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1. Introduction

Quantum groups can be thought of, roughly speaking, as Hopf algebras depending
on one “parameter” such that, for a “special value” of this parameter, they turn
isomorphic either to the universal enveloping algebra of some Lie algebra g or to the
function algebra of some algebraic group G . In the first case the quantum group
is called “quantized universal enveloping algebra” (or QUEA in short) and in the
second “quantized function algebra” (or QFA in short).

Quite soon, people also began to introduce new quantum groups depending on
two or more parameters, whence the terminology “multiparameter quantum groups”
came in use: see, e.g., [BGH], [BW1], [BW2], [CM], [CV1], [CV2], [DPW], [GG1],
[HLT], [HPR], [Jn], [Kh], [KT], [Ma], [OY], [Re], [Su], [Tk] — and the list might be
longer. Nevertheless, one can typically describe a multiparameter quantum group so
that one single parameter stands “distinguished”, as the continuous one that can be
specialized. The other parameters instead (seen as discrete) parametrize different
structures on a common “socle” underlying the semiclassical limit of the quantum
group, that is achieved when the continuous parameter is specialized. Indeed, this
already occurs with one-parameter quantum groups: for example, the celebrated
Drinfeld’s QUEA Uℏ(g) associated with a complex, finite-dimensional, semisimple
Lie algebra g has a description where the continuous parameter ℏ bears the quanti-
zation nature of Uℏ(g) , while other discrete parameters, namely the entries of the
Cartan matrix of g , describe the Lie algebra structure on g itself.

In this paper we focus onto the study of multiparameter QUEAs; then it will
be possible to realize a parallel study and to achieve the corresponding results for
multiparameter QFA’s by suitably applying duality. Recall that QUEAs (and QFA’s
alike) are usually considered in two versions: the so-called “formal” one — dealing
with topological Hopf algebras over k[[ℏ]] — and the “polynomial” one — dealing
with Hopf algebras over a field K with some q ∈ K entering the game as parameter.

One of the first general examples of multiparameter QUEA, hereafter mentioned
as MpQUEA, was provided by Reshetikhin in [Re]. This extends Drinfeld’s definition
of Uℏ(g) to a new object UΨ

ℏ (g) that shares the same algebra structure of Uℏ(g) but
bears a new coalgebra structure, depending on a matrix Ψ that collects the new,
discrete parameters of UΨ

ℏ (g) . At the semiclassical limit, these new parameters
(hence Ψ) describe the new Lie coalgebra structure inherited by g from UΨ

ℏ (g) itself.
Note that UΨ

ℏ (g) is defined from scratch as being the outcome of a deformation by
twist of Drinfeld’s Uℏ(g) , using a twist of a specific type (that we shall call “toral”)
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defined via Ψ . It follows that the class of all Reshetikhin’s MpQUEAs is stable
under deformation by toral twists, i.e. any such deformation of an object of this
kind is again an object of the same kind. Even more, this class is “homogeneous”,
in that each UΨ

ℏ (g) is nothing but a twist deformation of Drinfeld’s Uℏ(g) .
With a parallel approach, a polynomial version of Reshetikhin’s MpQUEAs was

introduced and studied by Costantini-Varagnolo: see [CV1], [CV2], and also [Ga1];
on the other hand, these works do not consider deformations. Alternatively, using
the duality with quantum coordinate algebras, two-parameters quantum envelopling
algebras of polynomial type are considered in Dobrev-Parashar [DoP] and in Dobrev-
Tahri [DoT]. The effect of the twist can be seen in the description of the coproduct
after a change the presentation à la Drinfeld-Jimbo type.

In another direction, a different version of polynomial MpQUEA (still working
over g as above), call it Uq(g) , has been developed in the works of Andruskiewitsch-
Schneider, Rosso, and many others — see for instance [AS1], [AS2], [HPR], [Ro]. In
this case, the “multiparameter” is cast into a matrix q =

(
qij

)
i,j∈I whose entries

take part in the description of the algebra structure of Uq(g) . Under mild, additional
conditions, this yields a very general family of MpQUEAs which is very well-behaved:
in particular, it is stable under deformations by 2–cocycles of “toral” type. Even
better, this family is “homogeneous”, in that each Uq(g) is a 2–cocycle deformation
of Jimbo-Lusztig’s polynomial version Uq(g) of Drinfeld’s Uℏ(g) .
Note that, in Hopf theory, twist and 2–cocycle are notions dual to each other.

Thus the constructions of MpQUEAs by Reshetikhin and by Andruskiewitsch-
Schneider (besides the difference in being “formal” or “polynomial”) are somehow
dual to each other — and, as such, seem definitely different from each other.

The purpose of this paper is to introduce a new notion of MpQUEA that encom-
pass both Reshtikhin’s one and Andruskiewitsch-Schneider’s one. Indeed, we achieve
this goal introducing a new family of MpQUEAs which incorporates Andruskie-
witsch-Schneider’s one, hence in particular it includes Drinfeld’s standard example
(see Definition 4.2.2, Theorem 4.3.2 and §4.5). We show that this new family is stable
by toral 2–cocycle deformations (Theorem 5.2.12), just as Andruskiewitsch-Schnei-
der’s, and it is also stable by toral twist deformations (Theorem 5.1.4), hence it in-
corporates Reshetikhin’s family as well. In particular, we show that every MpQUEA
of the Reshetikhin’s family is actually isomorphic to one of the Andruskiewitsch-
Schneider’s family, and viceversa: the isomorphism is especially meaningful in itself,
in that it amounts to a suitable change of presentation via a well-focused change
of generators (see Theorem 5.1.4). In this sense, we really end up with a single,
homogeneous family — not just a collage of two distinct families; this can be seen
as a byproduct of the intrinsic “self-duality” of Drinfeld’s standard Uℏ(g) .

For each one of these MpQUEAs, then, one can decide to focus the dependence
on the discrete multiparameters either on the coalgebra structure (which amounts
to adopt Reshetikhin’s point of view) or on the algebra structure (thus following
Andruskiewitsch-Schneider’s approach). In our definition we choose to adopt the
latter point of view, as it is definitely closer to the classical Serre’s presentation of
U(g) — or even to the presentation of Drinfeld’s standard Uℏ(g) — where the discrete
multiparameters given by the Cartan matrix entries rule the algebra structure.
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Technically speaking, we adopt the setting and language of formal quantum
groups, thus our newly minted objects are “formal MpQUEAs”, in short “FoM-
pQUEAs”. This is indeed a necessary option: in fact, the setup of polynomial
MpQUEAs is well-suited when one deals with (toral) 2–cocycle deformations, but
behaves quite poorly under deformations by (toral) twists. Roughly speaking, the
toral part in a polynomial MpQUEA (in the sense of Andruskiewitsch-Schneider,
say) happens to be too rigid, in general, under twist deformations; this is shown in
our previous paper [GG2], where we pursued the same goal by means of “polynomial
MpQUEAs”, which eventually prove to be a somewhat less suitable tool.

Thus, one needs to allow a more flexible notion of “toral part” in our would-be
MpQUEA in order to get a notion that is stable under deformation by (toral) twists.
We obtain this by choosing to define our formal MpQUEA as having a toral part
with two distinguished sets of “coroots” and “roots”, whose mutual interaction is
encrypted in a “multiparameter matrix” P whose role generalizes that of the Cartan
matrix. We formalize all this via the notion of realization of the matrix P , which
is a natural extension of Kac’ notion of realization of a generalized Cartan matrix
(cf. Definition 5.1.2); our FoMpQUEA then is defined much like Drinfeld’s standard
one, with the entries of P playing the role of discrete multiparameters.

By looking at semiclassical limits, we find that our new class of FoMpQUEAs
gives rise to a new family of multiparameter Lie bialgebras (in short MpLbA’s) that
come equipped with a presentation “à la Serre” in which the parameters — i.e., the
entries of P , again — rule the Lie algebra structure (cf. §3.2.3). Again, we prove
that this family is stable by deformations — in Lie bialgebra theoretical sense —
both via “toral” 2–cocycles and via “toral” twists (see Theorem 3.4.3 and Theo-
rem 3.3.3). In particular, every such MpLbA admits an alternative presentation in
which the Lie algebra structure stands fixed (always being ruled by a fixed gener-
alized Cartan matrix) while the Lie coalgebra structure does vary according to the
multiparameter matrix P . Like in the quantum setup, the isomorphism between the
two presentations is quite meaningful, as it boils down to a well-chosen change of
generators (cf. Theorem 3.3.3). The very definition of these MpLbA’s, as well as the
just mentioned results about them, can be deduced as byproducts of those for FoM-
pQUEAs (via the process of specialization); otherwise, they can be introduced and
proved directly; in short, we do both (cf. §3 and Theorem 6.1.4). These MpLbA’s
were possibly known in literature, at least in part: yet our construction yields a
new, systematic presentation of their whole family in its full extent, also proving its
stability under deformations by both (toral) 2–cocycles and (toral) twists.

As a final, overall comment, we recall that a close relation between multiparame-
ters and deformations is ubiquitous in several applications, e.g. in the classification of
complex finite-dimensional pointed Hopf algebras over abelian groups [AS2], [AGI]
— where deformations by 2–cocycle play a central role. Moreover, MpQUEAs may
also serve as interpolating objects in the study of the representation theory of quan-
tum groups associated with Langlands dual semi-simple Hopf algebras [FH] — where
deformations by twist instead are a key tool.

A last word about the organization of the paper.



In section 2, we introduce the “combinatorial data” underlying our constructions
of MpLbA’s and FoMpQUEAs alike: the notion of realization of a multiparameter
matrix, and the process of deforming realizations either by twists or by 2–cocycles.

In section 3 we introduce our MpLbA’s and study their deformations by (toral)
twists and by (toral) 2–cocycles.

Section 4 is dedicated to introduce our newly minted FoMpQUEAs, in particular
using different, independent approaches, and to prove their basic properties.

With section 5 we discuss deformations of FoMpQUEAs by (toral) twists and by
(toral) 2–cocycles: we prove that these deformations turn FoMpQUEAs into new
FoMpQUEAs again, the case by twist being possibly the more surprising.

Finally, in section 6 we perform specializations of FoMpQUEAs and look at their
resulting semiclassical limit: we find that this limit is always a MpLbA (in short,
by the very definition of MpLbA’s), with the same multiparameter matrix P as the
FoMpQUEA it comes from. Conversely, any possible MpLbA does arise as such a
limit — in other words, any MpLbA has a FoMpQUEA which is quantization of it.
Then — more important — we compare deformations (by toral twists or 2–cocycle)
before and after specialization: the outcome is, in a nutshell, that “specialization
and deformation (of either type) commute with each other” (cf. Theorem 6.2.2 and
Theorem 6.2.4). In fact, this last result can be deduced also as a special instance of a
more general one, which in turn is an outcome of a larger study about deformations
(of either type) of formal quantum groups — i.e., Drinfeld’s-like QUEAs and their
dual, the so-called QFSHA’s — and of their semiclassical limits. This is a more
general chapter in quantum group theory, with its own reasons of interest, thus we
shall treat it in a separate publication — cf. [GG3].
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[Gar] G. A. Garćıa, Multiparameter quantum groups, bosonizations and cocycle deformations,
Rev. Un. Mat. Argentina 57 (2016), no. 2, 1–23.
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