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1. INTRODUCTION

The theory of geometric quantization [I4] associates the action of a Lie group
GG on a symplectic manifold M to a unitary G-representation H , and one studies

its irreducible subrepresentations. Super geometric quantization has been discussed
1
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through the prequantization stage [19], where # is an algebraic representation with-
out a unitary structure. In view of recent developments in the notions of super
Hilbert spaces and super unitary representations (see for example [9]), it becomes
appropriate to study the unitary structure of H .

The geometric quantization of the actions of connected Abelian Lie groups on
their complexifications has been carried out successfully for [5 [6]. We now consider
its super analogue. Let G be a connected Abelian Lie supergroup. Its even part Gg
is a connected Lie group, so Gj = T,, x R™, where T, is the n—dimensional torus.
As for any other supergroup (cf. [10, [I1]), we have a global splitting of G of the form

G =T, xR™x A\; (1.1)

where /\H,f is the supermanifold associated with the Grassmann R-algebra in k
odd indeterminates — roughly, it is a single point endowed with a purely odd,
k—dimensional affine superstructure. Algebraically, this means that the defining
superalgebra of global regular functions on G (real smooth, in the present case)
factors into
Oc(G) := C*(Gy) @r Ar(&1y -, &) -

In particular, the local structure around a single point in G can be described by a
local chart, denoted by (x,&) — cf. §2.3] later on.

To provide a fluent presentation, we first consider the super torus G = T,, X /\H,f ,
namely m = 0 in (LI). Let t, be the Lie algebra of T,,. Let \ € it}

(I

namely
A t, — tR. We say that A is an integral weight if it determines a character
X : T, — St such that the diagram commutes,

A

t, — iR
) ) (1.2)
T, X gt

where the downward arrows are exponential maps.

Let T\n denote the set of all irreducible unitary 7,,—representations, up to equiva-
lence. The members of ﬁ are 1-dimensional. They are parametrized by the integral
weights A, where V) € T,, consists of vectors v which satisfy ¢-v = x\(t)v for all
t € T,,. We identify the integral weights with Z" and write

iR T, 27"
A unitary representation of GG is a super vector space with a super Hermitian
form — see [0, §4] — and compatible actions by G and g := Lie(G), the tangent
Lie superalgebra of G. Let GG denote the equivalence classes of irreducible unitary

representations of G'. In the following theorem, Z" identifies with the set of all
integral weights of T, .

Theorem 1.1. For the super torus G = T,, X /\],lf , there exists a group isomorphism
G = GogxZy = 7" xZy

where the group structure of G is given by the tensor product of representations.
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The representation space parametrized by (A\,e) € Z" X Zs has dimension 1|0
(resp. 0|1) if e =0 (resp. € = 1), and its vectors v satisfy t-v = xA(t)v for all
tel, and £-v=0 forall €€ g7.

We may express the group Z, additively by {0, 1} or multiplicatively by {+, —} .
By Theorem [, we write

{(Vi|rezh, teZy} .
We construct ViF explicitly in Example B.21

Let M be the complexification of G. Thus M is a complex Lie supergroup that
admits the following description: M = Mg x My , where Mj := /\f is described
through complex odd Grassmann variables (i, ..., (;, while Mz = C"” / 12" is the
underlying reduced classical complex Lie subgroup of M, with C" / 12" denoting
quotient on the imaginary part. In particular, Mj is the complexification of the real
classical torus T, = G§, that it contains as a maximal torus. From the splitting

M = My x My = C"/iZ" x N}, (1.3)

we shall use local charts of the form (z,{) = (z1,...,2n,(1, ..., (). Then, both
for Opp (M) = C*(Mg) and Oy, (M7) = Ac(Gr, - - -, Ck) we fix the real structure
given by setting 2z, =z, + iy, and (s =& +ins, for all » and s; accordingly, as a
real manifold M is described by local charts of the form

(1’7%5777) = (xla'"7xn7y17"'7yn7€17"'75]677]17"'77]]6) . (14)

Now G identifies with a real super subgroup of M, described by the (local chart)
variables (y,¢); then we have the natural G—action on M, as left action of a super
subgroup.

We shall define the super Kéhler forms on M (Definition [£.2)) and their moment
maps ® : M — g* (Definition E4)). We identify g* = R"*. Let F: R® — R be
a smooth function. Its gradient map is

OF OF

/. n n / . -
FliR* — R, Fl(z) = <8x1() B

(a:)) vV zeR" .

02K
Oxp Oxq

everywhere. The next proposition uses local coordinates (x,y,&,n) as in (4.

We say that F is strictly convex if its Hessian matrix < ) is positive definite

Theorem 1.2. Let G be the super torus. FEvery G—invariant evact super Kahler
form on M can be expressed as

n k
Z axp &Uq day Ay, + Y ((d&)? + (dn)?) |
r=1

where ' € C* (R") is a strictly convex function. Its moment map is

O:M—g" , (z,9,6n) = O(x,y,&n) = (—F'(x),2¢) . (1.5)




Fix a super Kahler form w as given above. We extend the standard machinery of
geometric quantization [14] to the super setting and obtain a holomorphic Hermitian
line bundle I on M. Let H(L) denote its holomorphic sections. We define the star
operator f — f* on C°(L) — see (B.8) — then apply Berezin integration [20] to
construct the super Hilbert space (see Definition [5.7])

HAL) = {feH(L)'/Mff*dB Converges} . (1.6)

The G-representation on H?(IL) is not unitary, nevertheless it has a unique largest
subrepresentation in which G acts unitarily, and we study its irreducible subrepre-
sentations. Let Im(®); C R™ denote the even part of the image of ®. Recall also
that G={ V| ez"}.

Theorem 1.3. Let G be the super torus. Then H?*(L) is a super Hilbert space,
and H*(Lg) is its largest G—subrepresentation in which the G—action is unitary.
Moreover, H? (L()) is multiplicity free, with V" occurring if and only if X € Im(®); .
Also, V= does not occur in H? (L()) , for any integral weight X .

Theorems and enable us to construct unitary G-representations of vari-
ous sizes, depending on the images of F’. We shall illustrate this in Example [5.5]
where H?(ILj) can be 0, an irreducible G-representation, or a sum of all the even
representations {Vy"} .

The above discussions handle the super torus, and we now consider the general
connected Abelian Lie supergroup (ILT)). The Lie algebra of the additive group R™
is just R™ itself, and its exponential map R™ —— R™ is the identity map. In this
way, (L2) extends to

t, xR 25 (R
I L (1.7)
T, x Rm X2, g1
We say that A is integral if there exists x, such that (7)) is a commutative diagram.
If we write A = A\ + Xy where \; € it* and N\ €4 (Rm)* , then Ay does not impose
any obstruction to the existence of x,. So A is integral if and only if A\; is integral.
The integral weights are identified with 6% , SO

Go 27" xR™.
Theorem [L.1] generalizes to the following.
Theorem 1.4. Let G = T, x R™ x /\],lf There exists a group isomorphism
G = GygxZy = Z"xR™ X Z

where the group structure of G is given by the tensor product of representations.

The representation space parametrized by (A, €) € (Z" x R™) X Zy has dimension
1|0 (resp. 0|1) if € =0 (resp. € = 1), and its vectors v satisfy t - v = x\(t)v for
all t € T, x R™ and £ -v =0 forall £ € g7.
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Let M be the complexification of G. This is the Lie supergroup with Lie super-
algebra g ® C, such that M and G have the same maximal compact subgroup. So
(L3) extends to

M = Myx My = C"/iZ" x C™ x \; - (1.8)
We again consider G—-invariant Kéahler forms on M, and prove the following theorem.

Theorem 1.5. Let w be a super Kahler form on M with a Gg-invariant potential
function. Then w can be expressed as

n+m 82F k
— 2 2
@ = 3 G e 2 (@) + (an)?)

)

where € C* (R"+m) is a strictly convex function. Its moment map is

O:M—g , (,y&n) = e,y &n) = (—F(x),2¢).

While Theorems and resemble each other, there is a subtle difference due
to the topologies of T,, and R™. We explain this in Remark [6.1]

We similarly perform geometric quantization and obtain a super Hilbert space
H2(LL) . It contains H?(ILg) as the largest G-subrepresentation in which the G-action
is unitary, and we consider the irreducible unitary subrepresentations which occur
in H?(ILg) , However, by Theorem [[4] G contains the factor R™ , whose Plancherel
measure provides zero measure on each member (unlike Z™, whose members have
point mass). For this reason, the occurrence of a subrepresentation is understood as
appearance in the direct integral decomposition of H?(ILg) , see Definition With
this in mind, Theorem extends to the following theorem.

Theorem 1.6. Let G = T,, x R™ x /\f Then H*(L) is a super Hilbert space,
and H*(Lg) is its largest G—subrepresentation in which the G—action is unitary.
Moreover, H? (]L@) is multiplicity free, with V\© occurring if and only if A € Im(®); .
Also, V. does not occur in H? (]L@) , for any integral weight \ .

According to Gelfand, a model of a Lie group is a unitary representation on a
Hilbert space in which every irreducible representation occurs exactly once [12]. The
model of G has been constructed in [6, Cor.3.3]. It is natural to extend this notion to
the super setting, so we say that a model of GG is a unitary representation on a super
Hilbert space in which every member of G occurs once. We now construct a model.

By Theorem [[.3, the odd representations V,~ do not occur in H?(Lg) . To remedy
this defect, let us recall that for the category (sspaces). of complex superspaces,
there exists an involutive endofunctor II : (sspaces). — (sspaces). that is defined
on objects by switching parity. Thus II is the identity on each object as a vector
space but reverses the built-in Zs,—grading (and is the identity on morphisms). If g
is any Lie superalgebra and (g-smod).. is the category of complex g-supermodules,
then II actually restricts to an endofunctor of (g-smod). too — the g-action on
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each g-module being kept untouched, namely

vy = vy . (1.9)

We apply Theorems and to construct a model of GG as follows.

Corollary 1.7. Let F' be a strictly convex function such that F' is surjective. Then
H? (L(]) @ ITH? (L(]) 1s a model of G .

In view of Theorem [[L@] one might wonder if ’H(IL) contains any G-subrepresen-
tation beyond H(L@) which is irreducible or unitarizable (apart from using the
L2-structure (LG))). In this respect, we find the following answer, in the negative:

Theorem 1.8. Every irreducible or unitarizable G-subrepresentation of H(L) is
contained in H(Lg).

We organize the sections of this article as follows. Section [2] recalls the notions
and language of Lie superalgebras and Lie supergroups. Section [3] proves Theorem
[LI which classifies the unitary irreducible representations of the real super torus G .
Section [l proves Theorem [.2] which classifies the G—invariant super Kéhler forms on
the complex super torus, and studies their moment maps. Section [l proves Theorem
[L3l and provides Example B.Al  Section [0 extends the above results to general
connected Abelian Lie supergroups G and proves Theorems [[.4] and [[6l They
lead to Corollary [L7, which constructs a model of G in terms of H?(Lj). Section
also proves Theorem [[.8, which restricts the irreducibility and unitarizability of
subrepresentations of ”H(L)
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2. REMINDERS OF SUPERGEOMETRY

In this section, we recall the notions and language of Lie superalgebras and Lie
supergroups. Everything indeed is standard matter, we just fix the terminology.
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2.1. Basic superobjects. All throughout the paper, we work over a field K &
{C,R}. By K-supermodule, or K-super vector space, we mean any K-module V'
endowed with a Zy—grading V = V5@ Vi, where Zy = {(_), T} is the group with two
elements, which we also write as {4, —} using then multiplicative notation. Then
V5 and its elements are called even, V; and its elements odd. By |z| € Zy we denote
the parity of any non-zero homogeneous element, defined by the condition = € V.

We call K—superalgebra any associative, unital K-algebra A which is Zy—graded:
so A has a Zy-grading A = Ay @ Ay, and AzA; € A, 5. Any such A is said to be
commutative if zy = (=1)"¥yz for all homogeneous =,y € A; so, in particular,
22 =0 for all z € A;. All K-superalgebras form a category, whose morphisms are
those of unital K-algebras preserving the Zs—grading; inside it, commutative K-
superalgebras form a subcategory, that we denote by (salg). We denote by (alg)
the category of (associative, unital) commutative K-algebras, and by (mod) that of
K-modules. There exists an obvious functor ( )5: (salg) — (alg) given on objects
by A A() .

2.2. Lie superalgebras. A Lie superalgebra over the field K is a K—supermodule
g = g ® g7 with a Lie super bracket [,-]: gxg—¢ , (z,y) — [z,y], which is
K—bilinear, preserves the Zo—grading and obeys, for all homogenenous z,y,z € g,

(a)  [z,y]+ (=) Wy, 2] = 0 (anti-symmetry),

(0) ()", [y, 20+ ()" ly, [z, al)+ (D) W[z, [z, 9] = 0 (Jacobi identity).
All Lie K-superalgebras form a category, denoted by (sLie), , whose morphisms
are K-linear, preserving the Zs,—grading and the bracket. Note that if g is a Lie
K-—superalgebra, then its even part gg is automatically a Lie K-algebra.

2.3. Supermanifolds and supergroups. We now recall the notion of superman-
ifold and (Lie) supergroup, very quickly: see [2, [7, 20] for more details.

Superspaces. A superspace is a pair S = (|S|, (95) of a topological space |S|
and a sheaf of commutative superalgebras Og on it such that the stalk Og, of
Os at each z € |S| is a local superalgebra. A morphism ¢: S — T between
superspaces is a pair (|¢[,¢*) where |¢]: |S| — |T| is a continuous map and
¢*: Op — |¢|.(Og) is a morphism of sheaves on |T'| is such that ¢} (mge)) € my,,
where mg,) and m, denote the unique maximal ideals in the stalks Op ¢ and
Os,. , respectively.

As basic model, the holomorphic linear supervariety ’Hfélq is, by definition, the
topological space CP endowed with the following sheaf of commutative superalge-
bras: Oﬂg\q(U) = Her(U) @c Ac(&, - .-, &) = Hewla(U) for any open set U C CP,
where Hcr is the sheaf of holomorphic functions on C?, and Ac(&y,...,&,) is the
complex Grassmann algebra on ¢ variables i, ..., §, of odd parity. A holomorphic
supermanifold of super dimension p|q is a superspace M = (|M|, O,;) such that
|M| is Hausdorff and second-countable, and M is locally isomorphic to H? |q, ie.,
for each = € |M| there is an open set V, C |M| with = € V, and U C CP? such
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that On| = O, pia| - A morphism between holomorphic supermanifolds is just
f c U

a morphism between them as superspaces. We denote the category of holomorphic
supermanifolds by (hsmfd).

With a similar construction, one defines objects and morphisms in the category
(ssmfd) of all real smooth supermanifolds. This is done by replacing the basic
model ?—lf:'q with its real, smooth counterpart given by the topological space RP
endowed with the sheaf of commutative superalgebras Ocn’g‘q(U ) = Cpa(U) ®xr
Ar(&1,...,&) = Cg,(U) for any open set U C RP, with Cgj being the sheaf
of smooth functions on R?, and Ag(¢y,. .., &,) the real Grassmann algebra on ¢ odd
variables &1, ..., &, .

Given a real smooth supermanifold M and an open subset U in |M|, let us
choose a local chart around a point in U : then the even coordinates x; in this chart
along with the &;’s — which play the role of global odd coordinates — provide a
smooth local chart for U (at the chosen point) as a superspace, which we will later
denote by (z,¢) = (z1,...,2p,&,...,&,). Similarly, for any given holomorphic
supermanifold one defines the notion of holomorphic local chart around any point
in |M|. See [3] for further details.

Let now M be a holomorphic supermanifold and U an open subset in |M]. Let
Zy(U) be the ideal of Oy (U) generated by the odd part of the latter: then Oy /Ty
defines a sheaf of purely even superalgebras over |M|, locally isomorphic to Hcs .
Then the reduced manifold Mg := (|M|,Oun/Zy ) is a classical holomorphic
manifold, called the underlying holomorphic submanifold of M. The projection
s = §:=s+IyU), for s € Oy(U), at the sheaf level yields an embedding
M,y — M, so M,q can be seen as an embedded sub-supermanifold of M . The
whole construction is functorial in M .

The same construction applies to real smooth supermanifolds as well.

Finally, each classical manifold — either complex holomorphic or real smooth
— can be seen as a supermanifold, just by regarding its structure sheaf as one of
superalgebras that have trivial odd part. Conversely, any supermanifold enjoying
the latter property is a classical manifold.

Lie supergroups. Any group object in the category (hsmfd) is called a holomor-
phic Lie supergroup. These objects, together with their obvious morphisms, form
a subcategory among supermanifolds, denoted by (Lsgrp).. Similarly, the group

objects in the category (ssmfd) are called real smooth Lie supergroups: together
with their obvious morphisms, they form a subcategory (Lsgrp)g of (ssmfd).

Much like in the classical setup, there exists a functor Lie : (Lsgrp), ——
(sLie). which links holomorphic Lie supergroups to complex Lie superalgebras,
and a similar one Lie : (Lsgrp), — (sLie), linking real Lie supergroups to real
Lie superalgebras. In both cases, the super version of the correspondence between
Lie groups and Lie algebras hold true.
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A relevant aspect of the theory of holomorphic or smooth supermanifolds is that
they can be entirely studied in terms of the algebra of global sections of their struc-
ture sheaf, i.e. Oy(M) for any supermanifold M. In addition, a key feature of
supergroups is that they admit a global splitting, i.e. for any supergroup G we have
superalgebra isomorphisms Og(G) = OG’(—)(G(]) %AK(&, ...,&) — with ¢ such

that the super dimension of G is p|g. Geometrically, this means that there exist
supermanifold splittings G = Gg x /\H;, where /\11; is the supermanifold given by
}/\Hj ’ = {x} and (9/\]1; ({#}) :== Ax(&., ..., &) — ie., a single point endowed with
a purely odd, g—dimensional affine superstructure; see, e.g., [3] and [10} [IT].

2.4. Alternative approaches. In the present work we adopt the approach to (dif-
ferential or holomorphic) supergeometry that is centered on the viewpoint of super-
ringed spaces. We base our construction of supergeometry on the category of com-
mutative superalgebras, as its classical counterpart is based upon the category of
commutative algebras. However, everything works equally well — including what-
ever we do in the present paper — if one adopts instead the similar construction
based upon the category of Weil superalgebras (and Weil algebras in the non-super
setup), which are mild generalizations of Grassmann algebras: see [2] and related
works for more details on this point of view.

Furthermore, essentially any other approach — such as that of the functor of
points, or that of manifolds with super-calculus, like in the viewpoint of DeWitt
[8], Rogers [16] or Tuynman [I§ — will work fine as well: that is because the
supergroups we will be dealing with, namely supertori, are so “nice” that simply
there is no room left for relevant differences among different paths. Technically
speaking, the key steps boil down to a local analysis around single points: this
makes use of (smooth or holomorphic) local charts, which can be done equally well
with either one of the above mentioned approaches.

2.5. Unitarity issues. Let us now introduce the question of unitarity. We recall
unitary Lie superalgebras in a generalized sense, as considered in [9], §4. Let V
be a complex super vector space endowed with a generalized real form B (in the
sense of [9]) and with non-degenerate, consistent Hermitian form with respect to B.
Accordingly, a generalized real structure is defined in the linear Lie superalgebra
gl(V) by taking for any M € gl(V') the adjoint operator M* € gl(V') with respect
to the Hermitian form. The real form of gl(V') associated with such a real structure
— i.e. the Lie sub-superalgebra of fixed points of the real structure in gl(V') — is
called the unitary Lie superalgebra of (V, B), denoted by ug(V'). Given a complex
Lie superalgebra g, any representation V of g is said to be unitary if there exists a
suitable non-degenerate, consistent Hermitian form B on V' such that the action of
g on V factors through ug(V), i.e. g acts on V' via unitary operators with respect
to B.
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All these notions are given for generalized real structures and real forms that
might be of two types, known as standard or graded type. They are also formu-
lated for complex Lie superalgebras, their functorial versions, and for complex Lie
supergroups. The standard type is the simpler one, where one has

up(V) = {uEg[(V) ]B(u<v),w)+<—1)‘“”v'3(v,u<w)) —0, vwe vgu%} L (2.1)

In other words, we may also express the same by saying that ug(V') is the subset of
all elements of gl(V') which fix the form B.

In this paper, we will always assume to be in the standard case. Namely, unitary
will be always meant with respect to some non-degenerate, consistent Hermitian
form B on a superspace V' endowed with a standard real structure.

The following are basic results about unitary representations, which are proved
exactly as in the non-super framework:

Lemma 2.1. Let V be a unitary representation of a complex Lie superalgebra or a
complex Lie supergroup with respect to some form B . If W is a subrepresentation
of V', then its orthogonal space

Wt = {veV|Bwuw) =0=B(wv) Ywe W}

15 a submodule as well. O

A representation is said to be completely reducible if it is the direct sum of
irreducible subrepresentations. The previous lemma, together with an induction
argument, yields the following:

Proposition 2.2. Fvery finite dimensional unitary representation of a complex Lie
superalgebra or a complex Lie supergroup is completely reducible.

2.6. Abelian connected Lie supergroups. We shall work now with a connected
Abelian real Lie supergroup G := T, x R™ x /\]}f, with tangent Lie superalgebra
g := Lie(G).
Inside G, we consider the normal subsupergroups
G, = Tanmx{l/\us} , G_ = {1Tanm}x/\[§

for which hereafter we will adopt standard identifications G = T,, x R™ and
G_ = /\]}j Note that G, coincides with G in previous notation. On the other
hand, in a general Lie supergroup G’ there exists no canonical analogue of the

subsupergroup G_ that is a natural counterpart of Gf: indeed G_ is a specific
peculiarity of the case under study.

By definition G_ = /\]}f is the spectrum of Aﬁ(ﬁ) = AR(§1 - ,fk) , the real
Grassmann algebra in k generators &, ..., & , which are assumed to be homoge-
neous with odd parity. In particular, when one thinks at G_ as a group-valued
functor, for every commutative R—superalgebra A the A—points of G_ are given by

Go(A) = {(on,...,cp) |y e AyVi=1,... k} = Af
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thought of as an Abelian group for the additive structure of the R-module A% . In
other words, GG_ is nothing but the real affine, entirely odd superspace of dimension
0|k, usually denoted by A%k, that we now regard as a Lie supergroup.

Both GG, and GG_ are connected Abelian real Lie supergroups on their own, with
G, being entirely even and GG_ entirely odd — in that this is what occurs with their
tangential Lie superalgebras. Indeed, for the latter we have g, := Lie(G4) = g5
and g_ := Lie(G_) = g7 . Finally, G is isomorphic to the direct product

G =G, xG_ (direct product of supergroups) (2.2)

at the tangent level, the splitting g = g5 ® g1 = g+ ® g_ is indeed decomposition
of g into direct sum of the Lie superalgebras gz and g7 .

In the sequel, we denote by M the complexification of G: hence M is a complex
Lie supergroup, whose tangent Lie superalgebra is Lie(M) = gc := C®g g, i.e. the
complexification of g.

3. IRREDUCIBLE UNITARY REPRESENTATIONS

Let G =T, =T, X /\],If be the real super torus of super dimension n|k, and
let g := Lie(G) = t, be its tangent Lie superalgebra. In algebraic terms, T, is
the real Lie supergroup associated with (’)(Tn|k) =(C*> (Tn) @ Ar(&1, -, &), where
Ag(&1, ..., &) is the Grassmann algebra in the k odd variables &, ..., &, with the
unique Hopf structure for which every &; is primitive. Here G = T,, is the classical
Lie group associated with G, namely the n—dimensional real torus.

A unitary representation of GG is a super vector space with a G-invariant super
Hermitian form — cf. [9, §4.1]; see also (£.3). Let G be the set of unitary irreducible
representations of G', up to equivalence. In this section, we prove Theorem [LT]
which shows that G = 6% X Lo = 7" X Zo . 1t identifies G with the set of
pairs (A,€), where A\ € Z" is an integral weight — see (L2) — and ¢ € Z,
denotes the parity of the representation space under scrutiny. We also provide a
realization of the representation space of (A, &) in terms of holomorphic functions
on the complexification of T}, , see Example

Let V € G;then Visa g—module, irreducible and unitary. By p: G — GL(V)
and dp: g — gl(V) we denote the associated representation maps. In the sequel,
V = V5 & Vi will be the super Zs—grading of V. We need the following result:

Lemma 3.1. Let £ be an Abelian Lie sub-superalgebra of gl(r|s). Then L can
be put in triangular form. In other words, for some suitable change of basis in
V =R one has that £ turns into a subalgebra of upper triangular matrices.

The result above is [22, Lem.2.1] in a slightly simplified (weaker) form. In turn,
that lemma follows from [2I, Lem.6.3], which is a suitable formulation of Engel’s



12

Theorem adapted to Lie superalgebras, claiming that for any Lie super-subalgebra
L of gl(W) acting on some superspace W by nilpotent transformations, there exists
a common eigenvector (of eigenvalue 0) — namely there exists w € W\ {0} such
that L.w =0.

Proof of Theorem [L1:

Let V be an irreducible G-representation. By definition, G is Abelian, hence
g = Lie(G) is Abelian too. Then we apply Lemma Bl to £ := dp(g), a subalgebra
of gl(V'). Setting r|s := sdim(V'), if r+ s > 1 then Lemma [B.1] implies that V is
reducible, contrary to our assumption. Therefore it is r 4+ s = 1, hence

sdimV = 1|0 or sdimV =0[1. (3.1)

We write V =V ™' and V =V~ accordingly, for the even and odd cases respectively.

Let g = g5 @ g7 be the Zy—grading, in particular, gz = Lie(G(]) . For any G-
module W = W5 @ W3 one has

Go. Ws =Wz, g5.Ws =W, g1.Ws= Wi vV 5€{0,1}.

Applying this to the irreducible G-modules W = V* | by ([B.1]), we get that gy acts
trivially, namely

E-v=0 Vicg,veVE, (3.2)

Hence V* are no more than sheer G5-modules equipped with trivial g;—action.

If we regard V = V* as an ordinary vector space with Gg-action, then by
compactness of G, V has a Gg—invariant inner product H. If V = V', then by
[B2) it is a unitary G-representation with respect to H. If V' =V~ then i H is a
super Hermitian form on V'~ cf. [9] §4]. By ([B2)), V'~ is a unitary G-representation
with respect to i H ; thus we have shown that V¥ is unitarizable.

Conversely, every irreducible Gg-representation is 1-dimensional, and so is the
restriction of some irreducible G-module V' to Gj. Hence

G=GyxZ. (3.3)

In (B3] the Zy component controls the parity of the representation space. The é%
component amounts to the integral weights A\ of T}, , or equivalently their characters
X, see (L2). We write Vi € G accordingly, where ¢ € Zy = {+,—}. Its elements
v satisfy g-v = xa(g)v forall g € Gj; for integral weights A and pu , their characters
satisfy XaXu = Xagp - S0 the tensor product of representations leads to Vi ® V;f =
VY, -
product of representations yields a group isomorphism G = Z" x Zy. All this

In other words, identifying the integral weights of T, with Z™, the tensor

eventually proves Theorem [Tl O

The following example provides a realization of the representation space associated
with (A,e) € G.
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Example 3.2. We consider
T, = R"/Z” , X = C"/iZ"
where the quotient on C” is made on the imaginary part. We denote their elements
by [r] € T, and (z+i[y]) € X, where r,z,y € R". The Lie algebra of T}, then
is t, =2 R™. Since we have written T, as an additive group, its exponential map
e:t, — T, reads simply e" = [r].
Let A€ Z™". We regard it as A € ¢ t* by
Axr = di(Mri+ ...+ ) VreR" =t

In this example only, we use the notation A *xr € ¢R to distinguish it from
Ar=Ary+ ...+ \yr, € R Its character (see (L2)) is
x: T, — St X)\([r]) = M (3.4)

where we fix the normalization 27 ~ 1. Note that (34 is well-defined, because
A\ € Z", and it implies xx(e") = e as required by ([L2).

Let H(X) denote the set of all the holomorphic functions on X. Let T, act on
the imaginary part of X, namely

) (z+ily) = z+i(r+yl) VY [el,, z+ily] € X.

We use the holomorphic coordinates z = = +i[y] on X . The T,-action on X
induces a T, -representation on H(X) by

([r]*f)(z) = f(—[r]*z) VirleT,, feH(X).
Consider the holomorphic function
f:X——C, f(z):=¢e?".
We have
([ % )(z) = fla+il=r+y]) = e = (1) f(2) - (3.5)

Hence the span of f is the irreducible Gg-representation V) : as such, we can then
identify it with V\' or V;~ depending on whether we assign to it even or odd parity.

4. SUPER KAHLER STRUCTURES

Let G =T, x /\],lf be the real super torus, and let M be its complexification. In
this section, we prove Theorem [[L2, which characterizes G-invariant super Kéhler
forms on M .

Let Tc = R™ x T,, be the complexification of 7,,. We use the holomorphic
coordinates z = x + iy on T¢, as given in ([L4]), where T,, acts on the imaginary
part. Since G has super dimension n|k, the summations below are made for n even
indices and k£ odd indices.
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Proposition 4.1. Fvery T, —invariant exact Kdhler form on Tc can be expressed as

where I € C®(R™) is a strictly convex function.

Proof. Let wg be a T,,—invariant Kahler form on 7. Since it is a 2-form of type
(1,1), we write wg = >, fpedzp A dz, for some functions fp,. Let h,, =

—i (fpq+ fqp)- Then

wyg = ZM Irq (d:cp +1 dyp) A (d:cq — idyq) =
= Zp,q hp,qdx, A dyq + Ep<q (qu - fqp) (dxp A dxg + dy, N d?/Q) = (41
= ZM hyodx, A dy, + R

where R denotes the terms containing ( foqg — fqp) . Here y are the coordinates on T},
induced from the linear coordinates of R™, so the 2-forms dy, A dy, are not exact.
Hence if R # 0, then wg is not exact.

For R =0, we follow the arguments of [5, §2]. They show that > h,,dz, dy,
is exact and has the desired expression of this proposition. O

N.B.: The above proposition is a correction of the arguments in [B, §2], which

overlooks the summand R of (4.T]).

Let QP(T¢,C) denote the set of all differential p—forms of Tt with complex coef-
ficients. Then Q°(T¢,C) is a chain complex with the deRham operator d .

Let /\g77 denote the summand of degree p in the super Grassmann algebra gen-
erated by the d¢,’s and dns’s. Then /\2 , is also a chain complex with exterior
derivative d — see [, p.234]. The differential forms of M are the tensor product of
chain complexes, namely

0°(M,C) = Q*(Te,C) @ AL, -

We still let d denote its chain map. We say that w is closed if dw = 0, and it is
exact if w = dfB for some 5. We have d? =0, so exact forms are closed. Since M
is complex, there exists a decomposition

QP(M,C) = >, Q¥(M,C). (4.2)
r+s=p
We have d = 0 + 0, where the Dolbeault operator 0 (resp. d) raises the degree of
r (resp. s ). We say that w € Q*(M,C) isa (1,1)-form if r =1=s in ([E2).

We intend to define a super Kahler form w as the imaginary part of a super
Hermitian metric, with dw = 0. To do this, we recall from [9, §4.1] that a super
Hermitian metric on a complex super vector space V isamap H :V xV — C
which is C-linear (resp. C-antilinear) in the first (resp. the second) entry, such that
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for all non-zero homogeneous vectors u,v € V', one has
(a) H(u,v)=0 if |u|# |v| (consistent)
(b) H(u,v) = (=D)“'PH@w u)  (super Hermitian symmetric) (4.3)
(c) H(v,v) €i"lR, Yv#0  (super positive) .
In ([@3)) (¢), we make the convention that
e () ={1,i} (4.4)

to avoid ambiguity arising from i? and so on.

We treat V' as a real vector space, and replace multiplication by ¢ with J:V —
V', where J? = —I. Let w be the imaginary part of H: the condition H (iu,iv) =
H(u,v) implies that w(Ju, Jv) = w(u,v), so w is a (1,1)-form. Condition (£3))(b)
says that w is super skew-symmetric, namely

w(u,v) = — (=), ).

Condition (A3))(¢) says that H(iv,v) € iR" if v is even, and H(v,v) € iR" if v
is odd, namely

o] =[0] = w(Juv,v) €RT (45)
lv|=[1] = w(v,v) €RT. '
We say that w is positive if it satisfies ([@3]). The above conditions motivate the
following definition.

Definition 4.2. A super Kahler form w on M is a real closed consistent super
skew-symmetric positive form w € Qb (M).

Concerning super Kahler forms, we shall need the following result:

Proposition 4.3. Every G-invariant exact super Kahler form on M can be written
as

wo= Z 1,01, dxy, A\ dyy + zr: ((dfr) + (dn,) )

p,q

where ' € C* (R") is a strictly convex function.

Proof. Let w be a G—invariant exact super Kéahler form on M. We write w = wj+ws .
The description of wg is handled by Proposition .1} we now focus on wy .
By [19, Prop.4.3], there exist real odd variables 6 so that

i = (6~ i(desf

r=1
with ¢ 4+t = 2k, the real odd dimension of M. By (@H), the negative part

¢

— 3 (dh,)* vanishes, ie. t = 0 and ¢ = 2k. We express these 6, in terms of
s=1

the coordinates &, n, of (IL4) and obtain

wi = Y (a, (d&)? + b, (dn,)?) | a. b, >0 . (4.6)

T
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Note that d§, commutes with dn, , so
dgr A dgr = (dgr +1 dnr) A (dgr - Zdnr) = (dgr)2 + (dnr)2

Since wy is a positive (1,1)-form, it is a positive linear combination of d(, A d(,,
so a, = b, in ([@). Due to the last step, we can also normalize each (. so that
a, =1 =10, . This proves the proposition. O

Fix w as given above. We briefly review the moment map [13] §26] of the ordinary
setting, where a Lie group T  acts on a manifold Mj and preserves a symplectic form
wp on M. Let v € t, and let v* be its infinitesimal vector field on Mg defined by

d

winm) = (G em)

Then 2(v¥)wy is a closed 1-form on M. Suppose that it is exact, and there exists

) fECOO(M(]),mGM().

t=0

a T-equivariant map ® — with respect to the coadjoint action on t* — such that
d: My —t*, d(P,v) :=1(v"wp (4.7)

where we regard (®,v) as a member of C*(Mg) by m — (®(m))(v) € R, so that
d(®,v) € Ql(M@) . Then @ is called the moment map of wy. It may not exist, for
instance one needs the closed 1-form 2(v*)wy to be exact, so an obstruction is the
cohomology H'* (M(]). For example, the ordinary 2—torus acting on itself preserving
the invariant volume form has no moment map.

We now turn to the super setting, where there are peculiar phenomena. We
consider wy = ) ((dé})Q + (dnr)Q) of Proposition If the supermanifold is
merely symplectic but not Kéhler, this formula becomes % | +(df,)* where k can
be odd; hence the superdimension of a symplectic supermanifold can be odd, unlike
its ordinary counterpart. The expression of wy also prevents the existence of a G—
equivariant moment map, as we shall discuss in Remark below. For this reason,
we omit the G—equivariance property in the following definition.

Definition 4.4. Given a G-action on a symplectic supermanifold (M,w), we call
moment map for it a map ® : M — g* which satisfies condition d(®,v) = 1(vF)w
for all veg.

Proof of Theorem [L2:
The first part of the theorem follows from Proposition Let w be as given, and
we go and compute its moment map. We use the coordinates (z,y,&,n) as in (L4).
Let u+v € RYF = g Its associated infinitesimal vector field on M is

t t_ — _
ut ot = unqayq + sts 2. - (4.8)

By Proposition [4.3] we have

O*F
1(uf o w = g Ug o o, dx, + 2 E v d€ (4.9)
p
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where hereafter we identify g* = R™*. Recall that F'(z) = (g—fl, s gTP;). By
Definition 4] and (4.9)), a canonical moment map is

®:M—R"™  O(z,y,&n) = (—F(z),2¢)
as it obeys d(®,u + v) = 1(u* + v¥)w. This completes the proof of Theorem L2 [J

Remark 4.5. We end this section by discussing equivariant properties of the mo-
ment map ®. While we require ® to be equivariant in the ordinary setting (4.1,
we remove this condition in the super setting in Definition L4l Using the coor-
dinates (z,y,&,n) of (L), the super torus G acts on the even variable y and
odd variable . In Theorem 2 the moment map is (— F'(z),2¢), so it is
Gy—invariant (because y does not appear) but it is not invariant for the action
of the group “outside Gj” (because £ appears) — in terms of the action of the
associated super Harish-Chandra pair (G(), g), this means that it is not invari-
ant for the action of vectors in g;. Note also that here G—invariance and G-
equivariance are the same because G, being Abelian, has trivial coadjoint action
on g*; thus ® is not G—equivariant. There is no G-equivariant moment map be-
cause wy = Zr((dé})Q + (dnr)z) behaves differently from even symplectic forms.
The functions f which satisfy df =1 (%ﬂ)(alfr)2 = 2d¢, are f = 2¢ + ¢ for con-
stants ¢, and they are not G—invariant. For this reason, in Definition 4] we omit
G—equivariance condition.

5. GEOMETRIC QUANTIZATION

In this section, we prove Theorem [[L3l Let w be the super Kahler form on M with
moment map P as given by Theorem We first recall geometric quantization in
the ordinary setting (cf. [I4]). There exists a line bundle Ly on Mg whose Chern class
is the cohomology class [wa} . Since wyg is exact, we have [w()} = 0, so the bundle
L is topologically trivial; yet it has interesting geometry given by a connection V
with curvature wg. Let C'* (]L@) be the set of all smooth sections of ILj: we define
the set of all holomorphic sections by

H(Lg) = { se(C™ (]L@) ’ Vs =0 for all anti-holomorphic vector fields v } )

The T,,—action lifts to a T,—representation on ’H(IL@) . The line bundle has an
invariant Hermitian form, namely (s,t) € C* (M()) for all sections s,t € C'* (L(]) ,
and v(s,t) = (V,s,t) + (s, Vyt) for all vector fields v .

We now extend the above construction to the super setting. Recall from (L4
that the holomorphic even and odd variables are respectively

Zp = Tp+iY, , Cg = & +ing Vp=1,....n, gq=1,... k.

Hereafter we use standard multi-index notation, for example

CPvQ = Cpl o 'Cpm 5‘11 o 'CQS V P= (pla ---,pr)a Q = ((ha---aqg) .
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The odd variables anti-commute, so we use ascending indices p; < --- < p,. and
@1 < --- < gs so that the set of all (pg’s is linearly independent.
We let the subscript “top” denote the presence of all odd variables, so that

<t0p = CICkélék

We define the star operator (pq — (5o, Where (p, consists of the odd variables
missing from (p g, oriented and normalized so that

CP,Q C;’,Q = i|P‘+|Q| Ctop . (51)

Here P+l € {14}, following (@4). For Q = (}, we also write (p = (p, -+,

and gP G.—i’ = ZIP‘ Ctop :
Consider now » 5, fro(rq € C®(M). The Berezin integration (see [20, §4.6])
keeps only the top monomial, namely

/M ZP,Q fp,Q CP,Q dB = /M(-) ftop dx dy (52)

where dx dy is the Haar measure of M. The line bundle L extends to a super line
bundle I over M , whose smooth sections form the set

C®(L) = C(Ls) @ Ae(Crvev oy Gy Gve ooy i)

consisting of linear combinations of s5(pg where sz € C* (L(]) . We construct an
L?structure on C*(LL) by

(siCpq.toCrs) = / (s0.t0) CPa Chrs B V s5Cprq, toCrs € C(L).
M
(5.3)

The space of holomorphic sections of I is given by

o) = { Y, ot

Note that in (5.4]), we write (p instead of (p g because the anti-holomorphic odd vari-
ables do not appear. The set of square integrable holomorphic sections is defined by

sp is a holomorphic section of Lg } . (5.4)

H*(L) = {seH(L) } (s,s) converges } .

Recall that a super vector space V' is said to have a super Hermitian metric H if
it satisfies (4.3)). It implies that H (resp. —iH ) is positive definite on Vj (resp. on
Vi), therefore H }v— @ (—iH) ’V_ is an ordinary inner product on V =V5& V7.

0 1

Definition 5.1. A super Hilbert space is a super vector space V' equipped with a
super Hermitian metric H such that the ordinary inner product H }v— @ (—iH )}V

0 1
makes V = V5 @ V7 into a complete metric space.

Proposition 5.2. H?(IL) is a super Hilbert space.



19

Proof. Let s = s5Cpg and t =t5(rs. By (510, (5.2) and (5.3)), we have

(s,t) = ’is|5P7RéQ7S/(So,t0) dx dy (5.5)

0

where dpr and dg ¢ are Kronecker deltas. We want to show that this is a super
Hermitian metric on the elements that converge, namely it satisfies (Z.3]).

If s and ¢ have different parities, then dprdg s = 0, and so <s,t> = 0; this
implies the consistency property (43))(a).

Next we check the super Hermitian symmetric property (£3) (b). Here dprdg s =
1 only if s and ¢ have the same parity, and in that case (—1)*'" = (=1)*/ Hence

(=) 6 g 0.5 = i1 6pRrbo. s - (5.6)
By (&3) and (56), we have
(_1)\s|-|t\ <t ’ s> — (_1)|s\.\t|m5P7R 80,5 fM(—) (t(],S(]) dedy =
= 4l 5P7R5Q7SIM(_)(S(],'[:()) dedy = <s,t> .

This proves ([@3)) ().

Finally, we check for super positivity [@3])(c). Let s # 0. By (&3, if s is even
(resp. odd), then (s,s) € RT (resp. (s,s) € iR ). This proves [@3)(c). Thus we
have shown that the L?-structure (53) is indeed a super Hermitian metric on the
elements that converge. As ordinary vector spaces, both C*°(IL); and C*°(IL); have
ordinary inner products (-, -) and —i (-, -) respectively. This induces a metric
space structure C*°(LL), so its completion L*(IL) is a Hilbert space. The Bergman
space H?*(L) = L*(L) N H(L) is a closed subspace of L*(L), so H*(L) is complete
as well, and hence it is a super Hilbert space. O

We shall study H (L) and H*(LL) under the G-action. However, it is more conve-
nient to work with functions than sections; to this end, the next proposition provides
a global trivialization. As before, F' denotes the Kéahler potential of w .

Proposition 5.3. There exists a nowhere vanishing G-invariant section u € H(L)
such that (u,u) = e 2",

Proof. In the ordinary setting, there exists a nowhere vanishing T—invariant section
u € H(Lg) such that (u,u) = e 2" — cf. [5 (3.13)] (we see e in [5] because
its wg is half of ours). It extends naturally to a holomorphic section of L, where
u is independent of odd variables. So for all § € g7, we have Jyu = 0, and this
together with the T—invariance guarantees that u is G-invariant. U

We consider the set of all holomorphic functions on M, namely

won = { S ieae | frenqu) ve b
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The section u of Proposition is holomorphic and nowhere vanishing, so it leads
to a G—equivariant global trivialization

H(L) = H(M) , furs f (5.7)

that allows us to study #*(IL) in terms of holomorphic functions.
Extend the star operator of (B.1]) to C*°(M) by

x: C°(M) — C*(M) , (fo¢ra)(fo CP,Q)* = P19l £5 75 Gop - (5.8)
Then define an L?-structure on C*°(M) by

(f,h)y = /th*e2FdB Y f he C®(M). (5.9)

Using arguments similar to those applied for Proposition [5.2] one sees that this is a
super Hermitian metric on the elements which converge, hence we let L2 (M e 2 )
denote its completion. Then we define the Bergman space

H>(M,e ") == L*(M,e > ) NnH(M) .

Note that we have inserted the weight e~ in (5.9) because, by Proposition (.3}, the
L?-structures of (5.3) and (59) are related by

<fu,hu> = /th*(u,u)dB = /th*e_ZFdB = <f,h> (5.10)

for all f,h € C°>°(M). So we have an isomorphism of G-modules and super Hilbert
spaces, namely

HAL) = H* (M, e ) | fu—f . (5.11)

We shall now see that H*(IL) and #*(M, e~2"") are not unitary G-representations,
as the G-actions do not preserve their L?-structures. The next proposition proves
this claim, and moreover it characterizes the largest subrepresentation of > (M e 2k )
which is indeed unitary.

Proposition 5.4. H?(Mg, e ") is the largest G-subrepresentation of H*(M, e ")
in which the G-action is unitary.

Proof. Let us suppose that V is a G-subrepresentation of #> (M e 2F ) , and also
that V & H? (M@,e*”). Then there exists f € V which is dependent of the
odd variables, namely 0 # D¢f € V for some £, where hereafter D, denotes the
left-invariant vector field on M (here realized as a derivation of functions on M)
associated with the vector £ € g;. Then let us consider h := D, f; we have

(a)  (Defih)y = (h,h) # 0
(b) <f,£D§h> = (f,0) = 0. (5.12)

Indeed, super positivity implies (5.12]) (a). On the other hand, recall that mapping
§ — D¢ defines a Lie superalgebra morphism from g to Dery s, the superalgebra
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of superderivations of H? (M ,€
(unital, associative) superalgebras D : U(g) —— Dery p . Now, in U(g) we have

—2F ) ; this canonically extends to a morphism of

£-6&=27[¢ =0 vV §egr (5.13)
because g is Abelian; therefore, applying D to (5.13]) we get
DeoDe = D(§)oD(E) = D(E-¢) =0 V €y (5.14)

But then 5.12)(b) follows at once, because
(/.Deh) = ([.De(Def)) = (f,(DeoDe)f) = (f,0) = 0.
Now, (BI2) implies (Def,h) + (—1)‘5Hf|<f, De¢h) # 0, thus by (I) we con-

clude that g does not act unitarily on V' — hence G neither — a contradiction.

On the other hand, consider now f,h € H?*(Mg, e ") ; for any ¢ € g, we need
to describe D¢ f and D¢h . The group product in M induces a generalized coproduct

A:C®(M) ——= C®(M x M) , [ Af) ((m1,ma) = fmg-my)) .

It makes sense to consider this a coproduct map in generalized coalgebra theory,
because there exists a canonical identification

C®(M x M) = C®(M)&®C®(M)

where the right-hand side is a suitable completion of the algebraic tensor product
of C*(M) ® C>*(M) with respect to some topology. Even more, there exists a
dense subalgebra C” of C°°(M) such that A(C/) C C"® C". Hence A is uniquely
determined by its restriction to C’; moreover, the advantage is that for any f € C’
its coproduct can be written as

k
A(f) = flo fl for suitable f/, /" € C' (5.15)
=1

(cf. [1, p.161], and references therein). In this setup, every left invariant vector field
D¢ on C*°(M) can be described as follows. Let m, . ,, be the multiplication in
C*°(M), and we have D¢ = m .., © (idcoo(M)@)f) o A. By (5I3), this means

k
Def = ;f# (€.17) v fed (5.16)

where £.f! denotes the scalar obtained by applying £ € g = T.(G) to the germ
of function of f/ at e. Now, assume that f € HQ(M(),GQF) as above; then
fecCc> (M@) C C*(M), hence we can assume that f € C’. In addition, since
f € C=(M;g) we have also f, f/' € C*(M;) in (GIH), so these f/ and f/ are
independent of any odd variable. The very last claim implies that £.f/ = 0 for all
index 7. But then, by (5I6) we have

k
Def = ;f{-(g.f{’) =0 V feH (Mg e ).
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Eventually, for all f, h € H? (M(), e’QF) , the above gives

(Def by + ()£, Dch) = 0.
All in all, we have shown that H? (M(), e 2k ) is the largest G—subrepresentation
of H? (M e 2 ) in which the G—-action is unitary. U

Proof of Theorem [1.3:

By Proposition 5.2 and (GIT), H?(L) and H*(M, e~ ") are super Hilbert spaces.
By Proposition5.4, H? (Mg, e 2!") is the largest G-subrepresentation of H? (M, e~I")
in which the G—action is unitary. By (5.I1]), we have an isomorphism of unitary G-
modules

H*(Lg) = H* (Mg, e ?"), (5.17)
so H? (IL()) is the largest subrepresentation of H?(IL) in which the G—action is unitary.

As we noticed in the proof of Proposition [5.4], the Hilbert space H? (IL()) has trivial
gi—action because its elements are independent of odd variables. It decomposes into

H(Lo) = SH (L),

under the 7, —action, where A € it are the integral weights. Now, for each integral
weight A, let xy : T, — S! be its character, given by (L2). Let s € H? (IL(])/\,
and let z = 2+ i[y] be the coordinates in (L4]). By 33 and (5I7), we have

s=fu, f(z):=¢e™ (5.18)
up to a scalar multiple. Then
(s,s) = [y f[e?dB by (G.10)
= fM f f_Ctop e_ZF dB by (E)E)
= Ju, ffe? dudy by B2)
— fM@ e 22 qr dy by (BIX).
Note that the last integral converges if and only if —2\ € Im (2F/) , by [3, Prop.3.3].
By Theorem [[.2] this is equivalent to A € Im(®);. We conclude that H? (IL()) L, 70
if and only if A € Im(®);, and in that case we have an isomorphism of irreducible
unitary G-modules
H(Lg), = H*(Mg,e ), = V!

— see Example The elements of H? (]L@) are independent of odd variables, so
Vy~ does not occur in H? (IL()) . This proves Theorem O

Example 5.5. By Theorems and [L3] a key ingredient is the strictly convex
function F': R™ — R. We consider two examples, namely
(a) Fi(z) = 23 +.. +22

(b) Fy(x) = Z;‘:l(—ujxj +ey /2% + 1) for some fixed p € 2", ¢ > 0 .
(5.19)



23

We shall show that these lead to super Hilbert spaces in two extremes: (5.19)(a)
provides a sum of all even members of G, while (519)(b) provides finitely many
even members of G , including Vj alone when ¢ is small enough.

One easily checks that

8F1 8F2 ~1
8—.]3]- = 237]' , a—,jl]] = —ly -+ EXT; (.’L‘?"‘l) 2 , (520)
1
where lim ez, (22 41) ® = e, so the gradient maps F] : R* — R" have
ZTj—r00
images
Im(F{) =R*, Im(F) ={-p+a|lzy<c} . (5.21)
By (£20), the Hessian matrices of F; are diagonal matrices with diagonal entries
82F1 82F2 _3
-1 _9 I 241y 2 >0 .
o3 ’ o3 e (@5 +1)

So for « = 1 and ¢ = 2, our Fj is strictly convex. They lead to super Kahler
forms on M as constructed in Theorem [.2} then by Theorem [L3], they provide G—
representations on H;(IL). Their unitary subrepresentations H? (IL()) are multiplic-
ity free, and they contain V," if and only if A € Im(®);. Since Im(®); = Im(—F'),
by (B21)), we have
Hillo) = Vi, Hi(lo) = X V.
AEZ™ AEZ™, |Nj—pj|<e

Hence H? (JL()) is the sum of all the even elements of G. On the contrary, H3 (]L@) is
the finite sum of those V, parametrized by integral weights in the cube ’)\j — ,uj’ <eg;
in particular, for 0 < ¢ < 1 we obtain an irreducible representation H3 (L()) = VJL .
Note that if we replace (519) (b) by p € R™\Z" and choose € > 0 sufficiently small,
then Im(F3) NZ" =0 in (2T, and so H3(Lg) =0.

6. ABELIAN LIE SUPERGROUPS

In this section, we extend the previous results to the more general setting, where
G =T, xR™x /\f is a connected Abelian Lie supergroup. We prove Theorems
L4 and [LG as an application, we construct a Gelfand model of G and prove
Corollary [L7l We also prove Theorem [.8, which restricts the irreducibility and
unitarizability of subrepresentations of H(L)

Proof of Theorem [1.7):

The same arguments used to prove Theorem [Tl apply again.

First, by Lemma [3.I] we find that every irreducible G-representation V' has either
sdimV = 1|0 or sdim = 0|1 ; we will then write V =V or V =V~ accordingly.

Second, letting g := Lie(G) = gy D g1, for any G—module W = Wy & W; we have

Go. Ws =Wz, g5.Ws=Ws, g1.Ws =Wy vV 5€{0,1}.
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So when W = V* we get that gy acts trivially on V*, hence the latter is nothing
but a Gg—module, formally endowed with a trivial gi—action.

Recall now that G = T, x R™ . If we regard V = V* as a T,,~module (restricting
the G—action) then, by compactness of T,, , this V' has a T,,—invariant inner product;
therefore, it is a unitary irreducible representation for 7),, hence the T, —action is
described by some character \; € ﬁ = 7" . Similarly, the restricted action by the
subgroup R™ makes V' into an irreducible unitary representation of R™ , which then
— by classical theory — is described by some character in Ay € Rm &~ R™ Overall,
the action of Gy = T,, x R™ onto V* is described by

Ai= (A, h) € Gy & T, x R™ = 7 x R™ .

To keep track of the parity of V*, we complete the description by saying that the
above G-representation V = V¥ is fully described — including for its superspace
structure — by the pair (A, ¢€), where \ € é}) =~ 7" x R™ is found as above and
e=+ (resp. e=—)if V=V7 (resp. V=V~ ). Accordingly, we denote such a
G-representation by Vy € G.

The above provides a set-theoretical bijection Z"™ X R™ X Zy = G which is given
by (A,€) — Vi. As to the group structure, much like in the case of Theorem [I.]
we notice that tensor product of representations yields Vi ® V‘S Vel '+, thus, the
previous map is indeed a group isomorphism too, which ends the proof. O

Proof of Theorem [LA:

Let w be a super Kéhler form on M. It is consistent (see Definition L.2), so we
write w = wg + wi. Let F be a Gg-invariant potential function of wg, namely
wy = 100F . By direct computation,

> or dz; A dz (6.1)

wg = 1 zi NdZ .

0 3k &zjﬁzk J ke

Since F'is Gg—invariant, it depends only on z, so together with % = %(% —1 aiy)

J J J

. 2 2
and % = %(% +Z%) , we have 528]31;1@ = iagjaik . Hence (IB]]) becomes
i > O*F : :

DT L Oz 0y, (dz; +idy;) A (dxk —idyx) . (6.2)

The wedge product is skew-symmetric, so the summands (d:pj Ndxp+dy; /\dyk)

8 8J3
cancel off pairwise when we switch j and k. So (6.2) becomes

1 0*F
Ty Zj,k 0z ;0xy, duj A dys

We replace F' by 2F and get the desired expression of the proposition. It is positive
definite if and only if F' is strictly convex.

Similar to the arguments of Theorem [.2, we have wi = Zle((dfr)Q + (dnr)Q) :
Let H=—i ) (¢ . Then

i00H = ) dGndG = Y ((d&) A(dn,)?) = w.
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We have i 00(F + H) = w, so F + H is a potential function of w. The formula of
the moment map is derived in the same way as Theorem [L.2. 0

Remark 6.1. While Theorems and look alike, they have slight differences
due to the topologies of T, and R™ . In Theorem [[.Z], x; are the variables of T}, , so if
w is exact, then the non-exact terms dx; Adx;, do not appear. On the other hand in
Theorem [ if 7, is trivial, then x; are variables of R™, and dz; A dx), are exact.
Furthermore, since R™ is not compact, the Gg—invariance of potential function does
not follow automatically from G-invariance of w by the averaging process.

Let dr be the product of point mass of Z" and Lebesgue measure of R™. Each
element of R™ has zero measure, so in the decomposition of unitary G-representation
into @—components, we replace the direct sum by direct integral [15]. In the following
definition, | denotes the combination of summation on Z" and integration on R™.

Definition 6.2. Let H be a unitary super representation of G. We say that (\,¢) €
(Z" x R™) x Zy = G occurs in H if there exists f € H with parity € of the form

f(2) = /Z L herar, (6.3)

where h(r) # 0 for all r sufficiently near \. If h(r) is almost unique for all r near
A, we say that (A, &) occurs with multiplicity one.

The phrase “almost unique” in Definition means that if we replace h by hy
in ([6.3)), then there is a neighborhood U of A such that h(r) = hy(r) for almost all

r € U — i.e., for all those r outside some subset of measure zero.

Example 6.3. The Fourier transform expresses every f € L*(R) almost uniquely
as f(z) = [ h(r) e dr — see for instance [I7, §7]; hence every member of R occurs
with multiplicity one in L?(R).

We next perform geometric quantization and prove Theorem[[L6] Many arguments
are similar to Section Bl and in such cases we merely sketch the ideas.

Proof of Theorem [0

Let w be a super Kaher form on M as characterized by Theorem [[L3l There exists
a line bundle ILg on Mg which corresponds to wg, cf. [14]; it extends to a super line
bundle L on M, whose holomorphic sections H(LL) consists of ), sp(p, where sp
are holomorphic sections of L. Much like with (5.]) and (5.2)), we consider the star
operator and Berezin integration, and let

HA (L) = { ZP spCp € H(L) ' /MZRQ(SP,SQ)QP (o dB  converges } .

This is a super Hilbert space, but its super Hermitian metric is not G-invariant.
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By Propositions and [5.4] the largest G—subrepresentation of H?(IL) with uni-

tary G-action is
H(Lo) = H*(Mo,e™")
where [ is the potential function of wg.

The elements of H? (Mg, e ") are independent of odd variables, so g; acts triv-
ially on it. We consider the irreducible Gj-representations which occur in its direct
integral decomposition, in the sense of Definition By [6, Thm.1.2], V," € Gg
occurs in H?(Mg, e F") if and only if A € Im( — F’) ([0, (1.4)] differs from us by
a factor of —2). By Theorem [T, this is equivalent to A € Im(®);. Finally, as the

elements of H?(Mg, e ") are independent of odd variables, it does not contain any
V, . This concludes the proof of Theorem [L.6l O

For Gy =T, , Example shows that H?(ILg) can be 0 or 1-dimensional, because
Im(®); N Z" can be @ or {u}. On the contrary, for G5 = R™, H*(Lg) = [, V¥
cannot be 0 or irreducible because U is an open subset of R” . This is because for
a strictly convex function F, the image of " (and hence Im(®);) is an open set.

We extend Gelfand’s notion of model of Lie group [12], by saying that a model
of the connected Abelian Lie supergroup G is a unitary G-representation on a
super Hilbert space in which every member of G occurs with multiplicity one. To
construct such a model, we need a strictly convex function whose gradient mapping
is surjective: an example is given by (5.19)(a).

Proof of Corollary[1.7:

Let G =T, xR™ x /\]E . Let F € C>(R"*™) be a strictly convex function whose
gradient mapping F” is surjective, for instance F(x) = 377" x?. By Theorems
and [, we have H*(Lg) = [, gm Vi -

Recall that we have the involutive endofunctor IT — see (L9) — which switches

parity. Then every member of G occurs exactly once in
H*(Lg) @ OH*(Lg) = / VeV,
Z™ xR™
and therefore this is a model of G'. O

6.4. Beyond irreducibility and unitarity. By Theorem [L6 H?*(Lj) is the
largest G—subrepresentation of H?(IL) in which the G-action is unitary, and it de-
composes into irreducible subrepresentations indexed by the image of the moment
map. We now address the problem of whether H(L) contains any subrepresenta-
tion beyond H(Lg) which is irreducible, or is unitarizable with respect to any super
Hilbert space structure. In view of the trivialization H(LL) = H(M) provided by
the invariant section of L, we may conduct our discussion on H(M).
To simplify notations, we let

Af=Ac(&,... &) =CorAr(&,.. ., &)
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denote the complex Grassmannian generated by &;,...,& . Let us consider the
following factorization

H(M) = H(Mp) ®c AL (6.4)

Since G is connected, the G-action on H(M ) is uniquely determined by the g—
action, which is by super derivations. We consider the splitting of g into direct
sum of Lie superalgebras g = g, @ g_, discussed in §2.6. The elements in H(M())
depend only on even variables, hence are annihilated by the super derivations of
elements of g_. In other words, g_ acts trivially on H(M()) , and the same holds for
G_. Similarly, the elements in A% depend only on odd variables, so are annihilated
by the elements of g . Thus g, acts trivially on A%, and the same holds for G
too. This means that, through the splittings (Z2) and (6.4]), the G—module ’H(M )
arises from tensoring the GG, -module ’H(M()) and the G_-module A% .

Let us analyze the G_-~module structure of AL. To simplify this task, we work
instead with g_. Acting like in the proof of Proposition (.4l the action of any
n € g— on Al is given by the left invariant vector field D, , so that

an = Zf:1le (szl/)
where > fl ® fI' = A(f) is the coproduct of f as in (GIH). Since D, is a

superderivation, we will know its actions on any f when we know it on the generators
§ forall j =1,...,k. Moreover, it is enough to consider the case of n ranging
in an R-basis of g_, which we can choose to be {852. = 0/8&}2’ =1,. ..,k} :
Therefore, taking into account that A(&;) =& ®1+1®¢;, we end up with

Dag,fj - éj 85214— 1 8&&] = 5@']’ V Z,j - 1,...,]€. (65)

Recall that A% is N-graded algebra, with ‘5]‘ = 1 for all j. Consider the
associated filtration

AE=AZF DA D - DA D AR =C-1

where AZ® = {fe A€}|f| < s} forall s=0,1,...,k. Then (GIH) tells us that
D, (Aés) C AZ*""' for all s and for all 5 € g_, hence in short

g A C AT V s=0,1,....k. (6.6)

Recall that as a category, the Lie supergroups G are equivalent to the super
Harish-Chandra pairs (Gg, g); see for instance [10], [I1] and references therein. In
particular, any superspace is a G—module if and only if it is a (G, g)-module, the
action of G' being uniquely determined by that of (Gg,g), cf. [3], §8.3, for details.

In the present case, the super Harish-Chandra pair corresponding to the Lie su-
pergroup G_ is ({1}, g,) . Moreover, the action of g_ on A% has been described
above. Thus we do know A% as a G-representation space.

We say that a representation of G_ is completely reducible if it is the direct sum
of irreducible subrepresentations.
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Proposition 6.5. The representation AL of G_ is not completely reducible. More-
over, the only irreducible G_—subrepresentation of A% is C Ly -

Proof. Assume there is an isomorphism AL 2 @,.;V; for some family { V; }ie ; of
irreducible modules. By Theorem [LL.4] and its proof, cf. §6l each V; is 1-dimensional.
But the action of g_ switches the parity in V;, hence such an action is necessarily
trivial. Likewise, G_ acts trivially on each V;. But this contradicts (6.6]). Hence A%
is not completely reducible.

Finally, (65) implies that any non-zero subrepresentation of AL necessarily con-
tains C1 Ak then the latter is the unique irreducible subrepresentation of AL. [

Proposition 6.6. The only unitarizable G_-subrepresentation of AL is C 1A<’E .

Proof. Let W_ be a non-trivial G_-subrepresentation of Af. We apply the notion
of ug (W,), introduced in (21]). By Proposition and Proposition [6.5] there
exists no form B on W_ such that the g_—action on W_ factors through ug (W,) ,
i.e. no such B is fixed by the action of G_. O

We are now ready to prove the last result of this article:

Proof of Theorem [L.8:

By (GII) we have H(L) = H(M), as well as H(Lg) = H(Mg) : therefore, it is
enough to prove the claim with M replacing L.

Let W be any irreducible g—subrepresentation of H(M ) = H(M()) ® AL . Since g
splits into direct sum of Lie superalgebras as g = g, ®©g_ (cf. §20), W is necessarily
of the form W =W, ® W_, where W, are some irreducible g.—subrepresentations
with W, C H(M@) and W_ C AL. Now Proposition G yields W_ = ClA(;E, SO
W =W, ®@W. CH(M)®Cly =H(M).

Similarly, if W = W, @ W_ is a unitarizable g-subrepresentation of ’H(M ) , then
by Proposition [6.6], we have W_ = C Lak and hence W C ’H(M@) ®C Ly = 'H(M(]) .
This completes the proof of Theorem [L8 O
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