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SUPER KÄHLER STRUCTURES ON
THE COMPLEX ABELIAN LIE SUPERGROUPS

MENG-KIAT CHUAH♭ , FABIO GAVARINI ♯

1. Introduction

The theory of geometric quantization [14] associates the action of a Lie group
G on a symplectic manifold M to a unitary G-representation H , and one studies
its irreducible subrepresentations. Super geometric quantization has been discussed
through the prequantization stage [19], where H is an algebraic representation with-
out a unitary structure. In view of recent developments in the notions of super
Hilbert spaces and super unitary representations (see for example [9]), it becomes
appropriate to study the unitary structure of H .

The geometric quantization of the actions of connected Abelian Lie groups on
their complexifications has been carried out successfully for [5, 6]. We now consider
its super analogue. Let G be a connected Abelian Lie supergroup. Its even part G0̄

is a connected Lie group, so G0̄
∼= Tn × Rm , where Tn is the n–dimensional torus.

As for any other supergroup (cf. [10, 11]), we have a global splitting of G of the form

G = Tn × Rm ×
∧R

k (1.1)

where
∧R

k is the supermanifold associated with the Grassmann R–algebra in k
odd indeterminates — roughly, it is a single point endowed with a purely odd,
k–dimensional affine superstructure. Algebraically, this means that the defining
superalgebra of global regular functions on G (real smooth, in the present case)
factors into

OG(G) := C∞(G0̄)⊗R ΛR(ξ1, . . . , ξk) .

In particular, the local structure around a single point in G0̄ can be described by a
local chart, denoted by (x , ξ ) — cf. §2.3 later on.

To provide a fluent presentation, we first consider the super torus G = Tn×
∧R

k ,
namely m = 0 in (1.1). Let tn be the Lie algebra of Tn . Let λ ∈ it∗n , namely
λ : tn −→ iR . We say that λ is an integral weight if it determines a character
χλ : Tn −→ S1 such that the diagram commutes,

tn
λ−→ iR

↓ ↓
Tn

χλ−→ S1

(1.2)

where the downward arrows are exponential maps.

Let T̂n denote the set of all irreducible unitary Tn–representations, up to equiva-

lence. The members of T̂n are 1–dimensional. They are parametrized by the integral
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weights λ , where Vλ ∈ T̂n consists of vectors v which satisfy t · v = χλ(t)v for all
t ∈ Tn . We identify the integral weights with Zn and write

i t∗ ∼= Rn , T̂n
∼= Zn .

A unitary representation of G is a super vector space with a super Hermitian
form — see [9, §4] — and compatible actions by G0̄ and g := Lie(G) , the tangent

Lie superalgebra of G . Let Ĝ denote the equivalence classes of irreducible unitary
representations of G . In the following theorem, Zn identifies with the set of all
integral weights of Tn .

Theorem 1.1. For the super torus G = Tn×
∧R

k , there exists a group isomorphism

Ĝ ∼= Ĝ0̄ × Z2
∼= Zn × Z2

where the group structure of Ĝ is given by the tensor product of representations.
The representation space parametrized by (λ, ϵ) ∈ Zn × Z2 has dimension 1|0

(resp. 0|1) if ϵ = 0̄ (resp. ϵ = 1̄ ), and its vectors v satisfy t · v = χλ(t)v for all
t ∈ Tn and ξ · v = 0 for all ξ ∈ g1̄ .

We may express the group Z2 additively by {0̄, 1̄} or multiplicatively by {+,−} .
By Theorem 1.1, we write

Ĝ =
{
V ±
λ

∣∣ λ ∈ Zn , ± ∈ Z2

}
.

We construct V ±
λ explicitly in Example 3.2.

Let M be the complexification of G . Thus M is a complex Lie supergroup that
admits the following description: M ∼= M0̄ ×M1̄ , where M1̄ :=

∧C
k is described

through complex odd Grassmann variables ζ1 , . . . , ζk , while M0̄
∼= Cn

/
iZn is the

underlying reduced classical complex Lie subgroup of M , with Cn
/
iZn denoting

quotient on the imaginary part. In particular, M0̄ is the complexification of the real
classical torus Tn = G0̄ , that it contains as a maximal torus. From the splitting

M = M0̄ ×M1̄ = Cn
/
iZn ×

∧C
k (1.3)

we shall use local charts of the form ( z , ζ ) = (z1, . . . , zn, ζ1, . . . , ζk) . Then, both
for OM0̄

(M0̄) = C∞(M0̄) and OM1̄
(M1̄) = ΛC(ζ1, . . . , ζk) we fix the real structure

given by setting zr = xr + i yr and ζs = ξs + i ηs , for all r and s ; accordingly, as a
real manifold M is described by local charts of the form

(x , y , ξ , η ) := (x1, . . . , xn, y1, . . . , yn, ξ1, . . . , ξk, η1, . . . , ηk) . (1.4)

Now G identifies with a real super subgroup of M , described by the (local chart)
variables ( y , ξ ) ; then we have the natural G–action on M , as left action of a super
subgroup.

We shall define the super Kähler forms on M (Definition 4.2) and their moment
maps Φ : M −→ g∗ (Definition 4.4). We identify g∗ ∼= Rn|k . Let F : Rn −→ R be
a smooth function. Its gradient map is

F ′ : Rn −→ Rn , F ′(x) :=

(
∂F

∂x1

(x), . . . ,
∂F

∂xn

(x)

)
∀ x ∈ Rn .
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We say that F is strictly convex if its Hessian matrix
(

∂2F
∂xp ∂xq

)
is positive definite

everywhere. The next proposition uses local coordinates (x, y, ξ, η) as in (1.4).

Theorem 1.2. Let G be the super torus. Every G–invariant exact super Kähler
form on M can be expressed as

ω =
n∑

p,q=1

∂2F

∂xp∂xq

dxp ∧ dyq +
k∑

r=1

(
(dξr)

2 + (dηr)
2
)
,

where F ∈ C∞(
Rn

)
is a strictly convex function. Its moment map is

Φ : M −−→ g∗ , (x, y, ξ, η) 7→ Φ(x, y, ξ, η) =
(
−F ′(x) , 2 ξ

)
. (1.5)

Fix a super Kähler form ω as given above. We extend the standard machinery of
geometric quantization [14] to the super setting and obtain a holomorphic Hermitian
line bundle L on M . Let H(L) denote its holomorphic sections. We define the star
operator f 7→ f ∗ on C∞(L) — see (5.8) — then apply Berezin integration [20] to
construct the super Hilbert space (see Definition 5.1)

H2(L) :=

{
f ∈ H(L)

∣∣∣∣ ∫
M

ff ∗ dB converges

}
. (1.6)

The G–representation on H2(L) is not unitary, nevertheless it has a unique largest
subrepresentation in which G acts unitarily, and we study its irreducible subrepre-
sentations. Let Im(Φ)0̄ ⊂ Rn denote the even part of the image of Φ . Recall also

that Ĝ =
{
V ±
λ

∣∣λ ∈ Zn
}
.

Theorem 1.3. Let G be the super torus. Then H2(L) is a super Hilbert space,
and H2(L0̄) is its largest G–subrepresentation in which the G–action is unitary.
Moreover, H2

(
L0̄

)
is multiplicity free, with V +

λ occurring if and only if λ ∈ Im(Φ)0̄ .

Also, V −
λ does not occur in H2

(
L0̄

)
, for any integral weight λ .

Theorems 1.2 and 1.3 enable us to construct unitary G–representations of vari-
ous sizes, depending on the images of F ′. We shall illustrate this in Example 5.5,
where H2(L0̄) can be 0, an irreducible G–representation, or a sum of all the even
representations {V +

λ }λ .
The above discussions handle the super torus, and we now consider the general

connected Abelian Lie supergroup (1.1). The Lie algebra of the additive group Rm

is just Rm itself, and its exponential map Rm −−→ Rm is the identity map. In this
way, (1.2) extends to

tn × Rm λ−→ iR
↓ ↓

Tn × Rm χλ−→ S1

. (1.7)

We say that λ is integral if there exists χλ such that (1.7) is a commutative diagram.
If we write λ = λ1+λ2 where λ1 ∈ i t∗ and λ2 ∈ i

(
Rm

)∗
, then λ2 does not impose

any obstruction to the existence of χλ . So λ is integral if and only if λ1 is integral.
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The integral weights are identified with Ĝ0̄ , so

Ĝ0̄
∼= Zn × Rm .

Theorem 1.1 generalizes to the following.

Theorem 1.4. Let G = Tn × Rm ×
∧R

k . There exists a group isomorphism

Ĝ ∼= Ĝ0̄ × Z2
∼= Zn × Rm × Z2

where the group structure of Ĝ is given by the tensor product of representations.
The representation space parametrized by (λ, ϵ) ∈ (Zn ×Rm)×Z2 has dimension

1|0 (resp. 0|1) if ϵ = 0̄ (resp. ϵ = 1̄ ), and its vectors v satisfy t · v = χλ(t)v for all
t ∈ Tn × Rm and ξ · v = 0 for all ξ ∈ g1̄ .

Let M be the complexification of G . This is the Lie supergroup with Lie super-
algebra g⊗ C , such that M and G have the same maximal compact subgroup. So
(1.3) extends to

M = M0̄ ×M1̄ = Cn
/
iZn × Cm ×

∧C
k . (1.8)

We again consider G–invariant Kähler forms onM , and prove the following theorem.

Theorem 1.5. Let ω be a super Kähler form on M with a G0̄-invariant potential
function. Then ω can be expressed as

ω =
n+m∑
p,q=1

∂2F

∂xp∂xq

dxp ∧ dyq +
k∑

r=1

(
(dξr)

2 + (dηr)
2
)

where F ∈ C∞(
Rn+m

)
is a strictly convex function. Its moment map is

Φ : M −→ g∗ , (x, y, ξ, η) 7→ Φ(x, y, ξ, η) =
(
−F ′(x) , 2 ξ

)
.

While Theorems 1.2 and 1.5 resemble each other, there is a subtle difference due
to the topologies of Tn and Rm . We explain this in Remark 6.1.
We similarly perform geometric quantization and obtain a super Hilbert space

H2(L) . It containsH2(L0̄) as the largest G-subrepresentation in which the G–action
is unitary, and we consider the irreducible unitary subrepresentations which occur

in H2(L0̄) . However, by Theorem 1.4, Ĝ contains the factor Rm , whose Plancherel
measure provides zero measure on each member (unlike Zn , whose members have
point mass). For this reason, the occurrence of a subrepresentation is understood as
appearance in the direct integral decomposition of H2(L0̄) , see Definition 6.2. With
this in mind, Theorem 1.3 extends to the following theorem.

Theorem 1.6. Let G = Tn × Rm ×
∧R

k . Then H2(L) is a super Hilbert space,
and H2(L0̄) is its largest G–subrepresentation in which the G–action is unitary.
Moreover, H2

(
L0̄

)
is multiplicity free, with V +

λ occurring if and only if λ ∈ Im(Φ)0̄ .

Also, V −
λ does not occur in H2

(
L0̄

)
, for any integral weight λ .

According to Gelfand, a model of a Lie group is a unitary representation on a
Hilbert space in which every irreducible representation occurs exactly once [12]. The
model ofG0̄ has been constructed in [6, Cor.3.3]. It is natural to extend this notion to



the super setting, so we say that a model of G is a unitary representation on a super

Hilbert space in which every member of Ĝ occurs once. We now construct a model.
By Theorem 1.3, the odd representations V −

λ do not occur in H2(L0̄) . To remedy
this defect, let us recall that for the category (sspaces)C of complex superspaces,
there exists an involutive endofunctor Π : (sspaces)C −→ (sspaces)C that is defined
on objects by switching parity. Thus Π is the identity on each object as a vector
space but reverses the built-in Z2–grading (and is the identity on morphisms). If g
is any Lie superalgebra and (g–smod)C is the category of complex g–supermodules,
then Π actually restricts to an endofunctor of (g–smod)C too — the g–action on
each g–module being kept untouched, namely

ΠV +
λ = V −

λ . (1.9)

We apply Theorems 1.5 and 1.6 to construct a model of G as follows.

Corollary 1.7. Let F be a strictly convex function such that F ′ is surjective. Then
H2

(
L0̄

)
⊕ ΠH2

(
L0̄

)
is a model of G .

In view of Theorem 1.6, one might wonder if H
(
L
)
contains any G–subrepresen-

tation beyond H
(
L0̄

)
which is irreducible or unitarizable (apart from using the

L2-structure (1.6)). In this respect, we find the following answer, in the negative:

Theorem 1.8. Every irreducible or unitarizable G–subrepresentation of H(L) is
contained in H(L0̄).

We organize the sections of this article as follows. Section 2 recalls the notions
and language of Lie superalgebras and Lie supergroups. Section 3 proves Theorem
1.1, which classifies the unitary irreducible representations of the real super torus G .
Section 4 proves Theorem 1.2, which classifies the G–invariant super Kähler forms on
the complex super torus, and studies their moment maps. Section 5 proves Theorem
1.3, and provides Example 5.5. Section 6 extends the above results to general
connected Abelian Lie supergroups G and proves Theorems 1.4, 1.5 and 1.6. They
lead to Corollary 1.7, which constructs a model of G in terms of H2(L0̄). Section
6 also proves Theorem 1.8, which restricts the irreducibility and unitarizability of
subrepresentations of H

(
L
)
.
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