation via the inverse 2-cocycle o~1. Thanks
g

to this, we can reverse the rolis of Uy :~<ih>k“h” and <Jh>k[@] in the IireZiOUS
construction, thus achieving <Jh>k[[h]} - <Jh>k[[h]] . Therefore <Jh>lk[[h]] - <Jh>lk[[h]] ,
which in particular implies that Uy = <:]Vﬁ>]k[[h” is closed for the o—product. O

Definition 3.3.6. With assumptions as in Theorem the new QUEA obtained
from Uy(g) via 2—cocycle deformation by o of Uy(g) followed by restriction will be
called quasi-2-cocycle deformation of U,(g) by o, and it will be denoted by Uy (g), -

To complete our analysis, next result sheds light onto the new, quasi-2-cocycle
deformed QUEA Uy (g), , describing in detail its semiclassical limit:

Theorem 3.3.7. Let Uy(g) be a QUEA over the Lie bialgebra g = (g; [, ], 5) )
Let o be a quasi-2-cocycle for Uy(g), so o = exp, (h_lx) for some x € (Uh(g)®2>
with x(z,1) =0=x(1,z2) for z € Uy(g). Set also Xo:=Xx — X2.1 . Then:

(a) x is antisymmetric, i.e. xa1 = —X, iff o is orthogonal, i.e. o913 =0 ' ;

(b) the k-linear map v = ¥Xa <m0d h(Uh(g)®2)*>‘ from g®g to k is
antisymmetric 2-cocycle for the Lie bialgebra g ; v

(¢) the quasi-2-cocycle deformation (Un(g)),_ of Un(g) is a QUEA for the Lie
bialgebra g, = (g; [, ]W, 6) which is the deformation of g by the 2-cocycle v ; in
a nutshell, we have (Uh(g))o_ >~ Un(g,) -

In particular, if o is k[[h]]-valued — i.e., it is an ordinary 2-cocycle for the Hopf
k[[h]]-algebra Un(g) — or equivalently x € h (Uh(g)®2)*, then we have just v =10
and (Ui(9)), = Un(g,) = Ui(g) -

Proof. (a) This follows from claim (¢) in Lemma[3.3.2]

(b) We are interested in the restriction to g® g of the specialization of ¢ modulo
h. So we start with a,b,c € g, that we realize as a = a (mod hUh) , b=
b (mod hUﬁ) and ¢c=c (mod hUh) for some “lifts” a, b, c € Uy . By the identity
Un = (U, )V and by Lemma 3.3 in |[Gal], we can choose the lifts a, b and ¢ belong
to Jy:=h1J/, so that a’ := ha, b’ := hb and ¢’ := hc belong to J/.

As ¢ is a normalized Hopf 2—cocycle for Uy , it must obey the equality

U(b(,l)’ C(,l)) U(al7 b(/2)c(’2)) = U(a(/na b(/l)) U(G{Q)bé), C/) (3.41)

Let us focus on the left hand side of . Expanding the exponential we get

/ / ! / ! h_(n—"_m)
o (bl cfy) o (a’sbiyely) = D

n,m>0

T X 00y ) X (@ by =
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= e(a’) e(b’) ( ') + h_lx(b' ’) ( ') + h_lx(a' b'c’)—i—
+ B2 x (b cyy) x(a’,blycley) + A7 21*2(b’ Ne(a") +

h—(nt
+ h 227! X*Q(a/,blc’) + Z WX (b(/1)ac(/1)) X*m(al’b(l2)c(,2))
n+m>3

Then, noting that e(a’) = 6(b’) = e(c’) = 0 by construction, and analyzing all
other summands as in the proof of claim Theorem [3.3.5] we obtain

o (bry, c(ny) o (a’sbpye(ey) = hx(a’,0'e”) +h2x (b, (1)) X (@', by () +

3.42
+ B 227 x*?(a’,b'c") + (sum of all terms with n+m > 3) (3.42)

Writing 2’ = 2'* + ¢(2’) and using that x(z,1) =0 = x(1,2) and

X(x(,n» y(ll)z(ll)) X(x(,2)7 y(/2) 6(2(/2))) = X(x(/l)v y(,1)2/) X(x(,2)> ?J(/Q))
we have that
X (a’b'e") = x(ay bne)) x(afa), biaycly) =
= x(a (’1*),6’+ i) x(a3), b3 cls) + x(ai): ) x(ai), bae’) +
+x(ad ) x(ag + blc(z)) + x(ag blc ) x (i cz)) +
+x(a (S’b) (%w ¢') + x(a {B,b@% ¢) x(a(z) b)) + x(aq) ¢’) x(ag),b')

Since 2/ = hz and zgz;r € hU,, we may re-write the expression above as

X2(a,b'e") = h'x(aq,d) x(a@),c) + i x(aq) ) x(a@),b) + O(h%)

Performing a similar analysis on the term X(b(’l), c(’l)) X(a’, 6(2)0(’2)) we get

X (b, () X(a's b)) = B x(bey) x(a: @) + B x(bay,€) x(a, b)) + O(R?)
Moreover, with a similar (yet easier) analysis one finds also that
X (B (& aely) € HE20 K]

for all n4+m > 3, so that the (last) summand “(sum of all terms with n+m > 3)
in (3.42) is of type O(h”*m) = ( ) Putting all together in (3.42)) we find

W o (bay, cy) o(a, b)) =

= *x(a, be) + W x (b, ey) x(a, c)) + 12 x(bay, ©) x(a, b)) +
+ 127" x(aq), b) x(a@, ¢) + h*27" x(aq), ) x(a@,b) + O(K’)

An analogous treatment of the right hand side of yields
W o (am), b)) o (a@be),¢) =
= h*x(ab, c)+h2x(ab ) (b( )—I—h2x(a ),b)X(a(g),C)—i—
+ R?2 X(a ca ) (b CQ)) + B2 X(b cu )X(G,C(Q)) + O(hg)
Altogether, this implies that

x(abe) + x(b,cq)) x(a, ) + x (b, ¢) x(a b)) +

+ 27 x(a@, ) x(a@,c) + 27" x(aq), ) x(a@), b) =

x(ab,c) + x(a,ba)) x (b ¢) + x(aq),b) x(ae),c) +
+ 2 X(a 1 ) (b (2 ) + 2_1x(b,c(1))x(a,c(2))

n
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where (again) = stands for “congruent modulo Ak[[A]]”, that we re-write as

x(abe) + x(b,cqy) x(a, ) + x(bay, ¢) x(a b)) +
+ 27 x(aq), b) x(a@) ) + 27 x(aq), ¢) x(a@), b) -
— x(ab, c) — x(a,bm) x (b c) — x(aq),b) x(ag@).c) -
— 27 x(a,c)) X (b e) — 27" x(bycy) x(as )

(3.43)

0

h

Consider now the action of the group algebra k [Sg} of the symmetric group S3 on
(U,(??’yk given by o.¢(a,b,c) :=¢(c7".(a,b,c)), where the action of k[S;] on U,(??’
is the natural one that permutes the tensor factors. Then we let the antisymmetrizer
Alts act on both sides of (3.43): using that ~ = x, <mod h(Uh(g)®2)*) .

and that a (mod hUh) =a, b (mod hUh) =b and c (mod hUh) =c, a
straightforward calculation eventually yields

9«(v) +cp. + [[v,7]l, = 0

This means exactly that ~ is a 2-cocycle for the Lie bialgebra g — according to
Definition m — that is obviously antisymmetric (by construction), q.e.d.

(¢) First of all, we start by noting that Ux(g), := (Ux(g)), is equal to Uy(g) as
a counital k[[A]]-coalgebra (by construction), but with the new product defined by

ma(a,b) = a(}b = J(a(l),b(l))a(g) b(g) 0_1(a(3),b(3)) v CL,b c Uh(g)

In particular, the k[[A]]-module Ux(g), = Us(g) is still topologically free, so that
Un(g), is again a Hopf algebra in T3 , cf. §2.3.1 Moreover, its semiclassical limit

Ui(g), = Uh(g)a/h Un(g), as a coalgebra is the same as that of Uy(g); hence

it is again cocommutative connected. Thus by Milnor-Moore Theorem we have
Un(g), = U(8), where g = Prim (U,(g), ) is the space of primitive elements in
Ui(g),, and as such it coincides with Prim(m) = Prim (U(g)) = g as a
Lie coalgebra; its Lie algebra structure, on the other hand, does depend on o.
Altogether, this shows that Uy(g), is a QUEA, whose semiclassical limit is U (ﬁ) ;
then we are only left to prove that the Lie bracket on g coincides with that of g, ,
while also proving that 7 is an antisymmetric 2—cocycle for the Lie bialgebra g .
The Lie bracket in g is given by the commutator inside U (ﬁ) = Ui(g), , so we
denote it by [a,b], =a~=b—b=a (forall a,b€ g), where - is the product
in U(g) = Ux(g), induced by the (c—deformed) product in Uy(g), . Therefore, we
will compute such a commutator as the coset modulo A U;, of a commutator in Uy,
namely [a,b], =a=b-b=a = a:b—b.a (mod kU ) , where a and b,
like in the proof of claim (c), are lifts of a and b — i.e., a (mod hU;) = a and

b (modhUy) =b — such that o’ :=ha € J; and b':=hb € J; .

We re-start back from ([3.30]), which now gives (taking into account all the analysis
carried out there, with A =1= B)

a&b—b&a § a-b—>b-a+

+ 07 (a0 (aly biE) + 0l bly) — X(b5alh) (Bl afhy + ¥ ) —
—

3/~ ~ ~ N
—h < aiy bl + afi) bly) x (o), bz) — (00 ey + 0, @) X(b’é)aag)))
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Second, letting x, := x — X 21, the previous formula greatly simplifies into
a:b—b.a = a-b—-"b-a+ h3 (Xa(a”{ b) a';) - Xa(a’(;),b') a’a“)) -
= 07 (Xal¥h @) ) — xalbE), @) 87 + Oulh)
Now, let us write 2/ = hz forall z € {a,b}: then the last formula turns into

a;b—b.a = a-b—">b-a + h‘l(Xa(aa)vb)aé) - xa(aéyb)a&)) B

1 (3.44)
- - +
o <Xa(b(+1),a)b(2) - Xa(b(z),a)bg;)) + Oy(h)
Here we recall that, working with a QUEA, for ¢ € {a,b} we have
Alc) :c®1+1®c+c()®c —i—(%(h), ()®02 6hU®2

and moreover — for every c € {a b} and c € {a,b}, so that cis a lift of ¢ —

where hereafter any overhned” object stands for “its coset modulo A”; in addition,
we recall also that x, is antisymmetric. Then ({3.44) and (3.45)) altogether yield

[a,b],=azb-bwa =a.b-b.a =
= [a,b] + y(ap)b) a — v(bpy,a) by =
= [a,b] — y(aqg,b)ap — v(bpy,a) by =: [a,bl,
hence [a,b] = [a,b]7 for all a,b € g, in the sense of (2.5), and we are done.

Finally, if in particular o is k[[A]]-valued — i.e., it is an ordinary 2-cocycle for the

Hopf k|[[h]]-algebra U;(g) — then we have x = hlog,(0) € h (Uh(g)®2)*, hence
we have just v =0 and (Ux(g)), = Un(g,) = Un(g) - O

Example 3.3.8. Some examples of deformation by quasi-2-cocycles are treated in
[GaGa2l, Section 5.2], for the wide family of formal multiparameter QUEAs that
treated in Example |3.1.4} we then resume notations and formulas from there.

Fix ne N, and I :={1,...,n}. Wefix P:= (pid)i,jel € M, (k[[A]]) of Cartan
type, with associated Cartan matrix A, a realization R := ([j I HV) of it and
the Hopf algebra U5 (g) . Let {Hg}geg be a k[[A]]-basis in b, with |G| = rk(h) =

Fix an antisymmetric, k[[A]]-bilinear map y : h x h —— k[[A]], that corresponds
to X = (ng = x(H,y, H“/))g;yeg S 5ot(k[[h]]) . Any such y also induces uniquely
an antisymmetric, k[[A]]-bilinear map X, : U5 (h) x U (h) ——— k[[A]] as fol-
lows. By definition, Upﬁ(h) is an hfadically complete topologically free Hopf algebra

isomorphic to §k[[h] (h) == @ ¢y (D), the Aimadic completion of the symmetric al-
gebra Sy (h) = @ S [ﬁ”( ) Then, x, is defined as the unique k[[A]]-linear (hence
neN

h-adically continuous) map Ug,(h) ® Ugs(b) — X k[[R]] such that

Xo(2,1) = e(2) = Xu(1, 2) YV 2 € Sy (h)
Xu(z,y) = x(z,y) Y 2,y € Sy (h) (3.46)
Xv(z,y):=0 VaxeS/(h),yesSi(h) :rs>1,r+s>2

By construction, x, is a normalized Hochschild 2-cocycle on Upﬁ(h) , that is

() Xv(y, 2) — Xv(zy, 2) + Xu(z,92) — Xu(z,9)€(2) = 0 Voz,yz€ Up%(h)
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By |[GaGa2, Lemma 5.2.3], the convolution powers of x, satisfy the following prop-
erty: forall Hy, H_ € b and k,/,m € N, , we have

S 6o (MDY (Hy, H)™  for m > 1
~xm 7k Tl k,m Ot,m X\, =z 4
Xo™(HE HE ) = {5 5 o f —0

k,0 V2,0 or m=2=U.

This allows us to define a “toral” quasi-2-cocycle x, as the unique k[[%]]-linear map
from UZ%(h) @ UZ(h) to k((h)) given by the exponentiation of h™'271y, | i.e.
Tk

—lg—-1g o ~
Xv = €' X = Emzoh "X/ 2" ml

By [GaGa2l, Lemma 5.2.2], this x, is a quasi-2-cocycle for UZ%(h), in the sense of
Definition Moreover, one has, for all H, , H_ € b, and setting K, := e"H=

No(He Ho) = 0720 (H He) oy (K Ko = i)
Assume that X satisfies the additional requirement x(S;, —) = 0 = X( —,5i)
for S; == 2"Y(T;"+T;)(VieI). Then x(T;",T) = ( T) and

X(T,Tf) = X(T,—Ti_) forall i€ I, T € b; so x induces a Kk[[A]] blhnear map
X:bhxbh——Kk[[A], where h:=b/s with s:= Spank[[hﬂ({ Si Yier)» given by

X(T'+5,T"+s) = x(T,T") ¥V T,T" €}

Now, replaying the construction above with h and Y replacing h and y, we can

~J

construct a quasi-2—cocycle X, : UP%(E) X UP%(E) —— k((h)). Since UP%(E) =
§k[[hﬂ (h), there exists a Hopf algebra epimorphism 7 : U5 (g) — UZ%(h) given
by m(E;) =0, m(F;):=0 —for i€ I —and n(T):=(T+s) € h CUL(h) —
for T'€ b. Then we consider o, = X, o (7 x7) : Ufs(g) x U5 (g) — k((h))
which is automatically a normalized, k((h))-valued Hopf quasi-2—cocycle on UPEL( g).

By Theorem , one may define a “deformed product” on Ug%(g) using oy

hereafter denoted by &,. Write X(™ox = X4 -5 X for the n—th power of any
X € Uf(g) with respect to this deformed product.

Directly from definitions, sheer computation yields the following formulas, relating
the deformed product with the old one (for all 7", 7", T €b, i,j€ I):

T/ dXT// _ T/ T// , Ez‘ r'fXFj — E. F‘ , FJUXE Fj EZ.
TeE; = TE; +2'x(I'"T;")E; , E;j6T = E;T+ 2 'x(T}",T)) E;
TeF; =TF, +2'Xx(T.T;)F; , FjeT = F;T +2'x(T;,T) F;

m)o —1 + +
B = T o (e e ) B = B
+ + 1y
Bl Bl = ax<e+ﬁmTi,e+h"Tj ) BBy = et g g

(M)oy (Noy +heT.+ +hT+ JrhtT+ +RTF
E; oy Lj oy By 15 Ux ‘ [[i= 1‘7x e R )
+ + + ot +
. e-l—ﬁmTi e-l—ﬁTj o 6+ﬁ(mTi +Tj ) e—l—ﬁnTk E™E. Bl
X ) X ) 7 7~k
m)ox _ yym—1_—1( —heT~ KT~ m _ m
=[5 Ox < ,€ ) F™ = F,

(2

— — ~ _hnT- _ —ly
FideF'n — le(e hmTl’e hn P )Emﬁvjn S hmn2 xzjﬂmF}n

Fi(m) F 5 F, (Mox _ (Hz Lov ( ~heT; >> (H? 110—1< hT hT;))_
| (efhmT[’ eth].—) J;1 (efh(mTi_JrTj_l e’h”T’;> FmF Fr

X
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Fix now X := (ng = x (T, Tf)) and define the multiparameter matrix
ijel

P(X) =P+ X = <p8<) = Dij +)O(ij> .
i,j€l

= ol =i 79)
It turns out that P, is a matrix of Cartan type — the same of P indeed — and

R = (h i ,Hv) is a realization of it. Moreover, by [GaGa2l, Theorem 5.2.12],

there exists an isomorphism of topological Hopf algebras (UPT%( g))aX = Upi()’f>h(g)

el

which is the identity on generators. In short, every toral quasi—2—cocycle deforma-
tion of a FoMpQUEA is another FOMpQUEA. Moreover, under mild restrictions,
one proves that the FOMpQUEA Upﬁ( g) is isomorphic to a toral quasi-2—cocycle
deformation of the Drinfeld’s standard double QUEA, cf. [GaGa2, Theorem 5.2.14].
As to the semiclassical limit, taking everything modulo A, the map x defines
a similar antisymmetric, k-bilinear map ~ := (X mod h) tho xbhg — k

— where by ;= b / i = h. Out of v one constructs a toral 2-cocycle g for
the Lie bialgebra g%, and out of it the 2-cocycle deformed Lie bialgebra (gg)vg .
Similarly as above, out of v we get the multiparameter matrix P,y and its realization
Ry : then Py = Py and R, = Ry . Attached to these we have Upi()’f)h(g)

R(7) R(x)

and gp ) = g5, again connected via quantization/specialization, and g, =

P
(g}_f)y as Lie bialgebras. In fact, “deformation by (quasi—)2-cocycle commutes
g

with specialization”, see [GaGa2, Theorem 6.2.4]: with assumptions as above, we

have that (Upﬁ(g))g is a QUEA, with semiclassical limit U((gg) ) = U(g?gf) :

Tg

Remark 3.3.9. It is important to stress that our notion of quasi—2—cocycle did not
come out of the blue, but rather was suggested by the previous example. Indeed, the
authors first “met” these objects when studying polynomial-type QUEAs U,(g) “ala
Jimbo-Lusztig”: these are standard Hopf algebras (no topology is involved), to which
one can apply deformation by 2-cocycles and then obtain some “multiparameter
QUEAs” — cf. [GaGall, §4.2. Every such polynomial U,(g) can be realized as a
Hopf subalgebra of a formal Uy(g), hence it makes sense to try and extend the
2-cocycle and the associated deformation procedure for U,(g) to the larger object
Ui(g) . When we fulfilled this task, in [GaGa2|, what we actually found was that the
unique extension of the 2-cocycle of U,(g) to Uy(g) actually is a quasi-2-cocycle (and
not a 2—cocycle!), yet despite this the deformation procedure does extend from U,(g)
to the whole Uy(g). Thus the very notion of “quasi—2—cocycle” and the associated
deformation procedure showed up as something real from this concrete example.

3.4. Deformations by quasi-twist of QFSHAs.

In this subsection we consider deformations by twist of QFSHA’s, but again
“stretching the standard recipe”, much like in in fact, rather than twists in the
usual sense we consider some special twist elements belonging to the scalar extension
from k[[7]] to k(7)) of our QFSHA. For these elements — that we call “quasi-twists”
— nothing ensures a priori that the deformation recipe would properly work on the
given QFSHA:; nevertheless, we eventually find that this is indeed the case. In short,
we prove that the standard procedure of deformation by twist for QFSHA’s can be
extended (beyond its natural borders) to the case of quasi-twist elements.

We begin with a couple of technical lemmas:
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Lemma 3.4.1. Let F}[[G]] be a QFSHA, and F[[G]]" the associated QUEA defined
m . Let o € J?, with Jy := Ker(th[[G”) . Then:

(a) F:=exp(h~ly) is a well-defined element in Fy[[G]]" ;

(b) AAF)(f):=F-f-F ' € RG] foral f € Fy[[G]], so that the adjoint
action of F onto Fy[[G]]" actually restricts to Fy[[G]] .

Proof. (a) The assumption ¢ € J,? implies ¢ € h? (th)2 C W E[[G]]Y, where
Jy =0T, C F[[G]]Y. Therefore il € RE[[G]]”, hence F :=exp (hlp)
is indeed a well-defined element in F;[[G]]", q.e.d.

(b) We compute Ad(F)(f), f € Fy[[G]]: using the identity Ad(exp(X))(Y) =

exp (ad(X )) (Y) and expanding the exponential into a power series we get

+oo 1 n
Ad(F)(f) = Ad(exp(h'))(f) = exp(ad(h™'¢))(f) = D] ad(h™'9)"(f)
Now Lemma ( c¢) and the assumption ¢ € JFi together guarantee that
ad(h'p)"(f) = ad(h'0)" (f+) € (1= ds0) J5* VneN,

—+00

with s € N such that f € Jg, hence Ad(F)(f) = > Zrad(h'¢)"(f) is indeed
=0

a well-defined element — a convergent series! — of F) ;[[G]] : O

Lemma 3.4.2. Let I4[[G]] be a QFSHA, and EFy[[G]]Y the associated QUEA defined
in §2.4 Let ¢ € F[[G]I®? be such that (id@e)(¢) = 0 = (e ® id)(¢) . Then:
(a) F=exp(h'¢) is a well-defined element in (F;L[[G]]v)@2 ;

(b) F-(zy) -F'e Fﬁ[[G]]éZ for all z,y € Fy[[G]], so that the adjoint
action of F onto (Fh[[G]]V)®2 actually restricts to Fh[[G]](52 ;

(c) ([d®e)(F)=1=(e®id)(F) ;

(d) F is orthogonal, i.e. Foy = F 1, iff ¢ is antisymmetric, i.e. ¢o1 = —0¢;
Proof. (a)-(b) These follow from Lemma applied to F;[[GxG]] and to ¢ := ¢.

(¢)-(d) These follow from definitions and by (id®e€)(¢) =0= (e®1id)(¢). O

The previous result leads us to introduce the notion of “quasi-twist”, as follows:

Definition 3.4.3. Let F;[[G]] be a QFSHA, and F,[[G]]” as in (b) We call

quasi-twist (element) of Fy[|G]] any element in (Fh[[G]]‘@Q)v = (Fh[[G]]v)®2 of
the form F := exp(hi~'¢) — for some ¢ € F,[[G]]®? such that (id®e)(p) =0 =
(e ®id)(¢) — which have the property of a twist element for the QUEA F;[[G]]" .

Of course, every twist for F;[[G]] is a quasi-twist too; the converse, in general, is
false. However, every quasi-twist still provides a well-defined deformation of Fy[[G]]:

Theorem 3.4.4. Let F;[[G]] be a QFSHA, and F = exp (h7'¢) a quasi-twist for
it, as in Definition |3.4.5. Then the procedure of twist deformation by F applied to
the QUEA Fy[[G]]" restricts to Fu[[G]], making the latter into a new QFSHA.

Proof. When deforming F3[[G]]" by the twist F one introduces the new coproduct
A7 given by AF := Ad(F)o A; then Lemma |3.4.2|(b) ensures that A7 restricts to
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Fi][G]], as it maps the latter into 117,5[[G]]®2 . The antipode is dealt with similarly,
so the (deformed) Hopf structure of (F;[[G]]" )JT does restrict to F3[[G]], q.e.d. O

Definition 3.4.5. With assumptions as in Theorem m, the new QFSHA obtained
from Fy[[G]] via twist deformation (by F) of F3[[G]]” followed by restriction will
be called the quasi-twist deformation of Fy[[G]] by F, and denoted by Fi[[G]]” .

Finally, the next result describes in detail what exactly is the nature of the new,
quasi-twist deformed QFSHA F,[[G]]”, shedding light onto its semiclassical limit:

Theorem 3.4.6. Let F;[[G]] be a QFSHA over the Lie bialgebra g = (g; [, 1], 5) .
Set m = Ker(ey ), 50 m/m2 = g" and (m®m)/(m2®m+m®m2) ~ ' ®g*
as Lie bialgebras. Let F be a quasi-twist for F,[[G]], of the form F = exp (h7'9)
for some ¢ € Fh[[G]]éz . and set also ¢, = ¢ — ¢pa1 . Then:

(a) ¢ is antisymmetric, i.e. ¢21 = —¢, iff F is orthogonal, i.e. Foq = F ';

(b) the element ¢ := <¢a <mod hFh[[G]]é)Q) mod (m* @m + m ® m2)> in
(m ® m)/(m2 dm+mE m2) > g* ®g" 1s an antisymmetric twist for g*;
(c¢) the quasi-twist deformation (Fh[[GH)}— of Fi|[G]] is a QFSHA for the Poisson

group G¢ whose cotangent Lie bialgebra is Lie (GC)* = (g*)c = (g*; [, 1., (5*‘3)
that is the deformation of g* by the twist c; in short, (Fh[[G]])]C =~ F[[G9]] .
In particular, if F is k[[h]]-valued — i.e., it is an ordinary twist for Fy[[G]] — or

equivalently ¢ € hFy[[G)]%?, then ¢ =0 and (BRG] = F[G]] = RB[G]] .
Proof. (a) This is a special case of Lemma [3.4.2)(d).
(b) We start from the twist identity Fi» (A®id)(F) = Fo3 (id® A)(F) that

we re-write in the equivalent form
(A®id)(F) (ideA)(F) = F5' Fa (3.47)
Replacing F = exp(fi~'¢) , we find
(A®id)(F)) - (id® A) (F)™" = exp (A (A®id)(¢)) -exp (— A (id @ A) ()
Now we recall the Baker-Campbell-Hausdorft’s formula, that is the formal identity
exp(X) -exp(Y) = exp (BCH(X,Y)) (3.48)
which allows to express the product of two exponential as a single exponential: in
it, BCH(X,Y ) :=log (exp(X) exp(Y')) is an explicit formal series given by
I Jio (—1)" ! 5 [ Xeriy s xeraysss ... yornyes:]
n=1 n rifsi>0 (2?21(7”2‘ + Sz)) : H?=1 ril 8!

(3.49)

where we use notation
[Xorlyosl N 'XO'I“nYosn}
= [X, [X’...[X’[y’[y’...[yj...7[)(’ [Xf"[X/’[Y’ [Y77Y]HHH

(. J (. J (.
~~ -~~~ ~~ -~

1 S1 Tn Sn
with the silent assumption that the Lie monomial [X ey s X "”"Y‘s”} is just
X, respectively Y, when n =1 and s; = 0, respectively r; = 0, while it is zero
whenever s, > 1 or s, =0 and 7, > 1. In words, when S :=>"" (r; +s;) > 1




36 GASTON ANDRES GARCIA, FABIO GAVARINI

the Lie monomial [X eriyesi... X 'T”Y'S”} is the composition of several operators
ad(X)" or ad(Y)” to Y — when s, =1 —or to X — when s, =0 and r, = 1.
Looking up to second order, (3.49) reads
1
BCH(X,)Y) = X +Y + g[X,Y] + O,(3) (3.50)

where O,(3) denotes a (formal) infinite linear combination of Lie monomials in
X and Y of degree at least 3. Setting now X := h~! (A ® id) (¢) and Y :=

—h7'(id ® A)(¢), the above analysis yields, rewriting (3.48),
(A®id)(F)- (i[de A)(F) " =
— exp (BCH(h—l (A®id)(¢), —h~'(id® A) (¢>)))

where the BCH series has to be expanded as in (3.49)). To this end, writing ¢ =
1 ® ¢o (a sum being tacitly intended) with ¢y, ¢o € J; (by Lemma|3.1.1]) we have

(A®id) (¢) = A(¢1) Qg2 = P13 + P23 + ((‘Zﬁl)(l))Jr ® ((¢1)(2))jL ® ¢2

where we expanded A(qbl) as in Lemma (d) and we used that e(gbl) = 0. Note
that in the expansion of (A ®id)(¢) we have

(3.51)

(615 + ¢23) € L7 0 ((00)0) @ (01)) @62 € JF (3.52)
where we introduced the notation J;(L®3|N) =3 apeso AR I IS (for N € N).
a+b+c> N

A similar analysis for (id ® A) (¢), just switching the roles of ¢; and ¢o, yields
(d@A)(¢) = ¢12 + 13 + 1 ® ((¢2)(1))+ ® ((¢2)(2))+

with (12 + ¢13) € 177, 61© ((62)1)" ® ((92)))" € S (3.53)
Now, thanks to Lemma [2.3.5/(c), from ({3.52)) and (3.53) together we get the identity
BX,nY] = [613, 012] + [0, 612] + [b23, d13] + h-O(J) | hence

Y] = 57 (W (B, bra] 07 [Bns 612] + 57 (023, 61] + O(S71)) (3:54)
for some element O(J,[L@SM) € Jf£®3‘4] , where hereafter we use notation

TN = N e gt e g C Ker(e

ab,c>1
a+b+c> N

Fh[[G]]®3> vV NeNy (3.55)

Pushing the analysis further on, we find easily that
[ Xy xo Y] e gy S =S (i s) > 1 (3.56)
i=1
looking at (3.49)), this tells us that the expansion of the BCH series occurring in
(3.51]), when expanded as in (3.49)), is actually given by A~! multiplied by a truly
convergent series inside Fy[[G]]*”. In other words, tiding everything up we find that
there exists some Z € J23 C F3[[G]]®* such that (A®id)(F)- (ide A) (.7-")_1 =
exp (h_lZ ) Even more, by (3.49)) and (3.50) and the previous analysis we do know
the expansion of this Z up to second order, whence we find

(A@id)(F)- (deoa)(F)" = ep (! ((Aid)6) - (deA)() -

(3.57)
— W27 pus, fra] — 27 [Bos, dro] — hTI27 o, d18] + O<Jf£®3‘4])>)
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Now we go and work instead on the right-hand side of (3.47)). Again, replacing
F = exp(h*%) , we find
Fro - Foz = exp(—h”(ﬁm) : eXp( h71¢2,3) = exp(BC’H(—h’l Gra, B o ))

Now for the computation of BCH (—hil N (;5273) ; to avoid possible confusion,
we denote the second, right-hand instance of ¢ by ¢'. We begin noting that

[¢1,27¢/2,3} = [le Rp®1,1® ¢ ®¢/2} = ¢1® [¢2;¢/1} ® ¢y € hJ}£®3|3}
so that for X := —h '¢;, and Y :=h '3 we get, using Lemma [2.3.5|(c),
(Y] = [0 oo b 5] = 0 [ 610, 005]) € RPRJES = BTN
A second, similar step gives (with obvious notation ¢, ¢’ and ¢")
[¢1,27 [Cbll,Qv /2/,3]} = [¢1 ®¢2 ®1a¢,1 ® [QS/2> /1/} ®¢/2/} =
= [61. 0] @n-[6h.01] @4 + 616\ @ [, [oh,0]]] @0y € R I
hence [X,[X,Y]] € h*R? JIE = p=1 g2 More in general, iteration yields
[X"’1Y°51 . ‘X.TnY.Sn} e h—S hS—l Jh[®3\5+1] _ h_l Jh[®3\5+1] (358)

with notation as before, still using Lemma [2.3.5|(c). Tiding everything up we find
that there exists W € J2* C Fy[[G]]®® such that Fp!- Fas = exp (R'W) ;
moreover, by (3.49) and (3.50) along with the previous analysis we can write

Fig-Fas = exp <h71<— Gro + daz — L' 27 [, dos] + O(J}L@?’m)) (3.59)

Finally, comparing (3.57), and we get the identity in Fj[[G ]]®3
(A®id)(¢) — ([d® A)(¢) —
B [¢1,37 ¢1,2} — 27t [<Z52,3; ¢1,2} —h 27! [¢2,37 ¢1,3} + O<J£®3|4}> =

= —¢1o + o3 — K27 1o, das] + O(J;E®3l4]>

that in turn, through simplification and reduction modulo h F[[G ]]@)3, yields the
following identity inside F[[G]]®?
(A®id)(¢) — (@A) (G) + b1y — dyg +
+ 2_1{51,2 ) 751,3 } + {51,2 ; C_bz,:s } + 2_1{51,3 ) 52,3 } =

ml®3]4]

(3.60)

where hereafter we adopt the notation for which © denotes the coset modulo A of
any element ¢ € F,[[G)]%?® with n e N, .

Now let k[S;] act onto F} ;»L[[G]](§~§3 and consider the action of the antisymmetrizer
Alts = (id—(12) — (23) — (31) +(123) + (321)) onto (3.60): this in turn yields
a new identity. Within the latter, we have a first contribution of the form

Alts (A ®id)(3) - (M@ A)(9)) == (V&id)(de) + cp
and a second contribution Alt3.(g_z§1,2 — 5273) = 0 . The last contribution is

Alts -(2_1{51,27 b13 }) + Alt:%-( {012, 023 }) + A1t3~<2_1{51,3 , Ga3 })

We go and compute the first summand, as follows:

Altg .<271{ 51,2 N 5173 }) - {51,2 ) 51,3 } + C.p.
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A similar analysis applies to the third summand, which yields

Alts .<271{ 51,3 , 5273 }) = {51,3 ) 52,3 } + C.p.

whereas for the second summand instead we get

Alt:s-({ 51,2 ; 52,3 }) = {51,2 ; 52,3 } - {53,2» 52,1 } + ¢.p.
Putting all these together we find

Alts (27 Gras d1s }) + Alts({ D100 003 }) + Alta (27 {1, s }) =
= {51,27 51,3} + {51,2 ; 52,3} - {53,2, 52,1} + {ﬁ_bl,ga 5273} +cp. = {{%7 @}}

where the very last identity follows from a routine calculation. Joint with the pre-
viously found identities, the latter gives yet the following, last one:

(Veid) () + ep) + {da da}} =, 0

mi®4]

At last, recalling that ¢ := ¢, (mod m?) in m/m2 = g*, and that in the latter

Lie bialgebra the Lie cobracket, resp. the Lie bracket, is given by V , resp. by [, ],
reduced modulo m?, the last formula above — in m®? — implies

((5®id)(c) + C.p.) + [[c,c]] = 0

within (g*)®3, which implies exactly that ¢ — which is antisymmetric by construc-

tion — is an antisymmetric twist for the Lie bialgebra g* =m / m?, q.e.d.

(¢c) We adopt the following notational convention: any element in Fj[[G]] will be
denoted by an italic letter, say f € F;[[G]]; then its coset modulo /i Fj[[G]] will be
denoted with a line over that letter, say f := ( f mod hFy[[G]]), and finally the
coset of the latter modulo m? will be denoted by the corresponding letter in roman

font, say f:= (f mod m?). Note also that every element in g* = m/m2 can be

written as such an f = (T mod m2) for some f € J, € Ker(e
®2

Fh[[G]]) ’

Similar notation will be used for elements in F;[[G]]*" and their coset modulo &

and (further on) modulo m®?B .= m@m? + m?>@m.

Recall that the Lie cobracket induced on m / m? = g* by the deformed quantiza-
tion is defined by

67(1) = (Af (A ) >(?) mod m#2F — AF—(JC)—W mod m[®2 /!
) -

so we start computing A7 (f). Definitions give

AF(f) = AdF) ((fw 1) (18 f)) = AdF)(fiy @1) - AdF) (16 fiz)
In the last product, we focus on the first factor: thus we get

AAF)(foy@l) = Ad(exp(h™9))(foy®1) = exp(ad(hi'e))(foy®1) =
= S ad(n )" (f) @08 = fuy @1+ [ ] © 6 + 0E)

that is in short Ad(F)(fy ®1) = foy®1 + [A ', fay] @ ¢ + O(2)

[®23]

where hereafter O(2) denotes any element in J, . A similar calculation yields
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Ad(]:)( 1® f(g)) =1® fo) + 1 ® [h’lgbg , f(z)} + O(2) . Eventually, this gives

A7 (f) = Ad(F)(fo ©@ fin) = AAF)(fy®1)-Ad(F)(1® fio)) =
= (fo@l+[h o, fo)]®e+0(2) (10 fo+ 01 @ [ ¢, f) ] +O(2)) =
= f)®fo) +e(foy) o1 @[ 02, fio)| + [ 01, foy [ @ e e(fr) + O2) =
= Af) + @ [h o, f] + [R01, f] @2 + O2)
J[®Ez|31

A(f) + o1 ® [h_lcbz,f} + [h_1¢17ﬂ ® P2 -
Therefore, for Vz := A7 — (A )21 we get

Ve(f) = A(f)+¢1®[h_l¢2,f}+[h_1¢1,f}®¢2—

Jr£,®_2‘3]
= AMf) = (K76 fl@o — @ (K0 f | = (3.61)
= V() - o er[f, o] - m [, 6] @ ol

so that, in short, A7 (f)

where we set ¢, := ¢ — po1 = gbg“) ® ¢§“) . Reducing (3.61) modulo A J2?* yields

Vr(f) =, V() - @@{7,@} _ {77@}@)@

ml®2 3]

hence reducing the latter modulo m/®2B! we find in m®?/ml®3 = g*®g* the identity
(vf mod m@?l?’l)(f) = 6(f) — (ad(f))(c) = (6-0.)(f) = d°(f)

which means that the induced Lie cobracket on m / m? = g* is just §¢, qee.d. O

Example 3.4.7. Let G := GL,(k) and g := gl,(k). We consider the QUEA
Un(g) = Up(gl,(k)) and the QFSHA F;[[G]] = F3[[GL,(k)]] introduced in Ex-
ample[3.2.3] Letting b~ and b* be the Borel Lie subalgebras in g of lower triangular
and upper triangular matrices, respectively, the subalgebra U,(b~) of Uy(g) gen-
erated by the Fj’s and the I}’s is a QUEA for b~ , while the subalgebra Uj(b™)
generated by the E;’s and the I},’s is a QUEA for b* — both being also Hopf subal-
gebras of Uy(g) . Dually, the QFSHA F,[[B~]] = Un(b™)" identifies with the Hopf
quotient of Fj[[G]] obtained by modding out the ideal generated by the z; ;’s with
i < j; similarly, Fy[[BT]] = Uy(b™)" identifies with the Hopf quotient of Fy[[G]]
obtained by modding out the ideal generated by the z; ;’s with 7 > j. Therefore,
from the presentation of Fj[[G]] in Example one deduces the following presen-
tations for these quotient algebras: F[[B~]] is generated by the entries of the “lower

J=1,...n;

triangular g—matrix” (xjj) with z; ;== j forall i > j and x; ; :=0 for

i=1,...,n;
all i < j, and similarly F;[[B"]] is generated by the entries of the “upper triangular
¢—matrix” (x:rj)z: ....... : : with x:rj =, ; for i <j and :c:r] =0 for i > 7.

Now we consider a new group G which is “double version” of GL, (k) , in that it
is a Manin double of B~ and BT ; its tangent Lie algebra g then is the Manin double
of b= and b™; in particular, G = B~ x BT as algebraic varieties (not as groups),
with B~ and BT being embedded as subgroups, whereas g = b~ & b™ as vector
spaces, with b~ and b™ being embedded as Lie subalgebras (this case is explained
in detail in [GaGa2| for SL, (k), and GL,(k) is just a very slight variation).
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For these new G and g, a QUEA Uj,(g) is defined as follows: it is the unital,
associative, h—adically complete k[[%]]-algebra with generators

F\,Fy,....,Fy Iy Iy, ..., [ T I I, T [Y By Ey,... Eqy

n—1> syt n—1>
and relations

[Flé‘:’]—’fi]zov [FI?:’ j}:_dkj Jo [Flj:ij]:—{—dk‘jEj? [Fl;t’FZ:F]ZO
h(F thl)— h( 1+1 Fz_)

[Ei Fj] = di P
[E;,E;] =0, [Fi, Fj] =0 Vi, j:li—jl>1
~(¢+¢ " )EE;E;+E;E} =0 Vii,jrili—jl=1
FiFj—(qa+q ") FFF+FF =0 Viigili=gl=1.

where [X,Y]:= XY —Y X again. The Hopf structure then is given by
AF) = Fodtmli) y19F, SF)=-FUTa)  ¢F)=0
AIy) =Ty @1+10 1, S(IF) = -I7, e(IF) =0
AE) = E@l+eTTeE,  SE)=—"TTOE | eE) =0

In fact, this Uy(g) can be realized as a quantum double of U(b~) and Uy (b™1): in
particular, Uy(g) = Us(b™) @ Uyp(bt) as coalgebras. Dually, the latter implies that
for the QFSHA F}[[G]] := Ux(g)” we have an identification as algebras

BlG]] = (U(b7)@U,(6T))" = Up(b7) @ Uy(b")" = K[[B7]] & F[[B*]]

Exploiting the presentations above for F,[[B~ ]| and Fj[[B]], we find a presentation
for F}[[G]] as the algebra generated by the entries of the “g-matrix in blocks”

AT O with X+ := (Zv-i-)j:1 """ " as defined above (triangular)
Opxn X7 ’ %374=1,..., n; g .

Moreover, explicit identifications Fh[[G]] = Uu(g)" and Up(g) = F[[G]]" can be

encoded in the Hopf pairing ( , ) : F3[[G]] x Ux(g) — k][[A]] given on generators by
(2 U (1)) = 0= Gapy B (i, B = 0= (ot T (1))
(75, F) = iji by (xf;, Ey) = bit1, 0 (3.62)

<$z+j ) Hk:l (Flj)gk> = 5i,j (1 - 591,0) Hk;éz' 9,0 — <$;] ) HZ:I (Fl;)gk>

In particular, from the first line in (3.62) note that if I’ and I', are two monomials
in the F,;t’s, then for all i =1,...,n we have

< i,ﬂ F> = <:Czi7,7£1> < ziza£> (3.63)

Thanks to Proposition later on, any quasi-twist for F,[[G]] can be seen as
a quasi-2—cocycle for U(g) = F3[[G]]". Now, some examples of the latter were
introduced in Example [3.3.8 above for a large class of QUEA, including that for
g = sl,(k). The same procedure can be applied to the present case, which is a
slight variation of that case applied to gl, (k) instead of sl,(k), as follows.

Let b be the k[[h]]-span of B :={I}}, I}, |k=1,...,n}. Then fix an antisym-
metric, k[[]]-bilinear map x : h x h —— k[[A]] whose matrix of values on pairs of

e,ne{+,—}
elements in the K[} basis Bris X = (xif = x(I7. I7)) " € soa (K[[A]]) .

k,it=1,...,n;
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Any such map y also induces uniquely an antisymmetric, k[[A]]-bilinear map Y, on

Un(h) = §k[[h”( h) = @ k[ﬁ”( ) with values in k[[A]], by setting

Xo(2,1) = €(z) =: Xv(1, 2) ¥ 2 € Sy (h)
Xo(z,y) == x(z, ) Y z,y € Sy (h) (3.64)
Xv(z,y) =0 VaoeSi(h),yesS(h) :rs>1, r+s>2

Then we define the map x, 1= e" 2 'Xv = S A x*™ /2™ m! from Uy(h) ® Us(h)

m=>0
to k((h)), which, like in [GaGa2, Lemma 5.2.2], is a quasifococycle for Uyn(h) .

Assume now that x satisfies the additional constraint x(S;, —) = 0 = x(—,5;)
forall i € I :={1,...,n—1}, where S, := 27! (F+ F+1—|—F —1I7;,) forall i e I;
note that this is equivalent to requiring X;’rt” X7,+1 Xt —Xigt: =0 forallie 1,
all t=1,...,n—1 and all n € {+,—}. Then x induces a unique k[[A]]-bilinear
given by X (H'+s,H"+s) := x(H',H") forall H H" €.

Now repeat the above construction with h and ¥ replacing h and x: this yields
a quasi—2-cocycle X, for UE(E) . But now the additional assumption on y implies
that there exists a Hopf algebra epimorphism 7 Up(g) — §k[[h]](5) = Uh(E)
given by w(FE;) =0, n(F;):=0 —fori=1,....,n—1 —and 7(T):= (T +5) €
hC Uh( Ij) — for T € b. Finally, we set o, := %, O(7r x 1), which is a well-defined
quasi—2—cocycle for Uy(g), again in the sense of Deﬁmtlon “ Note that

oy =X, 0(mrxm)=exp(h 27" XU) o(mxm)=exp(h 27! YU o (m %))

Now let us re-think the quasi 2-cocycle o, for Us(g) as a quasi-twist for F;[[G]].
First of all, comparing (3 and ( - we deduce that the form %, o (7r X ) in
<Uh(g)®2) identifies with &, Z Y Xed VEr®y, in Fh[[G]] , where

k,i=1e,ne{+,—}
Yo i=log (9:2 /) is a well-defined element in F,[[G]]. Then, exponentiating yields

Fy = oy = exp(h'27} %U o(rxm) = exp(h'27'®,)
which is exactly the quasi-twist of Fj[[G]] we were looking for.

We can also check directly that this F, is a quasi-twist. We see this in the simplest
case, when n = 2; the other cases are quite similar, but require more calculations.
We need to compute the coproduct of the xf,’s in F;[[G]], which is defined (by

construction) by the condition (A(zf,),A® Z> = (xf,,A-Z) foral A, Z ¢
Un(g) ; since Uy(g) admits the PBW-type basis

B = { P (7)™ (1y)" ()™ (15)" B

fﬂgfag;agiag;,GEN}

we can replace A and Z with any two PBW monomials from B. Now, let us

- — + +
say that a PBW monomial of the form M = Ff (7)™ (I;)% (7)™ (Iy)” E°
belongs to the root space (e —f)a. Then root/weight considerations easily show
that <xft , /\/l> # 0 only for PBW monomials M in the root space 0, i.e. such
that e = f. A straightforward computation gives

B F = if ([s1a!)” Hq HqF“ Key(s) E<*

S S
s=0



42 GASTON ANDRES GARCIA, FABIO GAVARINI

where ¢ :=exp(h), [r], = i m],! = ﬁmq’ [q _ [S]Q'L -

—_ —1 ’ S
q q r=1 q

2s—e—f+1—r g7+1 r—1—2s+e+ -1
s q I K+ —( fK,

Ke’f(s) = Hrzl qr—q"

with K1 = 1exp (+h (17 — 1)) and K= i= exp (<A (17 —Ti7)) " @1
Then the product of two PBW monomials expands into

e'Nf ro 11 / . 1
MM = Z ; ([S]q!)2 [61 |:f:| Ff ré Ff=s Ke’,f”(s) EC IR =
s= S S
q q
e//\f// 5 s el 6 2 6/ f” ’ "_g . P e —ste!
_ Zs:O qg(g,f »8,¢,9) ([s]q!) [J [ ) I+ T'iK,m(s)[LE +
q q

. — o= -+ ot . 5 5 5+ 5t
where EQ — (Ff)gl (F27)92 (FlJr)gl (F;)QQ , EQ — (Ff)gl (F{)92 (F1+)91 (F;r)92

while E(g s, e’,g') € 7 is a suitable exponent. When we expand w.r.t. B, the
part given by a linear combination of PBW monomials in the root space 0 is

(MI . M,/)O = 5‘}0/70 5f//,€/ 56”,0 qg(g7e €€ 79) ([6/](]')2 Eg Ke’,e’ (6/) Lg
Eventually, tiding everything up we find

/ / /

<A($t€,t)7M, ® M”> = 5}”,05]”/,6/ (56//,0 qg(g7€ €€ ) [el]q!2<xt€,t 7LQK€/,6/ (6/) £g>

Now, a similar analysis yields (notation being obvious, hopefully)

(ag0 LKoo () 02 ) = (wf, L) (0 Koo(@)) - (2, L)'

and finally direct computation gives <xf ‘s Kezjel(e’ )> = de o , which in turn
follows from x(S;, —) = 0 = x(—,S;) for ¢ =1,...,n — 1. Therefore, we get
<A(mf’t) ,M'®M”> # 0 only when (f’,¢’) =(0,0) = (f”,€"), and then

(A(wi) M eoM") = (A@wi), Trerl) = (of, M) (2f,, M)

which in short means A(xf ) = T, ®x;,, le z;, is group-like. Therefore, for
yf, = log (zf,) instead we have A(ys,) = y5,® 1+ 1@y, , ie. yF, is primitive.

Eventually, as all the y;,’s are primitive, a trivial computation shows that F
does obey condition , hence it is indeed a quasi-twist, as claimed.

3.5. Duality issues.

Deformations by twist or by 2—-cocycle, both for Lie bialgebras and for Hopf
algebras, are dual to each other, see Proposition and Proposition [2.2.7, This
prompts us to compare these two procedures before and after specialization.

A first result is the following, whose proof is trivial — just track the whole con-
struction of both ¢, and (,, and compare the outcomes.

Proposition 3.5.1. Let Uy(g) and F5[[G]] be a QUEA and a QFSHA which are dual
to each other, that is Fy[[G]] = Un(g)* and Uy(g) = F4[[G]]". Then let F be a twist
for Un(g), and o be a 2—cocycle for Fy[|G]]. Assume that both F and o are trivial
modulo h, so that there exists a corresponding twist c,. for g (induced by F via
Theorem[3.1.4) and a corresponding 2-cocycle (, for g* (induced by o via Theorem
3.2.1). Finally, we identify twists for Uy(g) and 2—cocycles for Fy[[G]] via Proposi-
tion |2.2.7, and similarly twists for g and 2-cocycles for g* via Proposition |2.1.7

Then the following holds: if F = o, then c, = (,. O
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A similar result holds for deformations by quasi—2—cocycles and by quasi-twists.
Indeed, let us first notice that, if Uy(g) and Fj[[G]] are a QUEA and a QFSHA in
duality — i.e., F3[[G]] = Un(g)" and Ui(g) = F3[[G]]" — then any quasi-2—cocycle
for Un(g) is a quasi-twist for F;[[G]], and viceversa, cf. Proposition later on.

Once this is settled, next result (which mirrors Proposition above) holds too,
whose proof again follows by direct comparison of the two deformation procedures

(just tracking the whole construction of 7, and ¢, , and comparing the outcomes):

Proposition 3.5.2. Let Uy(g) and Fy[[G]] be a QUEA and a QFSHA which are in
duality, that is F3[[G]] = Ux(g)* and Ux(g) = F3[[G]]". Then let o be a quasi-2-
cocycle for Up(g), and F be a quasi-twist for Fp[[G]]. Let ~y, be the 2—cocycle for
g induced by o via Theorem and let c, be the twist for g* induced by F via
Theorem . Finally, we identify quasi—2—cocycles for Un(g) and quasi-twists for
Fil[G]] as mentioned above, and similarly we identify twists for g and 2—cocycles
for g* via Proposition [2.1.7]. Then the following holds: if o = F, then v, =c, . O

4. DEFORMATIONS VS. QDP

In this section we investigate how the deformation procedures interact when we
interchange QUEA’s and QFSHA'’s via Drinfeld’s functors, as in Theorem [2.4.2]

4.1. Some auxiliary results.

We begin with a key observation: our “quasi-2—cocycles” for any QUEA and
“quasi-twists” for any QFSHA are actually standard 2—cocycles and twists, respec-
tively, for the QFSHA and for the QUEA that are associated with the original
quantum group via Drinfeld’s functors from the QDP. Here is the precise result:

Lemma 4.1.1.

(a) Let Uy(g) be a QUEA, and let Uy(g)' be its associated QFSHA following
Theorem|2.4.9. Let o = exp, (hflx) be a quasi-2-cocycle for Uy(g) as in Definition
3.3.5. Then the restriction o Un(a) xUn(g)’ of o to Uy(g) x Up(g) is a well-defined,
k[[h]]-valued bilinear form on Uy(g)', of the form o = exp,(h™Y') with X' =
-2
(7 X){Uﬁ(g)’th(g)
(b) Let Fy[[G]] be a QFSHA, and let Fy[[G]]” be its associated QUEA following
Theorem |2.4.9 Let F := exp(h™'¢) be a quasi-twist for Fy[[G]] as in Definition
3.4.9. Then F := exp(h'¢) = exp(ht'¢¥) with ¢* = h~2¢ € (R[G])Y)"7,
and, in these terms, F" :=exp(h™'¢") is a twist for Fy[[G]]".

., and this o' := exp, (h“x') is a 2-cocycle for Uy(g)".

Proof. (a) We retain notation from the proof of Lemma |3.3.2 and we proceed along
the same lines. Thus we set Uy, := Uy(g) and J, := Ker(Uy), and we write

zi=¢(z), 2V =z—¢€(z)=2—2%2€ Jy, hence z=z"+2 V 2€U,

We already saw that x(u,v) = X(u*, v*) for all u,v € Uy, and then we have

o(a,b) = Ys0h "I ix(af), b?;))/n! (4.1)
for any a,b € Uy, where ®?:1a2;) = d,(a) and ®§”:1bz;) = 0,(b).
Now, restricting to U,’ we get that o',t/ € U, yields §n(a’),5n (b’) € h" Uf?";
also, in the sequel we can clearly assume e(a’ ) =0= e(b’ ) . Then we get

T (agh b)) =TI 2x(ag) b)) € h2m B k()] = K[[H]] ¥ neNy
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whence, like in (£I), we get o’ (a/,') = Y, oo B [T, X (a3, ) /n! e Kk[[A]]
for all a/,0’ € U,/, which proves the claim.

(b) This follows directly from Definition [3.4.3] O

As a direct consequence, we have the following significant result:

Proposition 4.1.2. Let U, be a QUEA and Fj, be a QFSHA that are dual to each
other, i.e. such that Fy, = (Uy)" and U, = (Fy)". Then:

(a) o is a quasi-2-cocycle for U, <= o is a quasi-twist for Fy, ;
(b) F is a quasi-twist for F, <= F is a quasi-2-cocycle for Uy .

Proof. The proof follows directly from the very definitions of quasi-2—cocycle and
quasi-twist, along with the observation that Fy, = (Up)" and U, = (F,)" imply

FY = (Uh')* and U/} = (Fh\/)*a by ' O

4.2. Drinfeld’s functors and “quasi-deformations”.

In this subsection we analyze the interaction between the process of “quasi-
deformation” and the action of a Drinfeld’s functor on some quantum group.

4.2.1. Deformations by quasi-twist under F}[[G]] — F,[[G]]”. We look now
what happens with deformations by quasi-twist for a QFSHA when the latter is
acted upon by the functor ( )" which associates with it a QUEA. Here is our result:

Theorem 4.2.2.

Let Fy[[G]] be a QFSHA. Let F = exp(h™'¢) be a quasi-twist for Fy[[G]], with
o € F[[G®? (cf Definition|3.4.9). Set ¢ :=h ' log(F) =h2p, ¢ = d— o,
and ¢y = ¢" — ¢4, . Then we have:

(a) ¢ is antisymmetric, i.e. ¢o1 = —¢, iff F is orthogonal, i.e. Foq = F 1,
iff ¢V is antisymmetric, i.e. ¢y, = —¢";

(b) F=exp(he¥) is a twist element for the QUEA Uy(g*) := F[[G]]” .

(c) Let ¢ be the antisymmetric twist of g* corresponding to F as provided by

Theorem|[3.4.6, and let ¢V be the similar twist provided by Theorem|[3.1.3 along with
claim (b) above. Then ¢ =c" .

Proof. (a) This follows directly by construction.

(b) This is granted by Lemma [4.1.1|(b).

(c¢) This follows by a careful — yet entirely straightforward — check, just tracking
both constructions involved (of ¢ and of ¢¥ alike). O

4.2.3. Deformations by quasi-2-cocycle under U,(g) — U,(g)'. Given a
QUEA, we can apply on it Drinfeld’s functor ( )'; we now see what happens when
a deformation by quasi-2-cocycle is performed. Our result reads as follows:

Theorem 4.2.4. Let Uy(g) be a QUEA. Let 0 = exp, (hflx) be a quasi-2-cocycle

for Un(g), with x € (Uh(g)@)z)* (cf. Definition |3.5.9). Set x' = h~!log,(0) =
R2X, Xa:=X—X21 and X, =X —Xb, - Then we have:

(a) x is antisymmetric, i.e. xo1 = —X, iff o is orthogonal, i.e. 091 = o, iff
X' is antisymmetric, i.e. x5, = —X';
(b) o =-exp,(hX') is a 2-cocycle for the QFSHA F,[[G*]] = Un(g)".
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(c) Let v be the antisymmetric 2-cocycle of g corresponding to o as provided by
Theorem [3.3.5, and let v be the similar 2-cocycle provided by Theorem [3.2.1] along
with claim (b) above — using the identification g** =g. Then v=7".

Proof. (a) This follows directly by construction.

(b) This is true because of Lemma [1.1.1](a).

(¢) Much like for Theorem [4.2.2](c), this follows again by a straightforward check,
just carefully tracking both constructions involved (of v and of v alike). O

Remark 4.2.5. Recall that the notions of twist and that of 2-cocycle are dual to
each other (cf. Proposition , and the same holds for those of quasi-twist and
quasi-2-cocycle (cf. § Moreover, Drinfeld’s functors are also dual to each other,
in the sense of . Taking all this into account, it turns out easily that Theorem
and Theorem above are also “dual to each other”, in that either one of
these two statements can be deduced from the other by a duality argument.

4.3. Drinfeld’s functors and (standard) deformations.

We analyze now the interaction between the process of deformation — in the
standard sense — and the action of a Drinfeld’s functor on some quantum group.

4.3.1. Deformations by twist under U,(g) — U,(g)'. As a first step, we look
what happens for deformations by twist of a QUEA when the latter is acted upon
by the functor ( )" which associates with it a QFSHA. It turns out that we find a
relevant result when we make the stronger assumption that the given twist is in fact
a (quantum) R-matrix twist, as in Definition [2.2.1](d). Here is our result:

Theorem 4.3.2. Let Uy(g) be a QUEA, and let F be a twist for Uy(g) s.t. ¢ =1
(mod AU (g)%?); then ¢ := h~'log(F) € Un(g)®?, and F = exp(ho). Set also
¢ =h?log(F)=h"2p, ¢poa:=0¢— 21 and ¢, :=¢ — ¢y, . Assume in addition
that F is indeed a (quantum) R-matrix twist, as in Definition[2.2.1/(d). Then:

(a) ¢ is antisymmetric, i.e. ¢o1 = —¢, iff F is orthogonal, i.e. Foq = F 7, iff
¢ is antisymmetric, i.e. ¢y, = —¢';

(b) F =exp (h’lqb’) is a quasi-twist for the QFSHA FHHG*H = Upx(g)".

(c) Let ¢ be the antisymmetric twist of g corresponding to F as provided by

Theorem[3.1.9, and let ¢’ be the similar twist provided by Theorem|[3.4.6 along with
claim (b) above — using the identification g** =g. Then c=c'.

Proof. (a) This follows directly by construction.

(b) This is proved in [EH, Theorem 0.1]. Note that the overall assumption there
is that R be an R-matrix, in the standard sense — so that Uj(g) is quasitriangular.
Nevertheless, all the arguments used there to prove the main result only apply
the defining properties of an “R—matrix” in the sense of Definition [2.2.1, namely
and the right-hand side of ; the assumption , instead, is never used.
Therefore, the same arguments, and the whole proof, used in [EH] to prove Theorem
0.1 actually do prove also the present statement, that is actually stronger.

(c) Here again, the proof follows from a straightforward, careful checking proce-
dure, keeping track of both constructions involved (of ¢ and of ¢ alike), much like

for Theorem [4.2.2)(c) and for Theorem [4.2.4|(c). 0

4.3.3. Deformations by 2-cocycle under F;[[G]] — F3[[G]]”. As asecond step,
we look what happens to deformations of a QFSHA by 2-cocycle when we apply
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Drinfeld’s functor (). Here again, we get a relevant result under the stronger
assumption that the given 2-cocycle is in fact a (quantum) p—comatrix 2-cocycle, as
in Definition [2.2.4|(d). Our result reads as follows:

Theorem 4.3.4. Let Fi[[G]] be any QFSHA, and let o be a 2-cocycle for Fy[[G]]
such that o =1 (mod h (Fh[[G]]®2) ) ; then ¢ := h'log(o) € (F;L[[G]]@)z) , and

o = exp(h) . Set also <" :=hlog(o) = h*s, G :=¢—ca1 and ¢ =<' —cy, .
Assume in addition that o is a (quantum) g—comatrix 2-cocycle, as in Definition
[2.2.4(d). Then the following holds true:

(a) < is antisymmetric, i.e. Sa1 = —<, iff o is orthogonal, i.e. 091 = ol iff
Y is antisymmetric, i.e. ¢y, = —¢";

(b) o =exp(h7s") is a quasi-2-cocycle for the QUEA Uy(g*) := Fy[[G]]" ;

(c) Let ~ be the antisymmetric 2-cocycle of g* corresponding to o as provided
by Theorem and let 7Y be the similar 2-cocycle provided by along with

claim (b) above. Then ~v=~" .

Proof. (a) This is obvious, by standard identities for formal exponentials.
(b) This claim is the dual to Theorem [£.3.2)(b), so it follows from that one via a
duality argument — involving the results in §4.1] in particular Proposition [4.1.2
(¢) Once more, as in previous cases, the claim follows from direct checking, keep-
ing track of the two involved 2-cocycles — ~ and of vV — were constructed. O

Remark 4.3.5. Much like as we did in Remark [£.2.5 we notice here as well that
— by the same reasons as before — Theorem and Theorem above are
once more “dual to each other”, in that either one of these two statements can be
deduced from the other by a duality argument.

5. MORPHISMS IN THE “(CO)QUASITRIANGULAR” CASE

In this section we focus onto R-matrices and p—comatrices. We investigate what
happens with R-matrices and p—comatrices w.r.t. the QDP, and then we consider
the standard constructions of morphisms between a Hopf algebra H and its dual
coming from an R-matrix or a g-comatrix.

5.1. R—matrices and g—comatrices w.r.t. QDP: quasi—(co)matrices.

In next two results, we explain how R-matrices and p—comatrices “behave well”
with respect to Drinfeld’s functors and the Quantum Duality Principle. In fact, this
leads us to introduce the notions of “quasi-R—matrix” and of “quasi—p—comatrix”,
which are straight analogue of the notions of “quasi—twist”and of “quasi—2—cocycle”.

We begin introducing some more bare definitions:

Definition 5.1.1.

(a) Let F3[[G]] be a QFSHA. We call “quasi-R-matrix” of F[[G]] any R—matrix
R for Uy(g*) := F3[[G]]” such that R = 192 mod (hFh[[G]] @Fh[[G]]v>

(b) Let Ux(g) be a QUEA. We call “quasi-p-comatrix” of U(g) any o-comatrix
p for Fu[[G*]] := Up(g)’ such that p = € mod (h (Un(g)'éUh(g)')*>

Remark 5.1.2. In the same spirit of Proposition [2.2.7] and (2.18)), it is clear that
the notions of “quasi—-R—matrix” and of “quasi—p—comatrix” are dual to each other.
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Observations 5.1.3. (a) With assumptions as in Definition [5.1.1](a) above, let R
be any quasi-R-matrix for a QFSHA F;[[G]]: since R = 1% modh , we can
write R in the form R = exp(h*'6) for some 0 € F;[[G]]" ® F,[[G]]”.

Similarly, if p is any quasi—g—comatrix for a QUEA Uy(g), then we can write it
in the form p = exp,(fi*'<) for some ¢ € (Uy(g) @ Un(g)')".

(b) Note that in the very definition of “quasi-R-matrix”, resp. of “quasi—g—
comatrix”, we assume a condition which is quite close, yet weaker, than the one
demanded for the definition of “quasi-twist”, resp. of “quasi-2—cocycle”, in Defini-
tion [3.3.3] resp. in Definition [3.4.3] In fact, our choice for these definitions about
R-matrices and p—comatrices is motivated by Proposition below, which even-
tually implies that when the two setups overlap, the stronger condition for twists/2—
cocycles actually holds true — cf. Theorem and Theorem [4.3.4]

The key result about quasi—-R-—matrices and quasi—o—comatrices is the following:

Proposition 5.1.4.

(a) Let Uy(g) be a QUEA, and let Uy(g)' be the QFSHA associated to it by the
uantum Duality Principle, as in Theorem |2.4.2. en for any R—matriz of Uy(g
Q Duality P [ Th 2.4.9. Th fA R f U,

of the form R = exp(h@) , with 6 = h~'log (R) € Uh(g)®2, we have
9= 120 = F*'log(R) € (Un(g) )"

(b) Let Fy[[G]] be a QFSHA, and let Fy[[G]]" be the QUEA associated to it by

the Quantum Duality Principle, as in Theorem |2.4.2. Then for any o—comatriz of

Fi[[G]] of the form p = exp, (hs), with ¢ = h'log,(p) € <Fh[[G]]®2>* , we have

Ci= 1 = W og () € ((BIGT))

Proof. (a) This is proved in [EH, Theorem 0.1]. Indeed, the overall assumption there
is that R be an R—matrix, in the standard sense — so that Uy(g) is quasitriangular.
Nevertheless, all the arguments used there to prove the main result only apply
the defining properties of an “R-matrix” in the sense of Definition |2.2.1, namely
and the right-hand side of ; the assumption , instead, is never used.
Therefore, the same arguments, and the whole proof, used in [EH] to prove Theorem
0.1 actually do prove also the present, stronger statement.

(b) This follows from claim (a), by duality, using the duality relation (2.18), the
fact that F3[[G]]" is a QUEA when F},[[G]] is a QFSHA, and Proposition[2.2.7, O

The previous result has the following, important consequence:

Theorem 5.1.5. Let Ux(g) be a QUEA and Fy[[G]] be a QFSHA; let Fy[[G*]] :==
Ui(g)" be the QFSHA and Uy(g*) := F[[G]]” be the QUEA provided by the Quantum
Duality Principle, as in Theorem |2.4.4. Then the following holds:

(a) every R-matriz for Uy(g) which is congruent to 1%? modulo h is a quasi-R-
matriz for Up(g)';

(b) every o-comatriz for Fy[[G]] which is congruent to €* modulo h is a quasi-
o—comatriz for Fy[[G]]" ;

(c) every o-comatriz for Uy(g)" which is congruent to €¥* modulo h is a quasi-
o—comatriz for Uy(g) itself;

(d) every R-matriz for Fy[[G]]" which is congruent to 1%2 modulo h is a quasi-
R-matriz for F;[[G]] itself.
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Proof. Claims (a) and (b) follow directly from Proposition [5.1.4] claims (a) and
(b), respectively. Now claim (¢) follows from claim (b) applied to the QFSHA
Fi[[G*]] := Un(g)', since Fy[[G*]]" = (Un(g)')" = Un(g) by Theorem [2.4.2)(a).
Similarly, claim (d) follows from (a) applied to the QUEA U,(g*) = F[[G]]",

since Uh(g*)/ = (RG] )/ = I}[[G]] by Theorem (a) again. O

5.2. Morphisms from R-matrices and p—comatrices.

We shall now explore what happens if we apply the general constructions leading
to Proposition , resp. to Proposition , is (tentatively) applied to a QUEA,
resp. a QFSHA, as the Hopf algebra H to start with. To begin with, we check that
Proposition still makes sense when H := Uy(g) is a QUEA:

Proposition 5.2.1. Let Uy(g) be a QUEA, and Fy|[G]] := Un(g)*" be its dual
QFSHA, as in §2.3.4 Let R =Ry ® Ry (in Sweedler’s notation) be an R-matric
for Un(g) . Then there exist two morphisms of topological Hopf algebras

A * co >y

O F[[G]] = Un(g)" — Un(9)™" , n = Pr(n) = n(Ri) Ry

— . o —

P G == Un(g)" —— Un(9)™ . 1= Pr(n) :=Rin(Rs)
Proof. This is straightforward (see [GaGa3| for details). O

Dually, Proposition [2.2.10|still makes sense when H := F;[[G]] is a QFSHA:

Proposition 5.2.2. Let Fy[[G]] be a QFSHA, and Uy(g) := Fy[[G]]" be its dual
QUEA, as in §2.3.4] Let p be a o—comatriz for Fy[[G]]. Then there exist two
morphisms of topological Hopf algebras

U, RG] —— (BICI) ™ = Ue)™ . £ T,(0) = p(t,-)
¥, 2 BC) —— (BICT)" = Ui(e)™ . € Tyl = p(~.0)
Proof. This is straightforward again (cf. [GaGa3] for details). O

We shall now show that both previous results can be refined, eventually yielding
morphisms that connect quantum groups of the same nature, namely both QFSHA’a
in one case and both QUEA’s in the other case.

Theorem 5.2.3. Let Uy(g) be a QUEA, let Fy[[G]] := Un(g)" be its dual QFSHA,

as in §2.3.4, and let Fy[[G*]] := Un(g)", resp. Un(g*) := F[[G]]”, be the QFSHA,
resp. the QUEA, introduced in . Let R =R'®QR; (sum, possibly infinite, over

repeated indices) be an R-matriz for Uy(g), which is congruent to 1% modulo h.

s —
Then, for the two morphisms Fy[[G]] SN Un(g)™ and Fy][G]] LN Un(g)™®
in Proposition the following holds:

(a) they take values inside Uy(g)', and so they corestrict to morphisms

. BL - BIG] ——— (Un(a) )™ = RG]
Bl FG]] ——— (Un(g) )™ = RG]

between QFSHA'’s for mutually dual (formal) Poisson groups;
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(b) they uniquely extend to Fy[[G]]" = (Uﬁ(Q)*)v , i.e. they extend to morphisms

®) 2 Un(e") = RG] —— Ui(e)"”
and N

Oy Un(g") == B[[G]]” ——— Un(g)”
between QUEA’s for mutually dual Lie bialgebras.
Proof. (a) Recall that Ker(eg, o) = Ju, oy S (Junor + k7] 1u,0y) = ooy »
and Uy(g) is a topological Hopf algebra Wlth respect to the I, (gy—adic topology.

Recall also that, by Proposition n( a), we can write R := exp (h 19) with

¥ € Un(g) @ Uh(g)'; we write the latter as ¢ = 9 ®J; (sum over repeated indices),
where ¥, 0; € Jy, gy - Then h7'0 = A1 @0; = (A1) @0; = 6°@19; with
0" = h "' € 'y, gy S June) = Ker(eu,(y)) , where the latter inclusion follows
by the basic properties of Uy(g)', cf. [Gal]. Now writing (6" ® 19-)” = H{n] ® V)
for each n € N, we have in particular Q{n] € JU" and Vp,); € J , for every

1(9)
n € N. When we expand R, by all this we ﬁnd

R = exp (h_l 19) = exp (Qi ® 191') Z (QZ ®V; ) 2 1

n>0 n! n>0 n!

(Q[n] ® V) 5)

Thus for n € Fy[[G]] := Un(g)" we get @R(n) = n(RY) R, = gog 77(9{74) Uiy

which describes a well-defined element (a convergent series, in the relevant topology!)

of (Un(g)’ )COp — equal to Uy(g)" as a k[[h]]-module — exactly because 9, ; € T (o)

for each n € N. So @ corestricts to (Un(g) )™’ = F[[G*]]*? as claimed, q.e.d.

%
The proof for & goes exactly the same, just switching left and right.
(b) We begin acting as in the proof of (a) above, but switching the roles of left
and right hand sides. Namely, we write hd = R (¥ ®@ ;) = 6 ® ¥; where
0; = h0; € iy, gy S Junie) = Ker(ey,(g) , and also (¢ @ 0;)" = W1y ® Oy,

with 19fn] € JUT;(Q), and Oy, ; € Ji7 ), for all n € N. Then expanding R yields

R = o (170) = op (0 08) = ¥4 (F0)" = ¥ (@0, 00,
n>0 n>0 T
hence for every u € Uy(g)" we have

Dr(n) = p(R)R, = -2 ,u( 20) O (5.1)

Now recall that (U;L ) (U;L ) by - Then we consider the for-
mula ) for any p € (Un(g)" )V (U (g)/)* — which contains Uy(g)*. As all

eoefﬁ(nents 1(9,,) belong to k[[A]] , e every partlal sum in the right-hand side formal
series is a well-defined element in U (g)*” — equal to Uy(g) as a k[[h]]- module. In
addition, since ¥ ; € Ty €10 — foreach ne N —and p: Un(g) — Kk[[R]]

is continuous (with respect to the I ” y —adic topology on the left and the A-adic

topology on the right), for every s € N there exist ng sueh that u(ﬁ"n) € h™k[[A]]

for all n > ng. This ensures that the formal series in (| is actually convergent
in the h-adic topology of U(g), thus descnblng a Well deﬁned element in Uy(g).

Letting p range freely inside (Uh(g) ) this proves that <I>73 does indeed extend
from Up(g)* to (Un(g)*)” = F[[G*]]" = Un(g*), q.e.d.
_>
Switching left and right in the arguments above we get the proof for % too. [
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Remark 5.2.4. Claim (a) of Theorem above appears also in [EK], §4.5.
In the dual framework, the parallel result holds true as well:

Theorem 5.2.5. Let Fy[[G]] be a QFSHA, let Uy(g) := Fy[[G]]" be its dual QUEA,

as in §2.3.4, and let also Uy(g*) = Fy[[G]]", resp. Fi[[G*]] := Ux(g)", be the
QUEA, resp. the QFSHA, introduced in §2.4. Let p be a o—comatriz for F[[G]],
which is congruent to €* modulo h . - -

Then, for the two morphisms Fy[[G]] TN Un(g)* and F3[[G]] TN Un(g)™®
in Proposition the following holds:

(a) they take values inside Uy(g)', so they corestrict to morphisms
peey co co
U, B[G]] ——— (Un(e)")™ = BllG7]]

' RG] ——— (Unlg) )™ = B[]

between QFSHA’s for mutually dual (formal) Poisson groups.

and

(b) they uniquely extend to Uy(g*) = Fu[[G]]", i.e. they extend to morphisms

p @V Un(g) = F[[G]]Y ——— Un(g)*?
T Unlg") = RG] —— Un(g)”

between QUEA’s for mutually dual Lie bialgebras.
Proof. (a) By the assumption p = ¢*? (mod h) and by Proposition [5.1.4|(b), we
can write p in the form p = exp,(h7'() for some ( € <(Fh[[G]]v)®2> . Then

¢ e (RIGIM®*) = (RIGY B RIC]) = (RIG]") & (RG]")" =
— (BRICT) & (RICT) = Unle) & Ui(g)
(

— thanks to (2.18) — hence h~'¢ € A 'Uy(g*) @ Un(g*)’ . Now, the right-
hand side of for o := p implies ((1,a) = 0 for all a € F;[|G]], hence
((—,a) € Ker(ey,qy) and so h7'((—a) € (Un(g))” = Un(g) = F[[G]]" for all
a € F3[[G]]. This implies that

W= -) € (Un(g)) @ Unla) = RG] ® Ui(g) (5.2)
where hereafter we are being temporarily sloppy with the tensor product — we fix
this later on. Clearly, (5.2) implies p = exp,(h'(¢) € Fi[[G]]" ® Un(g)" as well.
Therefore we get at once W (0) := p(¢,—) € Uy(g)" for all ¢ € Fy[[G]], q.e.d.

This proves the claim about ¥, , and that concerning W, is entirely similar.

It remains to “dot your i’s” about the tensor product in (5.2). In fact, a priori
we have p € F3[[G]]" ® F3[[G]]" = Un(g) @ Us(g) , hence also

¢ e RGT @ RG] = Un(g) ® Us(g)

— where the (completed, topological) tensor product “®” is considered. On the
other hand, we have found that
¢ € (RIGT) & (RIGI) = Uiw) B Uila)
— where the (completed, topological) tensor product “ ® 7 is used. Then the critical
point is: what kind of tensor product “®” is taken in (5.2)?
Instead of giving a direct answer to this question, we point out the following.

First observe that Uy(g) ® Us(g)’ = (Un(g) ® Uh(g))/ embeds into Uy(g) ® Us(g) .
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Then, when h~'¢ € Uy(g) ® Un(g) is expanded into some series ' ¢ = ' @ f3;
(summing over repeated indices) with (% 3; € Uy(g) for all i, what we proved
above is that we actually have §; € Uy(g)" (C Ux(g)) for all indices . This is what

we loosely wrote as A~ ¢ € Up(g) @ Un(g)' = Fi[[G]]" ® Un(g)" in (5.2) above.
(b) Acting as in part (a), we find p = exp, (A7 ¢) with ¢ € (Uh(g)/)®2 and C €

(Ker(eUh(g)))®2 too, so ( € (Ker(eUh(g)/))®2 . Since Ker(eUh(g)/) C hKer(eUh(g)),
this implies that, expanding h~'( as a (convergent) series h™'( = ' ® f§;, we
can assume ' € Uy(g) . As Un(g) = (F[[G]]") = (Fl[G]]Y)", we end up with

hi¢=pep e (BRIG]) @ Ulg) (5.3)

where again the meaning of the tensor product “®” considered in this formula (along
with the corresponding convergence issues) is handled just as in part (a). Finally,

<_
from (5.3) it follows at once that W, extends from F,[[G]] to F,[[G]]" as claimed.
This proves our statement for ¥, , and the case of ¥, is entirely similar. Il

5.2.6. Duality properties. When we deal with a QUEA and a QFSHA which are
dual to each other, it makes sense to compare the previous results. The outcome is
that Proposition [2.2.12|turns to an enhanced version (with trivial proof), as follows:

Theorem 5.2.7. Let Uy(g) be a QUEA, F4[[G]] a QFSHA, which are dual to each
other, i.e. F,[[G]] = Ux(g)" and Uy(g) = F4[[G]]". Let R = p be an R-matriz for
Un(g) and a o—comatriz for Fy[[G]], which is trivial modulo h, i.e. congruent to 192,
resp. to €22, modulo h. Then, for the morphisms in Propositionm Proposition
Theorem and Theorem we have the following identifications
e, BLo T, GY= e BaeT,, TpoT, By TV

P

g

5.2.8. Comparing morphisms (1). Let us fix assumptions as in Theorem [5.2.3}
Un(g) is a given QUEA, Fj[[G]] its dual QFSHA, and R = R*® R is a (quantum)
R-matrix of Up(g). Then from Theorem we have Hopf algebra morphisms

— -

(b/ Cco (b/ %770
BlG]] — = R[G™", Bl[G]| —F— R[G*  (5.4)
between QFSHA’s for mutually dual (formal) Poisson groups, and

— —

cop

Un(g") —=— Up(g)°™ . Un(g") —= 5 Un(g)®  (55)

between QUEA’s for mutually dual Lie bialgebras, which we re-write in the form
— —

CcOo Q\/ *\ O (b\/
Un(g")*" ————Un(9) . Un(g")*” ——— U(9) (5:6)
that is entirely equivalent. We now go and compare (5.4)) and ([5.6)).
Recall that Fy[[G*]] := Un(g) and Uy(g*) := F3[[G]]", which are in duality
because Uyx(g) and Fj[[G]] are in duality (by construction) and we can apply (2.18]).
Then also F[[G*]]*" and Uy(g*)” are in duality, as well as Fj[[G*]]** and Uy (g*)*" .

We are now ready to compare the morphisms in ([5.4)) with those in ((5.6). Namely,

B[G]) —%— RG] mgan Fhuc;*n@ (5.7)
Un(g) = Un(g")” Un(g) = Un(e")™
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are diagrams where the vertical, twisting lines denote a relationship of mutual (Hopf)
duality. Next result tells us that the link between the morphisms on top row and
those underneath is indeed “the best possible one”:

Theorem 5.2.9. The two morphisms in left-hand side, resp. in right-hand side, of
(5.7) are adjoint to each other, that is for all n € Ux(g*) and f € F;[|G]] we have

— <, — -,
(Txm).f) = (0. 0r(N)  and  (Tpm).f) = (0, Br())
where by “< , >” we denote the pairing between any two Hopf algebras in duality.

Proof. 1t is enough to prove half of the claim — the other one being entirely similar
— say the right-hand side. Direct computation yields

(o). 1) = (0 RORf) = (0, R(Re, 1)) = (1, BR(1))
for all n € Uy(g*) and f € F}[[G]], hence we are done. O

As a second step, let now start with assumptions as in Theorem [5.2.5} F}[[G]] is a
given QFSHA, Uj(g) its dual QUEA, and p is a (quantum) g—comatrix of F;[[G]].
Then Theorem provides Hopf algebra morphisms

« =,

\Ij;; %77CO o, *170
Fi[G]] —— B[lG"]™ B[Gll —— RB[G]*  (58)
between QFSHA’s for mutually dual (formal) Poisson groups, and
24 o 24 o
Un(g") ————Un(g)™" , Un(g") ———— Un(9)™” (5.9)

between QUEA’s for mutually dual Lie bialgebras; we re-write the latter as
— =

co \I//;/ *\0 \I/;/
Un(g")* ————Ux(g) . Un(g")”™ ———— Ux(g) (5.10)

that is entirely equivalent. We now go and compare (5.8) and ([5.10)).
Acting as before (for the morphisms induced by an R—matrix), we find diagrams
— -
v v

FillG]] — BT RG] RG] (5.11)

| |

Un(g) - Un(g*)™ Un(g) = Un(g*)™

v v
v, v,

where the vertical, twisting lines denote a relationship of mutual (Hopf) duality.
Again, the link between the morphisms on top row and those underneath turns out
to be “the best possible one”, as the following result claims:

Theorem 5.2.10. The two morphisms in left-hand side, resp. in right-hand side, of
(5.7) are adjoint to each other, that is for all n € Uy(g*) and f € F}[|G]] we have
— —

— -
(WY f) = (n)  and (). f) = (n,90)
where by “< , >” we denote the pairing between any two Hopf algebras in duality.

Proof. We prove just the left-hand side of the claim. Direct computation gives

(T ) = (p(=m o f) = p(fn) = (nop(£2)) = (0, 05()
for all n € Uy(g*) and f € F,[[G]], as requested. O
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5.3. Morphisms from quasi—R-—matrices and quasi—p—comatrices.

We shall now explore what happens when the constructions leading to Proposition
2.2.9/ or Proposition respectively, is (tentatively) applied to a QFSHA and a
quasi—R-comatrix for it, or to a QUEA and a quasi—o—comatrix for it.

As a first result, we find that the construction of Hopf morphisms as in Proposition
2.2.9 can be applied again when the Hopf algebra under scrutiny is a QFSHA and
its R—matrix is replaced by only (!) a quasi-R-matrix.

Proposition 5.3.1. Let F}[[G]] be a QFSHA, and R a quasi-R-matriz for it. Then
the recipes in Proposition provide two well-defined morphisms

G BG = (Un(e)" = (BG])) —— (BIG])" = Un(g")*™

T BRG] = (Un(e")" = (BIG]) —— (BlG))) "= Ui(g")™

Proof. This follows from a direct application of Proposition to the QUEA
Un(g*) := Fy[[G]]” and its R-matrix R . d

The previous result provide morphisms from a QFSHA to a QUEA. We shall now
improve such a result — much like we did in — finding a couple of morphisms
between QFSHA’s and another couple between QUEA’s.

Theorem 5.3.2. Assume that R is a quasi—-R—-matrix for the QFSHA Fy[[G]], i.e.
an R-matriz for the QUEA Fy[[G]]” =: Un(g*), of the form R = exp (hflr) for
some r € Fy[[G)]®?. Then, for the two morphisms ®x and @R in Proposition
[5.5.1) above, the following holds:

(a) they corestrict to morphisms

B BIG) = (BIGYY — (BI6Y)™) = (1161 ) "= ElG)

B BG) = (BICYY — (BIG])™) = (F161Y)) " = RlE)™

between QFSHA’s for mutually dual (formal) Poisson groups;

and

(b) they extend to morphisms
%0 Ue) = BIGI = (BIG])) —— (BIGI)™ = Ui(g)™

and

ed e

\V o 10
% Un(e) = RG] = ((BICNY)) —— (BICIY)™ = Unlg")™
between QUEA’s for mutually dual Lie bialgebras.
Proof. First of all, note that the chain of identities

cop

(BlGD)™) = ((Rlen))™ = Bley™

— and similarly with superscript “op” instead of “cop” throughout — is obvious
from definitions along with the fact that Drinfeld’s functors ()" and () are inverse
to each other. Similarly, it is also obviously true the following chain of identities

(Bl61Y)) = ((BIGY)) = RIGY = Uio)

As to the rest of the claim, everything follows from Theorem [5.2.3| applied to the
QUEA Uy(g*) := F3[[G]]” along with its R-matrix R . O

Now we go for the dual constructions, concerning quasi—p—comatrices for a QUEA:
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Proposition 5.3.3. Assume that p is a quasi—o—comatrix for the QUEA Uy(g),
i.e. an element of the form p = exp*(ﬁ_lg) for some p € (Uh(g)®2> — taking

into account Lemma — which obeys (12.13)).
Then the recipes in Proposition [2.2.10 provide two well-defined morphisms

¥, ¢ BIG) = Uie) —— (Une))") " = (BGT)™ = Un(a)""
Qp - F[[GH]] = Un(g) —— ((Uh(gy)*)()p = (Fh[[G*]]*)Op = Up(g*)™®

Proof. Everything follows from definitions when applying Proposition to the
QFSHA F,[[G*]] := Uy(g)" and noting that (Uy(g)')" = F[[G*]]* = U(g*) . O

and

Once again, the previous result provides morphisms from a QFSHA to a QUEA,
and now we “enhance” it — like we did with Theorem [5.3.2] — finding morphisms
between QFSHA’s and morphisms between QUEA’s:

Theorem 5.3.4. Assume that p is a quasi-o—comatrix for the QUEA Uy(g), i.e.
an element of the form p = exp, (h_lg) for some o € (Uh(g)®2> — taking into

e
gccount Lemma|3.3.4 — which obeys (2.13). Then, for the two morphisms ¥ , and
W , wn Proposition |5.3. éi above, the following holds:

(a) they corestrict to morphisms

!/

W, B = Uie) — ((Uae))) ) = (Unle))™ = RlIG]

—>/ * / 7+ °P ! *) O o
v, RGN =Uie) — (Une))) ") = (Unle))™ = FllG]™
between QFSHA’s for mutually dual (formal) Poisson groups;
(b) they extend to morphisms

Uy Une) = (Unle)) — (Un@))") " = (BIGT)™ = Un(a)™

- / 7\ P *11%) © *) O
Y 2 Un(g) = (Un(g)') — ((Uh(g) ) ) = (BG)™ = Un(g")™
between QUEA’s for mutually dual Lie bialgebras.

and

and

Proof. As the functors ()" and ()" are inverse to each other, definitions yield

N cop \/ " 1/ \COpP * \COpD £\ CO co
(@ater )" ) =((Water)7) ) = (Un@))’) ) = (U@)")*" = RllCT™
— and similarly with superscript “op” instead of “cop” throughout — also thanks to

"o()*=()"0o()". Basing on this, the entire claim follows at once from Theorem
applied to the QFSHA F,[[G*]] := Ux(g)" and to its o-comatrix p. O

5.3.5. Duality properties. If we consider a QUEA and a QFSHA which are
dual to each other, we can compare the previous results: thus we find the following
“quasi-analogue” — whose proof is trivial again — of Theorem [5.2.7}

Theorem 5.3.6. Let Uy(g) be a QUEA, F4[[G]] a QFSHA, which are dual to each
other, i.e. Fy[[G]] = Un(g)" and Uy(g) = Fp[[G]]". Let p = R be a quasi—p-
comatriz for Uy(g) and a quasi-R-matriz for F;[[G]] .

Then, for the morphisms in Proposition |5.3.1, Proposition |5.5.5, Theorem
and Theorem |5.3.4] we have the following identifications
e

«— — =, =, =
, Q=) and Pr=VY,, Pp=0, Op=0 O
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5.3.7. Comparing morphisms (2). We shall now compare morphisms among
quantum groups provided by a quasi—R—matrix as above.

Let us start with a QFSHA Fj[[G]], with dual QUEA denoted by Ux(g), and a
quasi-R-matrix R for F;[[G]]. Then Theorem [5.3.2] gives a couple of diagrams

led

—
/
LR

RIGI™  BC7) —=— RIGI”  (5:12)

| |

Un(g)™ Un(g*) Un(g)™"

Fil[GY]]

Un(g”)

e,
et

” R
where the vertical, twisting lines denote a link of (Hopf) duality while the horizontal
arrows are Hopf algebra morphisms. Next result, “quasi-analogue” of Theorem

tells us that the morphisms on top and bottom row are “as close as possible”:

Theorem 5.3.8. The two morphisms in left-hand side, resp. in right-hand side, of
(5.12)) are adjoint to each other, that is for all n € Uy(g) and f € F[|G*]] we have
— < < —
(Bxm).f) = (1.2r(f))  and  (Tx(m).f) = (1, Trlh)
where by “< , >” we denote the pairing between any two Hopf algebras in duality.
Proof. The proof follows from Theorem along with Theorem [5.1.5] U

Similarly, let Us(g) be a QUEA, with dual QFSHA denoted by Fj[[G]], and let
p be a quasi—p—comatrix Uy(g). Then Theorem yields a couple of diagrams

G o

K6 ———FR(GI™  R¢]——FR(G]"  (13)

| |

Un(g)™ Un(g*) = Un(g)™”
5 vy

Un(g”)

led

akin to (5.12)). We get now the “quasi-analogue” of Theorem [5.2.10] which claims
that the morphisms on top and bottom row of ((5.13|) are “as close as possible”:

Theorem 5.3.9. The two morphisms in left-hand side, resp. in right-hand side, of
(5.13)) are adjoint to each other, that is for all n € Uy(g) and f € F;[|G*]] we have

— — — —
(Tym). gy = (. n)  and (WY S) = (0, T5(0)
where “< , >” denotes the pairing between any two Hopf algebras in duality.

Proof. Here again, the proof follows from Theorem [5.2.9| and Theorem [5.1.5] U

5.4. Semiclassical morphisms induced by specialization.

We will now go and study the semiclassical limit of the various morphisms among
quantum groups, considered in §§5.2] and [5.3] above.

First we consider the case of an R-matrix R for a given QUEA Uj,(g), whose
dual QFSHA is F3[[G]]. With this assumptions, we recall the existence of the Hopf
algebra morphisms in (5.7)), which by Theorem are pairwise mutually adjoint.

Specialising h to 0, the left-hand side of (5.7) provides two mutually adjoint

' i

morphisms F[[G]] ﬁ) F[[G*]]? and U(g*)™ ————=—U(g), the first being

/
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a morphism of Poisson Hopf algebras, the second one of co-Poisson Hopf algebras.
As they are mutually adjoint, each one of them defines one and the same morphism
of formal Poisson groups ¢f : G% —— G where G is the opposite (i.e., with
opposite product) formal Poisson group to G*. Note that ¢; PGy, — G s

<_
directly defined by CI>7’z| p—o+ Wwhile the morphism of Lie bialgebras doy 1 g5, — 9

can be deduced directly from q)%‘ ho Dy restriction to g;, and corestriction to g.
Similarly, specialising h to 0 the right-hand side of (5.7]) yields two mutually

Fd

3 b
adjoint morphisms F[[G]] ——="» F[[G*]]® and U(g*)"" L U(g) which
in turn defines one single morphism of formal Poisson groups ¢ : G, — G

where now G¢,, denotes the co-opposite formal Poisson group to G* — i.e., with

same product but opposite Poisson structure. This goes along with its associated
morphism of Lie bialgebras d¢_ : g;,, — ¢ . In short, we have pairs of morphisms

Goo,—— G, Gi,,——G and g, ———90, G0 (5.14)

cop
of formal Poisson groups and of Lie bialgebras, respectively.

Second, we consider the case of a p-comatrix p for a given QFSHA F;[[G]], with
dual QUEA Uy(g). In this case, there exist Hopf algebra morphisms as in (5.11)),
which are pairwise mutually adjoint due to Theorem [5.2.10

Acting as before, specialising i to 0 we find that the semiclassical limits of these
(quantum) morphisms eventually define two pairs of morphisms

+ - + -
Gzp¢—p>G . G Y .G and gzp&g : gzopLg (5.15)

cop
of formal Poisson groups and of Lie bialgebras, respectively.

Third, to compare the two constructions, assume that, given mutually dual quan-
tum groups Uy(g) and Fj[[G]], we pick a single element R = p, thought of simul-
taneously as an R-matrix for U,(g) and as a p-comatrix for F[[G]], much in the

spirit of Proposition and Theorem [2.2.12] Then morphisms as in ((5.14]) and
(5.15)) are defined: but in addition, directly by Theorem we get at once that

or =y, O, =1, and dof = dp, . do, = dy,

If one works instead with quasi—-R—matrices and quasi— p—comatrices, the roles of
G and G* are reversed, but for the rest the analysis is entirely similar (so we may be
more sketchy). Therefore, assume we have dual quantum groups Uy(g) and F3[[G]] .

Given a quasi-R-matrix R for F;[[G]], the Hopf algebra morphisms in Theorem
m give rise (through their semiclassical limit) to two pairs of morphisms

PR PR o5 Wr
Gop —— G, Geop —— G and  gop—— 0", Geop —— ¢ (5.16)

of formal Poisson groups and of Lie bialgebras, respectively.

Similarly, if p is a quasi—p—comatrix for Uy(g), the Hopf algebra morphisms in
Theorem define (via their semiclassical limit) two pairs of morphisms

v ¥, dyt ay
Gop—3G", Geop—— G and  gop——9", Geop —— 9" (5.17)

of formal Poisson groups and of Lie bialgebras, respectively.
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Finally, if R = p — in the spirit of Proposition [2.2.7) more precisely like in
Theorem [5.3.6| — then Theorem [5.3.6| gives at once

¢ =Y, ¢ =14, and dof, = dbi , déy, = di

Studying in depth all the morphisms introduced above seems to be quite an in-
teresting problem; we cannot, however, cope with in the present paper — we just
finish with a comparison with previous results.

Assume we have an R—matrix R for a given QUEA Uy(g), whose dual QFSHA
is Fp[[G]] := Un(g)". Tt is well-known that the “semiclassical limit” of R, that is

R — 1®2

"= (mod h), is in turn a “classical r—matrix” for the Lie bialgebra g.

Then Lie bialgebra morphisms gzpw—j> g and gzop@—T> g are defined directly
through r itself — with no need of R, nor of Uy(g), nor F;[[G]], cf. [CP], §2.1, or
[Mj], §8.1. Tracking the various constructions involved — in particular, the functor
Fi[[G]] = Fi[[G]]Y =: Us(g*) — by direct comparison one immediately sees that

o = do) and p, = do,

In particular, we get that the morphisms dgbi depend on r alone, rather than on R ,
hence the same s true for the morphisms qbf; ; indeed, both facts can also be easily
proved by direct inspection. Similarly, one can prove, via direct analysis again, or by
a duality argument from the previous result, that the morphisms w;—L and dw/ﬂf depend

_ ®2
only on the “classical p—comatrix” py := pT (mod h) alone, rather than on p.
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