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Abstract. In this paper we describe the effect on quantum groups — namely,
both QUEA’s and QFSHA’s — of deformations by twist and by 2–cocycles, show-
ing how such deformations affect the semiclassical limit.

As a second, more important task, we discuss how these deformation procedures
can be extended, via a formal variation of the original recipes, using quasi-twists
and quasi-2–cocycles. These new recipes seemingly should make no sense at all, yet
we prove that they do work, thus providing more general deformation procedures.
Later on, we explain the underlying motivation: this comes from Quantum Duality
Principle, through which every “quasi-twist/2–cocycle” for a given quantum group
can be seen as a standard twist/2–cocycle for another quantum group, associated
to the original one via the appropriate Drinfeld functor.

Finally, we consider standard constructions involving R–(co)matrices for Hopf
algebras. First we adapt them to quantum groups, then we show that they extend
to the case of quasi–R–(co)matrices, and finally we discuss how these constructions
interact with the Quantum Duality Principle. This also yields new symmetries for
the underlying pair of dual Poisson (formal) groups that one gets by specialization.
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1. Introduction

In Hopf algebra theory, there exists a well-established theory of “deformations”
that are produced via specific tools, namely twists in one case and 2–cocycles in the
other case. Given a Hopf algebra H, a twist for it is a suitable element F ∈ H⊗H ,
while (dually) a 2–cocycle is a suitable 2–form σ ∈ (H ⊗H)∗ . Deformation by F
provides H with a new Hopf algebra structure, by modifying the coproduct (and the
antipode) but not the product, while deformation by σ endows H with yet another
Hopf structure by changing the product (and the antipode) but not the coproduct.

Quantum groups are Hopf algebras of special type, in two versions: QUEAs (=
quantized universal enveloping algebras) and QFSHAs (= quantized formal series
Hopf algebras). Roughly speaking, a QUEA is a (topological) Hopf algebra Uℏ over
the k–algebra of formal power series k[[ℏ]] such that U0 := Uℏ

/
ℏUℏ is isomorphic to

U(g) for some Lie algebra g . Then U(g) inherits from Uℏ a Poisson cobracket, which
makes it into a co-Poisson Hopf algebra, hence g bears a Lie cobracket making it
into a Lie bialgebra. One then says that Uℏ is a quantization of the co-Poisson Hopf
algebra U(g) , or just of the Lie bialgebra g . Dually, a QFSHA is a (topological)
Hopf algebra Fℏ over k[[ℏ]] such that F0 := Fℏ

/
ℏFℏ is isomorphic to F [[G ]] for some

formal algebraic group G . Then F [[G ]] inherits from Fℏ a Poisson bracket, which
makes it into a Poisson Hopf algebra, thus G bears a Poisson structure which makes
it into a formal Poisson (algebraic) group. One says then that Fℏ is a quantization
of the Poisson Hopf algebra F [[G ]] , or just of the (formal) Poisson group G .

As a general philosophy, from any Hopf-theoretical notion — at the quantum level
— one typically infers a Lie-theoretical counterpart — at the semiclassical level.
When dealing with deformations, this leads to devising suitable notions of “twists”
and “2–cocycles” for Lie bialgebras as well as “deformations” (of Lie bialgebras) by
them. In particular, a deformation by twist yields a new Lie bialgebra structure
where only the Lie cobracket is modified, whereas deformation by 2–cocycle defines
yet another, similar structure where only the Lie bracket is changed.

Via this recipe, we expect the following: when we deform (as a Hopf algebra) a
quantization Uℏ of g by a twist which is trivial modulo ℏ , we get a quantization
of g′ , the latter being a deformation by twist (as a Lie bialgebra) of g : moreover,
the (Lie) twist working on g is “induced” by the (Hopf) twist that works upon Uℏ ,
namely the former (Lie) twist is the “semiclassical limit” of the latter (Hopf) twist.

Dually, the following also should hold: when we deform (as a Hopf algebra) a
quantization Fℏ of G by a 2–cocycle which is trivial modulo ℏ , we get a quantization
of G′ , the latter being a (formal) Poisson group whose cotangent Lie bialgebra is a
deformation by 2–cocycle of g∗ := Lie(G)∗ : moreover, the (Lie) 2–cocycle acting on
g∗ is “induced” by the (Hopf) 2–cocycle that acts on Fℏ , namely the former (Lie)
2–cocycle is the “semiclassical limit”, in some sense, of the latter (Hopf) 2–cocycle.

Nevertheless, neither of the two results mentioned above seems to be published
anywhere in literature (to the best of the authors’ knowledge, say). Therefore, as a
first contribution in this paper we provide a full, complete statement and proof for
the above sketched results, turning them into well-established theorems.

As a second step — our main contribution in this paper — we extend the notions
of (Hopf) twist and 2–cocycle, as well as the construction of (Hopf) deformations
by them, to a wider setup. Namely, we introduce the notions of quasi–twist for a
QFSHA and of quasi–2–cocycle for a QUEA: roughly speaking, a quasi–twist for
Fℏ has the formal Hopf properties of a twist but has the form exp

(
ℏ−1φ

)
, while
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any twist (trivial modulo ℏ ) looks like exp
(
ℏ+1ϕ

)
— and similarly for the link

between quasi–2–cocycles and 2–cocycles. Thus even the very definition of these
“quasi–objects”, at least in this form, seems to be problematic — as multiplying by
ℏ−1 is meaningless. In spite of this, we show that the recipe defining deformations
still makes sense if we replace “twists” with “quasi–twists”, resp. “2–cocycles” with
“quasi–2–cocycles”. Moreover, we can describe the semiclassical limit of these de-
formations (by “quasi–objects”), again in terms of deformations of Lie bialgebras by
some (Lie) twist, resp. 2–cocycle, that can be explicitly read out as the semiclassi-
cal limit of the quantum (Hopf) quasi–twist, resp. quasi–2–cocycle, that we started
with. In a nutshell, we find the perfect “quasi–versions” of the results mentioned
above for standard quantum group deformations, i.e. those by twist or by 2–cocycle.

The fact that “deformations by quasi–objects” do make sense can be explained
in light of the Quantum Duality Principle (=QDP). In fact, the latter provides
functorial recipes (via Drinfeld’s functors) which turn any QUEA into a QFSHA
and any QFSHA into a QUEA. Then, through the QDP lens, every “quasi-twist”
for a QFSHA, resp. every “quasi–2–cocycle” for a QUEA, is just a sheer standard
twist, resp. 2–cocycle, for the QUEA, resp. the QFSHA, obtained when applying
the appropriate Drinfeld functor. In this way, our deformations “by quasi–objects”
turn out to be tightly related with standard ones, but applied to different quantum
groups. Nevertheless, one still has to prove that the (standard) deformation applied
to the new quantum group can actually be adapted to the original quantum group.

Finally, we consider some constructions of morphisms that, in general Hopf algebra
theory, are provided by R–matrices or ϱ–comatrices. We apply these constructions
to quantum groups, showing that their outcome is much finer than expected from the
general theory, and bringing to light their geometrical meaning at the semiclassical
level. In addition, we improve those results as follows: we introduce the notions of
quasi–R–matrices and quasi–ϱ–comatrices (much in the same spirit as with quasi–
twists and quasi–2–cocycles), and then we extend the construction of the above
morphisms to quasi–R–matrices and quasi–ϱ–comatrices, again involving the QDP.

The paper is organized as follows.
In §2 we quickly recall the material we work with. In §3 we present the bulk of the

paper First we study deformations by twist and by 2–cocycles, then we introduce
quasi–2–cocycles and quasi–twists and the procedures of deformations by these. All
this material is discussed again in §4, in light of the Quantum Duality Principle.
Finally, in §5 we study the morphisms associated with R–matrices or ϱ–comatrices
in the case of quantum groups, also explaining their meaning at the semiclassical
limit. Moreover, we extend those constructions and results to the newly minted
notions of quasi–R–matrices and quasi–ϱ–comatrices.

N.B.: a longer version of this work, including full-detailed computations, is avail-
able on-line as electronic preprint [GaGa3].
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2. Quantum groups, Quantum Duality Principle, and deformations

In this section we recap the basic notions we deal with in this paper: Lie bialge-
bras, quantum groups, deformations of both, and the Quantum Duality Principle.

2.1. Lie bialgebras and Lie deformations.

In this subsection we recall some definitions and basic facts about Lie bialgebras
and their deformations. For a more detailed treatment we refer to [CP], [Mj].

Throughout the paper, k will be a field of characteristic zero.

2.1.1. Generalities. A Lie bialgebra is a triple
(
g ; [ , ] , δ

)
such that (g, [ , ]) is

a Lie algebra over k , (g, δ) is a Lie coalgebra with Lie cobracket δ : g −→ g∧ g , i.e.
δ∗ : g∗∧ g∗ −→ g∗ is a Lie algebra bracket on g∗ ), and the two structures are linked
by the constraint that δ is a 1–cocycle for the Chevalley-Eilenberg cohomology of
the Lie algebra

(
g ; [ , ]

)
with coefficients in g ∧ g :

δ([x, y]) = adx
(
δ(y)

)
− ady

(
δ(x)

)
=

=
[
x, y[1]

]
⊗ y[2] + y[1] ⊗

[
x, y[2]

]
−
[
y, x[1]

]
⊗ x[2] − x[1] ⊗

[
y, x[2]

] (2.1)

using Sweedler’s-like notation δ(x) = x[1] ⊗ x[2] for any x ∈ g . We write also

x∧ y := 2−1(x⊗ y− y⊗x) and thus we identify g∧ g with the subspace (g⊗ g)Z2 .
Finite-dimensional Lie bialgebras are self-dual, in the sense that

(
g ; [ , ] , δ

)
is

a Lie bialgebra if and only if
(
g∗ ; δ∗, [ , ]∗

)
is so; the latter is called the dual Lie

bialgebra to
(
g ; [ , ] , δ

)
. This also holds in the infinite-dimensional case, up to

technicalities. We denote a Lie bialgebra simply by g , and by g∗ its dual.
Given r = r1 ⊗ r2 in g ⊗ g , we write r2,1 := r2 ⊗ r1 and r1,2 := r1 ⊗ r2 ⊗ 1 ,

r2,3 := 1⊗ r1 ⊗ r2 r1,3 := r1 ⊗ 1⊗ r2 ∈ g⊗ g⊗ g. For s = s1 ⊗ s2 ∈ g⊗g we define

[[r, s]] := [r1,2, s1,3] + [r1,2, s2,3] + [r1,3, s2,3]

=
[
r1, s1

]
⊗ r2 ⊗ s2 + r1 ⊗

[
r2, s1

]
⊗ s2 + r1 ⊗ s1 ⊗

[
r2, s2

]
.

2.1.2. Deformations of Lie bialgebras. In this work, we are mainly interested
in two kinds of deformations, where either the Lie cobracket or the Lie bracket alone
is deformed. A general theory of deformations for Lie bialgebras using cohomology
theory exists, see e.g. [CG], [MW], and references therein for more details.

Let
(
g ; [ , ] , δ

)
be a Lie bialgebra and c ∈ g⊗ g be such that

adx
(
(δ ⊗ id)(c) + c.p. + [[c , c ]]

)
= 0 , adx

(
c+ c 2,1

)
= 0 ∀ x ∈ g (2.2)

where adx denotes the standard adjoint action of x and c.p. means cyclic permu-
tations on the tensor factors of the previous summand. Then

δ c := δ − ∂(c) , i.e. δ c(x) := δ(x)− adx(c) ∀ x ∈ g (2.3)

defines a new Lie cobracket δ c : g −−→ g∧ g on
(
g ; [ , ]

)
making

(
g ; [ , ] , δc

)
into a new Lie bialgebra (cf. [Mj, Theorem 8.1.7]).

Definition 2.1.3. An element c ∈ g⊗ g satisfying (2.2) is called a twist of the Lie
bialgebra g , and the corresponding Lie bialgebra g c :=

(
g ; [ , ] , δ c

)
is called a

deformation by twist or twist deformation of g . ♢

Remark 2.1.4. We are adopting here conventions that are slightly different from
those in [Mj], yet equivalent. Indeed, we choose to define the deformed Lie cobracket
in (2.3) as δc := δ − ∂(c) , whereas Majid’s definition is δc := δ + ∂(c) .
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Now we introduce a deformation of the Lie bracket. Let
(
g ; [ , ] , δ

)
be a Lie

bialgebra and γ ∈ Homk
(
g ⊗ g ,k

)
. We identify Homk

(
g ⊗ g ,k

)
= (g⊗ g)∗ =

g∗ ⊗ g∗ for finite-dimensional g ; up to technicalities, the outcome is the same in
the infinite-dimensional case too. Dualizing the notion of twist for g∗ we obtain the
notion of 2–cocycle: condition (2.2) with g∗ replacing g and γ in the role of c yields

adψ
(
∂∗(γ) + [[γ , γ ]]∗

)
= 0 , adψ

(
γ + γ2,1

)
= 0 ∀ ψ ∈ g∗ (2.4)

where γ2,1 := γT and
(
∂∗(γ)

)
(a , b , c ) = γ

(
[a , b ] , c

)
+ c.p. . Similarly, [[ , ]]∗ has

the same meaning as above but with respect to g∗.

For any γ satisfying (2.4), the map [ , ]γ : g ∧ g −−→ g given by

[x, y]γ := [x, y] + γ
(
x[1], y

)
x[2] − γ

(
y[1], x

)
y[2] ∀ x, y ∈ g (2.5)

defines a new Lie bracket on the Lie coalgebra
(
g ; δ

)
making

(
g ; [ , ]γ , δ

)
into

a new Lie bialgebra (cf. [Mj, Exercise 8.1.8]).

Definition 2.1.5. Every γ ∈ Homk
(
g ∧ g ,k

)
that obeys (2.4) is called a 2–cocy-

cle of the Lie bialgebra g , and the Lie bialgebra gγ :=
(
g ; [ , ]γ , δ

)
is called a

deformation by 2–cocycle or 2–cocycle deformation) of g . ♢

Remark 2.1.6. Another observation, dual to Remark 2.1.4 applies to our given
definition of 2–cocycle and of 2–cocycle deformation. Again, our notion of 2–cocycle
is different from, yet equivalent to, Majid’s because any γ ∈ (g⊗ g)∗ is a 2–cocycle
in our sense if and only if its opposite −γ is a 2–cocycle in Majid’s, and viceversa.

The following result, which is standard, formalizes the fact that the notions of
“twist” and of “2–cocycle” for Lie bialgebras are devised to be dual to each other.

Proposition 2.1.7. Let g be a Lie bialgebra, and g∗ the dual Lie bialgebra.
(a) Let c be a twist for g , and γc the image of c in (g⊗ g)∗ for the natural

composed embedding g⊗ g ↪−−→ g∗∗ ⊗ g∗∗ ↪−−→
(
g∗ ⊗ g∗

)∗
. Then γc is a 2–cocycle

for g∗ , and there exists a canonical isomorphism
(
g∗
)
γc
∼=

(
gc
)∗

.

(b) Let γ be a 2–cocycle for g ; assume that g is finite-dimensional, and let c γ be
the image of χ in the natural identification (g⊗ g)∗ = g∗ ⊗ g∗ . Then c γ is a twist

for g∗ , and there exists a canonical isomorphism
(
g∗
)c γ ∼= (

gγ
)∗

. □

2.2. Hopf algebra deformations and R–(co)matrices.

We recall some notions on deformations for Hopf algebras. We mainly refer to [Ra],
and to [Ks], [CP] and [KS] for topological Hopf algebras, using standard notation.

There exist two standard methods to deform Hopf algebras, leading to so-called
“2–cocycle deformations” and to “twist deformations”: hereafter we recall both.

Definition 2.2.1. Let H be a bialgebra (possibly topological, over some commuta-
tive ground ring), and let F ∈ H ⊗H . Then:

(a) F is said to be unitary if(
ϵ⊗ id

)
(F ) = 1 =

(
id⊗ ϵ

)
(F ) (2.6)

(b) F is called a twist if it is invertible in H ⊗H , it is unitary, and

F12

(
∆⊗ id

)
(F ) = F23

(
id⊗∆

)
(F ) (2.7)

(c) F is called a (quantum) R–matrix if it is invertible in H ⊗H and(
∆⊗ id

)
(F ) = F13F23 ,

(
id⊗∆

)
(F ) = F13F12 (2.8)
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(d) F is called a (quantum) R–matrix twist if it complies both (b) and (c) above

(e) F is said to be a solution of the quantum Yang-Baxter equation (=QYBE) if

F12F13F23 = F23F13F12 (2.9)

Remarks 2.2.2. (a) If H is a Hopf algebra (including a topological one) and there
exists F ∈ H ⊗H which is invertible and such that

F ∆(x)F−1 = ∆op(x) ∀ x ∈ H (2.10)

thenH is said to be quasicocommutative. If in addition F obeys also (2.8), thenH is
said to be quasitriangular. Indeed, the standard notion of “R–matrix” in literature
usually demands the constraint (2.10) besides condition (2.8). Any “R–matrix” as
in Definition 2.2.1(c) is called “weak R–matrix” in [Ch], Definition 1.1.

(b) Every R–matrix as in Definition 2.2.1(c) above is automatically unitary, cf.
[Ch], Lemma 1.2. Conversely, if F is unitary and enjoys (2.8), then it is invertible
too, hence it is an R–matrix. In short, the two conditions are equivalent.

(c) If R is an R–matrix for H, then so is
(
R−1

)
21

=
(
R21

)−1
; moreover, R21

and R−1 are R–matrices for Hop and Hcop alike — see [Mj], [Ra].

(d) Formulas (2.7) and (2.8) jointly imply (2.9), while (2.8) and (2.9) imply (2.7).

2.2.3. Deformations by twist. Let H be a bialgebra (over some ring k ), and let
F ∈ H ⊗ H be a twist for it — as in Definition 2.2.1(b). Then H bears a second
bialgebra structure, denoted HF and called twist deformation of the old one, with
the old product, unit and counit, but with a new “twisted” coproduct ∆F given by

∆F(x) := F ∆(x)F−1 ∀ x ∈ H
If in addition H is a Hopf algebra with antipode S , then this “twisted” bialgebra
HF is again a Hopf algebra with antipode SF given by

SF(x) := v S(x) v−1 ∀ x ∈ H
where v :=

∑
F S(f ′1) f ′2 — with

∑
F f
′
1 ⊗ f ′2 = F−1 — is invertible in H (see,

[CP, §4.2.E], for further details). When H is in fact a topological bialgebra or Hopf
algebra, then the same notions still make sense, and the related results apply again.

We present now the dual picture:

Definition 2.2.4. Let H be a bialgebra, and let σ ∈
(
H⊗2

)∗
. Then:

(a) σ is said to be unitary if

σ(a, 1) = ϵ(a) = σ(1, a) ∀ a ∈ H (2.11)

(b) σ is called a 2–cocycle if it is (convolution) invertible in
(
H⊗2

)∗
, it is unitary,

and such that

σ(a(1), b(1))σ(a(2)b(2), c) = σ(b(1), c(1))σ(a, b(2)c(2)) (2.12)

for all a, b, c ∈ H — where we abuse of notation identifying σ ∈
(
H ⊗H

)∗
with the

corresponding k–bilinear map ρ : H×H −→ k , and we adapt notation accordingly;

(c) σ is called a (quantum) ϱ–comatrix if it is (convolution) invertible in
(
H⊗2

)∗
and — for all a, b, c ∈ H — we have

σ(a b , c) = σ
(
a , c(1)

)
σ
(
b , c(2)

)
, σ(a , b c) = σ

(
a(1), c

)
σ
(
a(2), b

)
(2.13)

(d) σ is called a (quantum) ϱ–comatrix 2–cocycle if it complies with (b) and (c);
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(e) σ is said to be a solution of the quantum Yang-Baxter equation (=QYBE) if

σ12 ∗ σ13 ∗ σ23 = σ23 ∗ σ13 ∗ σ12 (2.14)

where hereafter “ ∗ ” denotes the convolution product.

Remarks 2.2.5. (a) If H is a Hopf algebra and there exists σ ∈ (H ⊗H)∗ which
is (convolution) invertible and such that

σ ∗ m ∗ σ−1 = m op (2.15)

then H is said to be quasicommutative. If in addition σ obeys also (2.13), then H
itself is said to be coquasitriangular. Indeed, the standard notion of “ϱ–comatrix”,
or “dual R–matrix”, in literature usually demands (2.15) besides (2.13). Following
[Ch], one might also use terminology “weak ϱ–comatrix”, or “weak dual R–matrix”.

(b) Every ϱ–matrix as in Definition 2.2.4(c) above is unitary. Conversely, if ρ
is unitary and enjoys (2.13), then it is (convolution) invertible too, hence it is a
ϱ–comatrix (cf. [Mj], Lemma 2.2.2). In short, the two conditions are equivalent.

(c) Much like for R–matrices, if ρ is a ϱ–comatrix for H, then so is
(
ρ−1

)
21

=(
ρ21

)−1
; moreover, ρ21 and ρ−1 are ϱ–comatrices for Hop and Hcop alike.

(d) Formulas (2.12) and (2.13) imply (2.14), while (2.13) and (2.14) yield (2.12).

2.2.6. Deformations by 2–cocycles. Let H be a bialgebra (over some ring k ),
and let σ ∈ (H ⊗H)∗ be a 2–cocycle. Then H bears a second bialgebra structure,
denoted Hσ and called 2–cocycle deformation of the old one, with the old coproduct,
counit and unit, but with new product mσ = σ ∗m ∗ σ−1 : H ⊗H −→ H given by

mσ(a, b) = a ·σ b = σ(a(1), b(1)) a(2) b(2) σ
−1(a(3), b(3)) ∀ a, b ∈ H

If in addition H is a Hopf algebra with antipode S , then this “deformed” bialgebra
Hσ is again a Hopf algebra with antipode Sσ , which in detail reads

Sσ(a) = σ(a(1),S(a(2)))S(a(3))σ−1(S(a(4)), a(5)) ∀ a ∈ H
(see [Doi] for more details). If H is a topological bialgebra or Hopf algebra, all this
construction applies again, as well as the related results, up to technicalities.

The two notions of “2–cocycle” and of “twist”, as well as the corresponding defor-
mations, are so devised as to be dual to each other with respect to Hopf duality (cf.
[Mj]), also in the setup of topological Hopf algebras as with QUEA’s and QFSHA’s.
The same holds for the notions of “ϱ–comatrix” and of “R–matrix”. All this is
recorded in the following result, whose proof is trivial (an exercise in Hopf theory):

Proposition 2.2.7. Let H be a Hopf algebra (possibly topological), and H∗ its dual
Hopf algebra (possibly in topological sense).

(a) Let F be a twist, resp. an R–matrix, for H , and σF the image of F in
(H ⊗H)∗ for the natural embedding H ⊗ H ↪−−→ H∗∗ ⊗ H∗∗ ↪−−→

(
H∗ ⊗H∗

)∗
.

Then σF is a 2–cocycle, resp. a ϱ–comatrix, for H∗ . Moreover, in the first case
there exists a canonical Hopf algebra isomorphism

(
H∗

)
σF

∼=
(
HF

)∗
.

(b) Let σ be a 2–cocycle, resp. a ϱ–comatrix, for H ; assume that we have a natural
identification (H ⊗H)∗ = H∗ ⊗ H∗ (e.g., if H is finite-dimensional), and let Fσ
be the image of σ in H∗ ⊗H∗ via this identification. Then Fσ is a twist, resp. an
R–matrix, for H∗ . Moreover, in the first case there exists a canonical Hopf algebra

isomorphism
(
H∗

)Fσ ∼=
(
Hσ

)∗
. □
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2.2.8. Hopf morphisms from R–matrices and ϱ–comatrices. LetH be a Hopf
algebra, possibly in topological sense. We assume that its (possibly topological)
finite dual H∗ is a Hopf algebra as well (possibly in a topological sense).

Hereafter we recall some well-known constructions, somewhat shortly: further
details can be found, e.g., in [CP], [KS] and [Mj].

Proposition 2.2.9. (cf. [GaGa3] for a proof)

(a) Every R–matrix R = R1⊗R2 (using Sweedler’s-like notation) for H provides
two Hopf algebra morphisms
←−
ΦR : H∗−→ Hcop

(
η 7→ η(R1)R2

)
,

−→
ΦR : H∗−→ Hop

(
η 7→ R1 η(R2)

)
(b) If R is an R–matrix for H, and R−1 is its inverse, then

←−
ΦR , resp.

−→
ΦR , is

convolution invertible, with convolution inverse
←−
ΦR−1 , resp.

−→
ΦR−1 . □

The previous result has its dual counterpart, whose proof is again straightforward:

Proposition 2.2.10.

(a) Every ϱ–comatrix ρ for H provides two Hopf algebra morphisms
←−
Ψρ : H −→

(
H∗

)cop
, ℓ 7→ ρ(ℓ , − ) ,

−→
Ψρ : H −→

(
H∗

)op
, ℓ 7→ ρ(− , ℓ )

(b) If ρ is a ϱ–comatrix for H, and ρ−1 is its (convolution) inverse, then
←−
Ψρ ,

resp.
−→
Ψρ , is convolution invertible, with convolution inverse

←−
Ψρ−1 , resp.

−→
Ψρ−1 . □

Remark 2.2.11. Inasmuch as any R–matrix, resp. any ϱ–comatrix, for H is a ϱ–
comatrix, resp. an R–matrix, for the dual Hopf algebra H∗ — cf. Proposition 4.1.2
— applying Proposition 2.2.9 to H∗ we get Proposition 2.2.10, and, conversely,
applying Proposition 2.2.10 to H∗ we get Proposition 2.2.9. In the same spirit, the
following result about Hopf algebras in duality follows from the very definitions:

Proposition 2.2.12. Let K and Γ be two Hopf algebras (over the same ground ring,
and possibly topological) that are dual to each other, say Γ = K∗ and K = Γ ⋆ for
suitably defined dual functors ( )∗ and ( )⋆ . Let also R = ρ be an R–matrix for K
and a ϱ–comatrix for Γ — applying Proposition 2.2.7. Then for the morphisms in
Proposition 2.2.9 and Proposition 2.2.10 we have canonical identifications
←−
ΦR=

←−
Ψρ : K∗= Γ −−→

(
Γ ⋆= K

)cop
,
−→
ΦR=

−→
Ψρ : K∗= Γ −−→

(
Γ ⋆= K

)op
□

2.3. Quantum groups.

We recall hereafter the basic notions on quantum groups, in the shape of either
quantized universal enveloping algebras (=QUEA’s) or quantized formal series Hopf
algebras (=QFSHA’s) — both being Hopf algebras in a topological sense.

2.3.1. Classical and quantum preliminaries. Hereafter we fix a base field k of
characteristic zero. We recall the following from [CP].

For any Lie algebra g over k , its universal enveloping algebra U(g) has a canonical
structure of Hopf algebra, which is cocommutative and connected. If g is also a
Lie bialgebra, with Lie cobracket δ , then δ uniquely extends to define a Poisson
cobracket δ : U(g) −→ U(g)⊗ U(g) , just by imposing that it fulfill the co-Leibnitz
identity δ(x y) = δ(x)∆(y) + ∆(x) δ(y) . Conversely, if the Hopf algebra U(g) is
actually even a Hopf co-Poisson algebra, then its Poisson co-bracket δ maps g into
g⊗ g , thus yielding a Lie cobracket for g that makes the latter into a Lie bialgebra.
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Dually, let G be any formal algebraic group G over k : by this we loosely mean that
G is the spectrum of its formal function algebra F [[G ]] , the latter being a topological
Hopf algebra which is commutative and I–adically complete, where I := Ker (ϵ) is
the augmentation ideal of F [[G ]] . Then G is a (formal) Poisson group if and only if
its formal function algebra F [[G ]] is a Poisson (formal) Hopf algebra, with respect
to some Poisson bracket { , } . In this case, the cotangent space I

/
I2 of G has a

Lie bracket induced by { , } via [x, y] :=
{
x′, y′

} (
mod I2

)
for all x, y ∈ I

/
I2

with x = x′
(
mod I2

)
, y = y′

(
mod I2

)
: this makes I

/
I2 into a Lie algebra, but

its dual g = Lie (G) :=
(
I
/
I2

)∗
is also a Lie algebra (the tangent Lie algebra to G )

and the two structures are compatible, so that g⋆ := I
/
I2 is a Lie bialgebra indeed.

We come now to quantizations of the previous co-Poisson/Poisson structures.

Let T ⊗̂ be the category whose objects are all topological k[[h]]–modules which
are topologically free (i.e. isomorphic to V [[h]] for some k–vector space V , with the
h–adic topology) and with morphisms the k[[h]]–linear maps (then automatically
continuous). This is a tensor category for the product T1 ⊗̂T2 which is the separated
h–adic completion of the algebraic tensor product T1⊗k[[h]] T2 (for all T1, T2 ∈ T ⊗̂ ).
Let P ⊗̃ be the category whose objects are all topological k[[h]]–modules isomor-

phic to modules of the type k[[h]]E for some set E : these are complete w.r.t. to
the weak topology and whose morphisms in P ⊗̃ are the k[[h]]–linear continuous

maps. This is a tensor category w.r.t. the tensor product P1 ⊗̃P2 defined to be the
completion of the algebraic tensor product P1 ⊗k[[h]] P2 w.r.t. the weak topology:

therefore Pi ∼= k[[h]]Ei (i = 1, 2) yields P1 ⊗̃P2
∼= k[[h]]E1×E2 (for all P1, P2 ∈ P ⊗̃ ).

Note that the objects of T ⊗̂ and of P ⊗̃ are complete and separated w.r.t. the h–

adic topology, so one has X ∼= X0[[h]] for every such object X, with X0 := X
/
ℏX .

We denote byHA ⊗̂ the subcategory of T ⊗̂ whose objects are all the Hopf algebras
in T ⊗̂ and whose morphisms are all the Hopf algebra morphisms in T ⊗̂ . Similarly,
we call HA ⊗̃ the subcategory of P ⊗̃ whose objects are all the Hopf algebras in
P ⊗̃ and whose morphisms are all the Hopf algebra morphisms in P ⊗̃ . To simplify
notation, we shall usually drop the subscripts “̂ ” and “˜ ” from the symbol “⊗ ”.

Finally, when dealing with any k[[ℏ]]–module M by such notation as O
(
ℏs
)
we

shall mean any (unspecified) element belonging to ℏsM , for all s, n ∈ N ; in other
words, for any x ∈M by writing x = O

(
ℏs
)
we mean that x ≡ 0

(
mod ℏsM

)
.

We are ready now to define quantum groups, in two different incarnations:

2.3.2. Quantized Universal Enveloping Algebras (=QUEA’s). Retain no-
tation as in §2.3.1 above. A quantized universal enveloping algebra — or QUEA in
short — is a (topological) Hopf algebra Uℏ in HA ⊗̂ such that U0 := Uℏ

/
ℏUℏ is a

connected, cocommutative Hopf algebra over k — or, equivalently, U0 is isomorphic
to an enveloping algebra U(g) for some Lie algebra g . Then the formula

δ(x) :=
∆
(
x′
)
−∆op

(
x′
)

ℏ
mod ℏU ⊗̂ 2

ℏ (2.16)

— where x′ ∈ Uℏ is any lift of x ∈ g —defines a co-Poisson structure on U0 = U(g) ,
hence a Lie bialgebra structure on g . In this case, we say that Uℏ is a quantization
of the co-Poisson Hopf algebra U(g) , or (with a slight abuse of language) of the Lie
bialgebra g ; conversely, U(g) — or just g alone — is the semiclassical limit of Uℏ .
We summarize it writing Uℏ(g) := Uℏ . In the following, we denote by QUEA the
full subcategory of HA ⊗̂ whose objects are all of the QUEAs.
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2.3.3. Quantized Formal Series Hopf Algebras (=QFSHA’s). Retain again
notation as in §2.3.1 above. A quantized formal series Hopf algebra — or QFSHA
in short — is a (topological) Hopf algebra Fℏ in HA ⊗̃ such that F0 := Fℏ

/
ℏFℏ is

a commutative, I–adically complete topological Hopf algebra over k , where I is the
augmentation ideal — or, equivalently, F0 is isomorphic to the algebra of functions
for some formal algebraic group F [[G ]] . Then the formula

{x, y} :=
x′ y′ − y′ x′

ℏ
mod ℏFℏ (2.17)

— where x′, y′ ∈ Fℏ are lifts of x, y ∈ F [[G ]] — defines a Poisson bracket in
F [[G ]] , thus making G into a (formal) Poisson group. In this case, we say that Fℏ
is a quantization of the Poisson Hopf algebra F [[G ]] , or (stretching a point) of the
formal Poisson group G ; conversely, F [[G ]] — or just G alone — is the semiclassical
limit of Fℏ . We summarize it writing Fℏ[[G ]] := Fℏ . In the following, we denote
by QFSHA the full subcategory of HA ⊗̃ whose objects are all of the QFSHAs.

2.3.4. Equivalence and duality between quantizations. If H1, H2, are two
QUEA’s, respectively two QFSHA’s, we say that H1 is equivalent to H2, and we
write H1 ≡ H2 , if there is an isomorphism φ : H1

∼= H2 (in QUEA, resp. in
QFSHA) such that φ = id mod h . In particular, in both cases the semiclassical
limit of either H1 or H2 is the same.

By their very construction, the categories QUEA and QFSHA are dual to each
other (w. r. to the natural, topological linear duality functors in both directions). In
detail, by dual of any Uℏ ∈ QUEA , denoted U ∗ℏ , we take the set of all k[[ℏ]]–linear
functions from Uℏ to k[[ℏ]] (which are automatically continuous w. r. to the ℏ–adic
topology): this is naturally an object in QFSHA . On the other hand, by dual
of any Fℏ ∈ QFSHA , denoted F ⋆

ℏ , we take the set of all maps from Fℏ to k[[ℏ]]
that are continuous with respect to the ℏ–adic topology on k[[ℏ]] and to the Iℏ–adic
topology on Fℏ , with Iℏ := ℏFℏ+Ker

(
ϵFℏ

)
; this F ⋆

ℏ is an object in QUEA . Finally,
( )∗ and ( )⋆ are contravariant functors inverse to each other — cf. [Ga1].

We finish this part with a trivial, technical result, that we will use several times:

Lemma 2.3.5. Let H be a Hopf algebra (possibly topological). We denote by [ , ]
the commutator operation in H, and write H+ := Ker (ϵ) . Then:

(a) There exists a splitting into direct sum H = k ⊕ H+ . With respect to that
splitting, every z ∈ H uniquely splits into z = ϵ(z)+z+ with z+ := z− ϵ(z) ∈ H+ .

(b) For any x, y ∈ H we have [x , y ] =
[
x+ , y+

]
— see (a) — so [H ,H ] ⊆ H+ .

(c) Assume that H = Fℏ[[G ]] is a QFSHA, with Jℏ := H+ . Then we have
[H ,H ] =

[
Jℏ , Jℏ

]
⊆ ℏ Jℏ , and more in general (for all k, r1, r2, r3, . . . , rk, s ∈ N+ )[

J r1
ℏ ,

[
J r2
ℏ ,

[
J r3
ℏ , · · ·

[
J rk
ℏ , J s

ℏ
]
· · ·

]]]
⊆ (1− δs,0)

k∏
i=1

(1− δri,0) ℏk J
r1+r2+r3+···+rk+s−k
ℏ

(d) We have ∆(z) = ϵ(z) · 1 ⊗ 1 + z+ ⊗ 1 + 1 ⊗ z+ +
(
z(1)

)+ ⊗ (
z(2)

)+
for

any z ∈ H , or also ∆(z) = −ϵ(z) · 1 ⊗ 1 + z ⊗ 1 + 1 ⊗ z +
(
z(1)

)+ ⊗ (
z(2)

)+
.

In particular, for ∇ := ∆−∆op this yields

∇(z) =
(
z(1)

)+⊗(z(2))+− (
z(2)

)+⊗(z(1))+ ∈ Ker (H)⊗2 □
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2.4. The Quantum Duality Principle.

We recall hereafter the main facets of the so-called “Quantum Duality Princi-
ple”, which establishes an equivalence between the category of QUEA’s and that of
QFSHA’s (whereas linear duality provides an antiequivalence); cf. [Ga1] for details.

Definition 2.4.1. (Drinfeld’s functors) We define Drinfeld’s functors from QUEA
to QFSHA and viceversa as follows:

(a) Let Uℏ(g) be any QUEA, and assume for simplicity that g is finite-dimensio-
nal. Let ι : k[[ℏ]] −−→ Uℏ(g) and ϵ : Uℏ(g) −−→ k[[ℏ]] be its unit and counit
maps; moreover, for every n ∈ N set δn := (id−ι ◦ ϵ)⊗n ◦∆(n−1) — mapping Uℏ(g)

to Uℏ(g)
⊗̂n. Then we define

Uℏ(g)
′ :=

{
η ∈ Uℏ(g)

∣∣∣ δn(η) ∈ ℏn Uℏ(g)
⊗n ∀ n ∈ N

}
This defines the functor ( )′, from QUEA to QFSHA , onto objects: then onto

morphisms it is clearly defined by taking restriction.
(b) Let Fℏ[[G ]] be any QFSHA, and assume for simplicity that G be finite-

dimensional. Let ϵF : Fℏ[[G ]] −−→ k[[ℏ]] be its counit map, and consider also
IFℏ[[G ]] := ℏFℏ[[G ]] +Ker(ϵF ) . Then we define

Fℏ[[G ]]∨ := ℏ–adic completion of
∑

n≥0 ℏ−nI
n

Fℏ[[G ]]

This defines the functor ( )∨, from QFSHA to QUEA , onto objects: onto mor-
phisms, we define it via scalar extension — from k[[ℏ]] to k((ℏ)) — followed by
restriction and completion. ♢

The main result about the above “Drinfeld’s functors” is the following:

Theorem 2.4.2. (“The quantum duality principle”; cf. [Dr], [Ga1])
(a) The assignments H 7→ H ′ and H 7→ H∨ respectively define functors of

tensor categories QUEA −−→ QFSHA and QFSHA −−→ QUEA , that are
inverse to each other, thus yielding an equivalence of catefories.

(b) For all Uℏ(g) ∈ QUEA and all Fℏ[[G ]] ∈ QFSHA one has

Uℏ(g)
′
/
hUℏ(g)

′ = F [[G∗ ]] , Fℏ[[G ]]∨
/
hFℏ[[G ]]∨ = U(g∗)

that is, if Uℏ(g) is a quantization of U(g) then Uℏ(g)
′ is a quantization of F [[G∗ ]] ,

and if Fℏ[[G ]] is a quantization of F [[G ]] then Fℏ[[G ]]∨ is a quantization of U(g∗) .
(c) Both Drinfeld’s functors preserve equivalence, that is H1 ≡ H2 implies that

H1
′ ≡ H2

′ and H1
∨ ≡ H2

∨ in either case. □

Drinfeld’s functors are dual to each other, namely (cf. [Ga1], notation as in §2.3.4)(
Uℏ(g)

∗)∨ = (
Uℏ(g)

′ )⋆ and
(
Fℏ[[G ]]∨

)∗
=
(
Fℏ[[G ]]⋆

)′
(2.18)

On the other hand, it is worth stressing a strong asymmetry between these func-
tors. Indeed, the definition of Fℏ[[G ]]∨ is pretty concrete (through an explicit gener-
ating procedure) whereas that of Uℏ(g)

′ is somewhat implicit (it is described as the
set of solution of a system of countably many equations). However, an alternative
description for Uℏ(g)

′ exists, namely the following (cf. [Ga2, Proposition 3.1.2]):

Proposition 2.4.3. For any k–basis {yi}i∈I of g , there are yi ∈ Uℏ(g) such that:

(a) ϵ(yi) = 0 ,
(
yi mod ℏUℏ(g)

)
= yi and y′i := ℏ yi ∈ Uℏ(g)

′ for all i ∈ I ;
(b) Uℏ(g)

′ is the completion of the unital k[[ℏ]]–subalgebra of Uℏ(g) generated
by all the x′i’s with respect to its I ′ℏ–adic topology, where I ′ℏ is the ideal (in that
subalgebra) generated by ℏ and all the x′i’s, so that Uℏ(g)

′ = k
[[
{x′i}i∈I ∪ {ℏ}

]]
. □
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3. Deformations of quantum groups

This section is dedicated to explore the effect of deformations of quantum groups,
either by twist or by 2-cocycle, seeting the cases of QUEA’s and QFSHA’s apart.

3.1. Deformations by twist of QUEA’s.

In this subsection we consider deformations by twist of QUEA’s (the easier case,
in a sense). We begin with a technical result, whose proof is left to the reader:

Lemma 3.1.1. (cf. [GaGa3]) Let H be an ℏ–adically complete Hopf algebra over
k[[ℏ]] , and let consider an element of the form F = exp

(
ℏφ

)
∈ H ⊗ H, with

φ = φ1 ⊗ φ2 ∈ H⊗2 , such that (ϵ⊗ id)(F ) = 1 = (id⊗ϵ)(F ) . Then

ϵ(φ1)⊗ φ2 = 0 , φ1 ⊗ ϵ(φ2) = 0 , ϵ(φ1)⊗ ϵ(φ2) = 0

As a consequence, one can assume φ1 = φ+
1 , φ2 = φ+

2 ∈ Ker (ϵ) , so φ ∈ Ker (ϵ)⊗ 2 .

We are now ready for our first meaningful result:

Theorem 3.1.2. Let Uℏ(g) be a QUEA over g =
(
g ; [ , ] , δ

)
. Let F ∈ Uℏ(g)

⊗̂ 2

be a twist for Uℏ(g) such that F ≡ 1
(
mod ℏUℏ(g)

⊗̂ 2
)
; then κ := ℏ−1 log(F ) ∈

Uℏ(g)
⊗̂ 2 , and F = exp

(
ℏκ

)
. Last, we set κa := κ− κ2,1 . Then we have:

(a) κ is antisymmetric, i.e. −κ = κ2,1 , iff F is orthogonal, i.e. F−1 = F2,1 ;

(b) the element c := κa = κa

(
mod ℏUℏ(g)

⊗̂ 2
)

belongs to g⊗ g , and it is an

antisymmetric twist element for the Lie bialgebra g ;

(c) the deformation
(
Uℏ(g)

)F
of Uℏ(g) by the twist F is a QUEA for the Lie

bialgebra gc =
(
g ; [ , ] , δ c

)
which is the deformation of g by the twist c ; in a

nutshell, we have
(
Uℏ(g)

)F ∼= Uℏ
(
gc

)
.

Proof. (a) This follows from standard identities for exponentials and for logarithms.

(b) We fix hereafter the notation Uℏ := Uℏ(g) and Jℏ := Ker
(
ϵUℏ

)
, and we

write κ ∈ U ⊗̂2ℏ with Sweedler’s like σ–notation κ = κ1 ⊗ κ2 . By Lemma 3.1.1 we

can assume (as we shall do henceforth) that κ1, κ2 ∈ Jℏ , hence κ ∈ J ⊗̂2ℏ .

Now we consider the identity F12

(
∆ ⊗ id

)
(F ) = F23

(
id ⊗ ∆

)
(F ) . Writing

F = exp
(
ℏκ1 ⊗ κ2

)
and ∆(κs) = κ

(1)
s ⊗ κ(2)s (s = 1, 2) this reads

exp
(
ℏκ1⊗κ2⊗1

)
exp

(
ℏκ(1)1 ⊗κ

(2)
1 ⊗κ2

)
= exp

(
ℏ 1⊗κ1⊗κ2

)
exp

(
ℏκ1⊗κ(1)2 ⊗κ

(2)
2

)
Now taking ℏ–adic expansion in both sides of this last identity, at order 0 — in ℏ
— we get 1⊗ 1⊗ 1 = 1⊗ 1⊗ 1 , hence from order 1 we get the non-trivial identity

κ1 ⊗ κ2 ⊗ 1 + κ
(1)
1 ⊗ κ

(2)
1 ⊗ κ2 ≡ℏ 1⊗ κ1 ⊗ κ2 + κ1 ⊗ κ(1)2 ⊗ κ

(2)
2 (3.1)

where hereafter any symbol ≡
ℏn

means “congruent modulo ℏn U ⊗̂3ℏ ” (for any n ∈ N ).

Then taking (3.1) modulo ℏ we get

κ1 ⊗ κ2 ⊗ 1 + κ1
(1) ⊗ κ1 (2) ⊗ κ2 = 1⊗ κ1 ⊗ κ2 + κ1 ⊗ κ2 (1) ⊗ κ2 (2) (3.2)
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where hereafter x := x
(
mod ℏ

)
” and we took into account that κ

(i)
s = κs

(i) for all

s, i ∈ {1 , 2} . Now, κ(1)s ⊗ κ(2)s = ∆(κs ) with κs ∈ Uℏ
/
ℏUℏ = U(g) has the form

κs
(1) ⊗ κs (2) = κs ⊗ 1 + 1⊗ κs + κ̇s

(1) ⊗ κ̇s
(2)

(3.3)

for some κ̇s
(i) ∈ Ker

(
ϵU(g)

)
— i ∈ {1 , 2} — having the following property: if

we denote by U(g)n the n–th piece in the canonical filtration of U(g) and for any

x ∈ U(g)n \ U(g)n−1 we set ∂(x) := n , then in (3.3) we have ∂
(
κ̇s

(i)
)
≨ ∂

(
κs

)
.

Now, using (3.3) to re-write (3.2) we find, after cancelling out three summands on

both sides, that κ̇1
(1) ⊗ κ̇1

(2) ⊗ κ2 = κ1 ⊗ κ̇2
(1) ⊗ κ̇2

(2)
, and then the condition

∂
(
κ̇s

(i)
)

≨ ∂
(
κs

)
forces κ̇1

(1)⊗ κ̇1
(2)

= 0 = κ̇2
(1)⊗ κ̇2

(2)
. Thus (3.3) reads

∆(κs ) = κs
(1) ⊗ κs (2) = κs ⊗ 1 + 1 ⊗ κs ; this means κs ∈ g ∈

(
⊆ U(g)

)
— for

s ∈ {1 , 2} — so κ = κ1 ⊗ κ2 ∈ g⊗ g , hence c := κa ∈ g⊗ g .

Now we have to prove that c is an antisymmetric twist for the Lie bialgebra g .
Keeping notation from above, since κs ∈ g we have

∆(κs) ≡
ℏ2

κs ⊗ 1 + 1⊗ κs + ℏκ [1]
s ⊗ κ [2]

s (3.4)

with κs
[1]⊗κs [2]−κs [2]⊗κs [1] = δ(κs) being the Lie cobracket of κs , by assumption.

When we plug (3.4) in the ℏ–adic expansion of the identity

exp
(
ℏκ1⊗κ2⊗1

)
exp

(
ℏκ(1)1 ⊗κ

(2)
1 κ2

)
= exp

(
ℏ 1⊗κ1⊗κ2

)
exp

(
ℏκ1⊗κ(1)2 ⊗κ

(2)
2

)
we find that at order 2 — in ℏ — it implies an identity

κ1
[1]⊗κ1 [2]⊗κ2 +κ1,2·κ1,3 +κ1,2·κ2,3 = κ1⊗κ2 [1]⊗κ2 [2] +κ2,3·κ1,2 +κ2,3·κ1,3 (3.5)

where each κi,j , as usual, is the tensor in g⊗3 which sports the κ1’s in position i , the
κ2’s in position j , and a (repeated) tensor factor 1 in the last remaining position.
Now let us consider k

[
S3

]
, the group algebra over k of the symmetric group

S3 , the “antisymmetrizer” Alt 3 :=
(
id−(1 2)− (2 3)− (3 1) + (1 2 3) + (3 2 1)

)
in

k
[
S3

]
, and the natural action of k

[
S3

]
onto U(g)⊗3 . Let Alt 3 act on the identity

(3.5): a sheerly straightforward calculation shows that the outcome, using notation
c := κa = κ− κ2,1 , eventually is(

δ ⊗ id
)
(c) + c.p. + [[c , c ]] = 0

This means exactly that c is a twist for the Lie bialgebra g , as in Definition 2.1.3,
which is obviously antisymmetric (by construction), q.e.d.

(c) Due to the peculiar form of the twist — namely, its being trivial modulo

ℏ — it is easy to see that the Hopf algebra Uℏ(g)
F is again a QUEA, over some

bialgebra g̃ , i.e. Uℏ(g)
F
/
ℏUℏ(g)

F = U
(
g̃
)
, and even that one has g̃ = g as Lie

algebras. In fact, since the twist F is trivial modulo ℏ , we have that Uℏ(g)
/
ℏUℏ(g)

and Uℏ(g)
F/ℏUℏ(g)

F are isomorphic as Hopf algebras; in particular, then, Uℏ(g)
F

itself is again a QUEA, on the same Lie algebra g from Uℏ(g) but possibly inducing
on g a different Lie cobracket. Indeed, what is actually affected, a priori, is the
co-Poisson structure on the semiclassical limit — hence the Lie cobracket on g —
which in general on Uℏ(g)

F/ℏUℏ(g)
F will be different from that on Uℏ(g)

/
ℏUℏ(g) .
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Let us compute the Lie coalgebra structure of g̃ given by (2.16). Given x ∈ g̃ ,

let x ∈ Uℏ(g)
F be any lift of x : using obvious notation, its twisted coproduct is

∆F(x) = F ∆(x)F−1 = eℏκ
(
x⊗ 1 + 1⊗ x+ ℏ

∑
i x

[i]
1 ⊗ x

[i]
2 +O

(
ℏ2
))
e−ℏκ =

=
(
1⊗ 1 + ℏκ

) (
x⊗ 1 + 1⊗ x+ ℏ

∑
i x

[i]
1 ⊗ x

[i]
2

) (
1⊗ 1− ℏκ

)
+O

(
ℏ2
)

=

= x⊗ 1 + 1⊗ x+ ℏ
(∑

i x
[i]
1 ⊗ x

[i]
2 − adx(κ)

)
+ O

(
ℏ2
)

On the other hand, the opposite twisted coproduct is(
∆F

)op
(x) = (F )21∆

op(x) (F )−121 = eℏκ2,1 ∆op(x) e−ℏκ2,1 =

= x⊗ 1 + 1⊗ x+ ℏ
(∑

i x
[i]
2 ⊗ x

[i]
1 − adx

(
κ2,1

))
+ O

(
ℏ2
)

Thus, by the very definition of the cobracket — as in (2.16) — we have

δF(x) := δ(x) +
(
adx

(
κ2,1 − κ

))
(mod ℏ ) = δ(x)− adx(c) =: δc(x)

hence g̃ is the twist deformation by c of the Lie bialgebra g , as claimed. □

Observation 3.1.3. Let us point out that the twists F considered in Theorem
3.1.2 above are those of “trivial type”, as they are the identity modulo ℏ . This
ensures that twisting Uℏ(g) by such an F does not affect the Hopf structure of the
semiclassical limit; in particular, it still is of the form U

(
g̃
)
, with g̃ equal to g as a

Lie algebra but with a different Lie coalgebra structure. A more general twist might
be “unfit”, i.e. the deformed Hopf algebra Uℏ(g)

F might no longer be a QUEA.

We present now a concrete example, taken from [GaGa2], where formal “multi-
parameter” QUEAs are studied in detail.

Example 3.1.4. Let n ∈ N+ and I := {1, . . . , n} . We fix a free k[[ℏ]]–module h
of finite rank t , and we pick subsets Π∨ :=

{
T+
i , T

−
i

}
i∈I⊆ h , Π :=

{
αi
}
i∈I ⊆ h∗ :=

Homk[[ℏ]]
(
h ,k[[ℏ]]

)
. Let P ∈Mn

(
k[[ℏ]]

)
be any (n×n)–matrix with entries in k[[ℏ]] .

A realization of P over k[[ℏ]] of rank t is a triple R :=
(
h ,Π ,Π∨

)
where αj

(
T+
i

)
=

p ij , αj
(
T−i

)
= pj i (∀ i, j ∈ I ), and Σ :=

{
Si := 2−1

(
T+
i + T−i

)
(mod ℏ h )

}
i∈I is

k–linearly independent as a subset in h := h
/
ℏ h .

Let A :=
(
aij

)
i,j∈I ∈Mn(k) be a symmetrisable generalized Cartan matrix, with

associated diagonal matrix D :=
(
di δij

)
i,j∈I . We say that a matrix P ∈Mn(k[[ℏ]])

is of Cartan type with corresponding Cartan matrix A if Ps := 2−1
(
P+P T

)
= DA .

A formal multiparameter quantum universal enveloping algebra (=FoMpQUEA)
with multiparameter P and realization R is the unital, associative, topological, ℏ–
adically complete k[[ℏ]]–algebra U RP,ℏ(g) generated by the k[[ℏ]]–submodule h and all
Ei , Fi (for all i ∈ I ), with relations (for all T, T ′, T ′′ ∈ h , i , j ∈ I )

T Ej − Ej T = +αj(T )Ej , T Fj − Fj T = −αj(T )Fj

T ′ T ′′ = T ′′ T ′ , Ei Fj − Fj Ei = δi,j
e+ℏT+

i − e−ℏT
−
i

q+1
i − q−1i

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji E

1−aij−k
i EjE

k
i = 0 ( i ̸= j )

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

q
+k/2
ij q

−k/2
ji F

1−aij−k
i FjF

k
i = 0 ( i ̸= j )

(3.6)
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By [GaGa2, Theorem 4.3.2], every FoMpQUEA U RP,ℏ(g) bears a structure of topo-
logical Hopf algebra over k[[ℏ]] — with coproduct taking values into the ℏ–adically
completed tensor product U RP,ℏ(g) ⊗̂

k[[ℏ]]
U RP,ℏ(g) — given by ( ∀ T ∈ h , ℓ ∈ I)

∆
(
Eℓ

)
= Eℓ⊗1+ eℏT

+
ℓ ⊗Eℓ , ∆

(
T
)
= T ⊗1+1⊗T , ∆

(
Fℓ
)
= Fℓ⊗ e−ℏT

−
ℓ +1⊗Fℓ

ϵ
(
Eℓ

)
= 0 , ϵ

(
T
)
= 0 , ϵ

(
Fℓ
)
= 0

S
(
Eℓ

)
= −e−ℏT

+
ℓ Eℓ , S

(
T
)
= −T , S

(
Fℓ
)
= −Fℓ e+ℏT−

ℓ

Furthermore, by [GaGa2, Theorem 6.1.4], U RP,ℏ(g) is a quantized universal envelop-

ing algebra whose semiclassical limit is U
(
gR̄

P̄

)
, where gR̄

P̄ is a Lie multiparameter Lie
bialgebra. In particular, writing again T , Ei and Fi for the “specialized” images of
the generators T ∈ h and Ei , Fi ( i ∈ I ), the Lie algebra structure of gR̄

P̄ is given by
(3.6) with the commutator replaced by the (Lie) bracket and the quantum Serre rela-
tions by the adjoint actions ad(Ei)

1−aij(Ej) = 0 and ad(Fi)
1−aij(Fj) = 0 , whereas

the Lie cobracket is given by δ
(
T
)
= 0 , δ

(
Ei

)
= 2 T+

i ∧ Ei , δ
(
Fi
)
= 2 T−i ∧ Fi .

For example, if we take P := DA , r := rk
(
DA

)
and R :=

(
h ,Π ,Π∨

)
a

realization of DA , where rk(h) = 2n−r and T+
i = T−i in Π∨ , for all i ∈ I , one has

that U RDA,ℏ(g) is the “quantum double version” of the usual Drinfeld’s QUEA Uℏ
(
g

A

)
for the Kac-Moody algebra g

A
associated with the Cartan matrix A ; in particular,

its semiclassical limit is U
(
gMD
A

)
, where gMD

A is the “Manin double version” of g
A
.

Now take any k[[ℏ]]–basis
{
Hg

}
g∈G of h where |G| = rk(h) = t . Taking

JΦ :=
∑n

i,j=1ϕgkHg ⊗Hk ∈ h⊗ h ⊆ U RP,ℏ(h)⊗ U RP,ℏ(h)

for any antisymmetric matrix Φ =
(
ϕi,j

)
1≤i,j≤n ∈ son

(
k[[ℏ]]

)
, the element

FΦ := e ℏ 2
−1JΦ = exp

(
ℏ 2−1

∑t
g,k=1ϕgkHg ⊗Hk

)
in U RP,ℏ(h) ⊗̂U RP,ℏ(h) is actually a twist for U RP,ℏ(g) . For i ∈ I , define the elements

LΦ,i := e+ℏ 2−1
∑t

g,k=1 αi(Hg)ϕgkHk and KΦ,i := e+ℏ 2−1
∑t

g,k=1 αi(Hg)ϕkgHk . Then, the

new coproduct in
(
U RP,ℏ(g)

)FΦ is given by

∆Φ
(
Ei

)
= Ei ⊗ L+1

Φ,i + e+ℏT+
i K+1

Φ,i ⊗ Ei
(
∀ i ∈ I

)
∆Φ

(
T
)

= T ⊗ 1 + 1⊗ T
(
∀ T ∈ h

)
∆Φ

(
Fi
)

= Fi ⊗ L−1Φ,i e
−ℏT−

i + K−1Φ,i ⊗ Fi
(
∀ i ∈ I

)
while the “twisted” antipode SFΦ can be deduced from the twisted coproduct (see
[GaGa3]) and the counit ϵΦ := ϵ is actually invariant.

With respect to the semiclassical limit, JΦ := JΦ (mod ℏ) is actually a (toral)
twist for the Lie bialgebra gR̄

P̄ . The deformed Lie cobracket is given by the formula

δJΦ(x) := δ(x)− adx
(
JΦ

)
= δ(x)−

∑t
g,k=1ϕgk

([
x,Hg

]
⊗Hk +Hg ⊗

[
x,Hk

])
— for all x ∈ gR̄

P̄ , with ϕgk := ϕgk (mod ℏ) — that on generators reads

δJΦ(Ei) = 2T+
Φ,i ∧Ei , δJΦ(T ) = 0 , δJΦ(Fi) = 2T−Φ,i ∧Fi , ∀ i ∈ I , T ∈ h

where T±Φ,i = T±i ±
∑t

g,k=1 ϕkg αi(Hg)Hk for all i ∈ I .
In conclusion, one may consider the deformation

(
gR̄

P̄

)JΦ of gR̄
P̄ by the (Lie) twist

JΦ , as well as the deformation
(
U RP,ℏ(g)

)FΦ of U RP,ℏ(g) by the (Hopf) twist FΦ . By
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[GaGa2, Theorem 6.2.2], we know that
(
U RP,ℏ(g)

)FΦ is a QUEA, with semiclassical

limit U
((
gR̄

P̄

)JΦ) = U
(
gR̄Φ

P̄Φ

)
: indeed,

(
U RP,ℏ(g)

)FΦ ∼= U RΦ
PΦ,ℏ(g) and

(
gR̄

P̄

)JΦ ∼= gR̄Φ
P̄Φ

.

3.2. Deformations by 2-cocycle of QFSHA’s.

We consider now deformations by 2-cocycle of QFSHA’s. The outcome is, in
short, the dual counterpart of Theorem 3.1.2 above.

Theorem 3.2.1.

Let Fℏ[[G ]] be a QFSHA over the Poisson group G, with tangent Lie bialgebra g =(
g ; [ , ] , δ

)
. Let σ be a 2–cocycle for Fℏ[[G ]] s.t. σ ≡ ϵ⊗2

(
mod ℏ

(
Fℏ[[G ]] ⊗̃ 2

)∗ )
;

then ς := ℏ−1 log∗(σ) ∈
(
Fℏ[[G ]] ⊗̃ 2

)∗
, where “ log∗” is the logarithm with respect

to the convolution product, and σ = exp∗
(
ℏ ς

)
. Last, we set ςa := ς − ς2,1 . Then:

(a) ς is antisymmetric, i.e. ς2,1 = −ς , iff σ is orthogonal, i.e. σ2,1 = σ−1 ;

(b) the element ςa := ςa

(
mod ℏ

(
Fℏ[[G ]]⊗̃ 2

)∗ )
provides a well-defined element

ζ ∈
(
g∗ ⊗ g∗

)∗
= g⊗ g that is an antisymmetric 2-cocycle for the Lie bialgebra g∗;

(c) letting ζ be as in claim (b), the deformation
(
Fℏ[[G ]]

)
σ
of Fℏ[[G ]] by the 2–

cocycle σ is a QFSHA for the formal Poisson group Gσ with cotangent Lie bialgebra

Lie (Gζ)
∗ = ( g∗)ζ =

(
g∗ ;

(
[ , ]∗

)
ζ
, δ∗

)
which is the deformation of g∗ by the 2-cocycle ζ ; in short,

(
Fℏ[[G ]]

)
σ
∼= Fℏ[[Gζ ]] .

Proof. (a) This is obvious, just by construction.

(b) First, we prove that ςa := ςa

(
mod ℏ

(
Fℏ[[G ]] ⊗̃ 2

)∗ )
yields a uniquely

defined element ζ ∈
(
g∗ ⊗ g∗

)∗
= g ⊗ g . We realize g∗ as g∗ = m

/
m2 with m :=

Ker
(
ϵ
F [[G ]]

)
, hence g∗⊗ g∗ =

(
m
/
m2

)
⊗
(
m
/
m2

) ∼= (
m⊗m

)/(
m⊗m2+m2⊗m

)
,

thus we have to prove that the function ςa := ςa
(
mod ℏ

)
kills m⊗m2 +m2⊗m ,

hence induces ζ defined onto
(
g∗ ⊗ g∗

)∗
=

(
m⊗m

)/(
m⊗m2 +m2 ⊗m

)
by the

recipe ζ
(
u⊗ v

)
:= ςa (u⊗v) for each u, v ∈ m . In fact, since ςa is antisymmetric

it is enough to prove that ςa
(
m⊗m2

)
= 0 ; in turn, this amounts to showing that

ςa
(
a , b c

)
≡
ℏ

0 ∀ a, b, c ∈ Jℏ := Ker
(
ϵ
Fℏ[[G ]]

)
(3.7)

For the given a, b, c ∈ Jℏ := Ker
(
ϵ
Fℏ[[G ]]

)
, the 2–cocycle nature of σ gives

σ
(
b(1) , c(1)

)
σ
(
a , b(2) c(2)

)
= σ

(
a(1) , b(1)

)
σ
(
a(2) b(2) , c

)
(3.8)

Now we expand σ = ϵ⊗2 + ℏ
∑
ς

ς ′⊗ς ′′ + O
(
ℏ2
)

(cf. §2.3.1 for notation “O
(
ℏ2
)
”)

using sort of Sweedler’s-like notation ς =
∑
ς

ς ′ ⊗ ς ′′ for ς ; this and (3.8) yield

ϵ(a) ϵ(b) ϵ(c) + ℏ
(∑

ς

ς ′(a) ς ′′(b c) + ϵ(a)
∑
ς

ς ′(b) ς ′′(c)
)
+ O

(
ℏ2
)

=

= ϵ(a) ϵ(b) ϵ(c) + ℏ
(∑

ς

ς ′(a b) ς ′′(c) +
∑
ς

ς ′(a) ς ′′(b) ϵ(c)
)
+ O

(
ℏ2
)
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which implies also ℏ
∑
ς

ς ′(a) ς ′′(b c) + O
(
ℏ2
)
= ℏ

∑
ς

ς ′(a b) ς ′′(c) + O
(
ℏ2
)

whence

ς(a , b c ) =
∑
ς

ς ′(a) ς ′′(b c ) ≡
ℏ

∑
ς

ς ′(a b) ς ′′(c ) = ς(a b , c ) (3.9)

Recall also that Fℏ[[G ]] is commutative modulo ℏ , so that x y ≡
ℏ
y x for all

x, y ∈ Fℏ[[G ]] . Using this along with several instances of (3.9) one gets

ς(a , b c ) ≡
ℏ
ς(a b , c ) ≡

ℏ
ς(b a , c ) ≡

ℏ
ς(b , a c ) ≡

ℏ
ς(b , c a) ≡

ℏ
ς(b c , a)

from which we eventually conclude that

ςa(a , b c ) := ς(a , b c ) − ς(b c, a) ≡
ℏ
ς(b c, a) − ς(b c, a) = 0 , q.e.d.

As a second step, we note that ζ is antisymmetric, by construction, since ςa is.

Third, we need to prove that ζ : g∗⊗ g∗ −−→ k satisfies the remaining condition
of (2.4). Expanding σ as σ = exp∗

(
ℏ ς

)
= ϵ⊗2 + ℏ ς + ℏ2 ς∗2

/
2 + O

(
ℏ3
)

and

plugging this into (3.8), we find, for all a, b, c ∈ Jℏ := Ker
(
ϵ
Fℏ[[G ]]

)
again,(

ϵ
(
b(1)

)
ϵ
(
c(1)

)
+ ℏ ς

(
b(1) , c(1)

)
+ ℏ2 ς

(
b(1)(1), c(1)(1)

)
ς
(
b(1)(2), c(1)(2)

)/
2 + O

(
ℏ3
))
·

·
(
ϵ(a) ϵ

(
b(2)

)
ϵ
(
c(2)

)
+ ℏ ς

(
a , b(2) c(2)

)
+

+ ℏ2 ς
(
a(1) , b(2)(1)c(2)(1)

)
ς
(
a(2) , b(2)(2)c(2)(2)

)/
2 + O

(
ℏ3
))

=

=

(
ϵ
(
a(1)

)
ϵ
(
b(1)

)
+ ℏ ς

(
a(1) , b(1)

)
+ ℏ2 ς

(
a(1)(1), b(1)(1)

)
ς
(
a(1)(2), b(1)(2)

)/
2 +O

(
ℏ3
))
·

·
(
ϵ
(
a(2)

)
ϵ
(
b(2)

)
ϵ(c) + ℏ ς

(
a(2) b(2) , c

)
+

+ ℏ2 ς
(
a(2)(1)b(2)(1), c

)
ς
(
a(2)(2)b(2)(2), c

)/
2 + O

(
ℏ3
))

then multiplying, truncating at order 3, and recalling that ϵ(a) = 0 = ϵ(c) , we get

ς(a , b c ) − ς(a b , c ) + ℏ
(
ς∗2(a , b c )

/
2 − ς∗2(a b , c )

/
2 +

+ ς
(
b(1) , c(1)

)
ς
(
a , b(2) c(2)

)
− ς

(
a(1) , b(1)

)
ς
(
a(2) b(2) , c

) )
≡
ℏ2

0
(3.10)

Now let k
[
S3

]
act onto Fℏ[[G ]]⊗3 and consider in particular the action of the

antisymmetrizer Alt 3 :=
(
id−(1 2) − (2 3) − (3 1) + (1 2 3) + (3 2 1)

)
onto the

equation in (3.10), which yields a new equation: denoting equation (3.10) by ⊛ = 0 ,
we will write Alt 3(⊛) = 0 for the newly found equation. To see the latter explicitly,
we compute the left-hand member Alt 3(⊛) : a first contribution is

Alt 3
(
1 st line in (3.10)

)
=

= ς(a , b c ) − ς(b , a c ) − ς(a , c b ) − ς(c , b a ) + ς(c , a b ) + ς(b , c a ) −
− ς(a b , c ) + ς(b a , c ) + ς(a c , b ) + ς(c b , a ) − ς(c a , b ) − ς(b c , a ) =

= ςa
(
a , [b , c ]

)
+ ςa

(
b , [c , a ]

)
+ ςa

(
c , [a , b ]

)
= ςa

(
a , [b , c ]

)
+ c.p.

(3.11)

where notation [u , v ] := u v−v u is used to denote the usual commutator. Modulo
ℏ , such a commutator in Fℏ[[G ]] yields the Poisson bracket in F [[G ]] , hence we

can write [u , v ] = ℏ
{
u , v

}′
where we write z :=

(
z mod ℏFℏ[[G ]]

)
for each
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z ∈ Fℏ[[G ]] and f ′ := some lift in Fℏ[[G ]] of any f ∈ F [[G ]] , i.e. f ′ = f ; note that
f ′ is only defined up to ℏ2 Fℏ[[G ]] , yet that is enough for us. Then (3.11) turns into

Alt 3
(
1 st line in (3.10)

)
= ℏ

(
ςa

(
a ,

{
b , c

}′)
+ c.p.

)
(3.12)

Looking at (3.10), this entails that the ℏ–adic expansion of Alt 3(⊛) has zero term
at order 0 , while at order 1 it also has a contribution coming from (3.12).

Now we go and compute the contribution to Alt 3(⊛) issuing from the third line
in (3.10). Again, direct calculations give

Alt 3
(
3 rd line in (3.10)

)
= ςa

(
a(1) , b(1)

)
ςa
(
c , a(2) b(2)

)
+ c.p. (3.13)

Since one always has x = ϵ(x) + x+ with x+ :=
(
x− ϵ(x)

)
∈ Ker(ϵ) , applying this

to each element x ∈ {a , b , c } occurring in (3.13), then expanding everything and
taking into account that ςa

(
Jℏ , J

2
ℏ
)
≡
ℏ

0 ≡
ℏ
ςa
(
J 2
ℏ , Jℏ

)
— cf. (3.7) — we obtain

Alt 3
(
3 rd line in (3.10)

)
≡
ℏ

ςa
(
a , b∧(1)

)
ςa
(
c , b∧(2)

)
+ c.p.

where we make use of short-hand notation x∧(1) ⊗ x∧(2) := x(1) ⊗ x(2) − x(2) ⊗ x(1) .

Finally, we go and compute the contribution to Alt 3(⊛) issuing from the second
line in (3.10). Dropping the coefficients ℏ and 1

/
2 we find the following:

Alt 3
(
2 nd line in (3.10)

)
= Alt 3

(
ς∗2(a , b c ) − ς∗2(b , a c )

)
=

= ς∗2
(
a , [b , c ]

)
+ ς∗2

(
b , [c , a ]

)
+ ς∗2

(
c , [a , b ]

)
−

− ς∗2([b , c ] , a
)
− ς∗2([c , a ] , b

)
− ς∗2([a , b ] , c

)
which in turn implies Alt 3

(
ς∗2(a , b c ) − ς∗2(b , a c )

)
= O(ℏ) — since [u , v ] =

O(ℏ) for all u, v ∈ Fℏ[[G ]] . The outcome then is that the contribution to Alt 3(⊛)
given by the second line in (3.10) is trivial modulo ℏ2.

Summing up, the outcome of the previous analysis is that

ςa

(
a ,

{
b , c

}′)
+ c.p. + ςa

(
a , b∧(1)

)
ςa
(
c , b∧(2)

)
+ c.p. ≡

ℏ
0

Taking the latter modulo ℏFℏ[[G ]] we find, for the elements a , b , c ∈ F [[G ]] ,

ςa
(
a ,

{
b , c

})
+ c.p. + ςa

(
a , b

∧
(1)

)
ςa

(
c , b

∧
(2)

)
+ c.p. = 0

Now recall that for x ∈ Jℏ with x :=
(
x mod ℏFℏ[[G ]]

)
and x :=

(
x mod m2

)
we have δ(x) := x∧(1)⊗ x∧(2) for the induced Lie cobracket of g∗ = m

/
m2 computed

on x , by definition; this means that, using our previously established notation
δ(x) := x[1] ⊗ x[2] , the last formula above yields

ζ
(
a , [ b , c ]

)
+ c.p. + ζ

(
a , b[1]

)
ζ
(
c , b[2]

)
+ c.p. = 0 (3.14)

Finally, the antisymmetry of ζ gives ζ
(
a , [ b , c ]

)
+ c.p. = −ζ

(
[ a , b ] , c

)
+ c.p. ,

while a straightforward check shows that ζ
(
a , b[1]

)
ζ
(
c , b[2]

)
+ c.p. = −[[ ζ , ζ ]]∗ .

Therefore, (3.14) is equivalent to

ζ
(
[ a , b ] , c

)
+ c.p. + [[ ζ , ζ ]]∗ = 0

which means that ζ is indeed a (strong type of) 2–cocycle for g∗, q.e.d.

(c) Let us consider the deformed algebra
(
Fℏ[[G ]]

)
σ
, which coincides with Fℏ[[G ]]

as a k[[ℏ]]–module but is endowed with the deformed multiplication “
σ̇
” defined by

a
σ̇
b := σ

(
a(1), b(1)

)
a(2) b(2) σ

−1(a(3), b(3)) ∀ a, b ∈ Fℏ[[G ]] (3.15)
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As σ is of the form σ = exp∗
(
ℏ ς

)
, it follows from (3.15) that the deformed multipli-

cation “
σ̇
” coincides with the old one modulo ℏ , i.e. a

σ̇
b ≡ a b

(
mod ℏFℏ[[G ]]

)
.

Thus
(
Fℏ[[G ]]

)
σ
is again a QFSHA, say

(
Fℏ[[G ]]

)
σ
= Fℏ

[[
G(σ)

]]
. Then, in order

to prove that the new group G(σ) is indeed Gζ it is enough to show that the Lie

bracket induced in mσ

/
m 2
σ — where mσ := Ker

(
ϵ
F [[G(σ)]]

)
— is [ , ]ζ .

Let us take a , b ∈ mσ

/
m 2
σ ; then we can pick a, b ∈ Jℏ := Ker

(
ϵ
Fℏ[[G ]]

)
such

that a = a
(
mod

(
ℏ Jℏ + J 2

ℏ
))

and b = b
(
mod

(
ℏ Jℏ + J 2

ℏ
))

. Now, using the

expansion σ = exp∗
(
ℏ ς

)
= ϵ⊗2 + ℏ ς + O

(
ℏ2
)
, formula (3.15) turns into

a
σ̇
b =

(
ϵ
(
a(1)

)
ϵ
(
b(1)

)
+ ℏ ς

(
a(1), b(1)

))
a(2) b(2)

(
ϵ
(
a(3)

)
ϵ
(
b(3)

)
+ ℏ ς

(
a(3), b(3)

))
+

+O
(
ℏ2
)

= a b + ℏ
(
ς
(
a(1) , b(1)

)
a(2) b(2) − a(1) b(1) ς

(
a(2) , b(2)

))
+ O

(
ℏ2
)

Therefore, using “ [ , ]σ ” and “ [ , ] ” to denote the commutator with respect to the
new and the old multiplication, we also have (using that a(s) b(s) ≡

ℏ
b(s) a(s) )

[a , b ]σ := a
σ̇
b − b

σ̇
a = a b + ℏ

(
ς
(
a(1) , b(1)

)
a(2) b(2) − a(1) b(1) ς

(
a(2) , b(2)

))
+

+ O
(
ℏ2
)
− b a − ℏ

(
ς
(
b(1) , a(1)

)
b(2) a(2) − b(1) a(1) ς

(
b(2) , a(2)

))
+ O

(
ℏ2
)

=

= [ a , b ] + ℏ
(
− ςa

(
a(2) , b(2)

)
a(1) b(1) − ςa

(
b(1) , a(1)

)
b(2) a(2)

)
+ O

(
ℏ2
)

Recall that [ a , b ] = ℏ
{
a , b

}′
, where hereafter we write x := x

(
mod ℏ Jℏ

)
and f ′ to denote any lift in Jℏ of some given f in Jℏ , as we did before; similarly, we

have [ a , b ]σ = ℏ
{
a , b

}′
σ
. Then modulo ℏ our previous computations give{

a , b
}
σ

=
{
a , b

}
− ςa

(
a(2) , b(2)

)
a(1) b(1) − ςa

(
b(1) , a(1)

)
b(2) a(2) (3.16)

For each x ∈
{
a(s) , b(s)

∣∣ s = 1, 2
}

we have x = ϵ(x) + x+ with x+ :=
(
x− ϵ(x)

)
∈

Jℏ . Using this in (3.16) along with a+
(s) b

+

(s) ≡
m2

0 ≡
m2

a+
(s) b

+

(s) , we get an equivalence

modulo m2 = m 2
σ (noting that m = mσ as k–modules), namely{

a , b
}′
σ

=
{
a , b

}
− ςa

(
a(2) , b(2)

)
a(1) b(1) − ςa

(
b(1) , a(1)

)
b(2) a(2) ≡

m2

≡
m2

{
a , b

}
− ςa

(
a(2) , b(2)

)
a(1) ϵ

(
b(1)

)
− ςa

(
a(2) , b(2)

)
ϵ
(
a(1)

)
b(1) −

− ςa
(
b(1) , a(1)

)
b(2) ϵ

(
a(2)

)
− ςa

(
b(1) , a(1)

)
ϵ
(
b(2)

)
a(2) =

=
{
a , b

}
−

(
ςa
(
a(2), b

)
a(1)− ςa

(
a(1), b

)
a(2)

)
−

(
ςa
(
b(1), a

)
b(2)− ςa

(
b(2), a

)
b(1)

)
where the element in last line actually belongs to m = mσ . When we reduce all this
modulo m2 = m 2

σ , we eventually end up with

[ a , b ](σ) = [ a , b ]∗ − ζ
(
a[2], b

)
a[1] − ζ

(
b[1], a

)
b[2] =:

(
[ a , b ]∗

)
ζ

thus(cf. Definition 2.5) the Lie bracket we were looking for is just
(
[ , ]∗

)
ζ
. □

Observation 3.2.2. We would better point out that the 2-cocycles σ considered
in Theorem 3.2.1 above are those of “trivial-modulo-ℏ-type”, in that they are the
identity modulo ℏ . With this assumption, deforming Fℏ[[G ]] by such a σ does not
affect the Hopf structure of the semiclassical limit; in particular, it still reads as

F
[[
G̃
]]

, with G̃ being the same formal group as G but with a different Poisson
structure. A more general 2-cocycle might be “unfit”, in that the deformed Hopf
algebra

(
Fℏ[[G ]]

)
σ
may no longer be a QFSHA, in general.
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Example 3.2.3. Let G := GLn(k) be the general linear group over k , and
g := gln(k) its tangent Lie algebra. It is well-known — cf. [Dr], [CP] — that a
quantization of g is provided by the QUEA Uℏ(g) = Uℏ

(
gln(k)

)
defined as follows:

it is the unital, associative, ℏ–adically complete k[[ℏ]]–algebra with generators

F1 , F2 , . . . , Fn−1 , Γ1 , Γ2 , . . . , Γn−1 , Γn , E1 , E2 , . . . , En−1

and relations (for all i, j ∈ {1, . . . , n− 1} , k, ℓ ∈ {1, . . . , n} )[
Γk , Γℓ

]
= 0 ,

[
Γk , Fj

]
= −δk,j Fj , [Γk , Ej] = +δk,j Ej[

Ei , Fj
]
= δi,j

eℏ (Γi−Γi+1) − eℏ (Γi+1−Γi)

e+ℏ − e−ℏ[
Ei , Ej

]
= 0 ,

[
Fi , Fj

]
= 0 ∀ i , j : |i− j| > 1

E2
i Ej −

(
q + q−1

)
EiEj Ei + Ej E

2
i = 0 ∀ i , j : |i− j| = 1

F 2
i Fj −

(
q + q−1

)
Fi Fj Fi + Fj F

2
i = 0 ∀ i , j : |i− j| = 1 .

where [X , Y ] := X Y − Y X . The (topological) Hopf algebra structure is given by

∆(Fi) = Fi ⊗ eℏ (Γi+1−Γi) + 1⊗ Fi , S(Fi) = −Fi eℏ (Γi−Γi+1) , ϵ(Fi) = 0

∆(Γk) = Γk ⊗ 1 + 1⊗ Γk , S(Γk) = −Γk , ϵ(Γk) = 0

∆(Ei) = Ei ⊗ 1 + eℏ (Γi−Γi+1) ⊗ Ei , S(Ei) = −eℏ (Γi+1−Γi)Ei , ϵ(Ei) = 0

It is also well-known — cf. [Dr], [CP] — that a quantization of G := GLn(k)
is provided by the QFSHA Fℏ[[G ]] = Fℏ

[[
GLn(k)

]]
defined as follows: it is the

unital, associative, Iℏ–adically complete k[[ℏ]]–algebra generated by the elements of
the set

{
xij

∣∣ i, j = 1, . . . , n + 1
}
arranged in a q–matrix, with q := exp(ℏ) , with

Iℏ being the ideal generated by
{
ℏ , x1,1 , . . . , xn,n

}
; this is a quick way to say that

the given generators obey the relations

xij xik = q xik xij , xik xhk = q xhk xik ∀ j < k , i < h

xil xjk = xjk xil , xik xjl − xjl xik =
(
q − q−1

)
xil xjk ∀ i < j , k < l

whereas ∆ , ϵ and S are given (in matrix formulation) by

∆
((
xij

)j=1,...,n;

i=1,...,n;

)
:=

(
xij

)j=1,...,n;

i=1,...,n;
⊗
(
xij

)j=1,...,n;

i=1,...,n;

ϵ
((
xij

)j=1,...,n;

i=1,...,n;

)
:=

(
δij

)j=1,...,n;

i=1,...,n;
, S

((
xij

)j=1,...,n;

i=1,...,n;

)
:=

((
xij

)j=1,...,n;

i=1,...,n;

)−1
which in down-to-earth terms read, for all i, j = 1, . . . , n ,

∆
(
xij

)
=

∑n
k=1xik ⊗ xkj , ϵ

(
xij

)
= δij , S

(
xij

)
= (−q)j−iDq

((
xhk

)k ̸=i
h̸=j

)
where Dq is the quantum determinant , defined on any square q–matrix of size ℓ by

Dq

((
xij

)j=1,...,ℓ;

i=1,...,ℓ;

)
:=

∑
σ∈Sℓ

(−q)l(σ)x1,σ(1) x2,σ(2) · · ·xℓ,σ(ℓ)

We have also explicit identifications Fℏ[[G ]] = Uℏ(g)
∗ as well as Uℏ(g) = Fℏ[[G ]]⋆ ,

which can be described via the Hopf pairing ⟨ , ⟩ : Fℏ[[G ]] × Uℏ(g) −−−→ k[[ℏ]]
uniquely given by the following values on generators:〈

xi,j , Γk
〉
= δi,j δi,k ,

〈
xi,j , Et

〉
= δi+1,j δi,t ,

〈
xi,j , Ft

〉
= δi,j+1 δt,j (3.17)

Now consider in Uℏ(g) ⊗̂Uℏ(g) the element F := exp
(
ℏ 2−1

∑n
k,ℓ=1 ϕt,k Γt⊗Γk

)
that is a twist for Uℏ(g) By Proposition 2.2.7(a), we can see this F as a 2–cocycle
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σF for Uℏ(g)
∗ = Fℏ[[G ]] , simply given by evaluation at F , namely

σF : Fℏ[[G ]]× Fℏ[[G ]] −−−→ k[[ℏ]] , (φ , ψ) 7→
〈
φ⊗ ψ , F

〉
(3.18)

Now, from (3.18) and (3.17), direct calculation gives

σF

(
xi, r , xℓ, h

)
=

+∞∑
m=0

ℏm 2−m

m!

〈
∆(m−1)(xi, r ⊗ xℓ, h) , (∑n

t, k=1 ϕt,k Γt ⊗ Γk
)⊗m〉

Let us consider

〈
∆(m−1)(xi, r ⊗ xℓ, h) , (∑n

t, k=1 ϕt,k Γt ⊗ Γk
)⊗m〉

. Definitions give〈
∆(m−1)(xi, r ⊗ xℓ, h) , (∑n

t, k=1 ϕt,k Γt ⊗ Γk
)⊗m〉

=

=
n∑

s1,..., sm−1=1
e1,..., em−1=1

〈
xi, s1 ⊗ xℓ, e1 ⊗ · · · ⊗ xsm−1, r ⊗ xem−1, h ,

(∑n
t, k=1 ϕt,k Γt ⊗ Γk

)⊗m〉
=

=
n∑

s1,..., sm−1=1
e1,..., em−1=1

m∏
c=1

∑n
t, k=1 ϕt,k

〈
xsc−1, sc , Γt

〉 〈
xec−1, ec , Γk

〉
where we set s0 := i , sm := r , e0 := ℓ , em := h . Now, the formulas in (3.17)
guarantee that

〈
xsc−1, sc , Γt

〉 〈
xec−1, ec , Γk

〉
= 0 whenever sc−1 ̸= sc or ec−1 ̸= ec ;

therefore, from the previous computation one eventually gets

σF

(
xi, r , xℓ, h

)
= δi,r δℓ,h

+∞∑
m=0

ℏm 2−m

m!

(∑n
t, k=1 ϕt,k

〈
xi, i , Γt

〉 〈
xℓ, ℓ , Γk

〉)m
=

= δi,r δℓ,h
+∞∑
m=0

ℏm 2−m

m!
(ϕi,ℓ)

m = δi,r δℓ,h exp
(
ℏ 2−1ϕi,ℓ

)
= δi,r δℓ,h e

ℏϕi,ℓ/2

i.e. σF

(
xi, r , xℓ, h

)
= δi,r δℓ,h e

ℏϕi,ℓ/2 ∀ i , r, ℓ, h ∈ {1, . . . , n} (3.19)

Using this formula, the deformed product in Fℏ[[G ]]σF
can be described as follows:

xi, j σ̇F xℓ, t := σF

(
(xi, j)(1) , (xℓ, t)(1)

)
(xi, j)(2) (xℓ, t)(2) σ

−1
F

(
(xi, j)(3) , (xℓ, t)(3)

)
=

= σF

(
xi, i , xℓ, ℓ

)
xi, j xℓ, t σ

−1
F

(
xj, j , xt, t

)
= eℏ (ϕi,ℓ−ϕj,t)/2 xi, j xℓ, t

i.e. xi, j σ̇F xℓ, t = eℏ (ϕi,ℓ−ϕj,t)/2 xi, j xℓ, t ∀ i , j, ℓ, t ∈ {1, . . . , n} (3.20)

Note that this formula shows how the new, deformed product is equivalent modulo
ℏ to the old one: this happens because we work with 2–cocycles of the form exp

(
ℏ ς

)
where ς . By this same reason, any set of elements which generate, as an algebra,
the QFSHA under exam, will also generate it w.r.t. the new, deformed product. For
this reason, (3.20) is enough to describe Fℏ[[G ]]σF

as the latter is generated (w.r.t.

the new product) by the xi, j’s, just like Fℏ[[G ]] was (with the old product).

Let us now see how (3.20) yields a new Poisson bracket in the semiclassical limit of
Fℏ[[G ]]σF

. With notation xr, s := xr, s
(
mod ℏFℏ[[G ]]σF

)
, such a Poisson bracket

is given by
{
xi, j , xℓ, t

}
σF

:=

[
xi, j , xℓ, t

]
σF

ℏ

(
mod ℏFℏ[[G ]]σF

)
. Now[

xi, j , xℓ, t
]
σF

= eℏ (ϕi,ℓ−ϕj,t)/2 xi, j xℓ, t − eℏ (ϕj,t−ϕi,ℓ)/2 xℓ, t xi, j =

= eℏ (ϕi,ℓ−ϕj,t)/2
[
xi, j , xℓ, t

]
+

(
eℏ (ϕi,ℓ−ϕj,t)/2 − eℏ (ϕj,t−ϕi,ℓ)/2

)
xℓ, t xi, j

hence expanding the exponentials we get[
xi, j , xℓ, t

]
σF

=
(
1+ ℏ (ϕi,ℓ − ϕj,t)/2

) [
xi, j , xℓ, t

]
+ ℏ

(
ϕi,ℓ − ϕj,t

)
xℓ, t xi, j + O

(
ℏ2
)



22 GASTÓN ANDRÉS GARCÍA , FABIO GAVARINI

from which we eventually get{
xi, j , xℓ, t

}
σF

:=
{
xi, j , xℓ, t

}
+

(
ϕi,ℓ − ϕj,t

)
xℓ, t xi, j (3.21)

where
{
xi, j , xℓ, t

}
denotes the old (undeformed) Poisson bracket and we used that[

xi, j , xℓ, t
]
= 0 and deformed and undeformed product do coincide modulo ℏ .

In addition, the formula (3.21) also induces a concrete description of the modified
Lie bracket in the cotangent Lie bialgebra g∗ := m

/
m2 , wherem is the augmentation

ideal of Fℏ[[G ]]σF
. Indeed, the latter has as k–basis the set of cosets

(
modulo m2

)
{
xi, j :=

(
xi, j − δi, j

)
mod m2

∣∣∣ i , j = 1, . . . , n
}

and for these elements from (3.21) we deduce the deformed Lie bracket as given by[
xi, j , xℓ, t

]
σF

=
[
xi, j , xℓ, t

]
,

[
xi, i , xℓ, ℓ

]
σF

=
[
xi, i , xℓ, ℓ

]
∀ i ̸= j , ℓ ̸= t[

xi, i , xℓ, t
]
σF

=
[
xi, i , xℓ, t

]
+

(
ϕi,ℓ − ϕi,t

)
xℓ, t ∀ ℓ ̸= t[

xi, j , xℓ, ℓ
]
σF

:=
[
xi, i , xℓ, t

]
+

(
ϕi,ℓ − ϕj,ℓ

)
xi, j ∀ i ̸= j

3.3. Deformations by quasi-2-cocycle of QUEA’s.

This subsection is dedicated to deformations by quasi-2-cocycle of QUEA’s. The
result we achieve is somewhat surprising, as we are “stretching the standard recipe”,
as the 2-cocycles that we use to deform our Hopf k[[ℏ]]–algebras are valued in the field
k((ℏ)) rather than in k[[ℏ]] . Thus, a priori nothing guarantees that the recipe would
just work and produce a new Hopf algebra over k[[ℏ]] ; nonetheless, we eventually
find quite a meaningful result, which says that the standard procedure of deformation
by twist for QUEA’s can be extended somewhat beyond its natural borders.

We begin with two ancillary results.

Lemma 3.3.1. Let Uℏ := Uℏ(g) be any QUEA, and Jℏ := Ker
(
ϵUℏ

)
. For every

z ∈ Uℏ , there exists N ∈ N such that δn(z) ∈ ℏmax(n,N)−NJ ⊗nℏ for every n ∈ N .

Proof. By Theorem 2.4.2(a), applying ( )∨ after ( )′ to the QUEA Uℏ we get Uℏ =(
U ′ℏ

)∨
: therefore, letting I ′ℏ := ℏU ′ℏ +Ker

(
ϵU ′

ℏ

)
, this last identity reads

Uℏ = ℏ-adic completion of
∑
n≥0

ℏ−n
(
I ′ℏ
)n

= ℏ-adic completion of
⋃
n≥0

ℏ−n
(
I ′ℏ
)n

In particular, this implies that for our z ∈ Uℏ(g) there exist some N ∈ N and

z′ ∈
(
I ′ℏ
)N

such that z ≡ ℏ−Nz′
(
mod ℏUℏ(g)

)
. Now, given n ∈ N we have

δn
(
z′
)
∈ ℏnU ⊗nℏ because z′ ∈

(
I ′ℏ
)N ⊆ U ′ℏ , and also δn

(
z′
)
∈

∑
s1+···+sn=N

⊗ni=1

(
I ′ℏ
)si

because I ′ℏ is a Hopf ideal; moreover, Ker
(
ϵU ′

ℏ

)
⊆ ℏU ′ℏ again by construction, hence

I ′ℏ ⊆ ℏU ′ℏ . In the end, all this yields δn
(
z′
)
∈ ℏmax(n,N) J ⊗nℏ , therefore δn(z) ∈

ℏmax(n,N)−NJ ⊗nℏ as claimed. □

We fix now some more notation: namely, we denote by “log∗” and “exp∗” the
logarithm and the exponential w.r.t. the convolution product, whenever defined.

Lemma 3.3.2. Let Uℏ(g) be any QUEA, and let χ be a k[[ℏ]]–bilinear form on
Uℏ(g) such that χ(z , 1) = 0 = χ(1 , z) for any z ∈ Uℏ(g) ; denote also by the same
symbol χ the scalar extension of χ to a k((ℏ))–bilinear form for the k((ℏ))–vector
space Uℏ(g) := k((ℏ))⊗k[[ℏ]] Uℏ(g) . Then:
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(a) the formal expression σ := exp∗
(
ℏ−1χ

)
uniquely provides a well-defined,

k((ℏ))–valued bilinear form for Uℏ(g) ;

(b) σ(z , 1) = ϵ(z) = σ(1 , z) for any z ∈ Uℏ(g) ;

(c) σ is orthogonal, i.e. σ2,1= σ−1, iff χ is antisymmetric, i.e. χ2,1 = −χ .

Proof. (a) Fix notation Uℏ := Uℏ(g) and Jℏ := Ker
(
ϵUℏ

)
. For any z ∈ Uℏ , set

ẑ := ϵ(z) , z+ := z − ϵ(z) = z − ẑ ∈ Jℏ , hence z = z+ + ẑ (3.22)

The assumption χ(z , 1) = 0 = χ(1 , z) for z ∈ Uℏ(g) implies (for all u, v ∈ Uℏ )

χ(u, v) = χ
(
u++ û , v++ v̂

)
= χ

(
u+, v+

)
(3.23)

Now, for any a , b ∈ Uℏ , the formula σ = exp∗
(
ℏ−1χ

)
=

∑
n≥0 ℏ−nχ∗n

/
n! gives

σ(a , b ) =
∑

n≥0 ℏ
−n∏n

i=1χ
(
a(i), b(i)

)/
n! =

∑
n≥0 ℏ

−n∏n
i=1χ

(
a+(i), b

+
(i)

)/
n! (3.24)

where we took into account that χ∗ k(u , v ) =
∏k

s=1χ
(
u(s), v(s)

)
=

∏k
s=1χ

(
u+(s), v

+
(s)

)
for each u, v ∈ Uℏ , k ∈ N , by definitions along with (3.23). Now we notice that
⊗ni=1a

+
(i) = δn(a) and ⊗ni=1b

+
(i) = δn(b) , hence Lemma 3.3.1 above guarantees that

h−n
n∏
i=1

χ
(
a+(i), b

+
(i)

)
∈ ℏ−n+max(n,A)−A+max(n,B)−B (

∀ n ∈ N+

)
, whence in particular

h−n
n∏
i=1

χ
(
a+(i), b

+
(i)

)
∈ ℏ−min(A,B) k[[ℏ]] ∀ n ∈ N+

h−n
n∏
i=1

χ
(
a+(i), b

+
(i)

)
∈ ℏn−(A+B) k[[ℏ]] ∀ n ≥ A+B

(3.25)

where A ∈ N , resp. B ∈ N , plays for a , resp. for b , the role of N for z in Lemma
3.3.1 above; by this, the formal expansion for σ(a , b ) in (3.24) yields a well defined
element in k[[ℏ]] , hence σ is a well-defined k((ℏ))–bilinear form of Uℏ(g) as claimed.

(b–c) Both claims are obvious, by construction, as they follow from standard
identities for formal exponentials. □

The previous result leads us to introduce the following notion:

Definition 3.3.3. Let Uℏ(g) be a QUEA, and Uℏ(g) := k((ℏ))⊗k[[ℏ]]Uℏ(g) . Note that
Uℏ(g) has a natural “Hopf algebra structure” of Uℏ(g) induced by scalar extension
from Uℏ(g) — so that, in particular, the “coproduct” takes values in k((ℏ)) ⊗k[[ℏ]](
Uℏ(g) ⊗̂k[[ℏ]]Uℏ(g)

)
rather than in Uℏ(g)⊗k((ℏ)) Uℏ(g) .

We call quasi-2-cocycle of Uℏ(g) any k((ℏ))–bilinear form σ of Uℏ(g) which has

the form σ := exp∗
(
ℏ−1χ

)
for some k[[ℏ]]–bilinear form χ ∈

(
Uℏ(g)

⊗̂2
)∗

of Uℏ(g)

such that χ(z , 1) = 0 = χ(1 , z) for all z ∈ Uℏ(g) , and in addition enjoys the
2–cocycle properties with respect to the above “Hopf algebra structure” of Uℏ(g) .

Remark 3.3.4. The notion of “quasi-2-cocycle” for a QUEA Uℏ(g) can also be
cast in the following, equivalent shape. Recall that Fℏ[[G ]] := Uℏ(g)

∗ is a QFSHA

(cf. §2.3.4), and then
(
Uℏ(g)

⊗̂2
)∗

= Uℏ(g)
∗ ⊗̃Uℏ(g)

∗ = Fℏ[[G ]] ⊗̃Fℏ[[G ]] . Given

χ ∈
(
Uℏ(g)

⊗̂2
)∗

as in Definition 3.3.3 above, the condition χ(z , 1) = 0 = χ(1 , z) for

all z ∈ Uℏ(g) means that χ ∈ JFℏ[[G ]] ⊗̃ JFℏ[[G ]] , with JFℏ[[G ]] := Ker
(
ϵFℏ[[G ]]

)
, hence

we have χ ∈ ℏ2
(
J ∨Fℏ[[G ]]

)⊗̂ 2 ⊆ ℏ2
(
Fℏ[[G ]]∨

)⊗̂ 2
where J ∨Fℏ[[G ]] := ℏ−1JFℏ[[G ]] and
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Fℏ[[G ]]∨ is the QUEA defined in §2.4 out of Fℏ[[G ]] . Thus, it follows that ℏ−1χ ∈
ℏ
(
Fℏ[[G ]]∨

)⊗̂ 2
, so σ := exp∗

(
ℏ−1χ

)
is a well-defined element in

(
Fℏ[[G ]]∨

)⊗̂ 2
.

Now, the requirement that σ := exp∗
(
ℏ−1χ

)
be a quasi-2-cocycle for Uℏ(g) in

the sense of Definition 3.3.3 above is equivalent to the property of σ being a twist
element for Fℏ[[G ]]∨ — which makes perfectly sense in sight of Proposition 2.2.7.

Clearly, every 2-cocycle for Uℏ(g) is a quasi-2-cocycle as well; the converse, instead,
is not true, in general (counterexamples do exist). However, the key point is that
every quasi-2-cocycle still provides a well-defined deformation by 2-cocycle of Uℏ(g).

Theorem 3.3.5. Let Uℏ(g) be a QUEA, and σ = exp∗
(
ℏ−1χ

)
a quasi-2-cocycle for

it, as in Definition 3.3.3. Then the procedure of 2-cocycle deformation by σ applied
to Uℏ(g) actually restricts to Uℏ(g), making the latter into a new QUEA.

Proof. First of all, we explain the statement itself. By definitions and by Lemma
3.3.2, we can perform the deformation by σ onto the Uℏ(g) := k((ℏ)) ⊗̂Uℏ(g) . Our
statement then claims the resulting deformed Hopf structure onto Uℏ(g) “restricts”
to a deformation of Uℏ(g) itself: in turn, this amounts to claiming that Uℏ(g) is
closed for the σ–deformed product in

(
Uℏ(g)

)
σ
— so we tackle this last problem.

Fix notation Uℏ := Uℏ(g) , Jℏ := Ker
(
Uℏ

)
, J ′ℏ := Ker

(
U ′ℏ

)
and J̃ℏ := ℏ−1J ′ℏ ,

where U ′ℏ := Uℏ(g)
′ is given in Definition 2.4.1(a). As it was mentioned in the proof

of Lemma 3.3.1, Theorem 2.4.2(a) implies that Uℏ =
(
U ′ℏ

)∨
, that is

Uℏ = ℏ-adic completion of
∑
n≥0

ℏ−n
(
I ′ℏ
)n

where I ′ℏ := ℏU ′ℏ +Ker
(
ϵU ′

ℏ

)
= ℏU ′ℏ + J ′ℏ ; then a moment’s thought shows that the

previous expression of Uℏ reads also

Uℏ = ℏ-adic completion of
∑
n≥0

ℏ−n
(
J ′ℏ
)n

= ℏ-adic completion of
∑
n≥0

J̃
n

ℏ (3.26)

Note also that J ′ℏ is a Hopf ideal in U ′ℏ , and J ′ℏ ⊆ ℏ Jℏ (by construction); thus for
z′ ∈ J ′Nℏ (with N ∈ N ), acting like in the proof of Lemma 3.3.1 one gets

δn
(
z′
)
∈ ℏnJ ⊗nℏ

⋂ (∑∑
iNi=N

⊗n
i=1J

′Ni

ℏ

)
⊆ ℏmax(n,N)J ⊗nℏ (3.27)

Again, for any z ∈ Uℏ we retain notation as in (3.22) above, that is

ẑ := ϵ(z) , z+ := z − ϵ(z) = z − ẑ ∈ Jℏ , hence z = z+ + ẑ (3.28)

and we recall also that for all u, v ∈ Uℏ we have

χ(u, v) = χ
(
u++ û , v++ v̂

)
= χ

(
u+, v+

)
(3.29)

Thanks to (3.26), in order to prove that Uℏ(g) =: Uℏ is closed for the σ–deformed

product
σ̇
it is enough to show that J̃ A

ℏ σ̇
J̃ B
ℏ ⊆

∑
n≥0

J̃
n

ℏ for any A ,B ∈ N+ .

To begin with, we pick a ∈ J̃ A
ℏ = ℏ−AJ ′ Aℏ and b ∈ J̃ B

ℏ = ℏ−BJ ′Bℏ ; by definition,

a
σ̇
b := σ

(
a(1), b(1)

)
a(2) b(2) σ

−1(a(3), b(3))
whence expanding the formal formula σ = exp∗

(
ℏ−1χ

)
=

∑
n≥0 ℏ−nχ∗n

/
n! —

much like in the proof of Lemma 3.3.2 — we get

a
σ̇
b =

∑
t,ℓ≥0 ℏ

−(t+ℓ) (−1)ℓ (t! ℓ!)−1 χ∗ t
(
a(1), b(1)

)
a(2) b(2) χ

∗ ℓ(a(3), b(3)) =

= a · b +
∑

t+ℓ>0

ℏ−(t+ℓ) (−1)ℓ (t!)−1(ℓ!)−1 χ∗ t
(
a(1), b(1)

)
a(2) b(2) χ

∗ ℓ(a(3), b(3)) (3.30)



QUANTUM GROUP DEFORMATIONS AND R–(CO)MATRICES VS. QUANTUM DUALITY 25

where we took into account coassociativity and counitality properties.

Let us analyze each summand in the very last line in (3.30). From the identities

χ∗ k(u , v ) =
∏k

s=1 χ
(
u(s), v(s)

)
=

∏k
s=1 χ

(
u+(s), v

+
(s)

)
— cf. (3.29) — we get

χ∗ t
(
a(1), b(1)

)
a(2) b(2) χ

∗ ℓ(a(3), b(3)) =

=
t∏
i=1

χ
(
a+(i), b

+
(i)

)
a(t+1) b(t+1)

ℓ∏
j=1

χ
(
a+(t+1+j), b

+
(t+1+j)

)
The map jt+1 : U

⊗ (t+ℓ)
ℏ −→ U

⊗ (t+ℓ+1)
ℏ ,

t+ℓ
⊗
s=1

xs 7→
( t
⊗
s=1

xs

)
⊗1⊗

( t+ℓ
⊗

s=t+1
xs

)
, together

with the expansion in (3.28) gives( t
⊗
i=1
a+(i)

)
⊗ a+(t+1) ⊗

( ℓ
⊗
j=1
a+(t+1+j)

)
= δt+ℓ+1(a) ∈ ℏmax(t+ℓ+1,A)−A U

⊗(t+ℓ+1)
ℏ( t

⊗
i=1
a+(i)

)
⊗ â(t+1) ⊗

( ℓ
⊗
j=1
a+(t+1+j)

)
= jt+1

(
δt+ℓ(a)

)
∈ ℏmax(t+ℓ,A)−A U

⊗(t+ℓ+1)
ℏ

so that, summing up,( t
⊗
i=1
a+(i)

)
⊗a t+1⊗

( ℓ
⊗
j=1
a+(t+1+j)

)
= δt+ℓ+1(a)+ jt+1

(
δt+ℓ(a)

)
∈ ℏmax(t+ℓ,A)−A U

⊗(t+ℓ+1)
ℏ

— like in the proof of Lemma 3.3.1 — and similarly with b , resp. B , replacing a ,
resp. A . Eventually, for all t+ ℓ > 0 this gives

χ∗ t
(
a(1), b(1)

)
a(2) b(2) χ

∗ ℓ(a(3), b(3)) =

= χ∗ t
(
a(1), b(1)

)
â(2) b(2) χ

∗ ℓ(a(3), b(3)) + χ∗ t
(
a(1), b(1)

)
a+(2) b(2) χ

∗ ℓ(a(3), b(3)) (3.31)

where for the two summands in second line, writing n := t+ ℓ , we have

χ∗ t
(
a(1), b(1)

)
â(2) b(2) χ

∗ ℓ(a(3), b(3)) =

=
t∏
i=1

χ
(
a+(i), b

+
(i)

)
â(t+1) b(t+1)

n+1∏
k=t+2

χ
(
a+(k), b

+
(k)

)
∈ ℏmax(n,A)−A+max(n,B)−B U

⊗(n+1)
ℏ

χ∗ t
(
a(1), b(1)

)
a+(2) b(2) χ

∗ ℓ(a(3), b(3)) =

=
t∏
i=1

χ
(
a+(i), b

+
(i)

)
a+(t+1) b(t+1)

n+1∏
k=t+2

χ
(
a+(k), b

+
(k)

)
∈ ℏmax(n+1,A)−A+max(n,B)−B U

⊗(n+1)
ℏ

Let us now assume that A := 1 , so that n := t+ℓ > 0 implies n := t+ℓ ≥ 1 = A .
Then the last estimates read

χ∗ t
(
a(1), b(1)

)
â(2) b(2) χ

∗ ℓ(a(3), b(3)) ∈ ℏn−1+max(n,B)−B U
⊗ (n+1)
ℏ

χ∗ t
(
a(1), b(1)

)
a+(2) b(2) χ

∗ ℓ(a(3), b(3)) ∈ ℏn+max(n,B)−B U
⊗ (n+1)
ℏ

(3.32)

The term in the second line, when plugged in (3.31) and then in (3.30), yields the

contribution (−1)ℓ
t! ℓ!

ℏ−n χ∗ t
(
a(1), b(1)

)
a+(2) b(2) χ

∗ ℓ(a(3), b(3)) ∈ ℏmax(n,B)−B U
⊗ (n+1)
ℏ ,

so for growing n these elements sum up to a convergent series in Uℏ , and we are
done. As to the term in the first line, we split it into

χ∗ t
(
a(1), b(1)

)
â(2) b(2) χ

∗ ℓ(a(3), b(3)) =

= χ∗ t
(
a(1), b(1)

)
â(2) b̂(2) χ

∗ ℓ(a(3), b(3)) + χ∗ t
(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) (3.33)

Then for the first summand we have (almost by definition, or acting as before)

χ∗ t
(
a(1), b(1)

)
â(2) b̂(2) χ

∗ ℓ(a(3), b(3)) = χ∗ (t+ℓ )(a , b )
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so when we plug every such term in (3.31) and then in (3.30), they sum up to∑
t+ℓ>0 ℏ

−(t+ℓ ) (−1)ℓ (t!)−1(ℓ!)−1 χ∗ t
(
a(1), b(1)

)
â(2) b̂(2) χ

∗ ℓ(a(3), b(3)) =

=
∑

t+ℓ=n
n> 0

(−1)ℓℏ−n

t! ℓ!
χ∗n(a , b ) =

∑
n> 0

1

n!
ℏ−n

( ∑
t+ℓ=n

(−1)ℓ
(
n

ℓ

))
χ∗n(a , b ) = 0

just because of the combinatorial identity
∑

t+ℓ=n

(−1)ℓ
(
n

ℓ

)
= 0 .

Finally, we have to dispose of the summands of type

χ∗ t
(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) (3.34)

for which the analogue of the first identity in (3.32) holds true, namely

χ∗ t
(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) ∈ ℏn−1+max(n+1,B)−B U
⊗ (n+1)
ℏ (3.35)

where n := t+ ℓ , taking into account that δn+1(b) ∈ ℏmax(n+1,B)−B U
⊗ (n+1)
ℏ .

Then we have to distinguish two cases, depending on n := t+ ℓ .

First we assume n := t+ ℓ ≥ B . Then n− 1+ max(n+1, B) −B ≥ n , hence

the first identity in (3.32) yields χ∗ t
(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) ∈ ℏn U ⊗ (n+1)
ℏ ,

and then, when plugged in (3.33), and subsequently in (3.31) and in (3.30), this
provides to the expansion of a

σ̇
b a contribution of the form

ℏ−n
(−1)ℓ

t! ℓ!
χ∗ t

(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) ∈ ℏ−n ℏn U ⊗ (n+1)
ℏ = U

⊗ (n+1)
ℏ

— which is fair! — hence we are done with it.

Then we are left with the case n := t + ℓ ≤ B − 1 . Tracking backwards our
construction, all these case provide to (3.30) a contribution of the form

B−1∑
t+ℓ=1

ℏ−(t+ℓ)
(−1)ℓ

t! ℓ!
χ∗ t

(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) =

=
B−1∑
n=1

1

n!
ℏ−n

∑
t+ℓ=n

(−1)ℓ
(
n

ℓ

)
χ∗ t

(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) (3.36)

With no loss of generality, we can assume that a ̸≡ 0 , b ̸≡ 0
(
mod ℏUℏ

)
.

Then for their corresponding cosets a , b ∈ Uℏ

/
ℏUℏ ∼= U(g) we have a ∈ U(g)1

and b ∈ U(g)B , where
{
U(g)n

}
n∈N is the standard, coradical filtration of U(g) ,

and also δ1( a ) ̸= 0 as well as δn
(
b
)
̸= 0 for 1 ≤ n ≤ B — cf. [Ga1], Lemma

3.3. Moreover, we recall that Uℏ := Uℏ(g) is cocommutative modulo ℏUℏ , as it
is a QUEA: in particular, this implies that δn

(
b
)

is a symmetric tensor — for
1 ≤ n ≤ B — hence we can write δn(b ) in the form

δn(b ) = b+(1) ⊗ · · · ⊗ b
+
(n) = β⟨1⟩ ⊗ · · · ⊗β⟨n⟩ + On

(
ℏ1
)

(3.37)

(for 1 ≤ n ≤ B ) where β⟨1⟩ ⊗ · · · ⊗ β⟨n⟩ — using some σ–notation of sort, as usual

— is some symmetric tensor in U ⊗nℏ and hereafter On
(
ℏs
)
stands for some element

in ℏs U ⊗nℏ , for every s, n ∈ N . Then plugging (3.37) in (3.34) we find

χ∗ t
(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) =
t∏
i=1

χ
(
a+(i), b

+
(i)

)
â(t+1) b

+
(t+1)

t+ℓ+1∏
k=t+2

χ
(
a+(k), b

+
(k)

)
=

=
t∏
i=1

χ
(
a+(i), β⟨i⟩

)
â(t+1) β⟨t+1⟩

t+ℓ+1∏
k=t+2

χ
(
a+(k), β⟨k⟩

)
+ O1

(
ℏ t+ℓ

)
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for all t+ℓ ≤ B−1 , with
t∏
i=1

χ
(
a+(i), β⟨i⟩

)
â(t+1) β⟨t+1⟩

t+ℓ+1∏
k=t+2

χ
(
a+(k), β⟨k⟩

)
∈ ℏ t+ℓ−1 Uℏ .

Therefore, the contribution to (3.30) given in (3.36) now reads

B−1∑
n=1

1

n!
ℏ−n

∑
t+ℓ=n

(−1)ℓ
(
n

ℓ

)
χ∗ t

(
a(1), b(1)

)
â(2) b

+
(2) χ

∗ ℓ(a(3), b(3)) =

=
B−1∑
n=1

1

n!
ℏ−n

∑
t+ℓ=n

(−1)ℓ
(
n

ℓ

)
t∏
i=1

χ
(
a+(i), β⟨i⟩

)
â(t+1) β⟨t+1⟩

n+1∏
k=t+2

χ
(
a+(k), β⟨k⟩

)
+ O1

(
ℏ0
)

where in the last formula we have

B−1∑
n=1

1

n!
ℏ−n

∑
t+ℓ=n

(−1)ℓ
(
n

ℓ

)
t∏
i=1

χ
(
a+(i), β⟨i⟩

)
â(t+1) β⟨t+1⟩

n+1∏
k=t+2

χ
(
a+(k), β⟨k⟩

)
∈ ℏ−1 Uℏ

Now, observe that, setting n := t+ ℓ , we can re-write

t∏
i=1

χ
(
a+(i), β⟨i⟩

)
â(t+1) β⟨t+1⟩

n+1∏
k=t+2

χ
(
a+(k), β⟨k⟩

)
= Φ

(
δn(a)⊗ β⟨1⟩ ⊗ · · · ⊗ β⟨n+1⟩

)
(3.38)

with Φ := µ ◦
(
χ⊗ t ⊗ id⊗2Uℏ

⊗χ⊗(n−t)
)
◦ ςn+1 mapping U

⊗ 2(n+1)
ℏ to Uℏ , where

(1) ςn+1 : U
⊗ (2n+1)
ℏ −−−→ U

⊗ (2n+1)
ℏ is the “shuffle” map

x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yn ⊗ yn+1 7→ x1 ⊗ y1 ⊗ x2 ⊗ y2 ⊗ · · · ⊗ xn ⊗ yn ⊗ yn+1

and, considering k[[ℏ]] as embedded into Uℏ via the unit map,

(2) µ : U⊗nℏ −−−→ Uℏ is the obvious (n–fold iterated) multiplication by scalars.

Now recall that β⟨1⟩⊗· · ·⊗β⟨n+1⟩ represents a tensor in σ–notation, so more explic-

itly we might write β⟨1⟩⊗· · ·⊗β⟨n+1⟩ =
∑N

s=1 βs,1⊗βs, n+1 ; so in the formula we are

dealing with what is written as a product
t∏
i=1

χ
(
a+(i), β⟨i⟩

)
â(t+1) β⟨t+1⟩

n+1∏
k=t+2

χ
(
a+(k), β⟨k⟩

)
is actually a sum of several products as

t∏
i=1

χ
(
a+(i), βs, i

)
â(t+1) βs, t+1

n+1∏
k=t+2

χ
(
a+(k), βs, k

)
.

But then recall that this tensor β⟨1⟩ ⊗ · · · ⊗ β⟨n+1⟩ =
∑N

s=1 βs,1 ⊗ βs, n+1 is sym-

metric, therefore, the various products
t∏
i=1

χ
(
a+(i), βs, i

)
â(t+1) βs, t+1

n+1∏
k=t+2

χ
(
a+(k), βs, k

)
actually all coincide: letting Cn be their “common value”, we deduce that

B−1∑
n=1

1

n!
ℏ−n

∑
t+ℓ=n

(−1)ℓ
(
n

ℓ

)
t∏
i=1

χ
(
a+(i), β⟨i⟩

)
â(t+1) β⟨t+1⟩

n+1∏
k=t+2

χ
(
a+(k), β⟨k⟩

)
=

=
B−1∑
n=1

1

n!
ℏ−n

( ∑
t+ℓ=n

(−1)ℓ
(
n

ℓ

))
Cn = 0

again because of the identity
∑

t+ℓ=n

(−1)ℓ
(
n

ℓ

)
= 0 .

Thus, also the last contributions to (3.30) given in (3.36) actually belong to Uℏ .

To sum up, we have proved that (for all a ∈ J̃ 1
ℏ = ℏ−1J ′ℏ , b ∈ J̃

B
ℏ = ℏ−BJ ′Bℏ )

a
σ̇
b = a · b + z with z ∈ Jℏ (3.39)

and similarly (for all a ∈ J̃ 1
ℏ = ℏ−1J ′ℏ , b ∈ J̃ B

ℏ = ℏ−BJ ′Bℏ ) also

b
σ̇
a = b · a + x with x ∈ Jℏ (3.40)
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Let
〈
J̃ℏ
〉σ
k[[ℏ]] the unital k[[ℏ]]–subalgebra of

(
Uℏ(g)

)
σ
:=

(
k((ℏ))⊗k[[ℏ]] Uℏ

)
σ
gen-

erated by J̃ℏ . Now recall that J̃ℏ := ℏ−1J ′ℏ with J ′ℏ := Ker
(
U ′ℏ

)
; then U ′ℏ =

J ′ℏ ⊕ k[[ℏ]] · 1 , which implies ∆
(
J ′ℏ
)
⊆ J ′ℏ ⊗ 1 + J ′ℏ ⊗ J ′ℏ + 1 ⊗ J ′ℏ . Then also

∆
(
J̃ℏ
)
⊆ J̃ℏ⊗ 1+ J̃ℏ⊗ J̃ℏ+1⊗ J̃ℏ . As the coalgebra structure is the same in Uℏ(g)

and
(
Uℏ(g)

)
σ
, it follows that

〈
J̃ℏ
〉σ
k[[ℏ]] is a Hopf k[[ℏ]]–subalgebra inside

(
Uℏ(g)

)
σ
.

By repeated use of (3.39) or (3.40) alike, we find that
〈
J̃ℏ
〉σ
k[[ℏ]] ⊆ Uℏ =

〈
J̃ℏ
〉
k[[ℏ]] .

Now observe that the original product “ · ” in Uℏ := Uℏ(g) and Uℏ(g) can be
obtained from “

σ̇
” through deformation via the inverse 2–cocycle σ−1 . Thanks

to this, we can reverse the roles of Uℏ =
〈
J̃ℏ
〉
k[[ℏ]] and

〈
J̃ℏ
〉σ
k[[ℏ]] in the previous

construction, thus achieving
〈
J̃ℏ
〉
k[[ℏ]] ⊆

〈
J̃ℏ
〉σ
k[[ℏ]] . Therefore

〈
J̃ℏ
〉
k[[ℏ]] ⊆

〈
J̃ℏ
〉σ
k[[ℏ]] ,

which in particular implies that Uℏ =
〈
J̃ℏ
〉
k[[ℏ]] is closed for the σ–product. □

Definition 3.3.6. With assumptions as in Theorem 3.3.5, the new QUEA obtained
from Uℏ(g) via 2–cocycle deformation by σ of Uℏ(g) followed by restriction will be
called quasi-2-cocycle deformation of Uℏ(g) by σ, and it will be denoted by Uℏ(g)σ .

To complete our analysis, next result sheds light onto the new, quasi-2-cocycle
deformed QUEA Uℏ(g)σ , describing in detail its semiclassical limit:

Theorem 3.3.7. Let Uℏ(g) be a QUEA over the Lie bialgebra g =
(
g ; [ , ] , δ

)
.

Let σ be a quasi-2-cocycle for Uℏ(g) , so σ = exp∗
(
ℏ−1χ

)
for some χ ∈

(
Uℏ(g)

⊗̂ 2
)∗

with χ(z , 1) = 0 = χ(1 , z) for z ∈ Uℏ(g) . Set also χa := χ− χ2,1 . Then:

(a) χ is antisymmetric, i.e. χ2,1 = −χ , iff σ is orthogonal, i.e. σ2,1 = σ−1 ;

(b) the k–linear map γ := χa

(
mod ℏ

(
Uℏ(g)

⊗̂ 2)∗ )∣∣∣
g⊗g

from g ⊗ g to k is

antisymmetric 2–cocycle for the Lie bialgebra g ;

(c) the quasi-2-cocycle deformation
(
Uℏ(g)

)
σ
of Uℏ(g) is a QUEA for the Lie

bialgebra gγ =
(
g ; [ , ]γ , δ

)
which is the deformation of g by the 2–cocycle γ ; in

a nutshell, we have
(
Uℏ(g)

)
σ
∼= Uℏ

(
gγ
)
.

In particular, if σ is k[[ℏ]]–valued — i.e., it is an ordinary 2–cocycle for the Hopf

k[[ℏ]]–algebra Uℏ(g) — or equivalently χ ∈ ℏ
(
Uℏ(g)

⊗̂ 2)∗ , then we have just γ = 0

and
(
Uℏ(g)

)
σ
∼= Uℏ

(
gγ
)
= Uℏ(g) .

Proof. (a) This follows from claim (c) in Lemma 3.3.2.

(b) We are interested in the restriction to g⊗g of the specialization of σ modulo
ℏ . So we start with a , b , c ∈ g , that we realize as a = a

(
mod ℏUℏ

)
, b =

b
(
mod ℏUℏ

)
and c = c

(
mod ℏUℏ

)
for some “lifts” a, b, c ∈ Uℏ . By the identity

Uℏ =
(
U ′ℏ

)∨
and by Lemma 3.3 in [Ga1], we can choose the lifts a, b and c belong

to J̃ℏ := ℏ−1J ′ℏ , so that a ′ := ℏ a , b ′ := ℏ b and c ′ := ℏ c belong to J ′ℏ .
As σ is a normalized Hopf 2–cocycle for Uℏ , it must obey the equality

σ
(
b ′(1), c

′
(1)

)
σ
(
a ′, b ′(2)c

′
(2)

)
= σ

(
a ′(1), b

′
(1)

)
σ
(
a ′(2)b

′
(2), c

′ ) (3.41)

Let us focus on the left hand side of (3.41). Expanding the exponential we get

σ
(
b ′(1), c

′
(1)

)
σ
(
a ′, b ′(2)c

′
(2)

)
=

∑
n,m≥0

ℏ−(n+m)

n!m!
χ∗n

(
b ′(1), c

′
(1)

)
χ∗m

(
a ′, b ′(2)c

′
(2)

)
=
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= ϵ
(
a ′
)
ϵ
(
b ′
)
ϵ
(
c ′
)
+ ℏ−1 χ

(
b ′, c ′

)
ϵ
(
a ′
)
+ ℏ−1 χ

(
a ′, b ′c ′

)
+

+ ℏ−2 χ
(
b ′(1), c

′
(1)

)
χ
(
a ′, b ′(2)c

′
(2)

)
+ ℏ−2 2−1 χ∗ 2

(
b ′, c ′

)
ϵ
(
a ′
)
+

+ ℏ−2 2−1 χ∗ 2
(
a ′, b ′c ′

)
+

∑
n+m≥3

ℏ−(n+m)

n!m!
χ∗n

(
b ′(1), c

′
(1)

)
χ∗m

(
a ′, b ′(2)c

′
(2)

)
Then, noting that ϵ

(
a ′
)
= ϵ

(
b ′
)
= ϵ

(
c ′
)
= 0 by construction, and analyzing all

other summands as in the proof of claim Theorem 3.3.5, we obtain

σ
(
b ′(1), c

′
(1)

)
σ
(
a ′, b ′(2)c

′
(2)

)
= ℏ−1χ

(
a ′, b ′c ′

)
+ ℏ−2χ

(
b ′(1), c

′
(1)

)
χ
(
a ′, b ′(2)c

′
(2)

)
+

+ ℏ−2 2−1 χ∗ 2
(
a ′, b ′c ′

)
+

(
sum of all terms with n+m ≥ 3

) (3.42)

Writing z′ = z′+ + ϵ
(
z′
)
and using that χ(z, 1) = 0 = χ(1, z) and

χ
(
x ′(1), y

′
(1)z

′
(1)

)
χ
(
x ′(2), y

′
(2) ϵ

(
z ′(2)

))
= χ

(
x ′(1), y

′
(1)z

′)χ(x ′(2), y ′(2))
we have that

χ∗ 2
(
a ′, b ′c ′

)
= χ

(
a ′(1), b

′
(1)c

′
(1)

)
χ(a ′(2), b

′
(2)c

′
(2)

)
=

= χ
(
a ′+(1), b

′+
(1)c

′+
(1)

)
χ
(
a ′+(2), b

′+
(2)c

′+
(2)

)
+ χ

(
a ′+(1), b

′+
(1)

)
χ
(
a ′+(2), b

′+
(2)c

′)+
+χ

(
a ′+(1), c

′+
(1)

)
χ
(
a ′+(2), b

′c ′+(2)
)
+ χ

(
a ′+(1), b

′c ′+(1)
)
χ
(
a ′+(2), c

′+
(2)

)
+

+χ
(
a ′+(1), b

′)χ(a ′+(2), c ′) + χ
(
a ′+(1), b

′+
(1)c

′)χ(a ′+(2), b ′+(2)) + χ
(
a ′+(1), c

′)χ(a ′+(2), b ′)
Since z′ = ℏ z and z′ +(i) ∈ ℏUℏ , we may re-write the expression above as

χ∗ 2
(
a ′, b ′c ′

)
= ℏ4 χ

(
a(1), b

)
χ
(
a(2), c

)
+ ℏ4 χ

(
a(1), c

)
χ
(
a(2), b

)
+ O

(
ℏ5
)

Performing a similar analysis on the term χ
(
b ′(1), c

′
(1)

)
χ
(
a ′, b ′(2)c

′
(2)

)
we get

χ
(
b ′(1), c

′
(1)

)
χ
(
a ′, b ′(2)c

′
(2)

)
= ℏ4 χ

(
b, c(1)

)
χ
(
a, c(2)

)
+ ℏ4 χ

(
b(1), c

)
χ
(
a, b(2)

)
+ O

(
ℏ5
)

Moreover, with a similar (yet easier) analysis one finds also that

χ∗n
(
b′(1), c

′
(1)

)
χ∗m

(
a′, b′(2)c

′
(2)

)
∈ ℏ+2(n+m) k[[ℏ]]

for all n+m ≥ 3 , so that the (last) summand “
(
sum of all terms with n+m ≥ 3

)
”

in (3.42) is of type O
(
ℏn+m

)
= O

(
ℏ3
)
. Putting all together in (3.42) we find

ℏ3 σ
(
b(1), c(1)

)
σ
(
a, b(2)c(2)

)
=

= ℏ2 χ(a, bc) + ℏ2 χ
(
b, c(1)

)
χ
(
a, c(2)

)
+ ℏ2 χ

(
b(1), c

)
χ
(
a, b(2)

)
+

+ ℏ2 2−1 χ
(
a(1), b

)
χ
(
a(2), c

)
+ ℏ2 2−1 χ

(
a(1), c

)
χ
(
a(2), b

)
+ O

(
ℏ3
)

An analogous treatment of the right hand side of (3.41) yields

ℏ3 σ
(
a(1), b(1)

)
σ
(
a(2)b(2), c

)
=

= ℏ2 χ(ab, c ) + ℏ2 χ
(
a, b(1)

)
χ
(
b(2), c

)
+ ℏ2 χ

(
a(1), b

)
χ
(
a(2), c

)
+

+ ℏ2 2−1 χ
(
a, c(1)

)
χ
(
b, c(2)

)
+ ℏ2 2−1 χ

(
b, c(1)

)
χ
(
a, c(2)

)
+ O

(
ℏ3
)

Altogether, this implies that

χ(a, bc ) + χ
(
b, c(1)

)
χ
(
a, c(2)

)
+ χ

(
b(1), c

)
χ
(
a, b(2)

)
+

+ 2−1 χ
(
a(1), b

)
χ
(
a(2), c

)
+ 2−1 χ

(
a(1), c

)
χ
(
a(2), b

)
≡
ℏ

≡
ℏ
χ(ab, c ) + χ

(
a, b(1)

)
χ
(
b(2), c

)
+ χ

(
a(1), b

)
χ
(
a(2), c

)
+

+ 2−1 χ
(
a, c(1)

)
χ
(
b, c(2)

)
+ 2−1 χ

(
b, c(1)

)
χ
(
a, c(2)

)
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where (again) ≡
ℏ

stands for “congruent modulo ℏ k[[ℏ]] ”, that we re-write as

χ(a, bc ) + χ
(
b, c(1)

)
χ
(
a, c(2)

)
+ χ

(
b(1), c

)
χ
(
a, b(2)

)
+

+ 2−1 χ
(
a(1), b

)
χ
(
a(2), c

)
+ 2−1 χ

(
a(1), c

)
χ
(
a(2), b

)
−

− χ(ab, c ) − χ
(
a, b(1)

)
χ
(
b(2), c

)
− χ

(
a(1), b

)
χ
(
a(2), c

)
−

− 2−1 χ
(
a, c(1)

)
χ
(
b, c(2)

)
− 2−1 χ

(
b, c(1)

)
χ
(
a, c(2)

)
≡
ℏ

0

(3.43)

Consider now the action of the group algebra k
[
S3

]
of the symmetric group S3 on(

U ⊗̂3ℏ
)∗

given by σ . φ(a, b, c) := φ
(
σ−1 . (a, b, c)

)
, where the action of k

[
S3

]
on U ⊗̂3ℏ

is the natural one that permutes the tensor factors. Then we let the antisymmetrizer

Alt3 act on both sides of (3.43): using that γ := χa

(
mod ℏ

(
Uℏ(g)

⊗̂ 2)∗ )∣∣∣
g⊗g

and that a
(
mod ℏUℏ

)
= a , b

(
mod ℏUℏ

)
= b and c

(
mod ℏUℏ

)
= c , a

straightforward calculation eventually yields

∂∗(γ) + c.p. + [[γ , γ ]]∗ = 0

This means exactly that γ is a 2-cocycle for the Lie bialgebra g — according to
Definition 2.1.5 — that is obviously antisymmetric (by construction), q.e.d.

(c) First of all, we start by noting that Uℏ(g)σ :=
(
Uℏ(g)

)
σ
is equal to Uℏ(g) as

a counital k[[ℏ]]–coalgebra (by construction), but with the new product defined by

mσ(a, b ) = a
σ̇
b = σ(a(1), b(1)) a(2) b(2) σ

−1(a(3), b(3)) ∀ a, b ∈ Uℏ(g)

In particular, the k[[ℏ]]–module Uℏ(g)σ = Uℏ(g) is still topologically free, so that
Uℏ(g)σ is again a Hopf algebra in T ⊗̂ , cf. §2.3.1. Moreover, its semiclassical limit

Uℏ(g)σ := Uℏ(g)σ

/
ℏUℏ(g)σ as a coalgebra is the same as that of Uℏ(g) ; hence

it is again cocommutative connected. Thus by Milnor-Moore Theorem we have
Uℏ(g)σ = U

(
ĝ
)
, where ĝ = Prim

(
Uℏ(g)σ

)
is the space of primitive elements in

Uℏ(g)σ , and as such it coincides with Prim
(
Uℏ(g)

)
= Prim

(
U(g)

)
= g as a

Lie coalgebra; its Lie algebra structure, on the other hand, does depend on σ .
Altogether, this shows that Uℏ(g)σ is a QUEA, whose semiclassical limit is U

(
ĝ
)
;

then we are only left to prove that the Lie bracket on ĝ coincides with that of gγ ,
while also proving that γ is an antisymmetric 2–cocycle for the Lie bialgebra g .
The Lie bracket in ĝ is given by the commutator inside U

(
ĝ
)
= Uℏ(g)σ , so we

denote it by [a , b]σ = a
σ̇
b − b

σ̇
a (for all a , b ∈ g ), where

σ̇
is the product

in U
(
ĝ
)
= Uℏ(g)σ induced by the (σ–deformed) product in Uℏ(g)σ . Therefore, we

will compute such a commutator as the coset modulo ℏUℏ of a commutator in Uℏ ,
namely [a , b]σ = a

σ̇
b − b

σ̇
a = a

σ̇
b − b

σ̇
a

(
mod ℏUℏ

)
, where a and b ,

like in the proof of claim (c), are lifts of a and b — i.e., a
(
mod ℏUℏ

)
= a and

b
(
mod ℏUℏ

)
= b — such that a ′ := ℏ a ∈ J ′ℏ and b ′ := ℏ b ∈ J ′ℏ .

We re-start back from (3.30), which now gives (taking into account all the analysis
carried out there, with A = 1 = B )

a
σ̇
b− b

σ̇
a ≡

ℏ
a · b − b · a +

+ ℏ−3
(
χ
(
a′+(1), b

′+
(1)

)(
â ′(2) b

′+
(2) + a′+(2) b̂

′
(2)

)
− χ

(
b′+(1), a

′+
(1)

)(
b̂ ′(2) a

′+
(2) + b′+(2) â

′
(2)

))
−

− ℏ−3
((
â ′(1) b

′+
(1) + a′+(1) b̂

′
(1)

)
χ
(
a′+(2), b

′+
(2)

)
−

(
b̂ ′(1) a

′+
(1) + b′+(1) â

′
(1)

)
χ
(
b′+(2), a

′+
(2)

))
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Second, letting χa := χ− χ 2,1 , the previous formula greatly simplifies into

a
σ̇
b− b

σ̇
a = a · b − b · a + ℏ−3

(
χa

(
a′+(1), b

′) a′+(2) − χa
(
a′+(2), b

′) a′+(1) ) −
− ℏ−3

(
χa

(
b′+(1), a

′) b′+(2) − χa
(
b′+(2), a

′) b′+(1)) + O1(ℏ)

Now, let us write z′ = ℏ z for all z ∈ {a , b } : then the last formula turns into

a
σ̇
b− b

σ̇
a = a · b − b · a + ℏ−1

(
χa

(
a+(1), b

)
a+(2) − χa

(
a+(2), b

)
a+(1)

)
−

− ℏ−1
(
χa

(
b+(1), a

)
b+(2) − χa

(
b+(2), a

)
b+(1)

)
+ O1(ℏ)

(3.44)

Here we recall that, working with a QUEA, for c ∈ {a , b } we have

∆(c ) = c⊗ 1 + 1⊗ c + c+(1) ⊗ c
+
(2) + O2

(
ℏ2
)
, c+(1) ⊗ c

+
(2) ∈ ℏU ⊗̂2h

and moreover — for every c ∈ {a , b } and c ∈ {a , b} , so that c is a lift of c —

ℏ−1
(
c+(1)⊗ c

+
(2) − c

+
(2)⊗ c

+
(1)

)
= δ(c) =: c[1] ⊗ c[2] (3.45)

where hereafter any “overlined” object stands for “its coset modulo ℏ ”; in addition,
we recall also that χa is antisymmetric. Then (3.44) and (3.45) altogether yield

[a , b]σ = a
σ̇
b− b

σ̇
a = a

σ̇
b− b

σ̇
a =

= [a , b] + γ
(
a[1],b

)
a[2] − γ

(
b[1], a

)
b[2] =

= [a ,b] − γ
(
a[2], b

)
a[1] − γ

(
b[1], a

)
b[2] =: [a ,b]γ

hence [a , b]σ = [a , b]γ for all a , b ∈ g , in the sense of (2.5), and we are done.

Finally, if in particular σ is k[[ℏ]]–valued — i.e., it is an ordinary 2–cocycle for the

Hopf k[[ℏ]]–algebra Uℏ(g) — then we have χ = ℏ log∗(σ) ∈ ℏ
(
Uℏ(g)

⊗̂ 2)∗ , hence

we have just γ = 0 and
(
Uℏ(g)

)
σ
∼= Uℏ

(
gγ
)
= Uℏ(g) . □

Example 3.3.8. Some examples of deformation by quasi-2-cocycles are treated in
[GaGa2, Section 5.2], for the wide family of formal multiparameter QUEAs that
treated in Example 3.1.4; we then resume notations and formulas from there.

Fix n ∈ N+ and I := {1, . . . , n} . We fix P :=
(
pi,j

)
i,j∈I ∈Mn

(
k[[ℏ]]

)
of Cartan

type, with associated Cartan matrix A , a realization R :=
(
h ,Π ,Π∨

)
of it and

the Hopf algebra U RP,ℏ(g) . Let
{
Hg

}
g∈G be a k[[ℏ]]–basis in h, with |G| = rk(h) = t .

Fix an antisymmetric, k[[ℏ]]–bilinear map χ : h×h −−→ k[[ℏ]] , that corresponds
to X =

(
χgγ = χ(Hg , Hγ)

)
g,γ∈G ∈ sot

(
k[[ℏ]]

)
. Any such χ also induces uniquely

an antisymmetric, k[[ℏ]]–bilinear map χ̃U : U RP,ℏ(h)× U RP,ℏ(h) −−−−→ k[[ℏ]] as fol-

lows. By definition, U RP,ℏ(h) is an ℏ–adically complete topologically free Hopf algebra

isomorphic to Ŝk[[ℏ]](h) := ̂⊕
n∈N

S n
k[[ℏ]](h) , the ℏ–adic completion of the symmetric al-

gebra Sk[[ℏ]](h) =
⊕
n∈N

S n
k[[ℏ]](h) . Then, χ̃U is defined as the unique k[[ℏ]]–linear (hence

ℏ–adically continuous) map U RP,ℏ(h)⊗ U RP,ℏ(h)
χ̃U−−−→k[[ℏ]] such that

χ̃U(z, 1) := ϵ(z) =: χ̃U(1, z) ∀ z ∈ Ŝk[[ℏ]](h)

χ̃U(x, y) := χ(x, y) ∀ x, y ∈ S 1
k[[ℏ]](h)

χ̃U(x, y) := 0 ∀ x ∈ S r
k (h) , y ∈ S s

k (h) : r, s ≥ 1 , r + s > 2

(3.46)

By construction, χ̃U is a normalized Hochschild 2–cocycle on U RP,ℏ(h) , that is

ϵ(x) χ̃U(y, z) − χ̃U(xy, z) + χ̃U(x, yz) − χ̃U(x, y) ϵ(z) = 0 ∀ x, y, z ∈ U RP,ℏ(h)
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By [GaGa2, Lemma 5.2.3], the convolution powers of χ̃U satisfy the following prop-
erty: for all H+, H− ∈ h and k, ℓ,m ∈ N+ , we have

χ̃ ∗mU

(
H k

+, H
ℓ
−
)

=

{
δk,m δℓ,m

(
m!

)2
χ(H+, H−)

m for m ≥ 1 ,

δk,0 δℓ,0 for m = 0 .

This allows us to define a “toral” quasi-2-cocycle χU as the unique k[[ℏ]]–linear map
from U RP,ℏ(h) ⊗

k[[ℏ]]
U RP,ℏ(h) to k((ℏ)) given by the exponentiation of ℏ−1 2−1 χ̃U , i.e.

χU := eℏ
−12−1χ̃U =

∑
m≥0 ℏ

−m χ̃ ∗mU

/
2mm!

By [GaGa2, Lemma 5.2.2], this χU is a quasi–2–cocycle for U RP,ℏ(h) , in the sense of

Definition 3.3.3. Moreover, one has, for all H+ , H− ∈ h , and setting K± := e ℏH± ,

χ±1U (H+, H−) = ±ℏ−1 2−1χ(H+, H−) , χU(K+, K−) = eℏ 2
−1χ(H+,H−)

Assume that χ satisfies the additional requirement χ(Si , − ) = 0 = χ(− , Si)
for Si := 2−1

(
T+
i + T−i

)
(∀ i ∈ I ) . Then χ

(
T+
i , T

)
= χ

(
− T−i , T

)
and

χ
(
T , T+

i

)
= χ

(
T ,−T−i

)
for all i ∈ I , T ∈ h ; so χ induces a k[[ℏ]]–bilinear map

χ : h× h −−→ k[[ℏ]] , where h := h
/
s with s := Spank[[ℏ]]

(
{Si }i∈I

)
, given by

χ
(
T ′+ s , T ′′+ s

)
:= χ

(
T ′, T ′′

)
∀ T ′, T ′′ ∈ h

Now, replaying the construction above with h and χ replacing h and χ , we can
construct a quasi-2–cocycle χU : U RP,ℏ

(
h
)
× U RP,ℏ

(
h
)
−−→ k((ℏ)) . Since U RP,ℏ

(
h
) ∼=

Ŝk[[ℏ]]
(
h
)
, there exists a Hopf algebra epimorphism π : U RP,ℏ(g) −−↠ U RP,ℏ

(
h
)

given

by π(Ei) := 0 , π(Fi) := 0 — for i ∈ I — and π(T ) := (T + s) ∈ h ⊆ U RP,ℏ
(
h
)
—

for T ∈ h . Then we consider σχ := χU ◦ (π×π) : U RP,ℏ(g)×U RP,ℏ(g) −−−−↠ k((ℏ))
which is automatically a normalized, k((ℏ))–valued Hopf quasi-2–cocycle on U RP,ℏ(g) .

By Theorem 3.3.7, one may define a “deformed product” on U RP,ℏ(g) using σχ
hereafter denoted by σ̇χ . Write X(n)σχ = X σ̇χ · · · σ̇χX for the n–th power of any
X ∈ U RP,ℏ(g) with respect to this deformed product.

Directly from definitions, sheer computation yields the following formulas, relating
the deformed product with the old one (for all T ′, T ′′, T ∈ h , i , j ∈ I ):

T ′ σ̇χT
′′ = T ′ T ′′ , Ei σ̇χFj = Ei Fj , Fj σ̇χEi = Fj Ei

T σ̇χEj = T Ej + 2−1χ
(
T, T+

j

)
Ej , Ej σ̇χT = Ej T + 2−1χ

(
T+
j , T

))
Ej

T σ̇χFj = T Fj + 2−1χ
(
T, T−j

)
Fj , Fj σ̇χT = Fj T + 2−1χ

(
T−j , T

)
Fj

E
(m)σχ
i =

∏m−1
ℓ=1 σχ

(
e+ℏ ℓ T+

i , e+ℏT+
i

)
Em
i = Em

i

Em
i σ̇χE

n
j = σχ

(
e+ℏmT+

i , e+ℏnT+
j

)
Em
i E n

j = e+ℏmn 2−1χ̊ijEm
i E n

j

E
(m)σχ
i σ̇χEj σ̇χE

(n)σχ
k =

(∏m−1
ℓ=1 σχ

(
e+ℏ ℓ T+

i , e+ℏT+
i

))(∏n−1
t=1 σχ

(
e+ℏ t T+

k , e+ℏT+
k

))
·

· σχ
(
e+ℏmT+

i , e+ℏT+
j

)
σχ

(
e+ℏ (mT+

i +T+
j ), e+ℏnT+

k

)
Em
i Ej E

n
k

F
(m)σχ
i =

∏m−1
ℓ=1 σ

−1
χ

(
e−ℏ ℓ T

−
i , e−ℏT

−
i

)
F m
i = F m

i

F m
i σ̇χF

n
j = σ−1χ

(
e−ℏmT−

i , e−ℏnT
−
j

)
F m
i F n

j = e−ℏmn 2−1χ̊ijF m
i F n

j

F
(m)σχ
i σ̇χ Fj σ̇χ F

(n)σχ
k =

(∏m−1
ℓ=1 σ

−1
χ

(
e−ℏ ℓ T

−
i , e−ℏT

−
i

))(∏n−1
t=1 σ

−1
χ

(
e−ℏ t T

−
k , e−ℏT

−
k

))
·

· σ−1χ
(
e−ℏmT−

i , e−ℏT
−
j

)
σ−1χ

(
e−ℏ (mT−

i +T−
j ), e−ℏnT

−
k

)
F m
i Fj F

n
k
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Fix now X̊ :=
(
χ̊ij = χ

(
T+
i , T

+
j

))
i,j∈I

and define the multiparameter matrix

P(χ) := P + X̊ =
(
p
(χ)
ij := pij + χ̊ij

)
i,j∈I

, Π(χ) :=
{
α
(χ)
i := αi ± χ

(
– , T±i

)}
i∈I

It turns out that P(χ) is a matrix of Cartan type — the same of P indeed — and

R(χ) =
(
h ,Π(χ) ,Π

∨ ) is a realization of it. Moreover, by [GaGa2, Theorem 5.2.12],

there exists an isomorphism of topological Hopf algebras
(
U RP,ℏ(g)

)
σχ
∼= U

R(χ)

P(χ), ℏ(g)

which is the identity on generators. In short, every toral quasi–2–cocycle deforma-
tion of a FoMpQUEA is another FoMpQUEA. Moreover, under mild restrictions,
one proves that the FoMpQUEA U RP,ℏ(g) is isomorphic to a toral quasi–2–cocycle
deformation of the Drinfeld’s standard double QUEA, cf. [GaGa2, Theorem 5.2.14].

As to the semiclassical limit, taking everything modulo ℏ , the map χ defines
a similar antisymmetric, k–bilinear map γ :=

(
χ mod ℏ

)
: h0 × h0 −−→ k

— where h0 := h
/
ℏ h = h . Out of γ one constructs a toral 2–cocycle γg for

the Lie bialgebra gR̄
P̄ , and out of it the 2–cocycle deformed Lie bialgebra

(
gR̄

P̄

)
γg
.

Similarly as above, out of γ we get the multiparameter matrix P(γ) and its realization

R(γ) : then P(γ) = P̄(χ) and R(γ) = R̄(χ) . Attached to these we have U
R(χ)

P(χ), ℏ(g)

and g
R(γ)

P (γ)
= g

R̄(χ)

P̄ (χ)
, again connected via quantization/specialization, and g

R(γ)

P (γ)
∼=(

gR̄
P̄

)
γg

as Lie bialgebras. In fact, “deformation by (quasi–)2–cocycle commutes

with specialization”, see [GaGa2, Theorem 6.2.4]: with assumptions as above, we

have that
(
U RP,ℏ(g)

)
σχ

is a QUEA, with semiclassical limit U
((
gR̄

P̄

)
γg

)
∼= U

(
g

R(γ)

P (γ)

)
.

Remark 3.3.9. It is important to stress that our notion of quasi–2–cocycle did not
come out of the blue, but rather was suggested by the previous example. Indeed, the
authors first “met” these objects when studying polynomial-type QUEAs Uq(g) “à la
Jimbo-Lusztig”: these are standard Hopf algebras (no topology is involved), to which
one can apply deformation by 2–cocycles and then obtain some “multiparameter
QUEAs” — cf. [GaGa1], §4.2. Every such polynomial Uq(g) can be realized as a
Hopf subalgebra of a formal Uℏ(g) , hence it makes sense to try and extend the
2–cocycle and the associated deformation procedure for Uq(g) to the larger object
Uℏ(g) . When we fulfilled this task, in [GaGa2], what we actually found was that the
unique extension of the 2–cocycle of Uq(g) to Uℏ(g) actually is a quasi–2–cocycle (and
not a 2–cocycle!), yet despite this the deformation procedure does extend from Uq(g)
to the whole Uℏ(g) . Thus the very notion of “quasi–2–cocycle” and the associated
deformation procedure showed up as something real from this concrete example.

3.4. Deformations by quasi-twist of QFSHA’s.

In this subsection we consider deformations by twist of QFSHA’s, but again
“stretching the standard recipe”, much like in §3.3: in fact, rather than twists in the
usual sense we consider some special twist elements belonging to the scalar extension
from k[[ℏ]] to k((ℏ)) of our QFSHA. For these elements — that we call “quasi-twists”
— nothing ensures a priori that the deformation recipe would properly work on the
given QFSHA; nevertheless, we eventually find that this is indeed the case. In short,
we prove that the standard procedure of deformation by twist for QFSHA’s can be
extended (beyond its natural borders) to the case of quasi-twist elements.

We begin with a couple of technical lemmas:
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Lemma 3.4.1. Let Fℏ[[G ]] be a QFSHA, and Fℏ[[G ]]∨ the associated QUEA defined
in §2.4. Let φ ∈ J 2

ℏ , with Jℏ := Ker
(
ϵFℏ[[G ]]

)
. Then:

(a) F := exp
(
ℏ−1φ

)
is a well-defined element in Fℏ[[G ]]∨ ;

(b) Ad(F )
(
f
)
:= F · f · F−1 ∈ Fℏ[[G ]] for all f ∈ Fℏ[[G ]] , so that the adjoint

action of F onto Fℏ[[G ]]∨ actually restricts to Fℏ[[G ]] .

Proof. (a) The assumption φ ∈ J 2
ℏ implies φ ∈ ℏ2

(
J ∨ℏ

)2 ⊆ ℏ2 Fℏ[[G ]]∨ , where

J ∨ℏ := ℏ−1Jℏ ⊆ Fℏ[[G ]]∨ . Therefore ℏ−1φ ∈ ℏFℏ[[G ]]∨ , hence F := exp
(
ℏ−1φ

)
is indeed a well-defined element in Fℏ[[G ]]∨ , q.e.d.

(b) We compute Ad(F )
(
f
)
, f ∈ Fℏ[[G ]] : using the identity Ad

(
exp(X)

)
(Y ) =

exp
(
ad(X)

)
(Y ) and expanding the exponential into a power series we get

Ad(F )
(
f
)

= Ad
(
exp

(
ℏ−1φ

))
(f) = exp

(
ad

(
ℏ−1φ

))
(f) =

+∞∑
n=0

1

n!
ad

(
ℏ−1φ

)n
(f)

Now Lemma 2.3.5(c) and the assumption φ ∈ J 2
Fℏ

together guarantee that

ad
(
ℏ−1φ

)n
(f) = ad

(
ℏ−1φ

)n(
f+

)
∈ (1− δs,0) J n+s

Fℏ
∀ n ∈ N+

with s ∈ N such that f ∈ J s
Fℏ

, hence Ad(F )
(
f
)
=

+∞∑
n=0

1
n!

ad
(
ℏ−1φ

)n
(f) is indeed

a well-defined element — a convergent series! — of Fℏ[[G ]] . □

Lemma 3.4.2. Let Fℏ[[G ]] be a QFSHA, and Fℏ[[G ]]∨ the associated QUEA defined

in §2.4. Let ϕ ∈ Fℏ[[G ]]⊗̃ 2 be such that (id⊗ϵ)(ϕ) = 0 = (ϵ⊗ id)(ϕ) . Then:

(a) F = exp
(
ℏ−1ϕ

)
is a well-defined element in

(
Fℏ[[G ]]∨

)⊗̂ 2
;

(b) F · (x ⊗ y) · F−1 ∈ Fℏ[[G ]] ⊗̃ 2 for all x, y ∈ Fℏ[[G ]] , so that the adjoint

action of F onto
(
Fℏ[[G ]]∨

)⊗̂ 2
actually restricts to Fℏ[[G ]]⊗̃ 2 ;

(c) (id⊗ϵ)(F ) = 1 = (ϵ⊗ id)(F ) ;

(d) F is orthogonal, i.e. F2,1 = F−1 , iff ϕ is antisymmetric, i.e. ϕ 2,1 = −ϕ ;

Proof. (a)–(b) These follow from Lemma 3.4.1 applied to Fℏ[[G×G ]] and to φ := ϕ .

(c)–(d) These follow from definitions and by (id⊗ϵ)(ϕ) = 0 = (ϵ⊗ id)(ϕ) . □

The previous result leads us to introduce the notion of “quasi-twist”, as follows:

Definition 3.4.3. Let Fℏ[[G ]] be a QFSHA, and Fℏ[[G ]]∨ as in 2.4.1(b). We call

quasi-twist (element) of Fℏ[[G ]] any element in
(
Fℏ[[G ]]⊗̃ 2 )∨ =

(
Fℏ[[G ]]∨

)⊗̂ 2
of

the form F := exp
(
ℏ−1ϕ

)
— for some ϕ ∈ Fℏ[[G ]]⊗̃ 2 such that (id⊗ϵ)(ϕ) = 0 =

(ϵ⊗ id)(ϕ) — which have the property of a twist element for the QUEA Fℏ[[G ]]∨ .

Of course, every twist for Fℏ[[G ]] is a quasi-twist too; the converse, in general, is
false. However, every quasi-twist still provides a well-defined deformation of Fℏ[[G ]] :

Theorem 3.4.4. Let Fℏ[[G ]] be a QFSHA, and F = exp
(
ℏ−1ϕ

)
a quasi-twist for

it, as in Definition 3.4.3. Then the procedure of twist deformation by F applied to
the QUEA Fℏ[[G ]]∨ restricts to Fℏ[[G ]] , making the latter into a new QFSHA.

Proof. When deforming Fℏ[[G ]]∨ by the twist F one introduces the new coproduct
∆F given by ∆F := Ad(F ) ◦∆ ; then Lemma 3.4.2(b) ensures that ∆F restricts to
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Fℏ[[G ]] , as it maps the latter into Fℏ[[G ]]⊗̃ 2 . The antipode is dealt with similarly,

so the (deformed) Hopf structure of
(
Fℏ[[G ]]∨

)F
does restrict to Fℏ[[G ]] , q.e.d. □

Definition 3.4.5. With assumptions as in Theorem 3.4.4, the new QFSHA obtained
from Fℏ[[G ]] via twist deformation (by F ) of Fℏ[[G ]]∨ followed by restriction will

be called the quasi-twist deformation of Fℏ[[G ]] by F , and denoted by Fℏ[[G ]]F .

Finally, the next result describes in detail what exactly is the nature of the new,
quasi-twist deformed QFSHA Fℏ[[G ]]F , shedding light onto its semiclassical limit:

Theorem 3.4.6. Let Fℏ[[G ]] be a QFSHA over the Lie bialgebra g =
(
g ; [ , ] , δ

)
.

Set m := Ker
(
ϵ
F [[G ]]

)
, so m

/
m2 ∼= g∗ and

(
m⊗m

)/(
m2⊗m+m⊗m2

) ∼= g∗⊗g∗

as Lie bialgebras. Let F be a quasi-twist for Fℏ[[G ]] , of the form F = exp
(
ℏ−1ϕ

)
for some ϕ ∈ Fℏ[[G ]]⊗̃ 2 , and set also ϕa := ϕ− ϕ 2,1 . Then:

(a) ϕ is antisymmetric, i.e. ϕ 2,1 = −ϕ , iff F is orthogonal, i.e. F2,1 = F−1 ;

(b) the element c :=

(
ϕa

(
mod ℏFℏ[[G ]]⊗̃ 2

)
mod

(
m2 ⊗ m + m ⊗ m2

))
in(

m⊗m
)/(

m2 ⊗m+m⊗m2
) ∼= g∗ ⊗ g∗ is an antisymmetric twist for g∗ ;

(c) the quasi-twist deformation
(
Fℏ[[G ]]

)F
of Fℏ[[G ]] is a QFSHA for the Poisson

group G c whose cotangent Lie bialgebra is Lie
(
G c

)∗
=

(
g∗
)c

=
(
g∗ ; [ , ]∗ , δ

c
∗
)

that is the deformation of g∗ by the twist c ; in short,
(
Fℏ[[G ]]

)F ∼= Fℏ
[[
G c

]]
.

In particular, if F is k[[ℏ]]–valued — i.e., it is an ordinary twist for Fℏ[[G ]] — or

equivalently ϕ ∈ ℏFℏ[[G ]]⊗̃ 2 , then c = 0 and
(
Fℏ[[G ]]

)c ∼= Fℏ
[[
G c

]]
= Fℏ[[G ]] .

Proof. (a) This is a special case of Lemma 3.4.2(d).

(b) We start from the twist identity F12

(
∆⊗ id

)
(F ) = F23

(
id⊗∆

)
(F ) that

we re-write in the equivalent form(
∆⊗ id

)
(F )

(
id⊗∆

)
(F )

−1
= F −112 F23 (3.47)

Replacing F = exp
(
ℏ−1ϕ

)
, we find(

∆⊗ id
)
(F )

)
·
(
id⊗∆

)
(F )

−1
= exp

(
ℏ−1

(
∆⊗ id

)
(ϕ)

)
· exp

(
− ℏ−1

(
id⊗∆

)
(ϕ)

)
Now we recall the Baker-Campbell-Hausdorff’s formula, that is the formal identity

exp(X) · exp(Y ) = exp
(
B C H(X, Y )

)
(3.48)

which allows to express the product of two exponential as a single exponential: in
it, B C H(X, Y ) := log

(
exp(X) exp(Y )

)
is an explicit formal series given by

B C H(X, Y ) =
+∞∑
n=1

(−1)n−1

n

∑
ri+si>0
1≤i≤n

[
X•r1Y •s1X•r2Y •s2 · · ·X•rnY •sn

](∑n
i=1(ri + si)

)
·
∏n

j=1 ri! si!
(3.49)

where we use notation[
X•r1Y •s1 · · ·X•rnY •sn

]
:=

=
[
X,

[
X, · · ·

[
X︸ ︷︷ ︸

r1

,
[
Y,

[
Y, · · ·

[
Y︸ ︷︷ ︸

s1

, · · · ,
[
X,

[
X, · · ·

[
X︸ ︷︷ ︸

rn

,
[
Y,

[
Y, · · · , Y︸ ︷︷ ︸
sn

]]]
· · ·

]]
· · ·

]]
with the silent assumption that the Lie monomial

[
X•r1Y •s1 · · ·X•rnY •sn

]
is just

X, respectively Y , when n = 1 and s1 = 0 , respectively r1 = 0 , while it is zero
whenever sn > 1 or sn = 0 and rn > 1 . In words, when S :=

∑n
i=1(ri + si) > 1
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the Lie monomial
[
X•r1Y •s1 · · ·X•rnY •sn

]
is the composition of several operators

ad(X)ri or ad(Y )si to Y — when sn = 1 — or to X — when sn = 0 and rn = 1 .
Looking up to second order, (3.49) reads

B C H(X, Y ) := X + Y +
1

2
[X, Y ] + OL(3) (3.50)

where OL(3) denotes a (formal) infinite linear combination of Lie monomials in
X and Y of degree at least 3. Setting now X := ℏ−1

(
∆ ⊗ id

)
(ϕ) and Y :=

−ℏ−1
(
id⊗∆

)
(ϕ) , the above analysis yields, rewriting (3.48),(

∆⊗ id
)
(F ) ·

(
id⊗∆

)
(F )

−1
=

= exp
(
B C H

(
ℏ−1

(
∆⊗ id

)
(ϕ) , −ℏ−1

(
id⊗∆

)
(ϕ)

)) (3.51)

where the BCH series has to be expanded as in (3.49). To this end, writing ϕ =
ϕ1 ⊗ ϕ2 (a sum being tacitly intended) with ϕ1, ϕ2 ∈ Jℏ (by Lemma 3.1.1) we have(

∆⊗ id
)
(ϕ) = ∆

(
ϕ1

)
⊗ ϕ2 = ϕ1,3 + ϕ2,3 +

(
(ϕ1)(1)

)+ ⊗ (
(ϕ1)(2)

)+ ⊗ ϕ2

where we expanded ∆
(
ϕ1

)
as in Lemma 2.3.5(d) and we used that ϵ

(
ϕ1

)
= 0 . Note

that in the expansion of
(
∆⊗ id

)
(ϕ) we have(

ϕ1,3 + ϕ2,3

)
∈ J

(⊗3|2)
ℏ ,

(
(ϕ1)(1)

)+ ⊗ (
(ϕ1)(2)

)+ ⊗ ϕ2 ∈ J ⊗3ℏ (3.52)

where we introduced the notation J
(⊗3|N)
ℏ :=

∑
a,b,c⩾ 0

a+b+c⩾N
J a
ℏ ⊗̃ J b

ℏ ⊗̃ J c
ℏ (for N ∈ N ).

A similar analysis for
(
id⊗∆

)
(ϕ) , just switching the roles of ϕ1 and ϕ2 , yields(

id⊗∆
)
(ϕ) = ϕ1,2 + ϕ1,3 + ϕ1 ⊗

(
(ϕ2)(1)

)+ ⊗ (
(ϕ2)(2)

)+
with

(
ϕ1,2 + ϕ1,3

)
∈ J

(⊗3|2)
ℏ , ϕ1 ⊗

(
(ϕ2)(1)

)+ ⊗ (
(ϕ2)(2)

)+ ∈ J ⊗3ℏ (3.53)

Now, thanks to Lemma 2.3.5(c), from (3.52) and (3.53) together we get the identity[
ℏX, ℏY

]
=

[
ϕ1,3 , ϕ1,2

]
+
[
ϕ2,3 , ϕ1,2

]
+
[
ϕ2,3 , ϕ1,3

]
+ ℏ · O

(
J
[⊗3|4]
ℏ

)
, hence[

X, Y
]
= ℏ−1

(
ℏ−1

[
ϕ1,3, ϕ1,2

]
+ℏ−1

[
ϕ2,3, ϕ1,2

]
+ℏ−1

[
ϕ2,3, ϕ1,3

]
+ O

(
J
[⊗3|4]
ℏ

))
(3.54)

for some element O
(
J
[⊗3|4]
ℏ

)
∈ J [⊗3|4]

ℏ , where hereafter we use notation

J
[⊗3|N ]
ℏ :=

∑
a,b,c⩾ 1

a+b+c⩾N

J⊗aℏ ⊗ J
⊗b
ℏ ⊗ J

⊗c
ℏ ⊆ Ker

(
ϵ
Fℏ[[G ]]⊗3

)N
∀ N ∈ N+ (3.55)

Pushing the analysis further on, we find easily that[
X•r1Y •s1 · · ·X•rnY •sn

]
∈ ℏ−1 J [⊗3|S+1]

ℏ ∀ S :=
n∑
i=1

(ri + si) > 1 (3.56)

looking at (3.49), this tells us that the expansion of the BCH series occurring in
(3.51), when expanded as in (3.49), is actually given by ℏ−1 multiplied by a truly
convergent series inside Fℏ[[G ]]⊗3 . In other words, tiding everything up we find that

there exists some Z ∈ J⊗3ℏ ⊆ Fℏ[[G ]]⊗3 such that
(
∆⊗ id

)
(F ) ·

(
id⊗∆

)
(F )

−1
=

exp
(
ℏ−1Z

)
Even more, by (3.49) and (3.50) and the previous analysis we do know

the expansion of this Z up to second order, whence we find(
∆⊗ id

)
(F ) ·

(
id⊗∆

)
(F )

−1
= exp

(
ℏ−1

((
∆⊗ id

)
(ϕ) −

(
id⊗∆

)
(ϕ) −

− ℏ−12−1
[
ϕ1,3, ϕ1,2

]
− ℏ−12−1

[
ϕ2,3, ϕ1,2

]
− ℏ−12−1

[
ϕ2,3, ϕ1,3

]
+ O

(
J
[⊗ 3|4]
ℏ

))) (3.57)
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Now we go and work instead on the right-hand side of (3.47). Again, replacing
F = exp

(
ℏ−1ϕ

)
, we find

F−112 · F23 = exp
(
−ℏ−1ϕ1,2

)
· exp

(
ℏ−1ϕ2,3

)
= exp

(
B C H

(
−ℏ−1 ϕ1,2 , ℏ−1 ϕ2,3

))
Now for the computation of B C H

(
−ℏ−1 ϕ1,2 , ℏ−1 ϕ2,3

)
; to avoid possible confusion,

we denote the second, right-hand instance of ϕ by ϕ′ . We begin noting that[
ϕ1,2 , ϕ

′
2,3

]
=

[
ϕ1 ⊗ ϕ2 ⊗ 1 , 1⊗ ϕ′1 ⊗ ϕ′2

]
= ϕ1 ⊗

[
ϕ2 , ϕ

′
1

]
⊗ ϕ′2 ∈ ℏ J [⊗3|3]

ℏ

so that for X := −ℏ−1 ϕ1,2 and Y := ℏ−1 ϕ2,3 we get, using Lemma 2.3.5(c),[
X, Y

]
=

[
−ℏ−1 ϕ1,2 , ℏ−1 ϕ′2,3

]
= −ℏ−2

[
ϕ1,2 , ϕ

′
2,3

]
∈ ℏ−2 ℏ J⊗3ℏ = ℏ−1J [⊗3|3]

ℏ

A second, similar step gives (with obvious notation ϕ , ϕ′ and ϕ′′ )[
ϕ1,2 ,

[
ϕ′1,2 , ϕ

′′
2,3

]]
=

[
ϕ1 ⊗ ϕ2 ⊗ 1 , ϕ′1 ⊗

[
ϕ′2 , ϕ

′′
1

]
⊗ ϕ′′2

]
=

=
[
ϕ1 , ϕ

′
1

]
⊗ ϕ2 ·

[
ϕ′2 , ϕ

′′
1

]
⊗ ϕ′′2 + ϕ1 · ϕ′1 ⊗

[
ϕ2 ,

[
ϕ′2 , ϕ

′′
1

]]
⊗ ϕ′′2 ∈ ℏ2 J [⊗3|4]

ℏ

hence
[
X,

[
X, Y

]]
∈ ℏ−3 ℏ2 J [⊗3|4]

ℏ = ℏ−1 J [⊗3|4]
ℏ . More in general, iteration yields[

X•r1Y •s1 · · ·X•rnY •sn
]
∈ ℏ−S ℏS−1 J [⊗3|S+1]

ℏ = ℏ−1 J [⊗3|S+1]
ℏ (3.58)

with notation as before, still using Lemma 2.3.5(c). Tiding everything up we find

that there exists W ∈ J⊗3ℏ ⊆ Fℏ[[G ]]⊗̃ 3 such that F−112 · F23 = exp
(
ℏ−1W

)
;

moreover, by (3.49) and (3.50) along with the previous analysis we can write

F−11,2 · F2,3 = exp
(
ℏ−1

(
−ϕ1,2 + ϕ2,3 − ℏ−1 2−1

[
ϕ1,2 , ϕ2,3

]
+ O

(
J
[⊗ 3|4]
ℏ

))
(3.59)

Finally, comparing (3.57), (3.59) and (3.47) we get the identity in Fℏ[[G ]]⊗̃ 3(
∆⊗ id

)
(ϕ) −

(
id⊗∆

)
(ϕ) −

− ℏ−12−1
[
ϕ1,3 , ϕ1,2

]
− ℏ−12−1

[
ϕ2,3 , ϕ1,2

]
− ℏ−12−1

[
ϕ2,3 , ϕ1,3

]
+ O

(
J
[⊗ 3|4]
ℏ

)
=

= −ϕ1,2 + ϕ2,3 − ℏ−1 2−1
[
ϕ1,2 , ϕ2,3

]
+ O

(
J
[⊗ 3|4]
ℏ

)
that in turn, through simplification and reduction modulo ℏFℏ[[G ]]⊗̃ 3 , yields the

following identity inside F [[G ]]⊗̃ 3(
∆⊗ id

)(
ϕ
)
−

(
id⊗∆

)(
ϕ
)
+ ϕ1,2 − ϕ2,3 +

+ 2−1
{
ϕ1,2 , , ϕ1,3

}
+

{
ϕ1,2 , ϕ2,3

}
+ 2−1

{
ϕ1,3 , ϕ2,3

}
≡

m[⊗ 3 |4]
0

(3.60)

where hereafter we adopt the notation for which φ denotes the coset modulo ℏ of

any element φ ∈ Fℏ[[G ]]⊗̃ 3 with n ∈ N+ .

Now let k
[
S3

]
act onto Fℏ[[G ]]⊗̃ 3 and consider the action of the antisymmetrizer

Alt 3 :=
(
id−(1 2)− (2 3)− (3 1) + (1 2 3) + (3 2 1)

)
onto (3.60): this in turn yields

a new identity. Within the latter, we have a first contribution of the form

Alt 3 .
((

∆⊗ id
)(
ϕ
)
−

(
id⊗∆

)(
ϕ
))

==
(
∇⊗ id

)(
ϕa

)
+ c.p

and a second contribution Alt 3 .
(
ϕ1,2 − ϕ2,3

)
= 0 . The last contribution is

Alt 3 .
(
2−1

{
ϕ1,2 , ϕ1,3

})
+ Alt 3 .

({
ϕ1,2 , ϕ2,3

})
+ Alt 3 .

(
2−1

{
ϕ1,3 , ϕ2,3

})
We go and compute the first summand, as follows:

Alt 3 .
(
2−1

{
ϕ1,2 , ϕ1,3

})
=

{
ϕ1,2 , ϕ1,3

}
+ c.p.
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A similar analysis applies to the third summand, which yields

Alt 3 .
(
2−1

{
ϕ1,3 , ϕ2,3

})
=

{
ϕ1,3 , ϕ2,3

}
+ c.p.

whereas for the second summand instead we get

Alt 3 .
({

ϕ1,2 , ϕ2,3

})
=

{
ϕ1,2 , ϕ2,3

}
−

{
ϕ3,2 , ϕ2,1

}
+ c.p.

Putting all these together we find

Alt 3 .
(
2−1

{
ϕ1,2 , ϕ1,3

})
+ Alt 3 .

({
ϕ1,2 , ϕ2,3

})
+ Alt 3 .

(
2−1

{
ϕ1,3 , ϕ2,3

})
=

=
{
ϕ1,2 , ϕ1,3

}
+

{
ϕ1,2 , ϕ2,3

}
−

{
ϕ3,2 , ϕ2,1

}
+

{
ϕ1,3 , ϕ2,3

}
+ c.p. =

{{
ϕa , ϕa

}}
where the very last identity follows from a routine calculation. Joint with the pre-
viously found identities, the latter gives yet the following, last one:((

∇⊗ id
)(
ϕa

)
+ c.p.

)
+

{{
ϕa , ϕa

}}
≡

m[⊗ 4]
0

At last, recalling that c := ϕa
(
mod m2

)
in m

/
m2 = g∗ , and that in the latter

Lie bialgebra the Lie cobracket, resp. the Lie bracket, is given by ∇ , resp. by [ , ] ,

reduced modulo m2 , the last formula above — in m⊗̂ 3 — implies((
δ ⊗ id

)
(c ) + c.p.

)
+ [[ c , c ]] = 0

within
(
g∗
)⊗3

, which implies exactly that c — which is antisymmetric by construc-

tion — is an antisymmetric twist for the Lie bialgebra g∗ = m
/
m2 , q.e.d.

(c) We adopt the following notational convention: any element in Fℏ[[G ]] will be
denoted by an italic letter, say f ∈ Fℏ[[G ]] ; then its coset modulo ℏFℏ[[G ]] will be
denoted with a line over that letter, say f :=

(
f mod ℏFℏ[[G ]]

)
, and finally the

coset of the latter modulo m2 will be denoted by the corresponding letter in roman

font, say f :=
(
f mod m2

)
. Note also that every element in g∗ = m

/
m2 can be

written as such an f =
(
f mod m2

)
for some f ∈ Jℏ ∈ Ker

(
ϵ
Fℏ[[G ]]

)
.

Similar notation will be used for elements in Fℏ[[G ]]⊗̃ 2 and their coset modulo ℏ
and (further on) modulo m[⊗2 |3] := m⊗m2 +m2 ⊗m .

Recall that the Lie cobracket induced on m
/
m2 = g∗ by the deformed quantiza-

tion is defined by

δ F( f ) :=
(
∆F −

(
∆F

)21)(
f
)

mod m[⊗2 |3] = ∆F(f)−
(
∆F

)op
(f) mod m[⊗2 |3]

so we start computing ∆F(f) . Definitions give

∆F(f) = Ad(F )
((
f(1) ⊗ 1

)
·
(
1⊗ f(2)

))
= Ad(F )

(
f(1) ⊗ 1

)
· Ad(F )

(
1⊗ f(2)

)
In the last product, we focus on the first factor: thus we get

Ad(F )
(
f(1) ⊗ 1

)
= Ad

(
exp

(
ℏ−1ϕ

))(
f(1) ⊗ 1

)
= exp

(
ad

(
ℏ−1ϕ

))(
f(1) ⊗ 1

)
=

=
+∞∑
n=0

1

n!
ad

(
ℏ−1ϕ1

)n(
f(1)

)
⊗ ϕ n

2 = f(1) ⊗ 1 +
[
ℏ−1ϕ1 , f(1)

]
⊗ ϕ2 + O(2)

that is in short Ad(F )
(
f(1) ⊗ 1

)
= f(1) ⊗ 1 +

[
ℏ−1ϕ1 , f(1)

]
⊗ ϕ2 + O(2)

where hereafter O(2) denotes any element in J
[⊗2 |3]
ℏ . A similar calculation yields
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Ad(F )
(
1⊗ f(2)

)
= 1⊗ f(2) + ϕ1 ⊗

[
ℏ−1ϕ2 , f(2)

]
+ O(2) . Eventually, this gives

∆F(f) = Ad(F )
(
f(1) ⊗ f(2)

)
= Ad(F )

(
f(1) ⊗ 1

)
· Ad(F )

(
1⊗ f(2)

)
=

=
(
f(1)⊗ 1+

[
ℏ−1ϕ1 , f(1)

]
⊗ ϕ2 +O(2)

)
·
(
1⊗ f(2) + ϕ1⊗

[
ℏ−1ϕ2 , f(2)

]
+O(2)

)
=

= f(1)⊗f(2) + ϵ
(
f(1)

)
ϕ1⊗

[
ℏ−1ϕ2 , f(2)

]
+

[
ℏ−1ϕ1 , f(1)

]
⊗ϕ2 ϵ

(
f(2)

)
+ O(2) =

= ∆(f) + ϕ1 ⊗
[
ℏ−1ϕ2 , f

]
+

[
ℏ−1ϕ1 , f

]
⊗ ϕ2 + O(2)

so that, in short, ∆F(f) ≡
J
[⊗2 |3]
ℏ

∆(f) + ϕ1 ⊗
[
ℏ−1ϕ2 , f

]
+

[
ℏ−1ϕ1 , f

]
⊗ ϕ2 .

Therefore, for ∇F := ∆F −
(
∆F

)21
we get

∇F(f) ≡
J
[⊗2 |3]
ℏ

∆(f) + ϕ1 ⊗
[
ℏ−1ϕ2 , f

]
+

[
ℏ−1ϕ1 , f

]
⊗ ϕ2−

− ∆op(f) −
[
ℏ−1ϕ2 , f

]
⊗ ϕ1 − ϕ2 ⊗

[
ℏ−1ϕ1 , f

]
=

= ∇(f) − ϕ
(a)
1 ⊗ ℏ−1

[
f , ϕ

(a)
2

]
− ℏ−1

[
f , ϕ

(a)
1

]
⊗ ϕ(a)

2

(3.61)

where we set ϕa := ϕ− ϕ 21 = ϕ
(a)
1 ⊗ ϕ

(a)
2 . Reducing (3.61) modulo ℏ J⊗2ℏ yields

∇F
(
f
)
≡

m[⊗2 |3]
∇
(
f
)
− ϕ

(a)
1 ⊗

{
f , ϕ

(a)
2

}
−

{
f , ϕ

(a)
1

}
⊗ ϕ(a)

2

hence reducing the latter modulo m[⊗2 |3] we find in m⊗2
/
m[⊗3] = g∗⊗g∗ the identity(

∇F mod m[⊗2 |3]
)
( f ) = δ( f ) −

(
ad( f )

)
(c) =

(
δ − ∂c

)
( f ) = δ c( f )

which means that the induced Lie cobracket on m
/
m2 = g∗ is just δ c, q.e.d. □

Example 3.4.7. Let G := GLn(k) and g := gln(k) . We consider the QUEA
Uℏ(g) = Uℏ

(
gln(k)

)
and the QFSHA Fℏ[[G ]] = Fℏ

[[
GLn(k)

]]
introduced in Ex-

ample 3.2.3. Letting b− and b+ be the Borel Lie subalgebras in g of lower triangular
and upper triangular matrices, respectively, the subalgebra Uℏ(b

−) of Uℏ(g) gen-
erated by the Fi’s and the Γk’s is a QUEA for b− , while the subalgebra Uℏ(b

+)
generated by the Ei’s and the Γk’s is a QUEA for b+ — both being also Hopf subal-
gebras of Uℏ(g) . Dually, the QFSHA Fℏ[[B

− ]] = Uℏ(b
−)
∗
identifies with the Hopf

quotient of Fℏ[[G ]] obtained by modding out the ideal generated by the xi, j’s with
i < j ; similarly, Fℏ[[B

+ ]] = Uℏ(b
+)
∗
identifies with the Hopf quotient of Fℏ[[G ]]

obtained by modding out the ideal generated by the xi, j’s with i > j . Therefore,
from the presentation of Fℏ[[G ]] in Example 3.2.3 one deduces the following presen-
tations for these quotient algebras: Fℏ[[B

− ]] is generated by the entries of the “lower

triangular q–matrix”
(
x−i, j

)j=1,...,n;

i=1,...,n;
with x−i, j := xi, j for all i ≥ j and x−i, j := 0 for

all i < j , and similarly Fℏ[[B
+ ]] is generated by the entries of the “upper triangular

q–matrix”
(
x+i, j

)j=1,...,n;

i=1,...,n;
with x+i, j := xi, j for i ≤ j and x+i, j := 0 for i > j .

Now we consider a new group G which is “double version” of GLn(k) , in that it
is a Manin double of B− and B+ ; its tangent Lie algebra g then is the Manin double
of b− and b+ ; in particular, G = B− × B+ as algebraic varieties (not as groups),
with B− and B+ being embedded as subgroups, whereas g = b− ⊕ b+ as vector
spaces, with b− and b+ being embedded as Lie subalgebras (this case is explained
in detail in [GaGa2] for SLn(k) , and GLn(k) is just a very slight variation).
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For these new G and g, a QUEA Uℏ(g) is defined as follows: it is the unital,
associative, ℏ–adically complete k[[ℏ]]–algebra with generators

F1 , F2 , . . . , Fn−1 , Γ
−
1 , Γ−2 , . . . , Γ−n−1 , Γ

−
n , Γ

+
1 , Γ+

2 , . . . , Γ+
n−1 , Γ

+
n , E1 , E2 , . . . , En−1

and relations[
Γ±k , Γ

±
ℓ

]
= 0 ,

[
Γ±k , Fj

]
= −δk,j Fj , [Γ±k , Ej] = +δk,j Ej ,

[
Γ±k , Γ

∓
ℓ

]
= 0[

Ei , Fj
]
= δi,j

eℏ (Γ
+
i −Γ

+
i+1) − eℏ (Γ

−
i+1−Γ

−
i )

e+ℏ − e−ℏ[
Ei , Ej

]
= 0 ,

[
Fi , Fj

]
= 0 ∀ i , j : |i− j| > 1

E2
i Ej −

(
q + q−1

)
EiEj Ei + Ej E

2
i = 0 ∀ i , j : |i− j| = 1

F 2
i Fj −

(
q + q−1

)
Fi Fj Fi + Fj F

2
i = 0 ∀ i , j : |i− j| = 1 .

where [X , Y ] := X Y − Y X again. The Hopf structure then is given by

∆(Fi) = Fi ⊗ eℏ (Γ
−
i+1−Γ

−
i ) + 1⊗ Fi , S(Fi) = −Fi eℏ (Γ

−
i −Γ

−
i+1) , ϵ(Fi) = 0

∆
(
Γ±k

)
= Γ±k ⊗ 1 + 1⊗ Γ±k , S

(
Γ±k

)
= −Γ±k , ϵ

(
Γ±k

)
= 0

∆(Ei) = Ei ⊗ 1 + eℏ (Γ
+
i −Γ

+
i+1) ⊗ Ei , S(Ei) = −eℏ (Γ

+
i+1−Γ

+
i )Ei , ϵ(Ei) = 0

In fact, this Uℏ(g) can be realized as a quantum double of Uℏ(b
−) and Uℏ(b

+) : in
particular, Uℏ(g) = Uℏ(b

−) ⊗̂Uℏ(b
+) as coalgebras. Dually, the latter implies that

for the QFSHA Fℏ[[G ]] := Uℏ(g)
∗ we have an identification as algebras

Fℏ[[G ]] =
(
Uℏ(b

−) ⊗̂Uℏ(b
+)
)∗

= Uℏ(b
−)
∗ ⊗̃Uℏ(b

+)
∗
= Fℏ[[B

− ]] ⊗̃Fℏ[[B
+ ]]

Exploiting the presentations above for Fℏ[[B
− ]] and Fℏ[[B

+ ]] , we find a presentation
for Fℏ[[G ]] as the algebra generated by the entries of the “q–matrix in blocks”(

X+ 0n×n
0n×n X−

)
with X± :=

(
x±i, j

)j=1,...,n;

i=1,...,n;
as defined above (triangular).

Moreover, explicit identifications Fℏ[[G ]] = Uℏ(g)
∗ and Uℏ(g) = Fℏ[[G ]]⋆ can be

encoded in the Hopf pairing ⟨ , ⟩ : Fℏ[[G ]]×Uℏ(g) −→ k[[ℏ]] given on generators by〈
x−i, j ,

∏n
k=1

(
Γ+
k

)gk〉 = 0 =
〈
x−i, j , Et

〉
,

〈
x+i, j , Ft

〉
= 0 =

〈
x+i, j ,

∏n
k=1

(
Γ−k

)gk〉〈
x−i, j , Ft

〉
= δi,j+1 δt,j ,

〈
x+i, j , Et

〉
= δi+1,j δi,t〈

x+i, j ,
∏n

k=1

(
Γ+
k

)gk〉 = δi,j (1− δgi,0)
∏

k ̸=iδgk,0 =
〈
x−i, j ,

∏n
k=1

(
Γ−k

)gk〉 (3.62)

In particular, from the first line in (3.62) note that if Γ 1 and Γ 2 are two monomials
in the Γ±k ’s, then for all i = 1, . . . , n we have〈

x±i, i , Γ 1 · Γ 2

〉
=

〈
x±i, i , Γ 1

〉
·
〈
x±i, i , Γ 2

〉
(3.63)

Thanks to Proposition 4.1.2 later on, any quasi–twist for Fℏ[[G ]] can be seen as
a quasi–2–cocycle for Uℏ(g) = Fℏ[[G ]]⋆ . Now, some examples of the latter were
introduced in Example 3.3.8 above for a large class of QUEA, including that for
g = sln(k) . The same procedure can be applied to the present case, which is a
slight variation of that case applied to gln(k) instead of sln(k) , as follows.
Let h be the k[[ℏ]]–span of BΓ :=

{
Γ+
k , Γ

−
k

∣∣ k = 1, . . . , n
}
. Then fix an antisym-

metric, k[[ℏ]]–bilinear map χ : h× h −−→ k[[ℏ]] whose matrix of values on pairs of

elements in the k[[ℏ]]–basis BΓ is X =
(
χε, ηk, t = χ

(
Γ ε
k , Γ

η
t

))ε, η∈{+ ,−}

k,t=1,...,n;
∈ so2n

(
k[[ℏ]]

)
.
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Any such map χ also induces uniquely an antisymmetric, k[[ℏ]]–bilinear map χ̃U on

Uℏ(h) = Ŝk[[ℏ]](h) := ̂⊕
n∈N

S n
k[[ℏ]](h) with values in k[[ℏ]] , by setting

χ̃U(z, 1) := ϵ(z) =: χ̃U(1, z) ∀ z ∈ Ŝk[[ℏ]](h)

χ̃U(x, y) := χ(x, y) ∀ x, y ∈ S 1
k[[ℏ]](h)

χ̃U(x, y) := 0 ∀ x ∈ S r
k (h) , y ∈ S s

k (h) : r, s ≥ 1 , r + s > 2

(3.64)

Then we define the map χU := eℏ
−12−1χ̃

U =
∑
m≥0

ℏ−m χ̃ ∗m
U

/
2mm! from Uℏ(h) ⊗̂Uℏ(h)

to k((ℏ)), which, like in [GaGa2, Lemma 5.2.2], is a quasi–2–cocycle for Uℏ(h) .
Assume now that χ satisfies the additional constraint χ(Si , − ) = 0 = χ(− , Si)

for all i ∈ I := {1, . . . , n−1} , where Si := 2−1
(
Γ+
i −Γ+

i+1+Γ
−
i −Γ−i+1

)
for all i ∈ I ;

note that this is equivalent to requiring χ+, η
i, t −χ

+, η
i+1, t+χ

−, η
i, t −χ

−, η
i+1, t = 0 for all i ∈ I ,

all t = 1, . . . , n − 1 and all η ∈ {+ ,−} . Then χ induces a unique k[[ℏ]]–bilinear
map χ : h × h −−→ k[[ℏ]] , where h := h

/
s with s := Spank[[ℏ]]

(
{Si }i=1,...,n−1;

)
,

given by χ
(
H ′+ s , H ′′+ s

)
:= χ

(
H ′, H ′′

)
for all H ′, H ′′ ∈ h .

Now repeat the above construction with h and χ replacing h and χ : this yields
a quasi–2–cocycle χU for Uℏ

(
h
)
. But now the additional assumption on χ implies

that there exists a Hopf algebra epimorphism π : Uℏ(g) −−↠ Ŝk[[ℏ]]
(
h
) ∼= Uℏ

(
h
)

given by π(Ei) := 0 , π(Fi) := 0 — for i = 1, . . . , n− 1 — and π(T ) := (T + s) ∈
h ⊆ Uℏ

(
h
)
— for T ∈ h . Finally, we set σχ := χ

U
◦(π×π) , which is a well-defined

quasi–2–cocycle for Uℏ(g) , again in the sense of Definition 3.3.3. Note that

σχ := χ
U
◦ (π × π) = exp

(
ℏ−1 2−1 χ̃

U

)
◦ (π × π) = exp

(
ℏ−1 2−1 χ̃

U
◦ (π × π)

)
Now let us re-think the quasi–2–cocycle σχ for Uℏ(g) as a quasi-twist for Fℏ[[G ]] .

First of all, comparing (3.63) and (3.64) we deduce that the form χ̃
U
◦ (π × π) in(

Uℏ(g)
⊗̂ 2

)∗
identifies with Φχ :=

n∑
k, t=1

∑
ε, η∈{+,−}

χ ε, ηk, t y
ε
k, k⊗y

η
t, t in Fℏ[[G ]]⊗̃ 2 , where

y ςℓ,ℓ := log
(
x ςℓ,ℓ

)
is a well-defined element in Fℏ[[G ]] . Then, exponentiating yields

Fχ := σχ = exp
(
ℏ−1 2−1 χ̃

U
◦ (π × π)

)
= exp

(
ℏ−1 2−1 Φχ

)
which is exactly the quasi-twist of Fℏ[[G ]] we were looking for.

We can also check directly that this Fχ is a quasi-twist. We see this in the simplest
case, when n = 2 ; the other cases are quite similar, but require more calculations.

We need to compute the coproduct of the x εt, t’s in Fℏ[[G ]] , which is defined (by

construction) by the condition
〈
∆
(
x εt, t

)
, A ⊗ Z

〉
=

〈
x εt, t , A · Z

〉
for all A ,Z ∈

Uℏ(g) ; since Uℏ(g) admits the PBW-type basis

B :=
{
F f

(
Γ−1

)g−1 (Γ−2 )g−2 (Γ+
1

)g+1 (Γ+
2

)g+2 Ee
∣∣∣ f, g−1 , g−2 , g+1 , g+2 , e ∈ N

}
we can replace A and Z with any two PBW monomials from B . Now, let us

say that a PBW monomial of the form M = F f
(
Γ−1

)g−1 (Γ−2 )g−2 (Γ+
1

)g+1 (Γ−2 )g+2 Ee

belongs to the root space (e −f)α . Then root/weight considerations easily show
that

〈
x εt, t ,M

〉
̸= 0 only for PBW monomials M in the root space 0, i.e. such

that e = f . A straightforward computation gives

Ee · F f =

e∧f∑
s=0

(
[s]q!

)2 [e
s

]
q

[
f

s

]
q

F f−sKe,f (s)E
e−s
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where q := exp(ℏ) , [r]q :=
qr − q−r

q − q−1
, [m]q! :=

m∏
r=1

[r]q ,

[
ℓ

s

]
q

:=
[ℓ]q!

[s]q! [ℓ− s]q!
and

Ke,f (s) :=
∏s

r=1

q 2s−e−f+1−rK+1
+ − q r−1−2s+e+fK−1−
q r − q−r

with K+1
+ := 1⊗exp

(
+ℏ

(
Γ+
i − Γ+

i+1

))±1
and K−1− := exp

(
−ℏ

(
Γ−i − Γ−i+1

))±1⊗1 .
Then the product of two PBW monomials expands into

M′ ·M′′ =
∑e′∧f ′′

s=0

(
[s]q!

)2 [e
s

]
q

[
f

s

]
q

F f ′Γ ġ F f ′′−sKe′,f ′′(s)E
e′−s Γ g̈ Ee′′ =

=
∑e′∧f ′′

s=0
q E( ġ, f

′′, s ,e′, g̈)
(
[s]q!

)2 [e′
s

]
q

[
f ′′

s

]
q

F f ′+f ′′−sΓ ġKe′,f ′′(s)Γ
g̈ Ee′−s+e′′

where Γ ġ :=
(
Γ−1

)ġ−1 (Γ−2 )ġ−2 (Γ+
1

)ġ+1 (Γ+
2

)ġ+2 , Γ g̈ :=
(
Γ−1

)g̈−1 (Γ−2 )g̈−2 (Γ+
1

)g̈+1 (Γ+
2

)g̈+2
while E

(
ġ , f ′′, s , e′, g̈

)
∈ Z is a suitable exponent. When we expand w.r.t. B , the

part given by a linear combination of PBW monomials in the root space 0 is(
M′ · M′′)

0
= δf ′, 0 δf ′′, e′ δe′′, 0 q

E( ġ, e′, e′,e′, g̈) ([e′]q!)2 Γ ġKe′, e′
(
e′
)
Γ g̈

Eventually, tiding everything up we find〈
∆
(
x εt, t

)
,M′ ⊗M′′

〉
= δf ′, 0 δf ′′, e′ δe′′, 0 q

E( ġ, e′, e′, e′, g̈) [e′]q!
2
〈
x εt, t , Γ

ġKe′, e′
(
e′
)
Γ g̈

〉
Now, a similar analysis yields (notation being obvious, hopefully)〈

x εt, t , Γ
ġKe′, e′

(
e′
)
Γ g̈

〉
=

〈
x εt, t , Γ

〉 ġ

·
〈
x εt, t , Ke′, e′

(
e′
)〉
·
〈
x εt, t , Γ

〉 g̈

and finally direct computation gives
〈
x εt, t , Ke′, e′

(
e′
)〉

= δe′,0 , which in turn

follows from χ(Si , − ) = 0 = χ(− , Si) for i = 1, . . . , n − 1 . Therefore, we get〈
∆
(
x εt, t

)
,M′ ⊗M′′

〉
̸= 0 only when

(
f ′, e′

)
= (0, 0) =

(
f ′′, e′′

)
, and then〈

∆
(
x εt, t

)
,M′ ⊗M′′

〉
=

〈
∆
(
x εt, t

)
, Γ ġ ⊗ Γ g̈

〉
=

〈
x εt, t ,M′

〉
·
〈
x εt, t ,M′′

〉
which in short means ∆

(
x εt, t

)
= x εt, t ⊗ x εt, t , i.e. x εt, t is group-like. Therefore, for

y εt, t := log
(
x εt, t

)
instead we have ∆

(
y εt, t

)
= y εt, t⊗ 1+ 1⊗ y εt, t , i.e. y εt, t is primitive.

Eventually, as all the y εt, t’s are primitive, a trivial computation shows that Fχ
does obey condition (2.7), hence it is indeed a quasi-twist, as claimed.

3.5. Duality issues.

Deformations by twist or by 2–cocycle, both for Lie bialgebras and for Hopf
algebras, are dual to each other, see Proposition 2.1.7 and Proposition 2.2.7. This
prompts us to compare these two procedures before and after specialization.
A first result is the following, whose proof is trivial — just track the whole con-

struction of both cF and ζσ , and compare the outcomes.

Proposition 3.5.1. Let Uℏ(g) and Fℏ[[G ]] be a QUEA and a QFSHA which are dual
to each other, that is Fℏ[[G ]] = Uℏ(g)

∗ and Uℏ(g) = Fℏ[[G ]]⋆ . Then let F be a twist
for Uℏ(g) , and σ be a 2–cocycle for Fℏ[[G ]] . Assume that both F and σ are trivial
modulo ℏ , so that there exists a corresponding twist cF for g (induced by F via
Theorem 3.1.2) and a corresponding 2–cocycle ζσ for g∗ (induced by σ via Theorem
3.2.1). Finally, we identify twists for Uℏ(g) and 2–cocycles for Fℏ[[G ]] via Proposi-
tion 2.2.7, and similarly twists for g and 2–cocycles for g∗ via Proposition 2.1.7.
Then the following holds: if F = σ , then cF = ζσ . □
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A similar result holds for deformations by quasi–2–cocycles and by quasi-twists.
Indeed, let us first notice that, if Uℏ(g) and Fℏ[[G ]] are a QUEA and a QFSHA in
duality — i.e., Fℏ[[G ]] = Uℏ(g)

∗ and Uℏ(g) = Fℏ[[G ]]⋆ — then any quasi–2–cocycle
for Uℏ(g) is a quasi-twist for Fℏ[[G ]] , and viceversa, cf. Proposition 4.1.2 later on.

Once this is settled, next result (which mirrors Proposition 3.5.1 above) holds too,
whose proof again follows by direct comparison of the two deformation procedures
(just tracking the whole construction of γσ and cF , and comparing the outcomes):

Proposition 3.5.2. Let Uℏ(g) and Fℏ[[G ]] be a QUEA and a QFSHA which are in
duality, that is Fℏ[[G ]] = Uℏ(g)

∗ and Uℏ(g) = Fℏ[[G ]]⋆ . Then let σ be a quasi–2–
cocycle for Uℏ(g) , and F be a quasi-twist for Fℏ[[G ]] . Let γσ be the 2–cocycle for
g induced by σ via Theorem 3.3.7, and let cF be the twist for g∗ induced by F via
Theorem 3.4.6. Finally, we identify quasi–2–cocycles for Uℏ(g) and quasi-twists for
Fℏ[[G ]] as mentioned above, and similarly we identify twists for g and 2–cocycles
for g∗ via Proposition 2.1.7. Then the following holds: if σ = F , then γσ = cF . □

4. Deformations vs. QDP

In this section we investigate how the deformation procedures interact when we
interchange QUEA’s and QFSHA’s via Drinfeld’s functors, as in Theorem 2.4.2.

4.1. Some auxiliary results.

We begin with a key observation: our “quasi-2–cocycles” for any QUEA and
“quasi-twists” for any QFSHA are actually standard 2–cocycles and twists, respec-
tively, for the QFSHA and for the QUEA that are associated with the original
quantum group via Drinfeld’s functors from the QDP. Here is the precise result:

Lemma 4.1.1.
(a) Let Uℏ(g) be a QUEA, and let Uℏ(g)

′ be its associated QFSHA following
Theorem 2.4.2. Let σ := exp∗

(
ℏ−1χ

)
be a quasi-2-cocycle for Uℏ(g) as in Definition

3.3.3. Then the restriction σ
∣∣
Uℏ(g)

′×Uℏ(g)
′ of σ to Uℏ(g)

′ × Uℏ(g)
′ is a well-defined,

k[[ℏ]]–valued bilinear form on Uℏ(g)
′ , of the form σ′ = exp∗

(
ℏ+1χ′

)
with χ′ :=(

ℏ−2 χ
)∣∣
Uℏ(g)

′×Uℏ(g)
′ , and this σ′ := exp∗

(
ℏ+1χ′

)
is a 2-cocycle for Uℏ(g)

′ .

(b) Let Fℏ[[G ]] be a QFSHA, and let Fℏ[[G ]]∨ be its associated QUEA following
Theorem 2.4.2. Let F := exp

(
ℏ−1ϕ

)
be a quasi-twist for Fℏ[[G ]] as in Definition

3.4.3. Then F := exp
(
ℏ−1ϕ

)
= exp

(
ℏ+1ϕ∨

)
with ϕ∨ := ℏ−2ϕ ∈

(
Fℏ[[G ]]∨

)⊗̂ 2
,

and, in these terms, F∨ := exp
(
ℏ+1ϕ∨

)
is a twist for Fℏ[[G ]]∨ .

Proof. (a) We retain notation from the proof of Lemma 3.3.2, and we proceed along
the same lines. Thus we set Uℏ := Uℏ(g) and Jℏ := Ker

(
Uℏ

)
, and we write

ẑ := ϵ(z) , z+ := z − ϵ(z) = z − ẑ ∈ Jℏ , hence z = z+ + ẑ ∀ z ∈ Uℏ

We already saw that χ(u, v) = χ
(
u+, v+

)
for all u, v ∈ Uℏ , and then we have

σ(a , b ) =
∑

n≥0 ℏ
−n∏n

i=1χ
(
a+(i), b

+
(i)

)/
n! (4.1)

for any a , b ∈ Uℏ , where ⊗ni=1a
+
(i) = δn(a) and ⊗ni=1b

+
(i) = δn(b) .

Now, restricting to U ′ℏ we get that a′, b′ ∈ U ′ℏ yields δn
(
a′
)
, δn

(
b′
)
∈ ℏn Uℏ̂

⊗n ;

also, in the sequel we can clearly assume ϵ
(
a′
)
= 0 = ϵ

(
b′
)
. Then we get∏n

i=1χ
′(a′+(i) , b′+(i)) =

∏n
i=1ℏ

−2χ
(
a′+(i) , b

′+
(i)

)
∈ ℏ−2n ℏ2n k[[ℏ]] = k[[ℏ]] ∀ n ∈ N+
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whence, like in (4.1), we get σ′
(
a′, b′

)
=

∑
n≥0 ℏ+n

∏n
i=1χ

′(a′+(i) , b′+(i))/n! ∈ k[[ℏ]]
for all a′, b′ ∈ U ′ℏ , which proves the claim.

(b) This follows directly from Definition 3.4.3. □

As a direct consequence, we have the following significant result:

Proposition 4.1.2. Let Uℏ be a QUEA and Fℏ be a QFSHA that are dual to each
other, i.e. such that Fℏ = (Uℏ)

∗ and Uℏ = (Fℏ)
⋆ . Then:

(a) σ is a quasi-2-cocycle for Uℏ ⇐⇒ σ is a quasi-twist for Fℏ ;

(b) F is a quasi-twist for Fℏ ⇐⇒ F is a quasi-2-cocycle for Uℏ .

Proof. The proof follows directly from the very definitions of quasi-2–cocycle and
quasi-twist, along with the observation that Fℏ = (Uℏ)

∗ and Uℏ = (Fℏ)
⋆ imply

F ∨ℏ = (U ′ℏ)
⋆ and U ′ℏ =

(
F ∨ℏ

)∗
, by (2.18). □

4.2. Drinfeld’s functors and “quasi-deformations”.

In this subsection we analyze the interaction between the process of “quasi-
deformation” and the action of a Drinfeld’s functor on some quantum group.

4.2.1. Deformations by quasi-twist under Fℏ[[G ]] 7→ Fℏ[[G ]]∨ . We look now
what happens with deformations by quasi-twist for a QFSHA when the latter is
acted upon by the functor ( )∨ which associates with it a QUEA. Here is our result:

Theorem 4.2.2.
Let Fℏ[[G ]] be a QFSHA. Let F = exp

(
ℏ−1ϕ

)
be a quasi-twist for Fℏ[[G ]] , with

ϕ ∈ Fℏ[[G ]]⊗̃ 2 (cf. Definition 3.4.3). Set ϕ∨ := ℏ−1 log(F ) = ℏ−2ϕ , ϕa := ϕ−ϕ 2,1

and ϕ∨a := ϕ∨ − ϕ∨2,1 . Then we have:

(a) ϕ is antisymmetric, i.e. ϕ 2,1 = −ϕ , iff F is orthogonal, i.e. F2,1 = F−1 ,
iff ϕ∨ is antisymmetric, i.e. ϕ∨2,1 = −ϕ∨ ;

(b) F = exp
(
ℏϕ∨

)
is a twist element for the QUEA Uℏ(g

∗) := Fℏ[[G ]]∨ .

(c) Let c be the antisymmetric twist of g∗ corresponding to F as provided by
Theorem 3.4.6, and let c∨ be the similar twist provided by Theorem 3.1.2 along with
claim (b) above. Then c = c∨ .

Proof. (a) This follows directly by construction.

(b) This is granted by Lemma 4.1.1(b).

(c) This follows by a careful — yet entirely straightforward — check, just tracking
both constructions involved (of c and of c∨ alike). □

4.2.3. Deformations by quasi-2-cocycle under Uℏ(g) 7→ Uℏ(g)
′ . Given a

QUEA, we can apply on it Drinfeld’s functor ( )′ ; we now see what happens when
a deformation by quasi-2-cocycle is performed. Our result reads as follows:

Theorem 4.2.4. Let Uℏ(g) be a QUEA. Let σ = exp∗
(
ℏ−1χ

)
be a quasi-2-cocycle

for Uℏ(g) , with χ ∈
(
Uℏ(g)

⊗̂ 2 )∗ (cf. Definition 3.3.3). Set χ′ := ℏ−1 log∗(σ) =
ℏ−2 χ , χa := χ− χ 2,1 and χ′a := χ′ − χ′2,1 . Then we have:

(a) χ is antisymmetric, i.e. χ 2,1 = −χ , iff σ is orthogonal, i.e. σ2,1 = σ−1 , iff
χ′ is antisymmetric, i.e. χ′2,1 = −χ′ ;

(b) σ = exp∗
(
ℏχ′

)
is a 2-cocycle for the QFSHA Fℏ

[[
G∗

]]
:= Uℏ(g)

′ .
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(c) Let γ be the antisymmetric 2-cocycle of g corresponding to σ as provided by
Theorem 3.3.5, and let γ′ be the similar 2-cocycle provided by Theorem 3.2.1 along
with claim (b) above — using the identification g∗∗ = g . Then γ = γ′ .

Proof. (a) This follows directly by construction.
(b) This is true because of Lemma 4.1.1(a).
(c) Much like for Theorem 4.2.2(c), this follows again by a straightforward check,

just carefully tracking both constructions involved (of γ and of γ alike). □

Remark 4.2.5. Recall that the notions of twist and that of 2-cocycle are dual to
each other (cf. Proposition 2.2.7), and the same holds for those of quasi-twist and
quasi-2-cocycle (cf. §3.5). Moreover, Drinfeld’s functors are also dual to each other,
in the sense of (2.18). Taking all this into account, it turns out easily that Theorem
4.2.2 and Theorem 4.2.4 above are also “dual to each other”, in that either one of
these two statements can be deduced from the other by a duality argument.

4.3. Drinfeld’s functors and (standard) deformations.

We analyze now the interaction between the process of deformation — in the
standard sense — and the action of a Drinfeld’s functor on some quantum group.

4.3.1. Deformations by twist under Uℏ(g) 7→ Uℏ(g)
′ . As a first step, we look

what happens for deformations by twist of a QUEA when the latter is acted upon
by the functor ( )′ which associates with it a QFSHA. It turns out that we find a
relevant result when we make the stronger assumption that the given twist is in fact
a (quantum) R–matrix twist, as in Definition 2.2.1(d). Here is our result:

Theorem 4.3.2. Let Uℏ(g) be a QUEA, and let F be a twist for Uℏ(g) s.t. ϕ ≡ 1(
mod ℏUℏ(g)

⊗̂ 2 ); then ϕ := ℏ−1 log(F ) ∈ Uℏ(g)
⊗̂ 2 , and F = exp(ℏϕ) . Set also

ϕ′ := ℏ−2 log(F ) = ℏ−2ϕ , ϕa := ϕ− ϕ2,1 and ϕ′a := ϕ′− ϕ′2,1 . Assume in addition
that F is indeed a (quantum) R–matrix twist, as in Definition 2.2.1(d). Then:

(a) ϕ is antisymmetric, i.e. ϕ2,1 = −ϕ , iff F is orthogonal, i.e. F2,1 = F−1 , iff
ϕ′ is antisymmetric, i.e. ϕ′2,1 = −ϕ′ ;
(b) F = exp

(
ℏ−1ϕ′

)
is a quasi-twist for the QFSHA Fℏ

[[
G∗

]]
:= Uℏ(g)

′ .

(c) Let c be the antisymmetric twist of g corresponding to F as provided by
Theorem 3.1.2, and let c ′ be the similar twist provided by Theorem 3.4.6 along with
claim (b) above — using the identification g∗∗ = g . Then c = c ′ .

Proof. (a) This follows directly by construction.
(b) This is proved in [EH, Theorem 0.1]. Note that the overall assumption there

is that R be an R–matrix, in the standard sense — so that Uℏ(g) is quasitriangular.
Nevertheless, all the arguments used there to prove the main result only apply
the defining properties of an “R–matrix” in the sense of Definition 2.2.1, namely
(2.8) and the right-hand side of (2.7); the assumption (2.10), instead, is never used.
Therefore, the same arguments, and the whole proof, used in [EH] to prove Theorem
0.1 actually do prove also the present statement, that is actually stronger.

(c) Here again, the proof follows from a straightforward, careful checking proce-
dure, keeping track of both constructions involved (of c and of c ′ alike), much like
for Theorem 4.2.2(c) and for Theorem 4.2.4(c). □

4.3.3. Deformations by 2-cocycle under Fℏ[[G ]] 7→ Fℏ[[G ]]∨ . As a second step,
we look what happens to deformations of a QFSHA by 2-cocycle when we apply
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Drinfeld’s functor ( )∨ . Here again, we get a relevant result under the stronger
assumption that the given 2-cocycle is in fact a (quantum) ϱ–comatrix 2-cocycle, as
in Definition 2.2.4(d). Our result reads as follows:

Theorem 4.3.4. Let Fℏ[[G ]] be any QFSHA, and let σ be a 2-cocycle for Fℏ[[G ]]

such that σ ≡ 1
(
mod ℏ

(
Fℏ[[G ]]⊗̃ 2 )⋆ ) ; then ς := ℏ−1 log(σ) ∈

(
Fℏ[[G ]]⊗̃ 2 )⋆ , and

σ = exp
(
ℏ ς

)
. Set also ς∨ := ℏ log(σ) = ℏ2 ς , ςa := ς − ς 2,1 and ς∨a := ς∨ − ς∨2,1 .

Assume in addition that σ is a (quantum) ϱ–comatrix 2-cocycle, as in Definition
2.2.4(d). Then the following holds true:

(a) ς is antisymmetric, i.e. ς 2,1 = −ς , iff σ is orthogonal, i.e. σ2,1 = σ−1 , iff
ς∨ is antisymmetric, i.e. ς∨2,1 = −ς∨ ;
(b) σ = exp

(
ℏ−1ς∨

)
is a quasi-2-cocycle for the QUEA Uℏ(g

∗) := Fℏ[[G ]]∨ ;

(c) Let γ be the antisymmetric 2-cocycle of g∗ corresponding to σ as provided
by Theorem 3.2.1, and let γ∨ be the similar 2-cocycle provided by 3.3.5 along with
claim (b) above. Then γ = γ∨ .

Proof. (a) This is obvious, by standard identities for formal exponentials.
(b) This claim is the dual to Theorem 4.3.2(b), so it follows from that one via a

duality argument — involving the results in §4.1, in particular Proposition 4.1.2.
(c) Once more, as in previous cases, the claim follows from direct checking, keep-

ing track of the two involved 2-cocycles — γ and of γ∨ — were constructed. □

Remark 4.3.5. Much like as we did in Remark 4.2.5, we notice here as well that
— by the same reasons as before — Theorem 4.3.2 and Theorem 4.3.4 above are
once more “dual to each other”, in that either one of these two statements can be
deduced from the other by a duality argument.

5. Morphisms in the “(co)quasitriangular” case

In this section we focus onto R–matrices and ϱ–comatrices. We investigate what
happens with R–matrices and ϱ–comatrices w.r.t. the QDP, and then we consider
the standard constructions of morphisms between a Hopf algebra H and its dual
coming from an R–matrix or a ϱ–comatrix.

5.1. R–matrices and ϱ–comatrices w.r.t. QDP: quasi–(co)matrices.

In next two results, we explain how R–matrices and ρ–comatrices “behave well”
with respect to Drinfeld’s functors and the Quantum Duality Principle. In fact, this
leads us to introduce the notions of “quasi–R–matrix” and of “quasi–ρ–comatrix”,
which are straight analogue of the notions of “quasi–twist”and of “quasi–2–cocycle”.

We begin introducing some more bare definitions:

Definition 5.1.1.

(a) Let Fℏ[[G ]] be a QFSHA. We call “quasi–R–matrix” of Fℏ[[G ]] any R–matrix

R for Uℏ(g
∗) := Fℏ[[G ]]∨ such that R ≡ 1⊗2 mod

(
ℏFℏ[[G ]]∨ ⊗̂Fℏ[[G ]]∨

)
.

(b) Let Uℏ(g) be a QUEA. We call “quasi–ρ–comatrix” of Uℏ(g) any ϱ–comatrix

ρ for Fℏ[[G
∗]] := Uℏ(g)

′ such that ρ ≡ ϵ⊗2 mod
(
ℏ
(
Uℏ(g)

′ ⊗̃Uℏ(g)
′ )⋆) .

Remark 5.1.2. In the same spirit of Proposition 2.2.7 and (2.18), it is clear that
the notions of “quasi–R–matrix” and of “quasi–ϱ–comatrix” are dual to each other.
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Observations 5.1.3. (a) With assumptions as in Definition 5.1.1(a) above, let R
be any quasi–R–matrix for a QFSHA Fℏ[[G ]] : since R ≡ 1⊗2 mod ℏ , we can
write R in the form R = exp

(
ℏ+1 θ

)
for some θ ∈ Fℏ[[G ]]∨ ⊗̂Fℏ[[G ]]∨ .

Similarly, if ρ is any quasi–ϱ–comatrix for a QUEA Uℏ(g) , then we can write it

in the form ρ = exp∗
(
ℏ+1 ς

)
for some ς ∈

(
Uℏ(g)

′ ⊗̃Uℏ(g)
′ )⋆ .

(b) Note that in the very definition of “quasi–R–matrix”, resp. of “quasi–ϱ–
comatrix”, we assume a condition which is quite close, yet weaker, than the one
demanded for the definition of “quasi-twist”, resp. of “quasi-2–cocycle”, in Defini-
tion 3.3.3, resp. in Definition 3.4.3. In fact, our choice for these definitions about
R–matrices and ϱ–comatrices is motivated by Proposition 5.1.4 below, which even-
tually implies that when the two setups overlap, the stronger condition for twists/2–
cocycles actually holds true — cf. Theorem 4.3.2 and Theorem 4.3.4.

The key result about quasi–R–matrices and quasi–ϱ–comatrices is the following:

Proposition 5.1.4.

(a) Let Uℏ(g) be a QUEA, and let Uℏ(g)
′ be the QFSHA associated to it by the

Quantum Duality Principle, as in Theorem 2.4.2. Then for any R–matrix of Uℏ(g)

of the form R = exp
(
ℏ θ

)
, with θ = ℏ−1 log (R) ∈ Uℏ(g)

⊗̂ 2 , we have

ϑ := ℏ2 θ = ℏ+1 log (R) ∈
(
Uℏ(g)

′ )⊗̃ 2

(b) Let Fℏ[[G ]] be a QFSHA, and let Fℏ[[G ]]∨ be the QUEA associated to it by
the Quantum Duality Principle, as in Theorem 2.4.2. Then for any ϱ–comatrix of

Fℏ[[G ]] of the form ρ = exp∗
(
ℏ ς

)
, with ς = ℏ−1 log∗(ρ) ∈

(
Fℏ[[G ]]⊗̂ 2

)∗
, we have

ζ := ℏ2 ς = ℏ+1 log∗(ρ) ∈
((
Fℏ[[G ]]∨

)⊗̂ 2
)∗

Proof. (a) This is proved in [EH, Theorem 0.1]. Indeed, the overall assumption there
is that R be an R–matrix, in the standard sense — so that Uℏ(g) is quasitriangular.
Nevertheless, all the arguments used there to prove the main result only apply
the defining properties of an “R–matrix” in the sense of Definition 2.2.1, namely
(2.8) and the right-hand side of (2.7); the assumption (2.10), instead, is never used.
Therefore, the same arguments, and the whole proof, used in [EH] to prove Theorem
0.1 actually do prove also the present, stronger statement.

(b) This follows from claim (a), by duality, using the duality relation (2.18), the
fact that Fℏ[[G ]]∨ is a QUEA when Fℏ[[G ]] is a QFSHA, and Proposition 2.2.7. □

The previous result has the following, important consequence:

Theorem 5.1.5. Let Uℏ(g) be a QUEA and Fℏ[[G ]] be a QFSHA; let Fℏ[[G
∗]] :=

Uℏ(g)
′ be the QFSHA and Uℏ(g

∗) := Fℏ[[G ]]∨ be the QUEA provided by the Quantum
Duality Principle, as in Theorem 2.4.2. Then the following holds:

(a) every R–matrix for Uℏ(g) which is congruent to 1⊗2 modulo ℏ is a quasi–R–
matrix for Uℏ(g)

′ ;

(b) every ϱ–comatrix for Fℏ[[G ]] which is congruent to ϵ⊗2 modulo ℏ is a quasi–
ϱ–comatrix for Fℏ[[G ]]∨ ;

(c) every ϱ–comatrix for Uℏ(g)
′ which is congruent to ϵ⊗2 modulo ℏ is a quasi–

ϱ–comatrix for Uℏ(g) itself;

(d) every R–matrix for Fℏ[[G ]]∨ which is congruent to 1⊗2 modulo ℏ is a quasi–
R–matrix for Fℏ[[G ]] itself.
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Proof. Claims (a) and (b) follow directly from Proposition 5.1.4, claims (a) and
(b), respectively. Now claim (c) follows from claim (b) applied to the QFSHA

Fℏ
[[
G∗

]]
:= Uℏ(g)

′ , since Fℏ
[[
G∗

]]∨
=

(
Uℏ(g)

′ )∨ = Uℏ(g) by Theorem 2.4.2(a).

Similarly, claim (d) follows from (a) applied to the QUEA Uℏ
(
g∗
)
:= Fℏ[[G ]]∨ ,

since Uℏ
(
g∗
)′
=

(
Fℏ[[G ]]∨

)′
= Fℏ[[G ]] by Theorem 2.4.2(a) again. □

5.2. Morphisms from R –matrices and ϱ–comatrices.

We shall now explore what happens if we apply the general constructions leading
to Proposition 2.2.9, resp. to Proposition 2.2.10, is (tentatively) applied to a QUEA,
resp. a QFSHA, as the Hopf algebra H to start with. To begin with, we check that
Proposition 2.2.9 still makes sense when H := Uℏ(g) is a QUEA:

Proposition 5.2.1. Let Uℏ(g) be a QUEA, and Fℏ[[G ]] := Uℏ(g)
∗ be its dual

QFSHA, as in §2.3.4. Let R = R1 ⊗R2 (in Sweedler’s notation) be an R–matrix
for Uℏ(g) . Then there exist two morphisms of topological Hopf algebras

←−
ΦR : Fℏ[[G ]] := Uℏ(g)

∗−−−→ Uℏ(g)
cop , η 7→

←−
ΦR(η) := η(R1)R2

−→
ΦR : Fℏ[[G ]] := Uℏ(g)

∗−−−→ Uℏ(g)
op , η 7→

−→
ΦR(η) := R1 η(R2)

Proof. This is straightforward (see [GaGa3] for details). □

Dually, Proposition 2.2.10 still makes sense when H := Fℏ[[G ]] is a QFSHA:

Proposition 5.2.2. Let Fℏ[[G ]] be a QFSHA, and Uℏ(g) := Fℏ[[G ]]⋆ be its dual
QUEA, as in §2.3.4. Let ρ be a ϱ–comatrix for Fℏ[[G ]] . Then there exist two
morphisms of topological Hopf algebras

←−
Ψρ : Fℏ[[G ]]−−−→

(
Fℏ[[G ]]⋆

)cop
= Uℏ(g)

cop , ℓ 7→
←−
Ψρ(ℓ) := ρ(ℓ ,−)

−→
Ψρ : Fℏ[[G ]]−−−→

(
Fℏ[[G ]]⋆

)op
= Uℏ(g)

op , ℓ 7→
−→
Ψρ(ℓ) := ρ(−, ℓ )

Proof. This is straightforward again (cf. [GaGa3] for details). □

We shall now show that both previous results can be refined, eventually yielding
morphisms that connect quantum groups of the same nature, namely both QFSHA’a
in one case and both QUEA’s in the other case.

Theorem 5.2.3. Let Uℏ(g) be a QUEA, let Fℏ[[G ]] := Uℏ(g)
∗ be its dual QFSHA,

as in §2.3.4, and let Fℏ[[G
∗]] := Uℏ(g)

′ , resp. Uℏ(g
∗) := Fℏ[[G ]]∨ , be the QFSHA,

resp. the QUEA, introduced in §2.4. Let R = Ri⊗Ri (sum, possibly infinite, over
repeated indices) be an R–matrix for Uℏ(g) , which is congruent to 1⊗2 modulo ℏ .

Then, for the two morphisms Fℏ[[G ]]
←−
ΦR−−−→Uℏ(g)

cop and Fℏ[[G ]]
−→
ΦR−−−→Uℏ(g)

op

in Proposition 5.2.1, the following holds:

(a) they take values inside Uℏ(g)
′ , and so they corestrict to morphisms

and

←−
Φ ′R : Fℏ[[G ]] −−−−−→

(
Uℏ(g)

′ )cop = Fℏ[[G
∗]]cop

−→
Φ ′R : Fℏ[[G ]] −−−−−→

(
Uℏ(g)

′ )op = Fℏ[[G
∗]]op

between QFSHA’s for mutually dual (formal) Poisson groups;
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(b) they uniquely extend to Fℏ[[G ]]∨ =
(
Uℏ(g)

∗)∨ , i.e. they extend to morphisms

and

←−
Φ ∨R : Uℏ(g

∗) := Fℏ[[G ]]∨ −−−−−→ Uℏ(g)
cop

−→
Φ ∨R : Uℏ(g

∗) := Fℏ[[G ]]∨ −−−−−→ Uℏ(g)
op

between QUEA’s for mutually dual Lie bialgebras.

Proof. (a) Recall that Ker
(
ϵUℏ(g)

′
)
=: JUℏ(g)

′ ⊆
(
JUℏ(g)

′ + k[[ℏ]] 1Uℏ(g)
′
)
=: IUℏ(g)

′ ,
and Uℏ(g) is a topological Hopf algebra with respect to the IUℏ(g)

′–adic topology.

Recall also that, by Proposition 5.1.4(a), we can write R := exp
(
ℏ−1 ϑ

)
with

ϑ ∈ Uℏ(g)
′ ⊗̃Uℏ(g)

′ ; we write the latter as ϑ = ϑi⊗ϑi (sum over repeated indices),
where ϑi, ϑi ∈ JUℏ(g)

′ . Then ℏ−1 ϑ = ℏ−1 ϑi ⊗ ϑi =
(
ℏ−1 ϑi

)
⊗ ϑi = θi ⊗ ϑi with

θi := ℏ−1ϑi ∈ ℏ−1JUℏ(g)
′ ⊆ JUℏ(g) := Ker

(
ϵUℏ(g)

)
, where the latter inclusion follows

by the basic properties of Uℏ(g)
′, cf. [Ga1]. Now writing

(
θi ⊗ ϑi

)n
= θj[n] ⊗ ϑ[n],j

for each n ∈ N , we have in particular θj[n] ∈ J n
Uℏ(g)

and ϑ[n],j ∈ J n
Uℏ(g)

′ , for every

n ∈ N . When we expand R , by all this we find

R = exp
(
ℏ−1 ϑ

)
= exp

(
θi ⊗ ϑi

)
=

∑
n≥0

1

n!

(
θi ⊗ ϑi

)n
=

∑
n≥0

1

n!

(
θj[n] ⊗ ϑ[n],j

)
Thus for η ∈ Fℏ[[G ]] := Uℏ(g)

∗ we get
←−
ΦR(η) = η

(
Rs

)
Rs =

∑
n≥0

1

n!
η
(
θj[n]

)
ϑ[n],j ,

which describes a well-defined element (a convergent series, in the relevant topology!)
of

(
Uℏ(g)

′ )cop — equal to Uℏ(g)
′ as a k[[ℏ]]–module — exactly because ϑ[n],j ∈ J n

Uℏ(g)
′

for each n ∈ N . So Φ←R corestricts to
(
Uℏ(g)

′ )cop = Fℏ[[G
∗]]cop as claimed, q.e.d.

The proof for
−→
ΦR goes exactly the same, just switching left and right.

(b) We begin acting as in the proof of (a) above, but switching the roles of left
and right hand sides. Namely, we write ℏϑ = ℏ

(
ϑi ⊗ ϑi

)
= θi ⊗ ϑi where

θi := ℏ−1ϑi ∈ ℏ−1JUℏ(g)
′ ⊆ JUℏ(g) := Ker

(
ϵUℏ(g)

)
, and also

(
ϑi ⊗ θi

)n
= ϑj[n] ⊗ θ[n],j ,

with ϑj[n] ∈ J n
Uℏ(g)

′ and θ[n],j ∈ J n
Uℏ(g)

, for all n ∈ N . Then expanding R yields

R = exp
(
ℏ−1 ϑ

)
= exp

(
ϑi ⊗ θi

)
=

∑
n≥0

1

n!

(
ϑi ⊗ θi

)n
=

∑
n≥0

1

n!

(
ϑj[n] ⊗ θ[n],j

)
hence for every µ ∈ Uℏ(g)

∗ we have

←−
ΦR(µ) := µ

(
Rs

)
Rs =

∑
n≥0

1

n!
µ
(
ϑj[n]

)
θ[n],j (5.1)

Now, recall that
(
Uℏ(g)

∗)∨ =
(
Uℏ(g)

′ )⋆ , by (2.18). Then we consider the for-

mula (5.1) for any µ ∈
(
Uℏ(g)

∗)∨ =
(
Uℏ(g)

′ )⋆ — which contains Uℏ(g)
∗ . As all

coefficients µ
(
ϑ′n) belong to k[[ℏ]] , every partial sum in the right-hand side formal

series is a well-defined element in Uℏ(g)
cop — equal to Uℏ(g) as a k[[ℏ]]–module. In

addition, since ϑj[n] ∈ J n
Uℏ(g)

′ ⊆ I n
Uℏ(g)

′ — for each n ∈ N — and µ : Uℏ(g)
′−→ k[[ℏ]]

is continuous (with respect to the I n
Uℏ(g)

′–adic topology on the left and the ℏ–adic
topology on the right), for every s ∈ N there exist ns such that µ

(
ϑj[n]) ∈ ℏnsk[[ℏ]]

for all n ≥ ns . This ensures that the formal series in (5.1) is actually convergent
in the ℏ–adic topology of Uℏ(g) , thus describing a well-defined element in Uℏ(g) .

Letting µ range freely inside
(
Uℏ(g)

∗)∨ , this proves that
←−
ΦR does indeed extend

from Uℏ(g)
∗ to

(
Uℏ(g)

∗)∨ = Fℏ[[G
∗]]∨ =: Uℏ(g

∗) , q.e.d.

Switching left and right in the arguments above we get the proof for
−→
ΦR too. □
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Remark 5.2.4. Claim (a) of Theorem 5.2.3 above appears also in [EK], §4.5.

In the dual framework, the parallel result holds true as well:

Theorem 5.2.5. Let Fℏ[[G ]] be a QFSHA, let Uℏ(g) := Fℏ[[G ]]⋆ be its dual QUEA,
as in §2.3.4, and let also Uℏ(g

∗) := Fℏ[[G ]]∨ , resp. Fℏ[[G
∗]] := Uℏ(g)

′ , be the
QUEA, resp. the QFSHA, introduced in §2.4. Let ρ be a ϱ–comatrix for Fℏ[[G ]] ,
which is congruent to ϵ⊗2 modulo ℏ .
Then, for the two morphisms Fℏ[[G ]]

←−
Ψρ−−−→Uℏ(g)

cop and Fℏ[[G ]]
−→
Ψρ−−−→Uℏ(g)

op

in Proposition 5.2.2, the following holds:

(a) they take values inside Uℏ(g)
′ , so they corestrict to morphisms

and

←−
Ψ ′ρ : Fℏ[[G ]] −−−−−→

(
Uℏ(g)

′ )cop = Fℏ[[G
∗]]cop

−→
Ψ ′ρ : Fℏ[[G ]] −−−−−→

(
Uℏ(g)

′ )op = Fℏ[[G
∗]]op

between QFSHA’s for mutually dual (formal) Poisson groups.

(b) they uniquely extend to Uℏ(g
∗) = Fℏ[[G ]]∨ , i.e. they extend to morphisms

and

←−
Ψ∨ρ : Uℏ(g

∗) = Fℏ[[G ]]∨ −−−−−→ Uℏ(g)
cop

−→
Ψ∨ρ : Uℏ(g

∗) = Fℏ[[G ]]∨ −−−−−→ Uℏ(g)
op

between QUEA’s for mutually dual Lie bialgebras.

Proof. (a) By the assumption ρ ≡ ϵ⊗2 (mod ℏ) and by Proposition 5.1.4(b), we

can write ρ in the form ρ = exp∗
(
ℏ−1 ζ

)
for some ζ ∈

((
Fℏ[[G ]]∨

)⊗̂ 2
)∗

. Then

ζ ∈
((
Fℏ[[G ]]∨

)⊗̂ 2
)∗

=
(
Fℏ[[G ]]∨ ⊗̂Fℏ[[G ]]∨

)∗
=

(
Fℏ[[G ]]∨

)∗ ⊗̃ (
Fℏ[[G ]]∨

)∗
=

=
(
Fℏ[[G ]]⋆

)′ ⊗̃ (
Fℏ[[G ]]⋆

)′
= Uℏ(g)

′ ⊗̃Uℏ(g)
′

— thanks to (2.18) — hence ℏ−1 ζ ∈ ℏ−1 Uℏ(g
∗)′ ⊗̃Uℏ(g

∗)′ . Now, the right-
hand side of (2.12) for σ := ρ implies ζ(1 , a) = 0 for all a ∈ Fℏ[[G ]] , hence

ζ(−, a) ∈ Ker
(
ϵUℏ(g)

′
)
and so ℏ−1 ζ(−, a) ∈

(
Uℏ(g)

′)∨ = Uℏ(g) = Fℏ[[G ]]⋆ for all
a ∈ Fℏ[[G ]] . This implies that

ℏ−1 ζ(− ,−) ∈
(
Uℏ(g)

′ )∨⊗ Uℏ(g)
′ = Fℏ[[G ]]⋆ ⊗ Uℏ(g)

′ (5.2)

where hereafter we are being temporarily sloppy with the tensor product — we fix
this later on. Clearly, (5.2) implies ρ = exp∗

(
ℏ−1 ζ

)
∈ Fℏ[[G ]]⋆ ⊗ Uℏ(g)

′ as well.

Therefore we get at once Ψ←ρ (ℓ) := ρ(ℓ ,−) ∈ Uℏ(g)
′ for all ℓ ∈ Fℏ[[G ]] , q.e.d.

This proves the claim about
←−
Ψρ , and that concerning

−→
Ψρ is entirely similar.

It remains to “dot your i’s” about the tensor product in (5.2). In fact, a priori
we have ρ ∈ Fℏ[[G ]]⋆ ⊗̂Fℏ[[G ]]⋆ = Uℏ(g) ⊗̂Uℏ(g) , hence also

ℏ−1 ζ ∈ Fℏ[[G ]]⋆ ⊗̂Fℏ[[G ]]⋆ = Uℏ(g) ⊗̂Uℏ(g)

— where the (completed, topological) tensor product “ ⊗̂ ” is considered. On the
other hand, we have found that

ζ ∈
(
Fℏ[[G ]]⋆

)′ ⊗̃ (
Fℏ[[G ]]⋆

)′
= Uℏ(g)

′ ⊗̃Uℏ(g)
′

— where the (completed, topological) tensor product “ ⊗̃ ” is used. Then the critical
point is: what kind of tensor product “⊗ ” is taken in (5.2)?
Instead of giving a direct answer to this question, we point out the following.

First observe that Uℏ(g)
′ ⊗̃Uℏ(g)

′ =
(
Uℏ(g) ⊗̂Uℏ(g)

)′
embeds into Uℏ(g) ⊗̂Uℏ(g) .
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Then, when ℏ−1 ζ ∈ Uℏ(g) ⊗̂Uℏ(g) is expanded into some series ℏ−1 ζ = βi ⊗ βi
(summing over repeated indices) with βi, βi ∈ Uℏ(g) for all i , what we proved
above is that we actually have βi ∈ Uℏ(g)

′ (⊆ Uℏ(g)
)
for all indices i . This is what

we loosely wrote as ℏ−1 ζ ∈ Uℏ(g)⊗ Uℏ(g)
′ = Fℏ[[G ]]⋆ ⊗ Uℏ(g)

′ in (5.2) above.

(b) Acting as in part (a), we find ρ = exp∗
(
ℏ−1 ζ

)
with ζ ∈

(
Uℏ(g)

′ )⊗̃ 2
and ζ ∈(

Ker
(
ϵUℏ(g)

))⊗̂ 2
too, so ζ ∈

(
Ker

(
ϵUℏ(g)

′
))⊗̃ 2

. Since Ker
(
ϵUℏ(g)

′
)
⊆ ℏKer

(
ϵUℏ(g)

)
,

this implies that, expanding ℏ−1 ζ as a (convergent) series ℏ−1 ζ = βi ⊗ βi , we

can assume βi ∈ Uℏ(g)
′ . As Uℏ(g)

′ =
(
Fℏ[[G ]]⋆

)′
=

(
Fℏ[[G ]]∨

)∗
, we end up with

ℏ−1 ζ = βi ⊗ βi ∈
(
Fℏ[[G ]]∨

)∗ ⊗ Uℏ(g) (5.3)

where again the meaning of the tensor product “⊗ ” considered in this formula (along
with the corresponding convergence issues) is handled just as in part (a). Finally,

from (5.3) it follows at once that
←−
Ψρ extends from Fℏ[[G ]] to Fℏ[[G ]]∨ as claimed.

This proves our statement for
←−
Ψρ , and the case of

−→
Ψρ is entirely similar. □

5.2.6. Duality properties. When we deal with a QUEA and a QFSHA which are
dual to each other, it makes sense to compare the previous results. The outcome is
that Proposition 2.2.12 turns to an enhanced version (with trivial proof), as follows:

Theorem 5.2.7. Let Uℏ(g) be a QUEA, Fℏ[[G ]] a QFSHA, which are dual to each
other, i.e. Fℏ[[G ]] = Uℏ(g)

∗ and Uℏ(g) = Fℏ[[G ]]⋆ . Let R = ρ be an R–matrix for
Uℏ(g) and a ϱ–comatrix for Fℏ[[G ]] , which is trivial modulo ℏ , i.e. congruent to 1⊗2,
resp. to ϵ⊗2, modulo ℏ . Then, for the morphisms in Proposition 5.2.1, Proposition
5.2.2, Theorem 5.2.3 and Theorem 5.2.5 we have the following identifications
←−
ΦR =

←−
Ψρ ,

←−
Φ ′R =

←−
Ψ ′ρ ,

←−
Φ ∨R =

←−
Ψ∨ρ and

−→
ΦR =

−→
Ψρ ,

−→
Φ ′R =

−→
Ψ ′ρ ,

−→
Φ ∨R =

−→
Ψ∨ρ □

5.2.8. Comparing morphisms (1). Let us fix assumptions as in Theorem 5.2.3:
Uℏ(g) is a given QUEA, Fℏ[[G ]] its dual QFSHA, and R = Rs⊗Rs is a (quantum)
R–matrix of Uℏ(g) . Then from Theorem 5.2.3 we have Hopf algebra morphisms

Fℏ[[G ]]
←−
Φ ′

R−−−−−→Fℏ[[G
∗]]cop , Fℏ[[G ]]

−→
Φ ′

R−−−−−→Fℏ[[G
∗]]op (5.4)

between QFSHA’s for mutually dual (formal) Poisson groups, and

Uℏ(g
∗)

←−
Φ∨

R−−−−−−→Uℏ(g)
cop , Uℏ(g

∗)
−→
Φ∨

R−−−−−−→Uℏ(g)
op (5.5)

between QUEA’s for mutually dual Lie bialgebras, which we re-write in the form

Uℏ(g
∗)cop

←−
Φ∨

R−−−−−−→Uℏ(g) , Uℏ(g
∗)op

−→
Φ∨

R−−−−−−→Uℏ(g) (5.6)

that is entirely equivalent. We now go and compare (5.4) and (5.6).
Recall that Fℏ[[G

∗]] := Uℏ(g)
′ and Uℏ(g

∗) := Fℏ[[G ]]∨ , which are in duality
because Uℏ(g) and Fℏ[[G ]] are in duality (by construction) and we can apply (2.18).
Then also Fℏ[[G

∗]]cop and Uℏ(g
∗)op are in duality, as well as Fℏ[[G

∗]]op and Uℏ(g
∗)cop .

We are now ready to compare the morphisms in (5.4) with those in (5.6). Namely,

Fℏ[[G ]]
←−
Φ ′

R // Fℏ[[G
∗]]cop Fℏ[[G ]]

−→
Φ ′

R // Fℏ[[G
∗]]op

Uℏ(g) oo −→
Φ∨

R

Uℏ(g
∗)op Uℏ(g) oo ←−

Φ∨
R

Uℏ(g
∗)cop

(5.7)
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are diagrams where the vertical, twisting lines denote a relationship of mutual (Hopf)
duality. Next result tells us that the link between the morphisms on top row and
those underneath is indeed “the best possible one”:

Theorem 5.2.9. The two morphisms in left-hand side, resp. in right-hand side, of
(5.7) are adjoint to each other, that is for all η ∈ Uℏ(g

∗) and f ∈ Fℏ[[G ]] we have〈−→
Φ ∨R(η) , f

〉
=

〈
η ,
←−
Φ ′R(f)

〉
and

〈←−
Φ ∨R(η) , f

〉
=

〈
η ,
−→
Φ ′R(f)

〉
where by “

〈
,
〉
” we denote the pairing between any two Hopf algebras in duality.

Proof. It is enough to prove half of the claim — the other one being entirely similar
— say the right-hand side. Direct computation yields〈←−

Φ ∨R(η) , f
〉

=
〈〈
η ,Rs

〉
Rs , f

〉
=

〈
η ,Rs

〈
Rs , f

〉〉
=

〈
η ,
−→
Φ ′R(f)

〉
for all η ∈ Uℏ(g

∗) and f ∈ Fℏ[[G ]] , hence we are done. □

As a second step, let now start with assumptions as in Theorem 5.2.5: Fℏ[[G ]] is a
given QFSHA, Uℏ(g) its dual QUEA, and ρ is a (quantum) ϱ–comatrix of Fℏ[[G ]] .
Then Theorem 5.2.5 provides Hopf algebra morphisms

Fℏ[[G ]]
←−
Ψ ′

ρ−−−−−→Fℏ[[G
∗]]cop , Fℏ[[G ]]

−→
Ψ ′

ρ−−−−−→Fℏ[[G
∗]]op (5.8)

between QFSHA’s for mutually dual (formal) Poisson groups, and

Uℏ(g
∗)

←−
Ψ∨

ρ−−−−−−→Uℏ(g)
cop , Uℏ(g

∗)
−→
Ψ∨

ρ−−−−−−→Uℏ(g)
op (5.9)

between QUEA’s for mutually dual Lie bialgebras; we re-write the latter as

Uℏ(g
∗)cop

←−
Ψ∨

ρ−−−−−−→Uℏ(g) , Uℏ(g
∗)op

−→
Ψ∨

ρ−−−−−−→Uℏ(g) (5.10)

that is entirely equivalent. We now go and compare (5.8) and (5.10).
Acting as before (for the morphisms induced by an R–matrix), we find diagrams

Fℏ[[G ]]

←−
Ψ ′

ρ // Fℏ[[G
∗]]cop Fℏ[[G ]]

−→
Ψ ′

ρ // Fℏ[[G
∗]]op

Uℏ(g) oo −→
Ψ∨

ρ

Uℏ(g
∗)op Uℏ(g) oo ←−

Ψ∨
ρ

Uℏ(g
∗)cop

(5.11)

where the vertical, twisting lines denote a relationship of mutual (Hopf) duality.
Again, the link between the morphisms on top row and those underneath turns out
to be “the best possible one”, as the following result claims:

Theorem 5.2.10. The two morphisms in left-hand side, resp. in right-hand side, of
(5.7) are adjoint to each other, that is for all η ∈ Uℏ(g

∗) and f ∈ Fℏ[[G ]] we have〈−→
Ψ∨ρ (η) , f

〉
=

〈
η ,
←−
Ψ ′ρ(f)

〉
and

〈←−
Ψ∨ρ (η) , f

〉
=

〈
η ,
−→
Ψ ′ρ(f)

〉
where by “

〈
,
〉
” we denote the pairing between any two Hopf algebras in duality.

Proof. We prove just the left-hand side of the claim. Direct computation gives〈−→
Ψ∨ρ (η) , f

〉
=

〈
ρ (−, η) , f

〉
= ρ

(
f, η

)
=

〈
η , ρ ( f,−)

〉
=

〈
η ,
←−
Ψ ′ρ(f)

〉
for all η ∈ Uℏ(g

∗) and f ∈ Fℏ[[G ]] , as requested. □



QUANTUM GROUP DEFORMATIONS AND R–(CO)MATRICES VS. QUANTUM DUALITY 53

5.3. Morphisms from quasi–R –matrices and quasi–ϱ–comatrices.

We shall now explore what happens when the constructions leading to Proposition
2.2.9 or Proposition 2.2.10, respectively, is (tentatively) applied to a QFSHA and a
quasi–R–comatrix for it, or to a QUEA and a quasi–ϱ–comatrix for it.
As a first result, we find that the construction of Hopf morphisms as in Proposition

2.2.9 can be applied again when the Hopf algebra under scrutiny is a QFSHA and
its R–matrix is replaced by only (!) a quasi–R–matrix.

Proposition 5.3.1. Let Fℏ[[G ]] be a QFSHA, and R a quasi–R–matrix for it. Then
the recipes in Proposition 2.2.9 provide two well-defined morphisms
←−
ΦR : Fℏ[[G

∗]] :=
(
Uℏ(g

∗)
)∗

=
(
Fℏ[[G ]]∨

)∗ −−−→ (
Fℏ[[G ]]∨

)cop
= Uℏ(g

∗)cop

−→
ΦR : Fℏ[[G

∗]] :=
(
Uℏ(g

∗)
)∗

=
(
Fℏ[[G ]]∨

)∗ −−−→ (
Fℏ[[G ]]∨

)op
= Uℏ(g

∗)op

Proof. This follows from a direct application of Proposition 5.2.1 to the QUEA
Uℏ(g

∗) := Fℏ[[G ]]∨ and its R–matrix R . □

The previous result provide morphisms from a QFSHA to a QUEA. We shall now
improve such a result — much like we did in §5.2 — finding a couple of morphisms
between QFSHA’s and another couple between QUEA’s.

Theorem 5.3.2. Assume that R is a quasi–R–matrix for the QFSHA Fℏ[[G ]] , i.e.
an R–matrix for the QUEA Fℏ[[G ]]∨ =: Uℏ(g

∗) , of the form R = exp
(
ℏ−1r

)
for

some r ∈ Fℏ[[G ]]⊗̃ 2 . Then, for the two morphisms
←−
ΦR and

−→
ΦR in Proposition

5.3.1 above, the following holds:

(a) they corestrict to morphisms

and

←−
Φ ′R : Fℏ[[G

∗]] =
(
Fℏ[[G ]]∨

)∗−→((
Fℏ[[G ]]∨

)cop)′
=
((
Fℏ[[G ]]∨

)′)cop
= Fℏ[[G ]]cop

−→
Φ ′R : Fℏ[[G

∗]] =
(
Fℏ[[G ]]∨

)∗−→((
Fℏ[[G ]]∨

)op)′
=
((
Fℏ[[G ]]∨

)′)op
= Fℏ[[G ]]op

between QFSHA’s for mutually dual (formal) Poisson groups;

(b) they extend to morphisms

and

←−
Φ ∨R : Uℏ(g) = Fℏ[[G ]]⋆ =

((
Fℏ[[G ]]∨

)∗)∨ −−−−→ (
Fℏ[[G ]]∨

)cop
= Uℏ(g

∗)cop

−→
Φ ∨R : Uℏ(g) = Fℏ[[G ]]⋆ =

((
Fℏ[[G ]]∨

)∗)∨ −−−−−→ (
Fℏ[[G ]]∨

)op
= Uℏ(g

∗)op

between QUEA’s for mutually dual Lie bialgebras.

Proof. First of all, note that the chain of identities((
Fℏ[[G ]]∨

)cop)′
=

((
Fℏ[[G ]]∨

)′)cop
= Fℏ[[G ]]cop

— and similarly with superscript “op” instead of “cop” throughout — is obvious
from definitions along with the fact that Drinfeld’s functors ( )′ and ( )∨ are inverse
to each other. Similarly, it is also obviously true the following chain of identities((

Fℏ[[G ]]∨
)∗)∨

=
((
Fℏ[[G ]]∨

)′)⋆
= Fℏ[[G ]]⋆ = Uℏ(g)

As to the rest of the claim, everything follows from Theorem 5.2.3 applied to the
QUEA Uℏ(g

∗) := Fℏ[[G ]]∨ along with its R–matrix R . □

Now we go for the dual constructions, concerning quasi–ρ–comatrices for a QUEA:
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Proposition 5.3.3. Assume that ρ is a quasi–ϱ–comatrix for the QUEA Uℏ(g) ,

i.e. an element of the form ρ = exp∗
(
ℏ−1ϱ

)
for some ϱ ∈

(
Uℏ(g)

⊗̂ 2
)∗

— taking

into account Lemma 3.3.2 — which obeys (2.13).
Then the recipes in Proposition 2.2.10 provide two well-defined morphisms

and

←−
Ψ ρ : Fℏ[[G

∗]] := Uℏ(g)
′ −−−→

((
Uℏ(g)

′ )⋆)cop

=
(
Fℏ[[G

∗]]⋆
)cop

= Uℏ(g
∗)cop

−→
Ψ ρ : Fℏ[[G

∗]] := Uℏ(g)
′ −−−→

((
Uℏ(g)

′ )⋆)op

=
(
Fℏ[[G

∗]]⋆
)op

= Uℏ(g
∗)op

Proof. Everything follows from definitions when applying Proposition 5.2.2 to the
QFSHA Fℏ[[G

∗]] := Uℏ(g)
′ and noting that

(
Uℏ(g)

′ )⋆ = F [[G∗ ]]⋆ = Uℏ(g
∗) . □

Once again, the previous result provides morphisms from a QFSHA to a QUEA,
and now we “enhance” it — like we did with Theorem 5.3.2 — finding morphisms
between QFSHA’s and morphisms between QUEA’s:

Theorem 5.3.4. Assume that ρ is a quasi–ϱ–comatrix for the QUEA Uℏ(g) , i.e.

an element of the form ρ = exp∗
(
ℏ−1ϱ

)
for some ϱ ∈

(
Uℏ(g)

⊗̂ 2
)∗

— taking into

account Lemma 3.3.2 — which obeys (2.13). Then, for the two morphisms
←−
Ψ ρ and

−→
Ψ ρ in Proposition 5.3.3 above, the following holds:

(a) they corestrict to morphisms

and

←−
Ψ ′ρ : Fℏ[[G

∗]] = Uℏ(g)
′ −−→

(((
Uℏ(g)

′ )⋆)cop)′
=

(
Uℏ(g)

∗)cop =: Fℏ[[G ]]cop

−→
Ψ ′ρ : Fℏ[[G

∗]] = Uℏ(g)
′ −−→

(((
Uℏ(g)

′ )⋆)op)′
=

(
Uℏ(g)

∗)op =: Fℏ[[G ]]op

between QFSHA’s for mutually dual (formal) Poisson groups;

(b) they extend to morphisms

and

←−
Ψ∨ρ : Uℏ(g) =

(
Uℏ(g)

′ )∨ −−→ ((
Uℏ(g)

′ )⋆)cop

=
(
Fℏ[[G

∗]]⋆
)cop

= Uℏ(g
∗)cop

−→
Ψ∨ρ : Uℏ(g) =

(
Uℏ(g)

′ )∨ −−→ ((
Uℏ(g)

′ )⋆)op

=
(
Fℏ[[G

∗]]⋆
)op

= Uℏ(g
∗)op

between QUEA’s for mutually dual Lie bialgebras.

Proof. As the functors ( )′ and ( )∨ are inverse to each other, definitions yield(((
Uℏ(g)

′ )⋆)cop)′=(((
Uℏ(g)

′ )⋆)′ )cop= (((
Uℏ(g)

′ )∨)∗ )cop= (
Uℏ(g)

∗)cop =: Fℏ[[G ]]cop

— and similarly with superscript “op” instead of “cop” throughout — also thanks to
( )′ ◦ ( )⋆ = ( )∗ ◦ ( )∨ . Basing on this, the entire claim follows at once from Theorem
5.2.5 applied to the QFSHA Fℏ[[G

∗]] := Uℏ(g)
′ and to its ϱ–comatrix ρ . □

5.3.5. Duality properties. If we consider a QUEA and a QFSHA which are
dual to each other, we can compare the previous results: thus we find the following
“quasi-analogue” — whose proof is trivial again — of Theorem 5.2.7:

Theorem 5.3.6. Let Uℏ(g) be a QUEA, Fℏ[[G ]] a QFSHA, which are dual to each
other, i.e. Fℏ[[G ]] = Uℏ(g)

∗ and Uℏ(g) = Fℏ[[G ]]⋆ . Let ρ = R be a quasi–ρ–
comatrix for Uℏ(g) and a quasi–R–matrix for Fℏ[[G ]] .
Then, for the morphisms in Proposition 5.3.1, Proposition 5.3.3, Theorem 5.3.2

and Theorem 5.3.4 we have the following identifications
←−
ΦR =

←−
Ψ ρ ,

←−
Φ ′R =

←−
Ψ ′ρ ,

←−
Φ ∨R =

←−
Ψ∨ρ and

−→
ΦR =

−→
Ψ ρ ,

−→
Φ ′R =

−→
Ψ ′ρ ,

−→
Φ ∨R =

−→
Ψ∨ρ □



QUANTUM GROUP DEFORMATIONS AND R–(CO)MATRICES VS. QUANTUM DUALITY 55

5.3.7. Comparing morphisms (2). We shall now compare morphisms among
quantum groups provided by a quasi–R–matrix as above.

Let us start with a QFSHA Fℏ[[G ]] , with dual QUEA denoted by Uℏ(g) , and a
quasi–R–matrix R for Fℏ[[G ]] . Then Theorem 5.3.2 gives a couple of diagrams

Fℏ[[G
∗]]

←−
Φ ′

R // Fℏ[[G ]]cop Fℏ[[G
∗]]

−→
Φ ′

R // Fℏ[[G ]]op

Uℏ(g
∗) oo −→

Φ∨
R

Uℏ(g)
op Uℏ(g

∗) oo ←−
Φ∨

R

Uℏ(g)
cop

(5.12)

where the vertical, twisting lines denote a link of (Hopf) duality while the horizontal
arrows are Hopf algebra morphisms. Next result, “quasi–analogue” of Theorem
5.2.9, tells us that the morphisms on top and bottom row are “as close as possible”:

Theorem 5.3.8. The two morphisms in left-hand side, resp. in right-hand side, of
(5.12) are adjoint to each other, that is for all η ∈ Uℏ(g) and f ∈ Fℏ[[G

∗]] we have〈−→
Φ ∨R(η) , f

〉
=

〈
η ,
←−
Φ ′R(f)

〉
and

〈←−
Φ ∨R(η) , f

〉
=

〈
η ,
−→
Φ ′R(f)

〉
where by “

〈
,
〉
” we denote the pairing between any two Hopf algebras in duality.

Proof. The proof follows from Theorem 5.2.9 along with Theorem 5.1.5. □

Similarly, let Uℏ(g) be a QUEA, with dual QFSHA denoted by Fℏ[[G ]] , and let
ρ be a quasi–ϱ–comatrix Uℏ(g) . Then Theorem 5.3.4 yields a couple of diagrams

Fℏ[[G
∗]]

←−
Ψ ′

ρ // Fℏ[[G ]]cop Fℏ[[G
∗]]

−→
Ψ ′

ρ // Fℏ[[G ]]op

Uℏ(g
∗) oo −→

Ψ∨
ρ

Uℏ(g)
op Uℏ(g

∗) oo ←−
Ψ∨

ρ

Uℏ(g)
cop

(5.13)

akin to (5.12). We get now the “quasi–analogue” of Theorem 5.2.10, which claims
that the morphisms on top and bottom row of (5.13) are “as close as possible”:

Theorem 5.3.9. The two morphisms in left-hand side, resp. in right-hand side, of
(5.13) are adjoint to each other, that is for all η ∈ Uℏ(g) and f ∈ Fℏ[[G

∗]] we have〈−→
Ψ∨ρ (η) , f

〉
=

〈
η ,
←−
Ψ ′ρ(f)

〉
and

〈←−
Ψ∨ρ (η) , f

〉
=

〈
η ,
−→
Ψ ′ρ(f)

〉
where “

〈
,
〉
” denotes the pairing between any two Hopf algebras in duality.

Proof. Here again, the proof follows from Theorem 5.2.9 and Theorem 5.1.5. □

5.4. Semiclassical morphisms induced by specialization.

We will now go and study the semiclassical limit of the various morphisms among
quantum groups, considered in §§5.2 and 5.3 above.

First we consider the case of an R–matrix R for a given QUEA Uℏ(g) , whose
dual QFSHA is Fℏ[[G ]] . With this assumptions, we recall the existence of the Hopf
algebra morphisms in (5.7), which by Theorem 5.2.9 are pairwise mutually adjoint.

Specialising ℏ to 0, the left-hand side of (5.7) provides two mutually adjoint

morphisms F [[G ]]

←−
Φ ′

R

∣∣
ℏ=0−−−−−→F [[G∗ ]]cop and U(g∗)op

−→
Φ∨

R

∣∣
ℏ=0−−−−−→U(g) , the first being
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a morphism of Poisson Hopf algebras, the second one of co-Poisson Hopf algebras.
As they are mutually adjoint, each one of them defines one and the same morphism
of formal Poisson groups ϕ+

R
: G∗op −−→ G where G∗op is the opposite (i.e., with

opposite product) formal Poisson group to G∗ . Note that ϕ+
R

: G∗op −−→ G is

directly defined by
←−
Φ ′R

∣∣
ℏ=0

, while the morphism of Lie bialgebras dϕ+
R
: g∗op−−→ g

can be deduced directly from
−→
Φ ∨R

∣∣
ℏ=0

, by restriction to g∗op and corestriction to g .
Similarly, specialising ℏ to 0 the right-hand side of (5.7) yields two mutually

adjoint morphisms F [[G ]]

−→
Φ ′

R

∣∣
ℏ=0−−−−−→F [[G∗ ]]op and U(g∗)cop

←−
Φ∨

R

∣∣
ℏ=0−−−−−→U(g) which

in turn defines one single morphism of formal Poisson groups ϕ−
R
: G∗cop −−→ G

where now G∗cop denotes the co-opposite formal Poisson group to G∗ — i.e., with
same product but opposite Poisson structure. This goes along with its associated
morphism of Lie bialgebras dϕ−

R
: g∗cop−−→ g . In short, we have pairs of morphisms

G∗op
ϕ+R−−−→G , G∗cop

ϕ−R−−−→G and g∗op
dϕ+R−−−→ g , g∗cop

dϕ−R−−−→ g (5.14)

of formal Poisson groups and of Lie bialgebras, respectively.

Second, we consider the case of a ϱ–comatrix ρ for a given QFSHA Fℏ[[G ]] , with
dual QUEA Uℏ(g) . In this case, there exist Hopf algebra morphisms as in (5.11),
which are pairwise mutually adjoint due to Theorem 5.2.10.

Acting as before, specialising ℏ to 0 we find that the semiclassical limits of these
(quantum) morphisms eventually define two pairs of morphisms

G∗op
ψ+
ρ−−−→G , G∗cop

ψ−
ρ−−−→G and g∗op

dψ+
ρ−−−→ g , g∗cop

dψ−
ρ−−−→ g (5.15)

of formal Poisson groups and of Lie bialgebras, respectively.

Third, to compare the two constructions, assume that, given mutually dual quan-
tum groups Uℏ(g) and Fℏ[[G ]] , we pick a single element R = ρ , thought of simul-
taneously as an R–matrix for Uℏ(g) and as a ϱ–comatrix for Fℏ[[G ]] , much in the
spirit of Proposition 2.2.7 and Theorem 2.2.12. Then morphisms as in (5.14) and
(5.15) are defined: but in addition, directly by Theorem 5.2.7 we get at once that

ϕ+
R

= ψ+
ρ , ϕ−

R
= ψ−ρ and dϕ+

R
= dψ+

ρ , dϕ−
R

= dψ−ρ

If one works instead with quasi–R–matrices and quasi– ϱ–comatrices, the roles of
G and G∗ are reversed, but for the rest the analysis is entirely similar (so we may be
more sketchy). Therefore, assume we have dual quantum groups Uℏ(g) and Fℏ[[G ]] .
Given a quasi–R–matrix R for Fℏ[[G ]] , the Hopf algebra morphisms in Theorem

5.3.2 give rise (through their semiclassical limit) to two pairs of morphisms

Gop

ϕ+R−−−→G∗ , Gcop

ϕ−R−−−→G∗ and gop
dϕ+R−−−→ g∗ , gcop

dϕ−R−−−→ g∗ (5.16)

of formal Poisson groups and of Lie bialgebras, respectively.

Similarly, if ρ is a quasi–ϱ–comatrix for Uℏ(g) , the Hopf algebra morphisms in
Theorem 5.3.4 define (via their semiclassical limit) two pairs of morphisms

Gop

ψ+
ρ−−−→G∗ , Gcop

ψ−
ρ−−−→G∗ and gop

dψ+
ρ−−−→ g∗ , gcop

dψ−
ρ−−−→ g∗ (5.17)

of formal Poisson groups and of Lie bialgebras, respectively.
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Finally, if R = ρ — in the spirit of Proposition 2.2.7, more precisely like in
Theorem 5.3.6 — then Theorem 5.3.6 gives at once

ϕ+

R = ψ+

ρ
, ϕ−R = ψ−

ρ
and dϕ+

R = dψ+

ρ
, dϕ−R = dψ−

ρ

Studying in depth all the morphisms introduced above seems to be quite an in-
teresting problem; we cannot, however, cope with in the present paper — we just
finish with a comparison with previous results.

Assume we have an R–matrix R for a given QUEA Uℏ(g) , whose dual QFSHA
is Fℏ[[G ]] := Uℏ(g)

∗ . It is well-known that the “semiclassical limit” of R , that is

r :=
R− 1⊗2

ℏ
(mod ℏ) , is in turn a “classical r–matrix” for the Lie bialgebra g .

Then Lie bialgebra morphisms g∗op
φ+
r−−−→ g and g∗cop

φ−
r−−−→ g are defined directly

through r itself — with no need of R , nor of Uℏ(g) , nor Fℏ[[G ]] , cf. [CP], §2.1, or
[Mj], §8.1. Tracking the various constructions involved — in particular, the functor
Fℏ[[G ]] 7→ Fℏ[[G ]]∨ =: Uℏ(g

∗) — by direct comparison one immediately sees that

φ+
r = dϕ+

R
and φ−r = dϕ−

R

In particular, we get that the morphisms dϕ±
R
depend on r alone, rather than on R ,

hence the same is true for the morphisms ϕ±
R
; indeed, both facts can also be easily

proved by direct inspection. Similarly, one can prove, via direct analysis again, or by
a duality argument from the previous result, that the morphisms ψ±ρ and dψ±ρ depend

only on the “classical ϱ–comatrix” ρ0 :=
ρ− ϵ⊗2

ℏ
(mod ℏ) alone, rather than on ρ .

References

[Ch] H.-X. Chen, Quasitriangular Structures of Bicrossed Coproducts, J. Algebra 204 (1998),
504–531.

[CG] N. Ciccoli, L. Guerra, The Variety of Lie Bialgebras, J. Lie Theory 13 (2003), no. 2,
577–588.

[CP] V. Chari, A. Pressley, A guide to quantum group, Cambridge University Press, Cam-
bridge, 1995.

[Doi] Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), no. 5,
1731–1749.

[Dr] V. G. Drinfeld, Quantum groups, Proc. Int. Congr. Math., Berkeley 1986, vol. 1 (1987),
798–820.

[EH] B. Enriquez, G. Halbout, An ℏ–adic valuation property of universal R–matrices, J.
Algebra 261 (2003), no. 2, 434–447.

[EK] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras I, Selecta Math. (N.S.) 2
(1996), no. 1, 1–41.

[ES] P. Etingof, O. Schiffmann, Lectures on quantum groups, Second edition. Lectures in
Mathematical Physics, International Press, Somerville, MA, 2002, xii+242 pp.

[Ga1] F. Gavarini, The quantum duality principle, Ann. Inst. Fourier 52 (2002), no. 3, 809–
834.

[Ga2] , Quantum duality principle for quantum continuous Kac-Moody algebras, J. Lie
theory 32 (2022), no. 3, 839–862.
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