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MULTIPARAMETER QUANTUM
GROUPS AT ROOTS OF UNITY

GASTON ANDRES GARCIA , FABIO GAVARINI

ABSTRACT. We address the study of multiparameter quantum groups (=MpQG’s) at
roots of unity, namely quantum universal enveloping algebras Uq(g) depending on a
matrix of parameters q = (qij)iyjel . This is performed via the construction of quantum
root vectors and suitable “integral forms” of Uq(g), a restricted one — generated by
quantum divided powers and quantum binomial coefficients — and an unrestricted one
— where quantum root vectors are suitably renormalized. The specializations at roots
of unity of either form are the “MpQG’s at roots of unity” we look for. In particular,
we study special subalgebras and quotients of our MpQG’s at roots of unity — namely,
the multiparameter version of small quantum groups — and suitable associated quantum
Frobenius morphisms, that link the MpQG’s at roots of 1 with MpQG’s at 1, the latter
being classical Hopf algebras bearing a well precise Poisson-geometrical content.

A key point in the discussion, often at the core of our strategy, is that every MpQG
is actually a 2—cocycle deformation of the algebra structure of (a lift of) the “canonical”
one-parameter quantum group by Jimbo-Lusztig, so that we can often rely on already
established results available for the latter. On the other hand, depending on the chosen
multiparameter q our quantum groups yield (through the choice of integral forms and
their specializations) different semiclassical structures, namely different Lie coalgebra
structures and Poisson structures on the Lie algebra and algebraic group underlying the
canonical one-parameter quantum group.
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1. INTRODUCTION

In literature, by “quantum group” one usually means some deformation of an algebraic
object that in turn encodes a geometrical object describing symmetries (such as a Lie or
algebraic group or a Lie algebra): we are interested now in the case when the geometrical
object is a Lie bialgebra g, and the algebraic one its universal enveloping algebra U(g),
with its full structure of co-Poisson Hopf algebra.

In most cases, such a deformation depends on one single parameter, in a “formal” ver-
sion, like with Drinfeld’s Uy(g), or in a “polynomial” one, for Jimbo-Lusztig’s U,(g) . But
since the dawn of the theory, more general deformations depending on many parameters
have been considered too: one then talks of “multiparameter quantum groups” (in short,
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MpQG’s) that again exist both in formal and polynomial versions; see for instance [BGH],
[BW1, BW2], [CM], [CV1], [Hay], [HLT], [HP], [HPR], [Ko|, [KT], [Man], [OY], [Re], [Su],
[Ta] — and the list might be quite longer.

In the previously mentioned papers, multiparameter quantum enveloping algebras where
often introduced via ad hoc constructions. A very general recipe, instead, was that devised
by Reshetikhin (cf. [Re]), that consists in performing a so-called deformation by twist on
a “standard” one-parameter quantum group.

Similarly, a dual method was developed, that starts again from a usual one-parameter
quantum group and then performs on it a deformation by a 2—cocycle. In addition, as
the usual uniparameter quantum group is a quotient of the Drinfeld’s quantum double
of two Borel quantum (sub)groups, one can start by deforming (e.g., by a 2—cocycle) the
Borel quantum subgroups and then look at their quantum double and its quotient. This
is the point of view adopted, for instance, in [AA], [AAR1, AAR2|, [Anl, An2, An3, An4],
[AS1, AS2|, [AY], [Gar], [Hel, He2|, [HK], [HY] and [Mas], where in addition the Borel
quantum (sub)groups are always thought of as bosonizations of Nichols algebras.

In our forthcoming papers [GG1, GG2] we thoroughly compare deformations by twist
or by 2—cocycles on the standard uniparameter quantum group; up to technicalities, it
turns out that the two methods yield the same results. Taking this into account, we
adopt the point of view of deformations by 2—-cocycles, implemented on uniparameter
quantum groups, that are realized as (quotients of) quantum doubles of Borel quantum
(sub)groups. With this method, the multiparameter q encoding our MpQG is used from
scratch as the core datum to construct the Borel quantum (sub)groups and eventually
remains in the description of our MpQG by generators and relations. In this approach, a
natural constraint arises for q, namely that it be of Cartan type, to guarantee that our
MpQG have finite Gelfand-Kirillov dimension.

In order to have meaningful specializations of a MpQG, one needs to choose a suitable
integral form of that MpQG, and then specialize the latter: indeed, by “specialization of a
MpQG” one means in short the specialization of such an integral form of it. The outcome
of the specialization process then can strongly depend on the choice of the integral form.
For the usual case of uniparameter “canonical” quantum groups, one usually considers
two types of integral forms, namely restricted ones (after Lusztig’s) and unrestricted ones
(after De Concini and Procesi), whose specialization yield entirely different outcomes —
dual to each other, in a sense. There also exist mixed integral forms (due to Habiro and
Thang Le) that are very interesting for applications in algebraic topology.

For general MpQG’s, we introduce integral forms of restricted, unrestricted and mixed
type, by directly extending the construction of the canonical setup: this is quite a natural
step, yet (to the best of the authors’ knowledge) it had not been considered so far. More-
over, for restricted forms — for which the multiparameter has to be “integral”, i.e. made
of powers (with integral exponents) of just one single, “basic” parameter ¢ — we consider
two possible variants, which gives something new even in the canonical case. For these
integral forms (of either type) we state and prove all those fundamental structure results
(triangular decompositions, PBW Theorems, etc.) that one needs to work with them.

W0

When taking specialization at ¢ = 1 (where “¢” is again sort of a “basic parame-
ter” underlying the multiparameter q ), co-Poisson and Poisson Hopf structures pop up,
yielding classical objects that bear some Poisson geometrical structure. In detail, when
specializing the restricted form one gets the enveloping algebra of a Lie bialgebra, and
when specializing the unrestricted one the function algebra of a Poisson group is found:
this shows some duality phenomenon, which is not surprising because the two integral
forms are in a sense related by Hopf duality. This feature already occurs in the unipa-
rameter, canonical case: but in the present, multiparameter setup, the additional relevant
fact is that the involved (co)Poisson structures directly depend on the multiparameter q.

Now consider instead a non-trivial root of 1, say €. Then the specialization of a MpQG
at g = € is tightly related with its specialization at ¢ = 1: this link is formalized in a so-
called quantum Frobenius morphism — a Hopf algebra morphism with several remarkable
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properties between these two specialized MpQG’s — moving to opposite directions in
the restricted and the unrestricted case. We complete these morphisms to short exact
sequences, whose middle objects are our MpQG's at g = € ; the new Hopf algebras we add
to complete the sequences are named small MpQG’s.

Remarkably enough, we prove that the above mentioned short exact sequences have
the additional property of being cleft; thus, our specialized MpQG’s at ¢ = ¢ are cleft
extensions of the corresponding small MpQG’s and the corresponding specialized MpQG’s
at ¢ = 1 — which are classical geometrical objects, see above. Furthermore, implementing
this construction in both cases — with restricted and with unrestricted forms — literally
yields two small MpQG’s: nevertheless, we eventually prove that they do coincide indeed.

To some extent, these results (at roots of 1) are a direct generalisation of what happens
in the uniparameter case (i.e., for the canonical multiparameter). However, some of our
results seem to be entirely new even for the uniparameter context.

Finally, here is the plan of the paper.

In section 2 we set some basic facts about Hopf algebras, the bosonization process,
cocycle deformations, etc. — along with all the related notation.

Section 3 introduces our MpQG’s: we define them by generators and relations, and we
recall that we can get them as 2—cocycle deformations of the canonical one.

We collect in section 4 some fundamental results on MpQG's, such as the construction
of quantum root vectors and PBW-like theorems (and related facts). In addition, we
compare the multiplicative structure in the canonical MpQG with that in a general MpQG,
the latter being thought of as 2—cocycle deformation of the former.

In section 5 we introduce integral forms of our MpQG’s — of restricted type and of
unrestricted type — providing all the basic results one needs when working with them.
We also shortly discuss mixed integral forms.

Section 6 focuses on specializations at 1, and the semiclassical structures arising from
MpQG’s by means of this process.

At last, in section 7 we finally harvest our main results. Namely, we deal with spe-
cializations at non-trivial roots of 1, with quantum Frobenius morphisms and with small
MpQG’s, for both the restricted version and the unrestricted one.

2. GENERALITIES ON HOPF ALGEBRAS AND DEFORMATIONS

Throughout the paper, by k we denote a field of characteristic zero and by k* we denote
the group of units of k. By convention, N = {0,1,...} and N; :=N\ {0}.

2.1. Conventions for Hopf algebras.

Our main references for the theory of Hopf algebras are [Mo], [Sw] and [Ra], for Lie
algebras [Hu| and for quantum groups [Ja] and [BG]. We use standard notation for Hopf
algebras; the comultiplication is denoted A and the antipode S. For the first, we use the
Heyneman-Sweedler notation, namely A(z) = z(;) ® 7(y) -

Let H be a Hopf algebra. The left adjoint representation of H is the algebra morphism

adg : H — End(H) given by ady(z)(y) := m(l)yS(:E(Q)) for z,y € H; ,we drop
the subscript ¢ unless needed; the right adjoint action ad, : H — End(H) is given by
ad,(x)(y) :== S(a:(l)) Yz for x,y € H. Any subalgebra K of H is said to be normal if
adg(h)(k) € K, ad,(h)(k) e K forall he H, k€ K.

In any coalgebra C', the set of group-like elements of a coalgebra is denoted by G(C);
also, we denote by CT := Ker(€) the augmentation ideal of C', where € : C — k is the
counit map of C'. If g,h € G(H), the set of (g, h)—primitive elements is defined to be

Pyp(H) = {zeH|A(x)=2®g+h®z}
In particular, we call P(H) := P;1(H) the set of primitive elements.

It is convenient to recall the notions of exact sequence and of cleft extension:
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Definition 2.1.1. (cf. [AD]) A sequence of Hopf algebras maps over a field k
1 B——A——H 1

where 1 denotes the Hopf algebra k , is called ezact if ¢ is injective, 7 is surjective, Ker(m) =
ABT and B=°"A := {a € A‘ (m®id)(A(a)) = 1®a}. We say that A is a cleft exten-
siton of B by H if there exists an H—colinear, convolution-invertible section v of 7. &

Finally, we recall the notions of Hopf pairing and skew-Hopf pairing of Hopf algebras:

Definition 2.1.2. (cf. [AY, §2.1]) Given two Hopf algebras H and K with bijective
antipode over a ring R, an R-linear map n: H g K — R is called

— Hopf pairing (between H and K ) if, for all h € H, k € K, one has

n(h, kiks) = n(hay, k) nlhey, k2) , n(hihe, k) = n(he, kay) n(he, k)
n(h,1) = eh) . n(l.k) = ek) , n(SF(h) k) = n(h,S* (k)

— skew-Hopf pairing (between H and K ) if, for all h € H, k € K, one has

n(h, kiks) = n(hay, k1) n(he), k2) , n(hahe, k) = n(he, kay) n(he, k)
n(h,1) = eh) , n(l,k) = ek) , n(SF(h), k) = n(h,STH(K)) &

Recall that, given two Hopf R-algebras H; and H_, and a Hopf pairing among them,
say m: HP @g Hy — k, the Drinfeld double D(H_, H,, ) is the quotient algebra
T(H- ® Hy)/T where T is the (two-sided) ideal generated by the relations

ly.=1= 1y, , a®b = ab YVa,be H. or a,be H_ |
zy ®ya) (Y2, @) = TV, T0) Yo @) YV s €Hy, y€ Ho ;

such a quotient R—algebra is also endowed with a standard Hopf algebra structure, which
is consistent, in that both H; and H_ are Hopf R-subalgebras of it.

2.1.3. Yetter-Drinfeld modules, bosonization and Hopf algebras with a projec-
tion. Let H be a Hopf algebra with bijective antipode. A Yetter-Drinfeld module over
H is a left H—module and a left H—comodule V', with comodule structure denoted by
0:V—H®V, v v_y) ®vq, such that

5(h : ’U) = h(l)v(_l)S(h(g)) & h(g) J0) forall veV, he H.

Let g)ﬂD be the category of Yetter-Drinfeld modules over H with H-linear and H—colinear
maps as morphisms. The category g)ﬂD is monoidal and braided. A Hopf algebra in the
category g))D is called a braided Hopf algebra for short.

Let R be a Hopf algebra in gyD. The procedure to obtain a usual Hopf algebra from
the (braided) Hopf algebras R and H is called bosonization or Radford-Magjid product, and
it is usually denoted by R# H . As a vector space R# H := R®H , and the multiplication
and comultiplication are given by the smash-product and smash-coproduct, respectively.
That is, for all ;s € R and g,h € H, we have

(r#g)(s#h) = r(gq)-s) #9@2)h

A(r#tg) = rD# () o) ® (1) o) # 902

S(r#tg) = (1#8u(r-1)9))(Sr(ro) #1)
where Ag(r) = () @ r® is the comultiplication in R € BYD and Sg the antipode.
The map ¢ : H — R#H (h — 14th), resp. m: R#H — H (r#h v ep(r)h), is
a Hopf algebra monomorphism, resp. epimorhism, and 7 o+ = idy . Moreover, we have
R=(R#H)°" ={zc R#H|(ildom)A(x)=2®1}.

Conversely, let A be a Hopf algebra with bijective antipode and m: A — H a Hopf

algebra epimorphism. If there is a Hopf algebra map ¢: H — A, such that wo:=idpy,

then R := AT is a braided Hopf algebra in gyp, called the diagram of A, and we have
A= R#H as Hopf algebras. See [Ra, 11.6] for further details.
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2.2. Cocycle deformations.

We recall now the standard procedure that, starting from a given Hopf algebra and
a suitable 2—cocycle on it, gives us a new Hopf algebra structure on it, with the same
coproduct and a new, “deformed” product. We shall then see the special form that this
construction may take when the Hopf algebra is bigraded by some Abelian group and the
2—cocycle is induced by one of that group.

2.2.1. First construction. Let (H,m, 1,A,e) be a bialgebra over a ring R. A nor-
malized Hopf 2-cocycle (see [Mo, Sec. 7.1]) is a map o in Homy(H ® H,R) which is
convolution invertible and such that, for all a,b,c € H, we have

a(bays cy) o(a,bayce) = olany,bay) ola@be), c)
and o(a,1) =¢(a) = o(1,a). We simply call it a 2-cocycle if no confusion arises.
Using a 2—cocycle o it is possible to define a new algebra structure on H by deforming
the multiplication: indeed, define my = o *xmxo~': H® H — H by

mg(a, b) =a,b= U(a(l), b(l)) a(2) b(z) U_l(a(g), b(3)) VabeH

If in addition H is a Hopf algebra with antipode S, then define also S, : H — H as
S,=0%S*x0 1 : H— H where

So(a) = o(agny,S(a@)) S(as)) o~ (S(aw), ags)) VaeH

It is then known — see [DT]| — that (H , Mg, 1, A, e) is in turn a bialgebra, and also that
(H, me, 1, A, 6,80) is a Hopf algebra: we shall call such a new structure on H a cocycle
deformation of the old one, and we shall graphically denote it by H, .

When dealing with a Hopf algebra H and its deformed counterpart H, as above, we
denote by ad, and ad, the adjoint actions in H and by adj and ad] those in H, .

2.2.2. Second construction. There is a second type of cocycle twisting — of algebras,
bialgebras and Hopf algebras — that we shall need (cf. [AST] and references therein). Let
I' be an Abelian group, for which we adopt multiplicative notation, and H an algebra
over a ring R that is ['—bigraded (i.e., graded by I' x I'): so H = ea(w,n)efxf H,, with
R C Hyy and Hy ,Hy .y € Hyy oy . Given any group 2-cocycle c¢: I'x I' — R* where
R* is the group of units of R, define a new product on H, denoted by *, by hvgk‘ =

c(n', k") e(n, %)t h-k for all homogeneous h,k € H with degrees (n,7),(k,K") €e'xI.
Then (H Pk ) is (again) an associative algebra, with the same unit as H before.
C
As I is free Abelian, each element of H?(I', R*) has a representative, say c, which is
bimultiplicative and such that c(n, 77_1) =1 for all n € I' (see [AST, Proposition 1 and
Lemma 4]); so we may assume that ¢: " x I’ — R* is such a cocycle. Thus

ctvon ) =ctyhm) =yt (1) = ce(ly) =1 Vynerl

Now assume H is a bialgebra, with A(Hoa,,b’) C Zvef H., ®g H,p for all (a,B) €
I' x I' and G(Ha,lg) =0 if @ # 8. Then H with the new product * and the old
coproduct A is a bialgebra too. If in addition H is a Hopf algebra, whose antipode obeys
S(Hap) € (Hg-14-1) — for (a,8) € I' x I' — then the new bialgebra structure on H
(with the new product and the old coproduct) makes it again into a Hopf algebra with
antipode S(©) := S (the old one). In all cases, we will graphically denote by H(®) the new
structure on H obtained by this (second) cocycle twisting.

In the sequel we shall compare computations in H with computations in H( in par-
ticular regarding the adjoint action(s); in such cases, we shall denote by ad, and ad, the
adjoint actions in H and by adéc) and ad\® those in H(© .

We shall make use of the following result (whose proof is straightforward):



6 G. A. GARCIA , F. GAVARINI

Lemma 2.2.3. (¢f. [CM, Lemma 3.2]) Let a 2—cocycle ¢ : I'xI" — R* as above be given,
and assume in addition (with no loss of generality) that ¢ is bimultiplicative. Let e,b € H
be homogeneous with degrees (v, 1) and (n, 1) respectively, and assume e is (1, h)—primitive
with h € H homogeneous of degree (v,7). Then

ad?(e)(b) = c(v,m) " ade(e)(b)
ad(e)(b) = c(v,7)(—h7tedb + c(y,n)cln,y) 'h7be)

In particular, if c(v,n)c(n,y)~t = 1, then adq(nc)(e)(b) = ¢(v,7) ad,(e)(b) .

2.2.4. A relation between the two constructions Let H be a Hopf algebra with
bijective antipode, R a braided Hopf algebra in g)ﬂD and A = R#H its bosonization
(see [Gar] for details). For any a € R, set d(a) = a(_1) ® a(g for the left coaction of H .

Any Hopf 2—cocycle on H gives rise to a Hopf 2—cocycle on A which may deform the
H-module structure of R and consequently its braided structure as well. Specifically, let
o € Z%(H,k): then the map : A® A — k given by

G (r#h,s#k) = o(h,k)er(r)er(s) VrseR, hkeH

is a normalized Hopf 2—cocycle such that &‘ Hen = - By [Mas, Prop. 5.2] we have
As = R,#H, , where R, = R as coalgebras, and the product is given by

a-gb:= U(a(_l), b(—l)) a(o) b(O) forall a,be R .

Therefore, H, is a Hopf subalgebra of As and the map Z?(H,k) — Z%(A,k) given by
o +— & is a section of the map Z2%(A,k) — Z2(H,k) induced by the restriction; in
particular, it is injective.

Now assume H = kI, with I" a group. Then a normalized Hopf 2—cocycle on H is
equivalent to a 2—cocycle ¢ € Z2(I',k), i.e. amap ¢ : ' x I' — k* such that

o(g,h)p(gh,t) = o(ht) (g, ht) ,  ¢lg,e) =1 =¢le,g) V ghtel .
Assume A = R#KkI’ is given by a bosonization over a free Abelian group I'. Then the
coaction of kI" on the elements of R induces a (I" x I')-grading on A with deg(g) := (g,9)
for all g € I' and deg(a) := (g,1) if d(a) = g®a with a € R a homogeneous element; in
particular, a is (1, g)-primitive, since A(a) =a®@1+a_;)@aq. If p € Z2(I',k), then
AT = Az, where ¢ is the Hopf 2-cocycle on A induced by ¢ . Indeed, this holds true
because, for a, b homogeneous in R of degree (g,1) and (h, 1) respectively, we have that

1
a@tlb = ¢(1,1)"" ¢(g,h) ab = p(a-1),b-1)) a(0) bo) = a ¢ b.

2.3. Basic constructions from multiparameters.

The definition of multiparameter quantum groups requires a whole package of related
material, involving root data, weight lattices, etc. This entails several different construc-
tions, depending on “multiparameters”, that we now go and present.

2.3.1. Root data. Hereafter we fix § € Ny and I := {1,...,60} as before. Let
A= (aij)i,j ¢; be a Cartan matrix of finite type; then there exists a unique diagonal
matrix D := (di 5ij)z’,jel
is symmetric. Let g be the finite dimensional simple Lie algebra over C associated with
A, let ® be the (finite) root system of g, with II = {ai |i € I} as a set of simple roots,
Q = @, Zay the associated root lattice, &1 the set of positive roots with respect to II,
QT = @,c; Na; the positive root (semi)lattice. We denote by P the associated weight
lattice, with basis {wi }iel dual to { o }jeI ,
an invariant non-degenerate bilinear form on the dual h* of a Cartan subalgebra h of g, we
identify @) with a sublattice of P; in particular, we have «; = Zje] aj;w; forall i€ 1I.

with positive integral, pairwise coprime entries such that DA

namely w;(a;) = d;; forall i,j € I. Using
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In this setup, we have two natural Z-bilinear pairings P X () —— Z, that we denote
by (, ) and ( , ), one given by the evaluation (of weights onto roots), and the other
one by (wj,a;) := d;d;; for all ¢,j € I. In particular, the restriction of ( , ) to @ x @
is a symmetric bilinear pairing on () ; moreover, both the given pairings uniquely extend
to Q-bilinear pairings, still denoted by ( , ) and ( , ), onto (@ ®y P) X (Q ®y Q) =
(Q@ZP) X (Q@ZP) . Then we define

°={AeQQ|N,1)€eZVyeQ} ={pecQQ|(v,p)€Z VyeQ}
By construction P C Q°, and equality holds true if and only if g is simply-laced.

Note that, in terms of the above symmetric pairing on @, one has d; = («;, ;) / 2 for
all ¢ € I. More in general, we shall use the notation d, := (oz,oz)/Q for every o € ®T;
in particular d,, = d; (i € I'). We denote by W the Weyl group associated with the root
data (®,1II); it is generated by the simple reflections s; given by s;(8) := 8 — 28, O“) Q;

(i € I); in particular s;(a;) = aj — a;ja; for 4,5 € 1.

2.3.2. Multiparameters. Let k be our fixed ground field, and let [ :={1,...,0} be as
in §2.3.1 above. We fix a matrix q := (qij)ijgja whose entries belong to k*, that will
play the role of “parameters” of our quanturﬁ groups. These can be used to construct
diagonal braidings and braided spaces, see for example [ARS], [An4], [Gar], [He2].

We assume that q := (qij)mg is of finite Cartan type A i.e. there is a Cartan matrix
A= (aij)i,jel of finite type such that

G Gji = a;° Vi,jel (2.1)

To avoid some irrelevant technicalities, we assume that A is indecomposable.

For later use we fix in k some “square roots” of all the ¢;;’s, as follows. From the relations
in (2.1) one finds (since the Cartan matrix A is indecomposable) that there exists j, € I
such that ¢; = q]ifjo for some e; € N, for all ¢ € I. Now we assume hereafter that k
contains a square root of 4,4, » which we fix throughout and denote by 4, = /qjojo.

Then we set ¢; := q]f? (a square root of ¢;;) for all i € I.

Asrecorded in §2.3.1 above, the Cartan matrix A is diagonalizable, hence we fix positive,
relatively prime integers dj, ..., dy such that the diagonal matrix D = diag(dy,...,dy)
symmetrizes A, i.e. DA is symmetric; in fact, each of these d;’s coincides with the
corresponding exponent e; mentioned above.

We introduce now some special cases of Cartan type multiparameter matrices.

Integral type: We say that q := (qij) is of integral type if it is of Cartan type and

1,5€1
there exist b;; € Z such that ¢;; = qVi for 1,7 € I; then we may assume b; = 2d; and
bij + bji = 2d;a;; (4,5 € 1), with ¢ = ¢j, and the d;’s as above. To be precise, we say

also that q is “of integral type B”, with B := (bij)ijel € My(Z) .

Strongly integral type: We say that q := (Qij)z‘j o s of strongly integral type if it is
of integral type and in addition one has b;; € d;Z () d;Z for all 4,5 € I. In other
words, q := (Qij)z’ el of Cartan type is strongly integral if and only if there exist integers
djt;

a4t
th t- € Z such that qij = qdztm‘ = q“"i for all 4,5 € I; then we may assume tjE =2=

157 71g
a; and t;;»—i— tj_i:2aij, for 1,5 € 1.
Canonical multiparameter: As a last (very) special case, given ¢ € k* consider
Gij = q%ii Vijel (2.2)
with d; (i € I) given as above. These ¢;; = ¢;; ’s obey condition (2.1), hence the matrix
q = q is of Cartan type A: we shall refer to it as to the “canonical” case.

Overall we have the following relations among different types of multiparameters:

“canonical” = “strongly integral” = “integral” =— “Cartan”
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By the way, when the multiparameter matrix q := (qij) is symmetric, i.e. ¢;; = qj;

2 diaij

i,5€1

ij 2
*read ¢ = ¢

(for all 4,5 € I), then the conditions ¢;jqj; = qfi , hence ¢;; =

+q9%%i (for all i,j € I). This means that every symmetric multiparameter is “almost
the canonical one”, as indeed it is the canonical one “up to sign(s)”.

Finally, we assume that for each ¢,5 € I there exists in the ground field k a square

/2

root of g;; , which we fix once and for all and denote hereafter by qé ; in addition, we

require that these square roots satisfy the “compatibility constraints” qiy 2 Qi (:: qdi)

1/2 1/2 _ (q1/2

and 4G5 4 i )aij for all 4,5 € I — in short, we assume that “the signs of all

square roots qé/ 2 are chosen in an overall consistent way” .
Even more, when q := (qij) in particular is of integral type, say q;; = qVi | we fix

1/2

i,j€l

of ¢ in k and we set qil-/Q:: (q1/2)bij €k forall i,jel.

a square root q y

2.3.3. Multiparameter Lie bialgebras. Consider the complex Lie algebra g associated
with the Cartan matrix A as in §2.3.1, and let by and b_ be opposite Borel subalgebras
in it, containing a Cartan subalgebra h whose associated set of roots is identified with
® . There is a canonical, non-degenerate pairing between by and b_, and using it one
can construct a Manin double 95 = b, & b_, which is automatically endowed with a
structure of Lie bialgebra. Roughly, 90 is like g but with two copies of b inside it; see
[Hal] for details (in particular Proposition 4.5 therein, with g, denoted ¢).

Now fix in b} and b_ generators e;,h (i € I') and f;,h; (i € I) respectively as in
the usual Serre’s presentation of g. Then, thinking of these elements as living in g (D) the

latter is just the Lie algebra over k with generators e;, hf, h; ,f; (i € I) and relations

[b,ej] = +diaije;, [, 4] = —diaifj, [hi,ej] = +djajie;, [h7,4j] = —d;ajif;

7

[bf hf] =0, [hy,h7] =0, [bf,h;]=0, [e)f;]=0;2""(h+h;)

107 ARE ]
ad(e;)! " (e;) =0 ,  ad(f;)' () =0 (i#7)
Moreover (cf. [Hal]), g ,, bears the unique Lie bialgebra structure given by the formulas
Oes) = (dib)) @e; — e @ (dih]") o(h) =0
5(hy) =0, §(f;) = f; ® (dihy ) — (dih; ) @ 1;

Now, all this construction can be extended as follows. Instead of the symmetric matrix
DA, consider any square matrix B = (bij)ijel € My(Z) such that B + B! = 2DA.

Then one can repeat the construction in [Hal] and then find a new Lie bialgebra g, given

as follows: it is the Lie algebra over C with generators e;, k;,1;,f; (i € I') and relations

[kive;] = +bijey, [kiif5] = ~bisfi, [liej] =+bie;, [l fj] = ~bjif;
[k, k] =0, [L,;]=0, [k.]=0, [e,]=0d;(2d) " (ki+1) (2.3)
ad(e;)' ™" (e;) =0, ad(f)' T (f) =0 (i#7)
and it bears the Lie bialgebra structure whose Lie cobracket is uniquely given by
5(ei):1‘<fi®ei—ei®l'<,;, 5(1{1) =0
§(l;) =0, i) =L -1, af

Note that the Lie bialgebra g D) above is simply the special case of g, for B := DA.

A more detailed, thorough construction of these Lie bialgebras is presented in [GG2].

(2.4)

Basing upon the e;’s and the f;’s we construct root vectors e, € by and f, € b_ (for
all a € ®1); this construction takes place inside the nilpotent part of b, and of b_,
hence these new elements are well-defined for each Lie bialgebra g, as above. All these
root vectors, together with the k;’s and the 1;’s, form a Chevalley-type basis of g 5> With
eq; =€ and f,, =f; for all i € I': indeed, up to signs this basis (hence the e,’s and the
fo’s) is unique. We also recall (cf. §2.3.1) the notation dq := (a,)/2 for all a € ®F.
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We introduce now some Z-integral forms of g, .

Definition 2.3.4. Keep notation as above, in particular B 4+ B! =2 DA . Then:

(a) We call g, the Lie subalgebra over Z of g, generated by the elements e;, f;, ki,
I; and h® := (2 di)_l(ki + IZ) (for all ¢ € I'); indeed, this is a Lie bialgebra over Z , with

5(ei):ki®ei—ei®ki , 5(f¢)=f¢®ji—ii®fi
5(k)=0 s(hy=0 §(h$) =0
(b) We call g, the Lie subalgebra over Z of g, generated by the elements &, :=2d, e, ,
f,:=2d,f, (€ ®t), k; and 1; (i € I); indeed, this is a Lie bialgebra over Z , with

5(éi):ki®éi—éi®ki , 5(%Z)=E®IZ—IZ®E

(¢) Assume in addition that b;; = dit;; = djt;; for some tiij €Z (i,j €1). Then we
call g, the Lie subalgebra over Z of g, generated by the elements e;, f;, k; := d; 1k,
l; .= di_lii , by = 2*1(1{@- + li) (for all i € I'); indeed, this is a Lie bialgebra over Z , with

0(ei) = di(ki®ei—e;@k;) (f) =di(; L —L®f)
5(k)) =0 5(L) =0 §(h§) =0 o

Remarks 2.3.5. (a) It is clear by definition that g, g, and g, are all Z-integral forms
of the Lie algebra g, in §2.3.3, i.e. C®ya =g, as Lie algebras for a € {gB, [P @B} .

We also remark that the elements €;, E , ki and L (with ¢ € I') are enough to generate
the Lie algebra Q ®z g, over Q; therefore, the formulas given in Definition 2.3.4(b) are
enough, though they do not display the values 5(fa) nor 0(&,), to determine a unique
Lie cobracket on Q ®z g, , so by restriction on g, too.

(b) The fact that each of g, g, and g, be a Lie sub-bialgebra of g, (hence a Z-integral
form of it as a Lie bialgebra) is a direct check. It is also a consequence, though, of our
results in §6.2 later on about specialization of suitable multiparameter quantum groups.

(c) Definitions imply that in each Lie bialgebra g, — as well as in its Z-integral forms
§,, 8, and g, — the Lie algebra structure does depend on B, whereas the Lie coalgebra
structure does not. This follows from simple observations, namely that the root vectors e,
and f, are independent of B, and that the formulas for the Lie cobracket of the ki’s, the
1;’s, the eq’s and the f,’s are independent of B as well; this second fact requires a quick
computation for non-simple a’s, where the condition B + B! =2 DA makes the job.

This implies that if we consider two such Lie bialgebras gz and gg~, and their corre-
sponding basis elements (over Q) €/, , €, etc., mapping ¢, e, K — k' 1/+—1" and
t! — {7 defines an isomorphism of Lie coalgebras gp = gpr , that on the other hand is

not one of Lie algebras. The same occurs for the Z—-integral forms as well.

For later use we need yet another definition:
Definition 2.3.6. Given B = (bij)i,jef € My(Z) such that B+ Bt =2DA, let g, be

the complex Lie algebra mentioned in §2.3.3 above, and U( gB) its universal enveloping
algebra. We define UZ( g B) , Tesp. UZ( g B) , the Z—subalgebra of U ( g B) generated by

(). (5. (5) e

n n n

resp. {(ki>,(li>,<hi>,ei(n),fi(n) iGI,nGN},
n n n

t
where < > and a(™ denote standard binomial coefficients and divided powers, and in
n

the second case we are assuming that b;; = dit;; = djti_j for some t;'; €7 (i,jel). &
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Remarks 2.3.7. (a) By Remarks 2.3.5 above, it is easily seen that UZ(gB) and UZ(QB)
are Z-integral forms of U (gB); one can also find a presentation of each of them by
generators (the given ones) and relations. Indeed, for both UZ(Q B) and UZ( g B) this is a
simple variation of the well-known presentation of the Kostant Z-integral form of U(g),
generated are binomial coefficients and divided powers of the Chevalley generators.
Moreover, as g ) is a Lie bialgebra, U ( g D)) is in fact a co-Poisson Hopf algebra; then

UZ( 0, ) and Uz ( 9, ) are in fact Z—integral forms of U ( ) as co-Poisson Hopf algebras.

9(n)
(b) By a standard fact in the “arithmetic of binomial coefficients”, Uy ( g B) contains also
ki+2 I + 2 h; + 2
all “translated” binomial coefficients, of the form < it > , < it > and < it >
n n n
for i € I, n € N, z € Z; then one has also a presentation of UZ( g B) including these extra
generators, and corresponding extra relations too. And similarly for UZ(@ B) as well.

(c¢) The definition of the Z-integral forms g, , g, and g, — of g, — and of the forms
Uz ( gB) and Uz ( @B) — of U(gB) — may seem to come out of the blue, somehow. Never-
theless, we will show in §6.2 that they occur as direct output of a “specialization process”
of multiparameter quantum groups once suitable integral forms of them are chosen.

2.3.8. Some ¢g—numbers. Throughout the paper we shall need to consider several kinds
of “¢g—numbers”. Let Z [q, qil] be the ring of Laurent polynomials with integral coefficients
in the indeterminate ¢. For every n € N we define

0), =1, (n),:= ! =1+q+---+q”‘1=nZOlq5 (€ Zlq)

= 0,0, = e, (1) = M (e 2lq)

’ q

O, =1, [l = Lol = Dot 25 et (e7]q,671))
q q s=0
L n [n]q' _
[n]q' = [O]q[l]q [n]q - 81;10[5](1 P |:k' :|q = m ( € Z[q,q 1] )
Moreover, we have (n)qQ = q”_l[n]q , (n)q2! = @[n]q 7 <Z> = gF=F) [ Z L.

Furthermore, thinking of Laurent polynomials as functions on k* , for any ¢ € k* we
shall read every symbol above as representing the corresponding element in k.

3. MULTIPARAMETER QUANTUM GROUPS

In this section we present the notion of multiparameter quantum group, or MpQG for
short. We introduce it by a direct definition by generators and relations as it suits better
for our purposes. There exists also a realization in terms of Nichols algebras of diagonal
type, see for example [ARS], [An4]. [Gar], [He2]. Finally, we connect them with cocycle
deformations of their simplest example, the “canonical” one.

3.1. Defining multiparameter quantum groups (=MpQG’s).

In this subsection we introduce the multiparameter quantum group Uq(g), or MpQG
for short, associated with a matrix of parameters q := (Qij)i’je ; of Cartan type (cf.
§2.3.2). We fix also scalars ¢; (¢ € I) as in §2.3.2, with the additional assumption that
qilgzq?k#l forall k=1,...,1—a;;,with 4,j €I and ¢ #j.
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Definition 3.1.1. (cf. [HPR]) We denote by Uq(g) the unital associative k-algebra gen-
erated by elements F;, F;, K iﬂ , LZ-jEl with ¢ € I obeying the following relations:

() KML7'=L7'K, KP'KTN =1 = LP'LT
b KUK = KK, L = LT
(C) Ki Ej Ki_l = (ij Ej y Li Ej L,L»_l = qj_z-l Ej
(d) KlF]K;1 = qi;1 Fj 5 LlF]L;1 = jSFj
(e) [BiFj] = dijau——"
qii — 1
1—a;; 1 — s (k) L N
e (M) W e — 0 2)
k=0 Qi
1—a;; 1 a (k)
— Ugy 1— i'_k . .
(9 () @R R =0 )
k=0 ii

Moreover, Uq(g) is a Hopf algebra with coproduct, counit and antipode determined for
all 4,7 € I by

( ) =LE®l1+K QFE G(Ez) =0, S(E’L) = _K;lEz

A(F, )_F®L +1®F; , e«F) =0, S(F)) = —F;L; !
AKF) = K @ K (Ki) =1, S =K
ALF) = L o L (L =1.  SELH =Ly

Finally, for later use we introduce also, for every A = Y ..; A\io; € @, the notation
Ai .
Ky = [Lie; K and Ly :=[[,c; L™ . &

Remark 3.1.2. Assume that ¢ € k* is not a root of unity and fix the “canonical”
multiparameter ¢ := (qij = ¢%i%; )Z el like in (2.2). Then we can define the corresponding
MpQG, denoted Ug(g): the celebrated one-parameter quantum group Uy, (g) by Jimbo and
Lusztig is (up to a minimal, irrelevant change of generators) just the quotient of Ug(g) by
the (Hopf) ideal generated by {L; — Kt ‘ i=1,...,0}.

As a matter of fact, that we shall deeply exploit in the present work, most constructions
usually carried on for Uy(g) — like construction of (quantum) root vectors, of integral

forms, etc. — actually makes sense and apply the same to Ug(g) as well.

We introduce now a family of subalgebras of any MpQG, say Uq(g) , as follows:

Definition 3.1.3. Given q := (Qij)i,jel and Ugq(g) asin §3.1, we define Uo? = Uq(h®h),
Ug . Uq”, Uy =Uq(no), Uf :=Uqny), Ug :=Uq(b) and UZ := Uqg(by) to be
the k-subalgebra of Uq(g) respectively generated as
0 ._ +1 1 +0 . +1 -0 . +1
vy = (KL >i61 CUs = (K >i61 c U = {1 >iel

Ugq = (Fi)ies » Ug = <Fi’ L;H>z‘el, Ug = <K§E1’Ei>zel’ Ug = (Biles

We shall refer to U(% and Ug as to the positive and negative multiparameter quan-

tum Borel (sub)algebras, and U(?, U{;’O and Uq_’o as to the global, positive and negative
multiparameter Cartan (sub)algebras. &

Recall the notion of “skew-Hopf pairing” (cf. Definition 2.1.2). From [He2, Proposition
4.3] — see also [HPR, Theorem 20] and [AY, Propostion 2.4] — we have:
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Proposition 3.1.4. With the assumptions above, assume in addition that q; # 1 for all
indices © € I. Then there exists a unique skew-Hopf pairing n : qu ® (U;)COP — 5k
k
that is non-degenerate and such that, for all 1 < 4,5 <6, one has
— i
n(Ki, Lj) = gij n(Ei, Fj) = 0, o 7“1 : n(Ei, Lj) = 0 = n(K;, F})
2
Moreover, for every E € U(J{ , F e Uy, and every Laurent monomials K in the K;’s
and L in the L;’s, we have

n(EK,FL) = n(E,F)n(K,L)

The following result states that there exist special “tensor product factorizations” of
MpQG’s (the last ones are usually referred to as “triangular decompositions”):

Proposition 3.1.5. (cf. [HPR, Corollary 22|, [BGH, Corollary 2.6])
The multiplication in Uq(g) provides k-linear isomorphisms

- 0 ~ < ~ 0 - + 0 ~ > o~ 0 +
Uq(%Uq = U= = Uq%Uq , Uq%Uq = Uq = Uq%Uq
+,0 -0 ~ 770 ~ ,0 +,0 < >~ ~ 772 <

Uq %Uq = Uq = Uq %Uq , Uq %Uq = Uq = Uq %Uq
Ut UlQUT = Uy = U Ul UT
q Kk q]k q q Kk qlk q

Remark 3.1.6. It is clear from definitions that qu = Uq(h@®b) has the set of monomials
in the K l-il’s and the L; Vs as k—basis. It follows then that each triangular decompositions
of Uq(g) as above induces also a splitting Uq(g) = Uq(h @ h) ® Uq(g)®  where

Uq(g)EB = (Uq(nf)Jr' Ug(h,) - Uq(ny) + Ug(n-) - Ug(h,) - Uq(n+)+

3.2. MpQG’s as cocycle deformations.

Now we want to perform on the Hopf algebras Uq(g) a cocycle deformation process, via
special types of 2—cocycles, like in §2.2, following [AST], [DT] and [Mo].
ijer and Uq(g) as in §3.1. As explained in §2.3.2, we fix a
special element ¢; € k> | also denoted by ¢ := Gy 5 for this choice of ¢, we consider the
canonical “one parameter” quantum group Ug(g) as in Remark 3.1.2.

Recall from Definition 3.1.1 the notation Ky := [[,; Kfl and Ly = [[;o; L for
every A=) ,.;Aia; € . Similarly, we shall also write

iVj 1/2\ HiVs
go =11 a7, ol =T ()" Vu=Ymo, v=Yrvjo;€Q
i,j€I i,j€I i€l JeI

Let us consider q := (Qij)

Likewise, we define also g = 4 for every positive root 3 € ®T which belongs to the
same orbit as the simple root «; for the action of the Weyl group of g onto @ (which is
well-defined, by standard theory of root systems).

Definition 3.2.1. With the above conventions, let Ug(g) be the MpQG of Remark 3.1.2,
and let o : Ug(g) ® Ug(g) — k be the unique k-linear map given by

o(x,y) = g,

o(Uq(9),Uq(8)®) = 0 = o(Uq(9)®,Uq(0))

(by Remark 3.1.6 above, this is enough to determine a unique o as requested). O

it x=K, or x=L,, y=K, or y=1L,

The key result that we shall rely upon in the sequel is the following;:
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Theorem 3.2.2. (cf. [HPR, Theorem 28.]) Let q := (q;; )ijel

the map o in Definition 3.2.1 is a normalized 2—cocycle of the Hopf algebra Ug(g) and
there exists a Hopf algebra isomorphism (with notation of §2.2.1)

Uq(g) = (Us(9)),

and q be as above. Then

Remark 3.2.3. A similar result is given in [HLR, Theorem 4.5], but using another o .

As a last result in this section, we can show that the 2—cocycle deformation considered
in Theorem 3.2.2 can be also realized as a cocycle deformation in the sense of §2.2.2 as
well. Indeed, let I' := Z*’ be the free Abelian group generated by the K;’s and L;’s
(i € I), and Vg, resp. Vg, be the k—vector space generated by the E;’s, resp. the F;’s
(i € I). Then, by [Gar], we know that Ug(g) is a quotient of T'(Vg & Vp) #kI" by the
two-sided ideal generated by the relations (e), (f) and (g) in Definition 3.1.1. We have a
(Q x Q)—grading on T (Vg ® V) #kI" given by

deg(Kl) = (ozl-,ai) = deg (L@) s deg(EZ) = (1,0[1') N deg(Fz) = (Oéi,l)

for all ¢ € I'; it coincides with the grading induced by the coaction on the Yetter-Drinfeld
modules Vg and Vr such that deg(K;) = deg(L;). As the defining relations are homoge-
neous with respect to this grading, we get a (Q x @)-grading on Ug(g) .

Consider now the group 2-cocycle ¢ € Z2(I',k) given by ¢ := O" rwp o thatis

o(h, k) = qli/f if h=K, or h=L,, k=K, or k=1L,
and let ¢ be the 2—cocycle defined on T(V & W) #kI" as in §2.2.4. Since I" is Abelian
and FE; ;Fj = ElF] for all 1,7 € I, we have that FE; -@Fj — Fj @EZ = [EZ',F]'],
@

hence ¢ defines a Hopf 2-cocycle ¢ on Ug(g). Finally, a direct comparison shows that
@ = 0. Thus, using §2.2.4, we conclude that the following holds:

Proposition 3.2.4. There exists a Hopf algebra identification
(Ua(g), = (Ualg)™
hence, by Theorem 3.2.2, a Hopf algebra isomorphism Uq(g) = (Uq(g))(@ .

3.3. Multiparameter quantum groups with larger torus.

The MpQG’s Uq(g) that we considered so far have a toral part (i.e., the subalgebra
qu generated by the Kiil’s and the L;-H’s) that is nothing but the group algebra of a
double copy of the root lattice @) of g, much like in the one-parameter case — but for
the duplication of @), say. Now, in that (uniparameter) case, one also considers MpQG’s
with a larger toral part, namely the group algebra of any intermediate lattice between @
and P ; similarly, we can introduce MpQG’s whose toral part is the group algebra of any
lattice Iy x I, with Q C Iy and Q C I

3.3.1. Larger tori for MpQG’s. Recall that the definition of the “toral parts” of Ugq(g)
— cf. Definition 3.1.3 — is independent of q: indeed, UJ 015 the group algebra over k for
the group @ — identifying +ay; ~ Kiil and a~ K, (i€ 1, a € Q); similarly, U;’O is
the group algebra (over k) of @ again with a ~ L, and Uq(h @ bh) := UO? is the group
algebra (over k) of Q x Q — with (o/,@”) ~ Ko Ly .

Let us denote by QQ and QP the scalar extension from Z to Q of the lattices ZQ and
Z.P | respectively; note that Q@) = QP . For any other sublattice I in QQ( = QP) of
rank 6 — the same as Q and P — we can define toral quantum groups U;E 7’19 akin to
Uét ¥ hut now associated with the lattice I’ , again as group algebras; similarly, we have an
analogue U37 4 of Ug associated with any sublattice A in QQ x QQ of rank 26 . Moreover,
all these bear a natural Hopf algebra structure. Any sublattice inclusion I < I'” yields
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a unique Hopf embedding U - 0 cU ilq” , and similar embeddings exist for the U37 A4S
We aim to use these “larger toral MpQG’s as toral parts of larger MpQG’s; this requires
some compatibility constraints on q, and some preliminary facts that we now settle.

Let I'" be a sublattice of Q@ of rank 6 with @ < I'. For any basis {71, .. .79} of I',

let C := (cij)”. el be the matrix, with entries in Z, that describes the change of basis

(for QQ as a Q-vector space) from {%}z‘el to {ai}ig, S0 a; = Z?Zl cijy; for each
i€l={1,...,0}. Let also c:=|det(C)| € Ny be the absolute value of the determinant
of C'; this is equal to the index (as a subgroup) of @ in I', hence it is independent of any

ch01ce of basis. If C~! = ( ZJ) el is the inverse matrix to C', then ~y; = Zf 1 Z]
c;’J ::c-cij €Z foral i,jel={1,...,0}.

Let now U, : 7’1(1 be given, as group algebra of I" over k with generators K ,jyil corresponding
to the basis elements ~; (and their opposite) in I (for i € I'). Define Ko, :=[];c; Ky

for all i € I then the k-subalgebra of U F generated by the K il’S is an isomorphic

aj and

copy of Ut q. Q? which provides a realization of the Hopf algebra embedding U: 0 CU :{ [9
corresponding to the group embedding @ < I'.
In the obvious symmetric way we define also the “negative counterpart” U, q_ ’IQ of U, : ’1(1 ,

generated by elements Li:l corresponding to the ++;’s in I, along with a suitable embed-

ding U C U ’F eorrespondlng to the group embedding Q < I".
Flnally, glven any two sublattices Iy of rank 6 in Q@ containing @, letting I,

I'y x I'_ we define Ug r. = U, ; 1(1+® Uq, ’10“ ; in this case, the basis elements for Iy will

be denoted by ”yli (i€1T). The prev10us embeddings of Uq. +0 o into Uy’ 0 ’r, then induces a
similar embedding of Ug — U+Q ® U o into U& r, as Well.

3.3.2. Special root pairings (in the integral case). Let us now assume that the

multiparameter q := (qij = qbif)l.j e I8 of integral type; we therefore use notation B :=
(bij)z‘jel € Mp(Z). Then a Z-bilinear pairing ( , ), : @ X @ —— Z is defined via
the matrix B by (aiaaj)B := b;; for all 4,5 € I. Moreover, by Proposition 3.1.4, we

know that the pairing qu ®UqS —— k is non-degenerate; but then (by the special
k
properties of this pairing) its restriction to U(? ® U(f is non-degenerate too. Finally, from
k

<Ka ,L5> = ¢(> P (for all o, B € Q) we get that ( )B : @XQ —— Z is non-degenerate
as well, which forces B to be invertible.

By scalar extension, ( , )B yields also a Q-bilinear pairing on QQ, which again is
non-degenerate; we denote it also by ( )B . It is then meaningful to consider, for any

sublattice I' in QQ, its left-dual I'® and its right-dual I'"), defined by
9:={XeQQ|(\,7),€Z,VyeTl}
={peQQ|(vp),€Z,Vyel}

that are sublattices in Q@ and coincide iff B is symmetric; then restricting the Q-bilinear
pairing (, ), : QQ xQQ — Q to I @ x I and I' x I'") one gets Z-valued pairings
I'x I ——7Z and I' x I'") —— 7, still denoted by ( , ), .

(3.1)

Using the matrix B! = (b’ ) jerr We define in Q@ the elements

wz“) = > per Uik Ok Viel (3.2)

which are characterized by the property that (z'ﬂy), aj)B = 0;; ; in short, {w( )}Z er l
the Q-basis of Q@ which is left-dual to the basis {ozj}je[ w.r.t. ( , )B ;in partu:ular,
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{wl@}m is a Z basis of QU | the left-dual to Q w.r.t. ( , )B. Definitions give also

Q C QY with a; =Y, b, forall iel.

The left-right symmetrical counterpart is given once we define the elements

&\ = S ok Viel (3.3)

i
characterized by the property that (aj ,wET))B = §j; ; thus {wg’“)}i cr 18 the Q-basis
of QQ which is right-dual to the basis {aj }jel with respect to ( ) )B; in particular,
{Y'DZ(T)}I.GI is a Z-basis of Q) | the right-dual to Q w.r.t. ( , )B . Furthermore, definitions

give also Q C Q) with «a; = > ker ki w,(j) forall t€1.

The strongly integral case: The previous construction has a sort of “refinement” when

the integral type multiparameter q := (qij = qbiﬂ')ij is actually strongly integral, with

el
bij = d; t;; = d; t;; for all 4,5 € I (cf. §2.3.2). In this case, consider the two Z-bilinear
pairings ( , >Ti : Q x Q — 7Z defined by the matrices TT and T~ — thus given by
(0, 0y >Ti = tfcj for all i,j € I — that are obviously non-degenerate (as ( , ), is, and
DT" =B =T~ D), and extend them to same-name Q-bilinear pairings on QQ x QQ
by scalar extension. Then define, for any sublattice I" in QQ, its left-dual and right-dual
(w.r.t. T~ and T respectively) as

r® .= {AEQQ\()\,WFEZNWGF}

r .= {peQQ|(y.p) €z Vyel}
that both are sublattices in Q@ ; the pairings ( , )T . then restrict to Z-valued pairings

(3.4)

(, >T7 IO x I ——7 and (, >T+F x I'") —— 7. Now consider the elements

wlm = d; L'TJZ(Z) =S ertn ok wlm = d; wg” = kel tkt.’/ozk Viel (3.5)

. "
fj” )Z; = (T%) ' which are characterized by the properties <w§€), aj >T7 = 0;j

and <ai,w§’“>>T+ = 6;; ; in a nutshell, {w”} _ is the Q basis of QQ which is left-

where (t

dual to the basis {aj}jel w.r.t. < , >

— » while {wz@}ie] is the right-dual to {aj}jel
w.r.t. < , >T+ . In particular, {wl@)}iel is a Z basis of Q¥ , and {wzm}iel is a Z—basis
of Q) with notation of (3.4). Note also that definitions give @ C QW ﬂQ(T) with

;i = rertip w,(f) and o; =Y, th w,(:) forall i€ 1.

3.3.3. MpQG’s with larger tori. Let I’} and I_ be any two lattices in QQ such that
Q < Iy;thenset I, := 17 xI"_ . From§3.3.1, with notation fixed therein, we can consider
the corresponding “multiparameter quantum torus” Ug Tuo that contains Ug = Ug Q-

For either lattice I'y, we have a matrix Cy = (Ci)ije ; and Cp L= (ci’/ with

j ij )i,jel ’
=+, £,/ ..
cy 1= ‘det(Ci)‘ €Zy and ¢ ==cy - €L (i,jeI).
For the rest of this subsection, we make now the following assumption concerning the
ground field k and the multiparameter (of Cartan type) q := (Qij)i jer” for every i,j € I,
1
the field k contains a c+—th root of ¢;; , hereafter denoted by qij/ci ; moreover, we assume
1
that ql/ Cx = (qij/ Ci) is of Cartan type too.
i,j€l

The natural (adjoint) action of Ug onto Uq extends, in a unique manner, to a Uq07 L

action - : UqO,F. x Uq — Uq, given by
r oyl
K’yj_ By = Qij+Ej L%— By = (jS ) Lj qu Koy = Ko, L%‘ Koy = Ko,

Iyt I
K’y;r . Laj = Laj , L'y: . Laj = La]' , K’y;r . F‘j = (qu+) FJ L'Y; . F‘j — q]z F‘J



16 G. A. GARCIA , F. GAVARINI

o o
where qr{} = lier (qkls/c ) and qcf;* = Ilper (qalk/c* )Ce,c ; this makes Uq into a
Uq07 r,~module Hopf algebra. This allows us to consider the Hopf algebra Uq07 rn X Uq given
by the smash product of Ug,F. and Uq : the underlying vector space is just Uq0 nOUq, the
coalgebra structure is the one given by the tensor product of the corresponding coalgebras,
and the product is given by the formula

(hxa)(kxy) = hkagyx (Skay)-z)y for all h,kEUOF , z,y € Ug

Since Ug, r, contains Ug ( U2 QXQ) as a Hopf subalgebra, it follows that Uy v 1, itself is
a right Ugfmodule Hopf algebra with respect to the adjoint action. It is not dlfﬁcult to see
that, under these hypotheses, the smash product U 1, X Ug maps onto a Hopf algebra

structure on the vector space U L ® Uq , which hereafter we denote by U n X Uq, see
Uq

[Le, Theorem 2.8]. We define then
Ugn(g) = Uq,rn == U % Uq = U 1, % Uql(g) (3.6)
qa

qa,le
0
Uq

It is easy to check that Uq r;(g) and its Hopf algebra structure can be described with
a presentation by generators and relations like that for Uq(g) in Definition 3.1.1. Indeed,
since the coalgebra structure is the one given by the tensor product, one has to describe
only the algebra structure. For this, first one has to replace the generators K; +1 =Ky,
and LjEl = Li,, with the generators ICil Ki7+ and Eil = Li - Second replace
relations (¢) and (d) of Definition 3.1.1 with the following, generahzed relations:

B B L —1
() KBK.= a; B, LK Ll = (40) B

-1 1 —1 I
(d) K%_+FjK%_+ = (qij+) Fj L, Fj L%__ =q; F
Then, in relation (e) write each Kil = K,, , resp. LjEl = L4,, , in terms of the IC]-il =
K, + ’s, resp. Eil L s ’s; finally, leave relations (f) and (g) unchanged.

Wlth much the same approach one defines also the “(multiparameter) quantum sub-
groups” of Uq 1, (g) akin to those of Uq(g ) (cf. Definition 3.1.3), that we denote by adding

a subscript I, namely U L Uq ro Uq_r , Uq—F , U+lq' and Uq ’F

The integral case: When q is of integral type, the above construction may have a simpler
description. Indeed, assume also that the lattices I'y and I'_ (both containing () ) are such
that I’y < QW and I'_ < Q)| that is (F+ ,Q)B CZ and (Q,F_)B C Z — notation
of §3.3.2. Then in the presentation of the MpQG Ugq r, of (3.6) the modified relations (¢’)
and (d’) mentioned above take the form

(d/) K"/j F] K’Y_j = q_(’YjaO’j)B F] , L’y: F] L:{E — q+(OéJ7’y:)B FJ

In particular, this means that Uq r, is actually well-defined over the (possibly smaller)

ground field generated in k by ¢ — and similarly for U a.n U 5 r, » etc. Therefore, the
assumption that k contain c;—th and c_—th roots of ¢;; , that is required in the non-integral

case, is not necessary in the integral one.

3.3.4. Duality among MpQG’s with larger tori. Let again Iy be two lattices of rank

0 in QQ) containing @, and set I, := Iy x I ; then we have “toral MpQG’s” Uéc gi and

Uq v 1, @sin §3.3.1. Moreover, we have bases {’ys } of I'y and corresponding matrices

_ [ .* £,/ 0
Ci ;(Cij)i,jel and C;! = (cij )i,jel’ =
N

ct - ¢;" (4,j € 1) as in §3.3.3. In addition, we assume that k contain a (c4 c_)fth root

and the 1ntegers c+ = ‘det Cy) | and Cj
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1 1
of ¢, say qij/(CJrc*), and that overall the multiparameter q'/(¢+¢-) := (qij/(%c*)) P

be of Cartan type.
It is straightforward to check that the skew-Hopf pairing 7 : qu ®UqS — k in
k

Proposition 3.1.4 actually extends to a similar pairing qu r, ® U§ r — k given by
b k b -
+ " —.n

1/(6 Cc_ ) ih C]k
EQL,-—0, K+QF;— 0, B;QF;j— (5, e, K +®L — Hhke[(qhk )

for all 4,7 € I, and still denoted 7. In partlcular, thls n: U«;_,F+® U— L k is still

non-degenerate, like its restrictions U;,m@ U(;F_—> k and U0 ® UO r—k.

When q := (q” =q ”) is of integral type, and ( )B : Q XQ —> Z is the associated
pairing — cf. §3.3.2 — the prev1ous construction may have a simpler description, under the

additional assumption that (F+ A ) C 7 — that is equivalent to either of Iy C I'' ©

and I C ff) — so that (, ), induces a pairing ( , ), : It x [~ —— Z. In the

following, we shall briefly refer to such a situation by saying that (F A _) 18 a pair in
duality (w.r.t. B), or that the lattices I'y. and I'_ are in duality (w.r.t. B). Indeed, under

g —

QAR

. (e c_)\%h Sk .
these assumptions we have n(Kﬁ,Lﬁ) Hh el (qhk + ) =q . in

particular, requiring a (c,c_)-th root in k of every gpj is no longer necessary.

Remark 3.3.5. It is easy to see that using the skew—Hopf pairing n between (suitably
chosen) quantum Borel subgroups U= a.ls and U T mentioned in §3.3.4 above, every

MpQG with larger torus, say Uq r,(g), can be realzzed as a Drinfeld double (of those
quantum Borel subgroups), so extending what happens for MpQG’s with “standard” torus.

4. QUANTUM ROOT VECTORS AND PBW THEOREMS FOR MPQG’S

The first purpose of this section is to introduce root vectors for MpQG’s. Second, we
show that PBW theorems hold true for an MpQG and all its relevant subalgebras.

4.1. Quantum root vectors in MpQG’s.

For the one-parameter quantum group Uy (g) of Lusztig several authors introduced quan-
tum analogues of root vectors — or “quantum root vectors” — in different ways, the most
common ones being via iterated g—brackets or iterated adjoint action. Lusztig gave (cf.
[Lu]) a general procedure, using an action on U,(g) of the braid group associated with g;
later, it was extended to the multiparameter case in [He2].

To begin with, let W the Weyl group of g, generated by reflections s; = s,, associated
with the simple roots ; of g (i € ), and let wg € W be the longest element in W . Then
the number N := “I’ﬂ of positive roots (cf. 2.3.1) of g is also the length of any reduced ex-
pression of wg . Let us fix now one such reduced expression, say wo = S;, Si,Sis = * * Siy_ Siy »
so that all the following constructions will actually depend on this specific choice.

Set B¥:=s; 8+ s, () forall k=1,...,N: then one has {/Bk}kzl,z,...,N: ot
in particular, all positive roots are recovered starting from the fixed reduced expression of
wo , and in addition this also endows ®1 with a total order, namely * < g/ «—= k<h.
The same method of course can be applied to negative roots.

A similar procedure allows to construct a root vector in g for each positive root. First
consider the braid group B associated with W, generated by elements T; which lift the
simple reflections s; = s,, (¢ € I). There is a standard way (cf. for instance [Hu]) to
define a group action of B onto g that on root space yields T( 95) = 0s,(8); using this
action one can define root vectors via

Tgk = Tnngle,l(l‘zk) € 9pk Vk=12,...,N
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where each z; is a Chevalley generator in g,, . It is worth remarking that if G is a simple
root, say (B¢ = aj, then the root vector xg. defined above actually coincides with the
generator z; given from scratch, so the entire construction is overall consistent. The same
argument can be used to construct negative root vectors.

This type of procedure was “lifted” to the one-parameter quantum case by Lusztig (cf.
[Lu]), who did it introducing a suitable braid group action on U,(g) ; his construction was
later extended by Heckenberger to the multiparameter case, that is to Uq(g), as we shall
now shortly recall. One defines — see [HY], formulas (4.3-4) — isomorphisms 71, ..., Ty
which yield a B-action that lifts that on U(g); using this action one defines “quantum
root vectors” Egk as given by

Eg. := T;,Tiy - Ty (By) € US Vk=12,...,N (4.1)

where one finds that FEgx = E; whenever gk = a; ; similarly one also constructs “(quan-
tum) negative root vectors” Fe € Uq - In the following, we shall refer to the Egx’s or the
Fgi’s by loosely calling them “(quantum) root vectors”.

It is also remarkable that these quantum root vectors can be realized as iterated braided
brackets (e.g., like in [HY, Section 4]). This will be of key importance, by the following:

Proposition 4.1.1. Every quantum root vector in Uq(g) is proportional to the corre-

sponding quantum root vector in Ug(g) by a coefficient that is a monomial in the qil/Q ’s.

Proof. By Theorem 3.2.2 and Proposition 3.2.4 together we know that

Ua(g) = Ua(e), = Ua(9)”
for the 2-cocycle o of Ug(g) and a suitable group bicharacter ¢ of Q. Now denote by E,
a quantum root vector in Uq(g) and by E,, the corresponding (i.e., built in the same way,
for the same root) quantum root vector in Ug(g). Since §;; = ¢%%s = ¢%i%i = §;; for all
i,j € I, in Ug(g), we have that
ad(E;)(Ei) = ads(Ej)(Ei) = (Ej)(1) o Ei o Sa((Ej)(z)) =
. . . -
=E wE + Kj v Ei (Kj 'an) =
= o(K;, K) Ej Ei + (0(K;, Ki) K; E;) - (o(K; ' Kj) K Ej) =
= O'(Kj 7K7,) (E] Evl + O'(Kj_l ,Kj) O'(Kj K;, 1) Kj El Kj_lEj O'il(Kj ,Kj_l)) =
/24 £ L g 1/2 0, - - 1/2 N
= ¢ (BB + 4y BEy) = g2 (B - Bi - S((By) ) = ¢/ ad(E))(Ey)
Therefore, although the adjoint action is not preserved under the 2—cocycle deformation,
both elements differ only by a coefficient which is a monomial in the q;;l/ %'s. Since both
quantum root vectors are defined by an iteration of adjoint actions (because of the very
definition of the 7T;’s) by Lemma 2.2.3 we infer, taking into account the explicit form of o
+1/2,
]
associated with any root o in Uq(g) and in Ug(g), , respectively, are linked by an identity

E, = m (qﬂ/2) E, for some monomial m} (qil/Q) in the qgsl/z’s, as claimed.
The above accounts for all (quantum) positive root vectors. A similar argument proves

the claim for negative root vectors as well. O

(whose values are monomials in the ¢ s), that the quantum root vectors E, and E,

4.2. Poincaré-Birkhoff-Witt (=PBW) theorems for MpQG's.

Once we have quantum root vectors, some Poincaré-Birkhoff-Witt (=PBW) theorems
hold too, stating that suitable ordered products of quantum root vectors and/or toral
generators do form a k-basis of Uq(g) itself. Here is the exact claim:
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Theorem 4.2.1. (“PBW Theorem” for Uq(g) — cf. [An4, Theorem 3.6], [HY, Theorem
4.5], and references therein) Assume quantum root vectors in Uq(g) have been defined as
above. Then the set of ordered monomials

1 ) N
{ H Fﬁfl‘ck HL]"IJ HKibz HEe}}LL fkaajabiaehEN}
k=N jerl el h=1

is a k-basis of Uq(g), and similarly if we take the opposite order in @V .
Similar results hold for the subalgebras qu, UqS , Uq+ » Uqg s UOFL’0 , Uq_’0 and Ug.

Proof. This is proved in [An4, Theorem 3.6] (also for q not of Cartan type). O

Remark 4.2.2. It is easy to see that a suitable “PBW Theorem” holds as well for any
generalized MpQG with larger torus Uq 1, (g) — cf. §3.3.

4.3. Hopf duality among quantum Borel subgroups.

Proposition 3.1.4 provides a skew-Hopf pairing between the two MpQG’s of Borel type
Uc% and UqS , that we denote by 1. Again, from [AY, Proposition 4.6], we have a complete
description of this pairing, in terms of PBW bases (of both sides), namely the following:

Proposition 4.3.1. Keep notation as above. Then

MES K. [1FFL o, (G g\ (K, L
n(kl;ll e 1}31 P > a kl;[1 ek’fk< Qgrpr — 1 > (ek)qﬂkﬁk' L)
for all ey, fr € N and all K € UJ’O, Le U;’O , where h(py) is the height of the root [
and qgn gk is defined as in §3.2.

Remark 4.3.2. It is straightforward to see that the result above actually extends to
the case when — under suitable assumptions — one considers the pairing n between two
multiparameter quantum Borel subgroups U, qz r, and U, qS r, like in §3.3.4.

4.4. Special products in Uq(g) = (Ug(9))

i
When performing calculations in our MpQG’s, a convenient strategy is to reduce our-

selves to similar calculations in the simpler framework of uniparameter quantum groups.
The basic point to start from is the existence of a Hopf algebra isomorphism

Uq() = (Uq(g)),

(cf. Theorem 3.2.2) where o is the 2—cocycle given in Definition 3.2.1. Therefore, we can
describe Uq(g) as being the coalgebra (Ug( g))a endowed with the new, deformed product
» 1= -, (defined as in §2.2.1) and the corresponding, deformed antipode S,. The “old”
product in Ug(g) instead will be denoted by *. So hereafter by Y** or Y *# we shall denote
the z—th power of any Y € Ug(g) with respect to either the deformed product = or the
old product 7, respectively, for any exponent z € N, or even z € Z when Y is invertible.

For later use, we need to introduce some more notation:

Definition 4.4.1.

(a) Let A be an algebra over a field F, and let p € F be not a root of unity. For every
He A, neN and ¢ € Z, define the elements

. n ct+l—sry .
(H,c) :: H D H-1 7 (H) . (H,O) (4.2)
e Jp s=1 pr—1 " /p e Jp

that are called p—binomial coefficients (or just “p—binomials”) in H.
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(b) Forevery i €I, a € T, X; € {EZ , F; }, Y, € {Ea,Fa} — notation as in §4.1
— and all n € N, the elements in Ugq(g)

n X Yo
Xi( )= — , v, = = ' (4.3)
(n)qu (n)qaa'
are called quantum divided powers, or q—divided powers. &

Note that if in Ug(g) we consider the two products - and = we have two corresponding

: *
types of g—binomial coefficients, hereafter denoted by <Xrio) and (X;LO) . Similarly, we
(i (4

shall consider two types of g—divided powers, for which we use notation Y (™ and Y*™) .
indeed, the first type denotes a g—divided power in (Uq( g9), * ) , and the second one a

q-divided power in Uq(g) = (Uq(9)), = (Uq(9), *) -

4.4.2. Comparison formulas. Some elementary calculations lead to explicit formulas
linking same type objects in (Ug(g), *) and in Uq(g) = (Ug(g), +) ; we shall use
them later on when studying integral forms of Uq(g) .

Concretely, for all i € {1,...,0}, n,m €N, z,2/,2" € Z ps € {q,qs}, X,Y € {K,L}
and GF':= K LF! we have — cf. (4.2) for notation —

B O Fr = G g

X\ X; ’ G Gl i

(n>pi: <n>pz 7 < n )u: ( n >zz
¥ + “(n) - 7 (m nm 4 F(n) gt (m
T A R L Ul B R

*(n1) x(n2) (ns) _ ('Y) 1/2 (1) pi(n2) . oot (ns)
Eil 1*Ei2 2*---*E (qu] ><qu4{l{% nka1k>Ei1 1 'Ei2 2 EZS

i<k

#(n) ppx(m) _
E;-E; =

F ) = () -2 ~G)pie) ;s prm) *(3)(q*1/2)"mq*(2‘)Ff<n):Ff(m>

4  9na;,ma;4; i j = g ij i i j

F“(m) Fwi:(nz)* o *F*(ns ( H qu( )) ( l—[ qﬁzl{xz ,mkalk) Fi;(nl) TFi;(ng) - TF,i~s(ns)

i<k
*z/ x2! I Ve *z/ *z! I A VRS- xz/ x2! T2 ey T2
Xy = XF oy Xxea = Xy ey = 6l

()= (92,
(L) - (D)),

23
X\ (GEYYxY Gy
n pi m "_ n Y2 m qjj

455 53

*(n *(m +(5) —(% ‘n) v 27 (m *(m *(n (%) +(5 “(m) ¢
B )Z%(g)qj(g)Ei()_Fj( )R )*Ei():qj(Q)qi(Q)Fj( ) g™

G*Z (n)_GZvE()

#(n) oxz i) s ATz
F*(m) L X = q—zm/2F-(m) - Xitz

ij 9 7 K3 J'L ]
G*Z (m) _ G Ty VF ( ) 7 Ej*(m)*Gz*Z — Ey(m)VG{Z

S —1
P; =0 s=1 pj

* m c 1—s [ +1/2\™ B
*(n X, o —c(m—c p; q;; -1 (n X, ‘e
E()(Wf) :qj(z)zpj( B (SJ ) Ei()< J>p.Xj
j
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+1/2

Xi\ . g +() oo T PG XY
<m> ij H pj—1 E; m—c ijj

E.*(")*<Gj)* = g ) Eﬁ<n>:<Gj>' <Gj>* ) (Gj) g
m qjj m qjj m qjj m aj;

* n m C 71/2 _ b
F'*(n)*<Xj) = g WYy H nl ) F-f(n)< - ) X;e
7 i i j

m Jp; =0 p] -1 m—=c/,
* 1—s [ —1/2\"™ :

(X]) F = Z e H S ( - ) x e
mpj 1 J p]_l m_cpj J 1
F.*(”)*<Gj>* = ¢ ) Fi<n>f<Gj)' <Gj>* w6 (Gj) )
7 m N 7 7 m “7 m - 7 7 m - i

455 qjj qjj aji

In addition, more in general for root vectors we have the following. From Proposition
4.1.1 and its proof, recall that — keeping notation from there — if we denote by E,
a quantum root vector in Uq(g) and by E, the corresponding (i.e., for the same root)
quantum root vector in Ug(g) we have

E, = m;' E, and Fy, =m, F,
for some Laurent monomials m} = mg} (qﬂ/z) and m, = mg (qﬂ/Q) in the qil/%
Then an analysis like above (just a bit finer), for «,3,€ ®*, j € {1,...,0}, ylelds

nim + e n m 5 7(n) ~ - (m
205 = g8 (g 02" g )" ()™ B < By
s " s ni\ =7 (ng) ~ e 5 (n
Brw).....5) — <JH1 (2)> < Hqﬁc{inm jgl(mzj) J>Ea1< Vi)
Fr(n), px(m) q (z)(qa—ﬁl/2)”mqﬁ*(2)(m;)" (m )mpaf(n) cpom)
5 " s ni\ 7 (n)~ e = i(n
Frm).. . ) = <j£[1qa](2) (qulo{f,nkak jgl(m;j) NEI: i)
F*(n) F*(m) _ q;'_<2 q_(2> (m;r)” (mg)mEa(n) v Fﬂr(m
Fg(m)*E;(”) — qﬂ(2>qa(2> (m;)m (m;)"Fﬁt(m) v Ec;(n)

XZ*Z*E*(TL) _ q;—zﬁnﬂ (mg)n X@ z v E,B (n) . F (TL)*X *z B—l—;n/? (mg)n Eﬁ (n) - Xifz
G B = (mp)" G/ B, B = (mf) B, 6
Xz*Z*Fﬁ*(m) _ qa_izﬂm/Q (mg)sz T Fy (m)7 Fﬁ*(m) X7 — q;;m/Q (mg)m 5 (m) « X,

* m c 1—s( +1/2\"
(n X +(n) n —c(m—c) p] (an‘J ) -1 n X] c
(0] =P mt) Y : () x
mJ, CZ_%J slill p;—1 m—cpjj
* m c 1—s / +1/2\"
XJ> *(n) +(5) 1y c(m—c) J (Qaja ) : ( X ) cpat(n)
) = Qo o 4 X, °E,
E(;k(n) B (GJ = g (2)( ;—)”E (n) ~ <GJ>
qjj 9535
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r; <n;> =Py Yo,

c 1—s —1/2 T
—c(m— c)H Pj w] ) 1 Fr(n)< Xj ) e
s=1 p

pj c=0 ;
* m _1/2 - B
<Xj> *F;(") = Z c(m—c) Hpj q%a ) 1 < X; ) XchFOZ(n)
M /s o 1 p;—1 m—cJ,
Frm . (GJ _ q;("zL) ()" F 00 - (Gj)'
M /g5 m /o
<GJ> L prn) q;(g) (mg)" <GJ> L)
m /. .. « m ) «a
455 qj;

5. INTEGRAL FORMS OF MPQG’s

The main purpose of the present section is to introduce integral forms of our MpQG's;
in particular, we shall also provide suitable PBW-like theorems for them.

5.1. Preliminaries on integral forms.

In this subsection we fix the ground for our discussion of integral forms of MpQG’s.

5.1.1. Integral forms. Let S be any ring, and M any S-module. If R is any subring
of S, we call R—integral form (or “integral form over R”) of M any R—-submodule Mp of
M whose scalar extension from R to S is M, i.e. Mr ®rS = M. When M has some
richer structure (than the S—module one) by “R-integral form” we mean an R-integral
form that in addition respects the additional structure; in other words, the definition is
like above but one has to replace the words “module” and “submodule” with the words
referring to the additional, richer structure. For instance, if H is a Hopf algebra over S by
“R-integral form” of it we mean any Hopf subalgebra Hp over R such that S®rHpr = H .

5.1.2. The ground ring. The integral forms of our MpQG’s will be defined over a
suitable ground ring. To define it, we begin fixing a multiparameter matrix q of Cartan
type with entries in the field k , assuming again that the Cartan matrix is indecomposable.
Starting from q, we fix in k an element ¢; € k>, now denoted by ¢ := gj, » like in §2.3.2,

and square roots qijlﬂ of all the ¢;;’s, like in §2.3.2.

We denote by Fq the subfield of k generated by all the qil’ (i,j € I) along with ¢**

moreover, we denote by F V" the subfield of k generated by all the 45 £1/25g (i,7 € I)and

¢!/ then Fq V" is a field extension of F q » that contains also all the square roots g; £1/2,
and qjﬂ/27 (B € @), for all the ¢;’s and ¢g’s defined at the beginning of §3.2. As ground
ring for our 1ntegra1 forms, we fix the subring R of k generated by all the qil’ (for

all i,j € I) and ¢g*!

S

; moreover, we denote by R‘f the subring of k generated by all the

qil/% (z jelrl)and ¢*1/2: this is a ring extension of R o, that contains all the square
roots g; /255 and qi /2 s (B € ®1). The field of fractions of R is just Fq, and similarly

that of R‘qf is just ]—“g{.

When q is of integral type we have that R4 and F are generated (as a ring and as a
field, respectively) by ¢t alone, while R‘qf and F ({ are generated by g2,

Finally, if we consider MpQG’s with larger tori, then we take a ground field Fq, and a

il/c,

ground ring Rq, defined like F4 and R ¢ but replacing the qwl’s with the a8 and ¢*!

by ¢=V/¢, with ¢y = }det (Cy) ‘ and c:=cyc_ (cf. §3.3.3, §3.3.4).
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5.2. Integral forms of “restricted” type.

Following §3, we consider the multiparameter quantum group Uq(g) associated with q,
defined over k ; also, for the special value of ¢ € k fixed above (depending on q ), we pick
the MpQG of “canonical type” Ug(g) as in Remark 3.1.2. Moreover, for each 8 € ®* we
consider quantum root vectors Eg and Fjg — within Uq(g) and within Ug(g) — as in §4.1.

Lusztig’s quantum groups of “restricted type” were introduced (cf. [Lu]) as special
integral forms of his uniparameter quantum group — which is “almost” Ug(g) — defined
in terms of the so-called “g—binomial coefficients” and “g—divided powers”. We shall now
perform a similar construction in the multiparameter case.

5.2.1. g¢—binomial coefficients and their arithmetic. Let p be any formal indetermi-
nate, m € N and J:={1,2,...,m}. We consider the two algebras

En = QX))+ = 000

of Laurent polynomials in the set of indeterminates {Xiil}i ¢y and { X;tl}i ., respectively
on the field Q(p) of rational functions in p with coefficients in Q. Both these bear unique
Hopf algebra structures — over Q(p) — for which the Xiil’s and the Xfl’s are group-
like, ie. A(XF) = X' o X!, (X)) =1, S(X7') = X' =1 for E,, and
AT =xit e, e(q) =1, S(GT) = =1 for &

The following result lists some properties of p—binomial coefficients (cf. Definition 4.4.1 (a)),
taken from [DL, §3] (anyway, everything comes easily by induction):

Lemma 5.2.2. Let A be any algebra over a field F, and let p € F be not a root of unity.
Let X,Y,M*' ¢ A with XY =YX . Then for t,s € N, ¢ € Z we have

t
<XY; c) Y plaee <X; Cx) yts (Y; CY) Ve oy = o
t b — t—s S
s=0 p P

M ; M;
MM =1=M"1'M, Y 21, oM 2o
0 Jp L/
Mil(M;c) _ <M;c> ME <M;c> <M;c—t> _ <t+s> <M;c>
t » t » t » S » t » t+s p
<M;c+1> _pt<M;c> _ <M;c> Vi1
t » t » t—1 »
<M;c+1) _<M;c> :pCtJrlM(M;c) Vi1
t » t » t—1 »

s<c,t

(M”) _ Zp(c—sxt—s)(C) <M50> Ve>0
t Jp >0 S/p\ =S Jp
t
(M,—C) _ Z(—l)sp_t(c—i_s)—"_(sérl)<S+c_ 1) (M,O) v 62 1
t » S » t—s »

s=0
If in addition A is a Hopf algebra and M*! is group-like, then

A << ’ C> > = E p_T(S_CQ) < ! Cl) ® MT< ’ C2> v CI+C2 =cC
t T S
p r4+s=t p p

6<<M; c)p) - (). S(<M; c)p) - g (M)

A(M:lzl) — M:|:1®M:t1 , E(M:l:l) -1 ’ S(M:tl) —_ M:Fl
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Inside the Q(p)—vector spaces E,, and &,, we consider the Z[p, p_l]fintegral form of
Laurent polynomials with coefficients in Z[p, p_l] , namely

Enz = Zlpp V(X L] o Emz = 207 {6 )]

which in fact are both Hopf subalgebras (of E,, and &,, ) over Z[p, p_l] .

Fix some d; € Z\ {0} and powers p; := p% for each i € J. Then a unique Q(p)-
bilinear pairing ( , ) : Ep x En — Q(p) exists, given by <Xf@x§j> = pf“ZiCj (for
all z;,(; € Z and 1i,j € J). By restriction, this clearly yields a similar Z[p, pil]fvalued
pairing between the Z[p, p_l]—integral forms E,, 7 and &, 7 ; indeed, this is even a Hopf

pairing (cf. Definition 2.1.2). Finally, define

(Emz)” = {f € Ep, ‘ (f Emz) CZ[p,p "] }

It follows from definitions and (Z) € Z[p, pfl] (n,k € N), cf. 2.3.8, that
s

(3

o (X ° :
X, € (Emz) VieJ,ceZ,neN (5.1)
pi

t n

J
n ics € N7,

Now set (X"ﬂ;())p X}LE/QJ = [Lics (X“O)p} Xi_Lm/QJ for every n := (nz)
where an / 2J is theigreatest natural number less or equal than n/2 . Then we have
Proposition 5.2.3. [DL, Theorem 3.1]

(a) (Emyz)o is a free Z[p,p‘l]fmodule, with basis

B, — {(x;) ;Lo nGNJ}
Ly

) (gm’Z)o is the Z[p, p~"] ~subalgebra of Ey, generated by all the <X:1;C>

’s and the
- Di

XZ-_1 ’s, or by all the (Xin ;C) s and the X;’s. In fact, it can be presented as the Hopf
i

n (2

Z[p,p_l]—algebm with generators (X“C) CXFY —foralliel, neN, ceZ —
i
and relations stating that all generators commute with each other plus all relations like in
Lemma 5.2.2 but with (X“C) , XijEl and p; replacing (M;C> , M*! and p respectively,
; p

n n
)

for all © € I; the Hopf structure then is given again by the same formulas as in Lemma
5.2.2 now applied to the given generators.

Proof. Due to (5.1), the Z[p, p~!]-subalgebra of E,, generated by all the (X;jc> ’s and
pq
the X~ L5 is contained in (Emyz)o — and similarly if we replace each Xz-jEl with its inverse

Xf L Thus to prove the whole claim it is enough to show that (Emyz)o admits B,,, as
Z[p, p_l]fbasis: indeed, we already have that the Z[p,p_l]fspan of B,, is contained in
(Smyz)o, so to prove (a) it is enough to show that any f € (Em,z)o can be written uniquely
as aZ [p, pil]flinear combination of elements in B,, .

To begin with, E,, over Q(p) has basis the set {X% = [1X

ieJ
from this one easily sees that the set B, := {(XJ ) X;m/ 2l
P

z = (Zi)z'eJ S ZJ} and

n

n e NJ} is a Q(p)-basis

too, which is contained in (Smyz)o by (5.1). Now consider the monomials xv =11 je JX;/j
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(with v := (I/j)jej € N’) in the y;’s. By construction one has

X —|n 7 —V; [N
<< nJ>XJL/2JaXV> = H<V> p My y e N (5.2)
p pi

ieJ Nt

Let < be the order relation in N/ given by the product of the standard order in N, so
nv <= <y VieJ. As <Vi #0 < n; <y, by (5.2) one has
i /pi

<<XJ>X;LR/2J,XV> # 0 — n<v (E,KENJ) (5'3)
p

n

Now pick an f € (Emz)o \ {0}, and expand it (uniquely) as a Q(p)-linear combination
of elements in B,,, say f= SN ¢, (XJ> X272 for some ¢, € Q(p) \ {0}. Choose
P

E(g)
any index o € {1,...,N} such that n is minimal in {ﬂ(l), - ,Q(N)}: then by (5.3)

above and by (n> =1 we get
n

Pi

¥ X7\ y=1n)/2) _ —n(” [n{” /2]
<f7X7(o)> - ch n(s) J y X (o) = Co D;
s=1 - p

B ieJ

[

so that <f’Xﬂ<a)> € Z[p,p_l] — because f € (Em,z)o \ {0} — implies at once ¢, €

Z[p,p_l] . By induction on N, one then concludes that all coefficients c¢s (s =1,...,N)
in the expansion of f actually lie in Z[p, p_l] , q.e.d.

Finally, the presentation mentioned in claim () follows from [DL, §3.4]. O
As a direct consequence of the above Lemma, we have the following:

Proposition 5.2.4. (Em,z;)o is a Hopf Z[p,p_l} —-subalgebra of E,, . Therefore, the for-
mer is a Z[p,p_l] —integral form of the latter.

For later use, we finish the present discussion with another result that gives the dual,
somehow, of what we found for (Emz)o: it concerns the “bidual” space

(En2)?) = {teen|((Ena)"t) c2lpp }

Proposition 5.2.5. The “bidual space” ((SmZ)O) coincides with €y, 7, .

[e]
Proof. By definition ((Em,z)o> 2 &m,z , we have to prove the converse inclusion.

Let t € ((Sm,z)(J)o and expand it with respect to the Q(p)—basis of &, made of the

Laurent monomials x¢ := HjeJXjCj (with ¢ := (Cj)jeJ € Z7) in the y;’s. This means
writing t as t = ZCGZJ c¢xc¢ for suitable c¢ € Q(p), almost all being zero: we denote

by n(t) € N the number of all such non-zero coefficients. We must show that ¢ € &, 7,
i.e. all the c¢’s belong to Z[p,p_l] ; we do it by induction on n(t).

jeJ such that c¢ # 0 we have ¢; >0
for all j € J. Then choose a QT € 7”7 such that Cet # 0 and QT is maximal for that

As a first step, we assume that for all ¢ := (()

property with respect to the standard product order on Z” ; in other words, there exists
no Q#QT such that ¢, # 0 and gj Zgj for all j € J. Then we have

st ((2),) = Dol (8) ) - Be(§),

P cen’  jeJ
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by the maximality of ¢ T — and the properties of ¢-binomial coefficients — we have

(?) = 5< ot thus the above eventually gives Cet € Z[p,pfl] , q.e.d. Now look at
i /p 202 <

t' = t—cs1X1 t by construction we have n(t') = n(t)—1 S n(t), hence we may assume
by induction that # € Emgz. Then t = t +eerXer € Em,z too, q.e.d.

At last, notice that ((Smjz)o> is a Z[p, p_l]fsubalgebra: in fact, this follows at once
from the fact that (sz)o is a Z[p,pil]fcoalgebra — and we have the perfect Hopf
pairing ( , ) between &, and E,,. As clearly all the y ¢’s do belong to ((Emyz)o) and are

invertible in it, it follows that for any ¢ € &,, and for any g €7’ onehas t € ((c‘,’m,z)o>o

if and only if tx o € ((Em,z)o> . Now, choosing a proper g' € Z7 we can get tX ¢
such that in its Q(p)-linear expansion in the x(’s, say tx o = ZCGZJ c¢ Xe , for all the
¢ = (g‘j)jej’s such that c¢ # 0 we have ¢; > 0 for all j € J. But then ¢’ := th
is of the type we considered above, for which we did prove that ¢ := ty ¢ € Emz s SO
the previous analysis gives t € &, 7 too. O

5.2.6. The toral part of restricted MpQG’s. The restricted integral form of a uni-
parameter quantum group U,(g) was introduced by Lusztig as g-analogue of Chevalley’s
Z—form of U(g): we consider here its modified version as in [DL], where specific changes
were done in the choice of the toral part. The construction in [DL] immediately extends to
Ug(g) , hence now we want to further extend it to the general case of any multiparameter
Uq(g) ; nevertheless, a (mild) restriction on q is necessary, in the following terms:

@ — From now on, all along the present section we assume that q is of integral type

as in §2.3.2. Therefore (cf. §5.1.2)
£1/2

(as well as Cartan, as usual), say q = (g;; = qbiﬂ')mg

Rgq, resp. R , is just the subring of k generated by ¢*', resp. q
+1/2

, and Fq, resp.
]_-qu is the subﬁe]d of k generated by ¢q*', resp. q

In the following, whatever object we shall introduce that bear a structure of module
over Rq, resp. over Fq, will also have its natural counterpart defined over R , resp.

over FY q - that is also a scalar extension of the previous one.

In the following, Uq(g) will be the MpQG associated with q as in Definition 3.1.1. Inside
it — more precisely, inside its toral part — we want to apply the construction presented
in §5.2.1, for suitable choices of the X;’s, the y;’s and the p;’s

Recall that 1 := {1,...,0}. Define GF' := KF'LT! (€ Uy(heh) :==UY) forall i1,
and consider inside qu the F q—subalgebra generated by the K iﬂ’s and the Giﬂ’s, namely

Eyy = ]—'q[{Kiﬂ, Gfﬁl}m.e[] ; note also that taking the
the Giﬂ’s will give the same algebra. As a matter of fact, since the Kiil’s and the G;tl’s
are group-like, this E'99 is indeed a Hopf Fg-subalgebra of Ug v,

L;H’s as generators instead of

In the dual space (qu) we consider the Fg-algebra morphlsms /<a L and 'y — for
1el — uniquely defined by

(cf. §5.1.2) for all z,(; € Z and 4,j € J. Setting also Egp := fq[{;z;;“,% 1
- £1, +1,

,jEI]

for the subalgebra in (US) generated by the #;-"’s and the ~;-"’s, these formulas yield

a non-degenerate JF q-pairing between E 99 and E 29 : in fact, the latter is a Hopf algebra
(the ﬁil’s and ’yil’s being group-like), so this is actually a Hopf pairing.

Now Eg9 and Es9, paired as explained, can play the role of E,, and &, in §5.2.1
above, so we apply to them the construction presented there. Taking their corresponding
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R q—integral form of Laurent polynomials with coefficients in R ¢ , namely
I +1 +1 > ,_ 1 +1
Eyr, = Rq[{K]",G; }z‘el} and  Eyppr, =Rq[{A 7 }iez}

we have Hopf subalgebras over R 4, and the previously given pairing restricts to a non-
degenerate R —valued pairing among these two integral forms.

Now assume in addition that the multiparameter q is of strongly integral type, say
o+ 4
q= (qij = qd’tiﬂ' = qdﬂtij )l.j oI Then besides the previous construction we can perform
a second, parallel one, as follows.

Inside £ 20,R 4 We consider now /{iﬂ = f@lidz (for ¢ € I'), for which we have
<Ki2i’ E]-Cj> — q&‘jdizz(j , <GZ?¢7 Kj§j> —1

for all 2z;,(; € Z and i,j € J, and set Egp := ]'—Q[{“zilv%ﬂ}i,je[] for the subalgebra in

Zil’s and the Wiil’s. Then £y is in fact

a Hopf Fq—algebra (the /i;tl’s being group-like, like the 4%’

7
provides a non-degenerate Hopf pairing. Taking now
- +1 1 o +1 41
Eyr, = RQ[{Ki ,G; }iel] and EapRrg = Rq[{“i » Vi }iel]
we have Hopf subalgebras over R g, and a non-degenerate R q—valued pairing between

them provided by restriction of the previous one. Basing on all the above, we can now
introduce the objects we are mainly interested into:

ggg’nq — hence in (qu)* too — generated by the
s), and the above formulas

Definition 5.2.7.
(a) (73 = (5’29772(1)0 = {fEEgg ‘ <f,829,7gq> - Rq} if q is (just) integral,

(b) (7(;) = (Sggﬁq)o = {fGEgg ’ <f,529,73q> C Rq} if q is strongly integral. <

By the analysis and results in §5.2.1, applied to the present situation, we have

Proposition 5.2.8.
(a) (73 is a Hopf R q-subalgebra of Eqp, generated by all the (Kz;c)q s, the KijEl ’s,
the (G;gl ;c) ’s and the Glil ’s.
i
(b) ﬁg is a free R q—module, with basis — cf. (4.2) for notation —

0 0
11 <K> KA (G> Lo
ki /q =1 N9 /i

i=1 v

ki,g; € N Vz’zl,...,@}

(c) ﬁg is isomorphic to the Hopf R q-algebra with generators (K];’c) , Kiﬂ,
t/q
(G;fc) , G;H (forall i € I, ki, g;i € N, ¢ € Z ) and relations stating that all these gen-
Y /g
erators commute with each other, plus all relations like in Lemma 5.2.2 but with (K]:,’c) ,
t/q

Kiil, q and (G"fc>
S

Accordingly, the Hopf structure of ﬁg is also given in terms of generators by formulas as
in Lemma 5.2.2 now applied to the given generators.

M;ec
n

, G;tl, qi replacing ( ) , M*! and p respectively, for all i € I .
P

d)-(e)-(f) When q is strongly integral, similar claims hold true for Ul , up to re-
(d)=(e) gly integ a

placing everywhere each generator (K,;’C) and the parameter q with the corresponding
' /q

generator (Klzzfc> and the parameter q; = q% , respectively.
ai

(9) l/}g is a Hopf R q—subalgebra of ﬁ(?.
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One last important observation is in order:
Remark 5.2.9. Definitions imply that, beside all the generators Glil, (Gi ; C) , K iﬂ
. 9 Jqui
and (KIQC) , the algebra U 3 contains all Lfcl’s and (L; fc> 's — as they give values in R ¢
1 q k2
when paired with 99 %, . This restores a perfect “symmetry” in the roles of the K;’s and
the L;’s, which is not apparent in the very definition of U 3 . Indeed, one can easily prove

that U g can be also generated by generators built from “L” instead of “K”; and similarly

for ﬁ(? . So replacing “K” by “L” everywhere yields a twin statement of Proposition 5.2.8.

5.2.10. Restricted MpQG’s. We are now ready to introduce our generalization to
MpQG’s of the notion of restricted integral form introduced by Lusztig for U,(g) (and
later modified in [DL]). We keep the restriction that q must be of integral type, say
a=(g¢;= qbiﬂ')mg with B = (bij)i,jel € My(Z), as in §2.3.2.

Again, hereafter Uq(g) denotes the MpQG associated with q as in Definition 3.1.1.

We recall from Definition 4.4.1(b) the notion of g—divided powers: given i € I, a €
X, € {EZ , F; }, Y, € {Ea,Fa} and n € N, we call g—divided powers the elements

Xz(n) — in/(n>q“' and Ya(n) — Yo?/(n)q ! in Uq(g) .

The following result, about commutation relations between quantum binomial coeffi-
cients and quantum divided powers, is proved by straightforward induction:

Lemma 5.2.11. Let q = (qij = qbij) be of integral type.

i,j€l
(a) Forany i € I, mnheN, ceZ, kA€ Q, X,Y € {KNL,\’/@)\EQ} and
Gl = KF'LT!, we have

(KHLA; C> Fj(n) _ Fj(n) <KHL)\; C—TL(BT-H_B-)\)j>
q q

h h
(M) g = o (Rt (= 2 )
heo ) J h g

Gi;c (n) () [ Gi; ¢ —nag; Gi;c (n) (n) ( Gi; ¢+ nag;

Gid

s=0 ~1 12 s

where (BT-/Q—B-)\)].:Ziel(bijm—bﬁ)\i) for k=3 crmiai, A= i1 ia;.

Moreover, for the Hopf structure, on q—divided powers we have formulas
A(E™)

A(FM) = SR @ RO (F™) =600, S(E™) = (~1)q, D E M

7 7
s=0

S ECIR o B (E.(")> . S(Ei(")) _ (1 @ g g™

- 7 7
s=0

while for Kiil, G;-tl and q—binomial coefficients (K;L;C> , (G;L;C> we have formulas like
q qii
in Lemma 5.2.2, with M and p replaced by K; and q or by G; and g;; .

ot =
(b) In addition, if q is of strongly integral type, say q = (¢ij= q%itis = qdﬂtij)
then besides all the above formulas we also have

K;;c O _ pm K;; C—nt;; K;;c g _ p® K;; c+nt;“j
h qi ’ ’ h qz" h qi ’ ’ h qi

ijel’
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L;;c (n) (n) Li;c+nt; L;;c (n) (n) Liyc—nt;
< h )q'Fj N Fj h J Qi , h Q'Ej - Ej h ] qi

and (%, C)q like

i

. . . Ki:c
and formulas for the Hopf structure on q—binomial coefficients < . )q

in Lemma 5.2.2, with M and p replaced by K; and q; or by L; and q; .

i

We can now extend Lusztig’s definition of “restricted quantum universal enveloping
algebra”. Indeed, a straightforward extension requires that q be strongly integral; never-
theless, we consider also a more general definition when q is just integral.

Definition 5.2.12. Let Uq(g) be a MpQG over the field Fq as in Definition 3.1.1. We
define a bunch of R —subalgebras of Uq(g) , with a specific a set of generators, as follows:

(a) If q is of integral type, we set

- (n)> S+ < (n)>
= ( F. U = (FE
q < v icl,neN q v icl, neN
N Jq /el neN 4 ‘ ’ " Jq/iel, neN
q * 2 b ) q * 7 ) ) 7
N Jq/ier, neN n /g iel ,neN
Uq = Uqlg) == { U9 {FK”),E.(")}
0= Ualo) = (05 U{R. B0}

(b) If q is of strongly integral type, we set

U = F.(")> (: *—> O+ — <E.(”)> (: *+>
Uq < v icl, neN Ua ’ q v /iel, neN Uq
o (i (B, e (i ()
" Jg; iel ,neN " Jg; /iel ,neN
ﬁq+,0 — <KZ7—L1, <Kz> > : — <Kz‘i17 (Kz) 7Ei(n)>
q; !/ i€l ,neN qs i€l ,neN
)

_ 7 _ Lo {pm gw
q Uq(g) . <Uq U{ 7 ) 7 }iel,nEN

In the sequel, we shall refer to all these objects as to restricted MpQG's. &

)

QA

)

2y

D

The “restricted” MpQG’s introduced in Definition 5.2.12 admit a presentation by gen-
erators and relations, which generalizes the one in the canonical case (cf. [DL]):

Theorem 5.2.13.
(a) Let q := (qij = qbiﬂ')i,jg be of integral type. Then Uq = Uq(g) is (isomorphic
to) the associative, unital R q—algebra with the following presentation by generators and

relations . The generators are all elements of ﬁg as well as all elements Fi(n) , Ei(n) (for

all i € I, n € N), and the relations holding true inside ﬁg as well as the following ones:

Liil E](n) — q:FnbjiEj(n) Liil ’ Liil FJ(”) — q:tnbjiFj(n) Liil
G@il Ej(n) _ q;;-:naij E](n) Glil ’ G,Lil E7(n) — q;';nalj E](n) Gzil

K;;c (n) _ (n) (Ki; ¢+ nbij K;;c (n) _ (n) (Ki; ¢ —nbij
<h >qu -5 h . h qFj — h q
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Li;c (n) (n) [ Li; ¢ — nby; Li;c (n) (n) (Li; ¢+ nbj;
(h >qu :Ej h q7 h qFj :Fj h q

Gi;c g™ _ p® Gi; ¢+ nagj Gi;c FO” Fo@ Gi; ¢ —nagj
h Qiq ! ! h Qiq 7 h Qii h qiq

XZ(T)XZ(S) _ <’I" + S) Xi(rJrs) ’ XZ(O) -1 V X € {E ’ F}
r
k
> C‘UséﬁqﬁﬁﬁﬂijXf@ =0 VXe{EF}, Vi#j

r+s=1—a;;

mAn

m (n) n—s) i;28— - m—s
E( Z F( . G S=M =N g g (mes)
S qll ' '

Moreover, with respect to this presentation Uq is endowed with the Hopf algebra structure
(over R q ) uniquely given by

A(E@) _ S Bk e B, . (E}")) o 8<Ei(”)> _ (1) @ g™

i
s=0

(—1)"q;(3)F.(") L

)

A(F™) = SSEO ) o EOLs (™) = 6,0, S(E™
() = £ 801 () =6 ()
and formulas for A€, S in Lemma 5.2.2 with (M,p) € {(Li,q),(Ki,q),(Gi,qi)} -

dith d . ~ ~
(b) Let q:= (gij =q i = ¢ th) ijer be of strongly integral type. Then Uq = Uq(g)
is (isomorphic to) the Hopf algebra over R o with the following presentation by generators

and relations. The generators are all elements of (A]Q? as well as all elements Fl-(n) , Ei(n)
(for all i € I, n €N ), and the relations are

+ntt
K*lzl:l E](n) — ql nt” E'J(n) K*Z:I:l 7 K*:tl F(TL) qZ z] F(n) K:I:l
+1 (n) _ Fnty o (n) 41
LT E™ =q "EVL;

G E™ = ¢;"EM G
i j i

n +nt

(2

’ Lil JlF](n) L?:l
GREY - R Gr

K;;c E.(n) _ E»(n) Ki;c+ nt;;- K;;c F<(n) _ F<(n) K;;c— nt;;
h Jg ’ h ai 7 h Jg? ’ h a4
Li;e (n) (n) (Li; ¢ —nt; Li;c (n) (n) (Li; c+nt;
g _ g ji M _ g ji
( h )Z J J h A ’ ho ), J h i

Gi;c (n) (n) ( Gi; ¢+ nag; Gi;c (n) () [ Gi; ¢ — nagj
() mo=me () () B = ()

qii it

xx = (Tjs> xm s x0 =1 v X e{E,F}
qii
k
3 (—1)8qi(f)qi’;xi(”xj(”xfs) =0 VXe{E,F}, Vi#j

r+s=1—a;;

A Gi;2s—m—n
E(m F(n Z F(n s) '5' < i ) Lis Ei(m—s)
§ q

i1

endowed with the Hopf algebm structure (over R g ) uniquely given by

A(E§"’) _ S EM Ko EY, € (EZ-(")) . S(Ei(")) _ (g W g™

i
s=0

A(}wi(”)> — iFZ-(nfS) ® ]J‘i(s)Li’Ls7 e(F-(")> = 60, S(FA(H)) — (—1)"qf;(g)F(")L7”
s=0

2 7 7 7

formulas for A e, S in Lemma 5.2.2 for (M,p) € {(Li,qi) (K, qq), (Gi,(hi)} )
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(c) Uq is a Hopf R q—subalgebra of Uq.

(d) Similar statements occur for the various restricted multiparameter quantum sub-
groups considered in Definition 5.2.12.

Proof. Everything is proved like in the canonical case (cf. [DL]), taking Lemma 5.2.11 into
account, but for (¢), which follows from definitions and Proposition 5.2.8. O

As a first, direct consequence we have the following:

Proposﬂslon 5.2.14.

(a) Uq— Uq( ), resp. U , Tesp. U , Tesp. Uq_’o, resp. U , Tesp. U;’O, resp. U ,
is a Hopf R q—subalgebra (hence it is an qumtegml form, as a Hopf algebra) of Uq(g

resp. of U— , resp. of Uq ™, resp. of Uy, resp. of Uq+’0, resp. of Ug.

L

Similarly, U q ; resp. U , 1S an qusubalgebm — hence, it is an R q—integral form,

as an algebra — of Uy , resp. of Uq+.
(b) If q is strongly integral, similar results — as in (a) and (b) — hold true as well
when “U” is replaced with “U”.

Proof. Indeed, Theorem 5.2.13 tells us that U q is a Hopf subalgebra (over Ry ) of Ug;
moreover, the scalar extension of U from Rq to Fgq yields Uy as an Fg—module, just
by deﬁnltlon thus Uq is an integral R q—form of Ug, as claimed. The same argument

applies to U U0 etc., as well as to U Uq , Uq , ete. (|

An easier result, direct consequence of Lemma 5.2.11 above, is the following, about the
existence of “triangular decompositions” for these restricted MpQG’s over R o

Proposition 5.2.15. (triangular decompositions for restricted MpQG'’s)

The multiplication in Uq provides R q—module isomorphisms

50 o 150 o < ~ 770 o 770 0 o 50 ~ 732 ~ 730 o 7740
U @Ud=Us=20000;" , UNfeld=2U02=200eUs
Ra Ra Ra Ra
A N - I BN PN N T - e
U oU 202000 , U; @ U; 2Uq=2U; ® Ug
R R R
a a a q

and similarly with “«g replaced by “ U” if q is strongly integral.

Pmof We consider the case of U q and of the left-hand side isomorphism, namely the case
U+®RQUO®RqU = Uq , all other cases being similar.

By definition U q is Spanned over R q by monomials whose factors can be freely chosen
among the elements of Uy N , the F; (m)ss and the E( n); ’s; moreover, thanks to Proposition

5.2.8(b) we can replace these monomials with other monomials, say M , in the ( ) s, the
q

K, "’s, the (i’) ’s, the Gj_%s, the Fi(m)’s and the E](-")’s.
Now, by repeafted use of the commutation relations among factors of this type given in

Lemma 5.2.11 — plus those stating that the ( ) s, the K, "’s, the (g ) ’s and the Gj_%s
qii
all commute with each other — (or by the Correspondlng relations given in Theorem 5.2.13)

one can easily see that the following holds. Each one of these monomials, say M, can be
expanded into an R ¢—linear combination of new monomials, say M, , of the same type but
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having the following additional property: each of them has the form M, = M+ - M%- M,

where M7 is a monomial in the Ej(-n)’s, M"Y is a monomial in the <I]?) s, the K "’s, the
q

(il) ’s and the G;V’s, and M is a monomial in the Fj(m)’s. This means that
My=MF- MO M; € UF-US- Uy

hence the multiplication map ﬁJ@Rqﬁg®Rqﬁ;—> ﬁq is onto. On the other hand,
the PBW Theorem 4.2.1 for Uq = Uq(g) directly implies that this map is 1:1 as well. O

The previous result is improved by the following “PBW Theorem” for our restricted
MpQG’s (and their quantum subgroups as well):

Theorem 5.2.16. (PBW theorem for restricted quantum groups and subgroups
Let quantum root vectors in Uq(g) be fized as in §4.1. Then the following holds:

(a) The set of ordered monomials

{HFf’“

N
fr € N} , resp. { I1 Eﬁ(ih)
h=1

€h€N} R

is an R q-basis of U , resp. of U ; in particular, both lA]; and U q+ are free Rq—

modules. The same holds true for qu (: /U\'qi) in the strongly integral case.

(b) The set of ordered monomials

{ I (LJ) L W2 e N} . Tesp. { I <K> KR20 g e N}
jer \'lj /, iel \ ki /,
is an R q-basis of ﬁ;’o, resp. of [7;0. Similarly, the sets
L; o
() () oo e
jEI q el gl 11
and { I (G) Gilo /2 ] ( f) K02 | g g e N}
il \ 9i /g, jel k; q

are R q—bases of (73. In particular, all Uq—,o} (7(;“’0 and (73 are free 'R q—modules.

(c¢) The sets of ordered monomials

1 I. _
{ [1FYY 11 (ﬂ)%’ﬂlﬂm fr,l; €N
1 7q

k=N jeI

L. 1
and { H <ZJ> Lj_|.lj/2j H Fﬁ(gk) fkalj c N} ,
i/q k=N

Jjel

resp. { I1 (KJ> K ki/2 HE (en) kj,en € N
q

jerI kj =1
N en) K5\ o —1ki/2]
and ITE:" T] % K~ kj,en €N ¢ |
h=1 jeI ) /q

are 'R q-bases of U<, resp. (//\'qZ ; in particular, ﬁqﬁ nd ﬁqz are free R q—modules.
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(d) The sets of ordered monomials

L' . Gz — e
{ Fﬁ({k) 11 (l-.j)Lj_l_lj/2J I1 <g > G, lei/2] HE h) ‘fk, s Yis€h GN}
J /q Qi

-

k=N jel icl \ Yi
N o L; . G; —lg;
{hH Bl I < l;) L,/ H}<g’> G, loi/2] H Fﬁ(,f’“) ‘ Fio s G €1 GN}
=1 Jj€ J /q S v /qii =
1 G; e K; _
{ HFﬁ(kk)H< ) Gl T <k > Lkj/2] HEeh fk,gi,kj,ehEN}
k=N icl \ 9i /g, jel q

frs9iskj,en €N }
el J€el

{ ]_[E(eh) 11 ( ) G loi/2) (KJ> KW ] g
9gi qii kj q k=N ?
are R q—bases of l?q = ﬁq(g) ;in particular, (701 = ﬁq(g) is a free R q—module.

(e) In addition, when q is strongly integral similar results — akin to (b), (c) and (d)
— hold true if “ U7 is replaced with “ U7 and every (ij>q , Tesp. (ifjj)q , is replaced with

L; K;
5 , resp. | .
7 7q; 7/q;

J

Proof. (a) It is a classical result, due to Lusztig, that the claim holds true for U ,
the latter is free as an R fmodule with PBW-type basis given by the ordered monomlals

in the F éf )’s, taken with respect to the product “-” in ﬁq_ ; the same monomials then

form a PBW-like Ry ~basis of (Uq )" i= Ry @r,Ugq as well.
Now, the formulas in §4.4.2 show that the above mentioned “restricted” PBW mono-

A _\V© . . D
mials in ((U - ) , ) are proportional, by a coefficient which is a power of qt1/? (hence

q
invertible in the ground ring R‘qf) to their “counterparts” (with the same exponents for

A _\V
each root vector) in (Uq_> C (Uq(9)” = <(Uq(g))f, *) , l.e. with respect to the

“deformed” product “+” in (Ug(g))Y := RY @r4Uq(g). In other words, using notation
of §4.4.2 we can write in short

[=-

S 1 *
%k(fk) _ qz/2 11 Fﬁk(fk)
k k=N .
for some z € Z. Therefore, as the PBW monomials []
k=N

Ff(fk)

e form an R‘qffbasis of

o) hat the [] F:0%) s f RY —basis of (U7)"
q we can argue that the kl:[N & s form an ‘R —basis o q too.

On the other hand, as direct consequence of Theorem 4.2.1 we have that the same
1 * A~ A
kHNFBk(f K5 also form a F g basis of Ug . Thus any u_ € (U q ) will have a unique

ﬁz(f K ’s, but also a unique expansion as

expansion as R‘qfflinear combination of the [] F

F g linear combination of the same “restricted” PBW-like monomials. Then the coeffi-
cients in both expansions must coincide, and since R‘qf NFq =Rq they must belong to

R q; so the kH ﬂk(f’“) s form an R q—basis of Uq , as claimed.

The same argument applies for the part of the claim concerning U ;r .
(b) This follows by construction together with Proposition 5.2.3.

(¢)—(d) These follow at once from claims (a)-(b) along with the existence of triangular
decompositions as given in Proposition 5.2.15.

(e) This is proved by the same arguments used for claims (a) through (d). O
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Remark 5.2.17. It is worth stressing that the construction of restricted MpQG’s does not
“match well” with the process of cocycle deformation, even if one extends scalars from R 4
to R‘qf — and from Fq to F (‘( accordingly. In fact, if we label every MpQG’s over R‘qf

or F g{ by a superscript “V~ ", what happens is that, although Ug (g) = (Uqf( g)) =

[

v e for . - 7V Y e
Ug (9) as Ry fmodules,.for 1nteg?al forms one has in general Uy (g)# Ug (9) as Ry —
modules; and a fortiori Uq(g) # Ug(g) . Similarly holds for all “quantum subgroups”.

In order to see that, let us consider an element of U qf (g) = ((7 é‘lf (9), *) of the form

ES (m), (I;J)* : from §4.4.2 we have the formula
q

* m c —s /2\™ N

o (K ) s mea 1 @) =1 o [ K\
(n), 7\ = 2 + ¢(m—c) J (n) J ‘e
e <m)q de ™ ma) ;q 8:1_11 ¢°—1 e m=c qKJ

*

here, the right-hand side term is the expansion of Eg (), (f{) into an Fg-linear combi-
Py

nation of the elements of

{fiem(@),000 0 (9

Lo
Kj*ij/QJ H ng(fk) ’ fk,gz‘,kj,ehEN}
el Qii jel q k=N

which, being an R‘qffbasis of ﬁ{(g) — by Theorem 5.2.16(d) above — is also an ]-'(‘(7
basis of ]-'qf ®R\qf ﬁ{(g) = Uqf(g) . Now, in the above expansion the coefficients

" c —s( A1/2\™
q;'(z) (m;r)" qfc(mfc) H ql (Qa Q;j )
s=1

q*—1

in general do not belong to R‘qf: therefore, we have E;(")* (KJ>* ¢ ﬁ aﬁ (g) whereas

B, (Igj)* € ﬁo\lﬁ(g) by definition. This shows that UY (g) # U (g) inside Uy (g) =

q

v q
Na . . S\ >\ —
Uy (9) (as Fq-modules); in fact, it even proves that (U q—> #|\U q_) , and similarly

one shows that <[7q§>\r7é (ﬁf)f too.

5.3. Integral forms of “unrestricted” type.

Beside Lusztig’s “restricted” integral form, a second integral form of U,(g) was intro-
duced by De Concini, Kac and Procesi: the ground ring in that case was k[q, q_l] , but
one can easily prove — using the analogue (in that context) of Proposition 4.3.1 — that
their definition does work the same over Z[q, q_l] too, so it yields an integral form over
Z[q, q_l] , with suitable PBW-like basis, etc. Their construction can be easily extended
to Ug(g); hereafter, we extend this (obvious) generalization to any MpQG such as Uq(g) .

Let us fix a multiparameter matrix q := (Qij)i’je ; and the corresponding MpQG
Uq(g) as in §3.1; then fix the special parameter ¢ (depending on q) and the “canonical”
multiparameter q := (qij = qdi‘“f)m o7 asin §3.2. Finally, assume quantum root vectors
E., F, (for all a € ®1) have been fixed, as in §4.1, and consider for them the following
“renormalizations” (where gq 4 is defined as in §3.2)

E, = (qaafl) E. Fa = (Qaafl) Fa V aedt (54)

Mimicking the construction in [DP], we introduce the following definition:
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Definition 5.3.1. For any multiparameter q := (Qij)ijel as in §2.3.2, fix modified

quantum root vectors E, and F, (for all o € ®1) of Uqy(g) as above. Then define in
Uq(g) the following R q—subalgebras:

Ug = (Fadpeas » 08 = (L K

i >i6] ) ﬁqu = <Ea>

acdt
< /T 41 rr> +1
Ug = (Far i acarier + Uq = (B Ba)icr acar
FT—0._ /7 &1 77 7o +1 pEl 74,0, +1
Ug "= (L )icr» Uale) =Uqi= (Fa, Li*, K7 Ba)icp geqr» Ug = (K7 ) g
In the following, we shall refer to this kind of MpQG as unrestricted. O

Contrary to the case of restricted integral forms, if we extend scalars to R‘qf then all
unrestricted ones are indeed 2—cocycle deformations of their canonical counterparts, just
like it happens with MpQG’s over Fq. This follows from direct analysis through the
formulas in §4.4.2, as the following shows:

Proposition 5.3.2. The Hopf algebra ﬁq‘ﬁ: ﬁqf(g) = R}f@anfq(g) is a 2—cocycle
deformation of its canonical counterpart, namely

04 (9) = (T (9). = (U (a)”

o

(see Theorem 3.2.2 and Proposition 3.2.4 for notation). Similarly — using a superscript

“V' 7 to denote scalar extension to R*qf — (ﬁ;)f, resp. (ﬁo?)f, resp. (ﬁg)f, 8 a
2—cocycle deformation of (ﬁ(?)f, resp. of (ﬁé])f, resp. of (ﬁqg)f In particular,
0 (8) = 03 (). (05 = (05 . (08 = (08 and (02)" = (02)" as
R‘qffcoalgebms, and (ﬁqi)f: (ﬁqi)f as qufmodules.

1t follows that all of ﬁq‘ﬁ, (ﬁqg)f, (ﬁé))f, (ﬁqZ)\F’ (ﬁq_)f and (~q+)f are inde-

pendent of the choice of quantum root vectors Eg and Fg (for € ®).

Proof. The same analysis as in the proof of Theorem 5.2.16 (a) shows — looking at the

proper formulas from §4.4.2 — that the identities (ﬁq_)f: (ﬁqf)f, (ﬁq“')f: (ﬁ;)f

hold as qufmodules, and (ﬁqo)f: (ﬁ(;))f as ’qufcoalgebras; more precisely, the latter

~ ~ ~ (@)
identity can be read as (UC?)‘F: (( Ué?)f) = (( U(i?)‘r) ? , by the very definitions and
thanks to Theorem 3.2.2 and Proposition 3.9.4.

The same argument proves also ﬁq‘ﬁ(g) = ﬁq‘ﬁ(g) , (ﬁqg)f: (ﬁqg)f and (ﬁqz)f:
(qu)f as RY, —coalgebras; more pr((?(;isely, one has Uy (g) = (wfq‘r( g))g = (ﬁq(( ~g)))(Cp) ,

~ ~ ~ ¢ ~ ~ ~ ¢
(O = ((T5)7) = (T )" and (02)" = ((T5)" ), = ((T5)")"- ©

As for restricted MpQG’s, we have a PBW theorem for unrestricted ones too:

Theorem 5.3.3. (PBW theorem for unrestricted MQG’s — and subgroups)
(a) The set of ordered monomials
en €N } ,

1 — 7 N _,
{ HFB;f kaN} , resp. {HEﬁ;’f
k=N

h=1
is an R q—basis of ﬁq_ , resp. of (7(‘1“ ; in particular, both these are free R q—modules.

(b) The set of ordered monomials

{ I[1L;% | aj€ Z}, resp. { [1 Kb

jEI i€l

b; € Z }, resp. { HLj“jKibi
jel

aj,bi EZ}

is an R q—basis of ﬁqf’o , resp. of ﬁqu,O’ resp. of [NJ(;) , hence all these are free R q—modules.
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(c) The sets of ordered monomials

{HF [1L;%

Jel }kaN,ajEZ

resp. {HK HE

el }biEZ,ehEN

)

and {HL“JHF

jel k=N }kaN,ajeZ

and { HEeh]_[K

s }bi€Z7eh€N

9

are R q—bases of ﬁqg , resp. of (7(12 ;in particular, (75 and (7012 are free R q—modules.
(d) The sets of ordered monomials

{ HF I1L;% ] K" HEﬁh‘fk,eheN,aj,bieZ}

k=N jel el

and {HEehHLaJHKb HFB;f‘fk,eheN,aj,bZ-GZ}

jelI i€l
are R q—bases of ﬁq ; in particular, ﬁq = ffq(g) itself is a free R q—module.
Proof. (a) Entirely similar to the proof of Theorem 5.2.16.
(b) This is obvious from definitions.

( c) We can apply once more the same ideas as for Theorem 5.2.16, thus finding that

{ H F fk H L CLJ }

Jel fr€N, a;€Z
similar. The claim is true when q = q, by the results in [DP]; moreover, by Proposition
5.3.2 we have (Uqg)f: (Uqg)f as R‘qffcoalgebras, so B is also an R*qffbasis of (UqS)‘F.

On the other hand, it follows from Theorem 4.2.1 that B is also an Fbasis of (ﬁqg )‘F
Thus any w € (7015 (g (ﬁqg)fm (75) uniquely expands as an R\qfflinear combination of
elements in B but also uniquely expands as an JFq-linear combination of such elements:
we conclude that the coefficients in these expansions belong to R‘qf NFq=Rgq, qed.

is an R g—basis of ﬁqg , the case for ﬁqz being entirely

(d) This is proved by the same arguments as (c) above. O

A direct fallout of the previous result is the following:

Proposition 5.3.4. (triangular decompositions for unrestricted MpQG’s)
The multiplication in Uq provides R q—module isomorphisms

7= 70 ~ 77< ~ 770 r7— 7+ 70 ~ 77> ~ 770 T+

Ug g U0 2 U5 =000 Uy, U503 =0z =0350,
U@U° 20020000, UfoUleUs; 2 U= U 900U
1 Ry d 1 R TRy TRrRq 4 4 Rq TRq 1

Proof. Direct from Theorem 5.3.3 above. 0

Here is a second consequence:

Proposition 5.3.5.
(a) ﬁq = ﬁq(g) , Tesp. ﬁqg, resp. ﬁé) , Tesp. ﬁqz, is a Hopf R fsubalgebm (hence is an
R -integral form as a Hopf algebra) of Uq(g), resp. of U— , resp. of US , resp. of Ug.
(b) (735 is an R q-subalgebra (hence an R q-integral form, as an algebm) of Uflt.

Proof. Claim (b) is obvious, by construction, and similarly also claim (a) for ﬁg ; the other

cases are similar, so we restrict ourselves to one of them, say that of U .
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Once again, the canonical case (i.e. q = q) follows from the results in [DP], suitably
adapted to the present context; then by Proposition 5.3.2 above the same result also
holds true for Uqf with any possible q — that is, UQ{ is a Hopf Rgfsubalgebra of
Ug{ = Ug{ (g), for any possiPle q. In particular U({ is an R‘{fsubcoalgebra of Uqf ,
hence given any u € Uy ( C Uy ) we have A(u) € Uy Oy~ Uy . By Theorem 5.3.3

— ~ q
the R‘qffmodule Uqf v Uo‘lr is free with a basis made of homogeneous tensors v’ ®v”
q
in which both v" and v" are PBW monomials as given in Theorem 5.3.3(d): thus A(u) has
a unique expansion of the form A(u) =Y csv, @ v for some ¢s € RY, . On the other
hand, the same set of “PBW homogeneous tensors” of the form v’ ® v” as above is also
an Fq-basis of Ug @, Uq: hence, since Uq is an Fq—coalgebra and u € Uy C Uq, we
have also a unique Fq-linear expansion of A(u) into A(u) = >, as v, ® v, . Comparing
both expansion inside Uy ® Py Uy — which also has the set of all “PBW homogeneous
q

tensors” v’ @ v” as }'(‘(fmonomials — we find ¢ = a5 € R‘qf NFq = Rq forall s,

which means that A(u) € ﬁq OR g ﬁq . So ﬁq is an R q—subcoalgebra of Ug , and similar
arguments prove it is stable by the antipode, hence is a Hopf R g—subalgebra. O

5.4. Integral forms for MpQG’s with larger torus.

In §3.3 we introduced generalized MpQG'’s, denoted Uq 1, = Uq,r1,(g) , whose toral part
is the group algebra of any lattice Ie = Iy x I with Iy being rank # lattices such that
Q < I'y <QQ; in particular, this required additional assumptions on the ground field
k, namely that k contain suitable roots of the g;;’s, see §3.3.3. We shall now consider
one such generalized MpQG, say Ug,r; , making assumptions on k as mentioned above,
and introduce integral forms for it, quickly explaining the few changes one needs in the
previously described treatment of integral forms for Ug, that is the case Iq = @ X Q.

5.4.1. Restricted integral forms for MpQG’s with larger torus. Assume that q
is of integral type. Then a Z-bilinear form ( , )B is defined on QQ, and we have well-

defined sublattices Q¥ and Q) in QQ (notation of §3.3.2). We assume in addition that
I € QW and I'_ € Q). Then we can define a “restricted integral form” U q,n, for
Uq.r, » akin to ﬁq — so that Iy = Q yields (;/\qu“. = ﬁq — as follows.

Let {%'i}ie] be a basis of I'y : then in Definition 5.2.12(a), replace every occurrence of
“KF'7 with “K ﬁl ” and every occurrence of “LF'” with “L wf_l ” — so0 each q—binomial

coeflicient (Kgc>q is replaced by (Kﬁn;c)q, etc.; this yields the very definition of U a.l -

~ Basing on this definition, one easily finds that all results presented in §5.2 above for
ﬁq have their direct counterpart for ﬁq I, as well. Moreover, the natural embedding
Uq € Uq,r, between MpQG’s — induced by the inclusion ) x Q C I, — clearly restricts
to a similar embedding U q © [7% . of integral forms. Similar comments apply to the

various subalgebras of U q for their natural counterparts in U a,l -

Similarly, assume now that q is of strictly integral type, so that the sublattices Q¥ and
Q") are defined in QQ (cf. §3.3.2); concerning Iy , this time we assume in addition that
I'n €QW and I'_ C Q). Then we can define a second “restricted integral form” ﬁq T
for Uq 1, , direct analogue to Uq, as follows.

Given bases {%-i}ie[ of I'y as above, in Definition 5.2.12(b) replace every occurrence
of “K. iﬂ 7 with “K %El ” and every occurrence of “ Liil ” with “L vf_l ”: in particular, every
g;—divided binomial coefficient (Kgc)q is replaced by (Kﬁn;c)q , etc.; then read the

outcome, by assumption, as the very definition of lA]q7 L -
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In force of this definition, one can easily find that all results presented in §5.2 about ﬁq
have their direct counterpart for Uq r, as well. In addition, the embedding Uq C Uq 1,
restricts to an embeddmg U - U ., between integral forms. All this applies also to the
natural counterparts in Uq r, of the different subalgebras of U

5.4.2. Unrestricted integral forms for MpQG’s with larger torus. Let now q be
of general (though Cartan) type, and make no special assumptions on I'y . Then we can
define for Uq 1, an “unrestricted integral form” ﬁ% L, , akin to ﬁq — in that ﬁ% nL = ﬁq
when Iy = @ — in the following, very simple way.

Let {’Vz‘i}iel be bases of Iy, as before: now, in Definition 5.3.1, replace every occur-

rence of “KijEl 7 with “KjEl ” and every occurrence of “L'” with “L;%Cl ”; then take the
final outcome as the very deﬁnition of l:jq’[; .

__Starting from this definition, one easily checks that all results presented in §5.3 for
Uq have a direct counterpart for Uq r, too. Also, the natural embedding Uq C Uq r,

between MpQG’s implies by restriction a similar embedding Uq - ﬁq, ., between the
corresponding unrestricted integral forms. Finally, similar comments apply to the natural
counterparts in Ugq 1, of the various subalgebras considered in Uy .

5.5. Duality among integral forms.

If we take two quantum Borel subgroups qu and UqS , we know that they are in duality
via a non-degenerate skew-Hopf pairing as in §4.3. Now, assuming that q is of integral
type, if we take on either side integral forms of opposite nature, say (7 qZ , Or ﬁqz , and (7013
— or ﬁqz and [7 qS , or ﬁqg — we find that they are “dual to each other” with respect to

that pairing. To state this properly, we need to work with MpQG’s with (suitably paired)
larger tori. The correct statement is the following:

Proposition 5.5.1. Let I'y be rank 6 sublattices of QQ containing Q , let U—F and
U(ip_ be the associated Borel MpQG’s, and let n : Uq— ry
Hopf pairing of §3.3.4.

(a) Assume that q = (qbij)ijel is of integral type, and (with notation of §3.3.2) that
ry=1"% ana 1 =1 Then

®U—F —— k be the skew-

Ogip, = {we s [n(u.040 ) <R}
T = {vevgl |n(040.v) cRa}
Uf = Uty = {ueugr [n(w.0gr) SRa}
Uy = Ugp = {vqujll ’77((7;F+,v> gnq}
Ugr, = {“E Ugr, ”(“v@fn) QRq}
Ugr. = {veUsr [n(U5r,.v) SR}

and similarly reversing the roles of “+” and “-” and of “>7 and “<”.
(b) Assume that q = ( dit; — qdﬂtw) ijer is of strongly integral type (cf. §3.3.2 for
notation). If I'_ = F(T) — ¢f. (3.4) — then

Ogf, = {ueudd, [n(w.050) cRq
R

7-0 -0 5+,0
quli - {U = UqIf ‘ W(Uq7F+’U) S Rq
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+ _ 7+ +
a { CAS Uq,l“ +

als = ”(“vﬁq_,n) = RQ}
Ug = Ugr. = {veUsr | n(0dr,v) SRa}
n(w. U5 ) CRa
Ugr. = {veUsr |n(05r,.v) SRa}

If instead I’y = o — cf. (3.4) again — then

_ >
{ue UC[»F‘F

Ugir = {U €Uyt ‘ n(UJ’&,v) - Rq}
O, = {uevg?, |n(u.050) cRa}
Aq_ — ﬁqu = {v €Uy r ‘77<ﬁq F+’v) Q”Rq}
U = Ugr, = {“ €Uqr, ‘ 77(%1}_) QRq}
Aqﬁ’l - {v €Uqr ‘ n(~q271“+’v) < Rq}
027, = {neUzr, | 1(u05) e Ra)
Proof. (a) The assumptions imply (I} ,F_)B C Z, hence n( K, - L’y;) _ iy ),
cf. §3.3.4 — that in turn implies 17<<KV$;0) ’ L7;> _ <(’Yz‘—~_71;7j_)3> € Rq . Taking
d q

PBW bases on both sides, this is enough to prove 77([?(;’& ,(7(;’1(1_) C Rgq ; therefore

we get ﬁ;’g - {u € U;’% ‘ n(u,ﬁ;’%) C Rq} and on the other hand also

ﬁ; ’,Iol - {v € U; ,’1(1, ) n(ﬁ; ”IQJF,U) C Rq} . This proves “half” the result we claimed
true, thus we still need some additional work to do.

Since I} = fﬁe) and I_ = fJ(rT) , we can fix bases {'yli}z gy of I i+that are dual to each
other, namely (7;{ ,yk_)B = Opp forall h ke l; soweget n (Kjf ,Li’;_) = ¢Onk .
As a consequence, the arguments used for Proposition 5.2.3 and Proposition 5.2.5 apply

again (with 7 replacing the pairing < , > and the K 7}4{’5, resp. the L%:’s, playing the
role of the X;’s, resp. of the x;’s) now proving claim (a). Indeed, the analysis developed
for those results now shows that U : 71Q+ and U, q_ ’?_ contain bases that, up to invertible
coefficients (powers of ¢ ), are dual to each other, and that is enough to conclude.

The claim about U ;r = (,Af; o, and ﬁq_ = Nq_ ; (both independent of Iy ) is a conse-
quence of PBW theorems for both sides and of Proposition 4.3.1. Then from this result,

=40 ~_0
the one for Uq,F+ and Uq7 3

and the triangular decompositions in Proposition 5.2.15 and
Proposition 5.3.4, we finally get the statement concerning U qZ r and U, qg ras well.
The statement with switched “+4” and “-” or “>” and “<” goes the same way.

(b) Up to minimal changes, this is proved much like claim (a). O

Remark 5.5.2. One can use the previous result to deduce properties of a (Hopf) algebra
on either side —e.g. (,qu% ro ~say — out of properties on the other side — U q% r, or ﬁq% r, in

q 7F+
is an R q—coalgebra (that follows from its definition). Similarly, we deduce that Uefr is in-

dependent of any choice of quantum root vectors (that do enter in the definition!) because
it is “the dual” of Uy and the latter is independent, by definition, of any such choice.

the example. For instance, U, qu ;. isan R g-algebra (hard to prove directly!) because Uz
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5.6. Integral forms of “mixed” type.

Let us consider two quantum Borel subgroups U q% ry and U, qu r asin §5.5 above, with
q integral, linked by the skew-Hopf pairing n of §3.3.4. Assuming in addition that the
lattices I'y fit the conditions required in Theorem 5.5.1 (according to whether q is strongly
integral or not), that theorem tells us that the pairing 7 yields by restriction R -valued

skew-Hopf pairings, still denoted 7, for the pairs of R —Hopf algebras <ﬁqz ry o U q% F,)
and ((,qu%m , ﬁir_) , or the pairs (ﬁqz,nr , ﬁf,l:) and (ﬁqz,nr ,
strongly integral. Moreover, as the original pairing 7 is non-degenerate, the same holds
true for its restrictions to R q-integral forms of the original quantum Borel subgroups.
Therefore, much like each MpQG Ugq(g) can be realized as Drinfeld double via the original
pairing 7 (cf. Remark §3.3.5), the restrictions of the latter lead us to define the following:

ﬁf,r_) when q is

Definition 5.6.1. With assumption as above — thus q is of integral type — we define
the following Hopf algebras over R as Drinfeld doubles (cf. §2.1)

ﬁq,n = ﬁq,r.(g) = D(ﬁZ ,pr_ﬂ?)

q,lt
ﬁq,ﬂ = %701,11(9) (Uq_['+ U_F 777>

where I := I} x I'_ . If in addition the multiparameter q is also strongly integral, then
we define similarly also the Hopf R —algebras (again as Drinfeld doubles)

£y > <
Vo = Uan(0) = D(Og 1, Ugr o)
%701,11 = Uq,n(9) = D<Uq2,F+’ qSI— ’ 77) %

The following claim points out the main properties of these new objects:

Theorem 5.6.2. Keep assumptions and notations as above. Then ﬁqJ; ,resp. Ug ., 5 18
an R q-integral form (as Hopf algebra) of Uq 1, , with PBW-type basis

N L+
HE(hh) 11 U /2] I Kk H Fﬁt
he=1 P lj p 71

jeI iel Vi =N

en,lj, ki, fr €N } ,

resp. { HEeh ML 11 (K )K Lki/2] HF(ft

Jel 7] il ki Vi

eh')lj’kimft eN }

(notation of §5.4.1) as well as variations of these, changi%g the order of factors in the

PBW monomials. Similarly, if q is strongly integral then Uq r, , resp. Uq 1, , s an Rq-
integral form (as Hopf algebra) of Uq r, , with PBW-type basis

N . L
{HEB(hh)H< > Ll/zJHKk HF
h=1 l]’ @ 79

jeI icl i =N

ehvljvk:iaft eN } )

e K - ke 1
resp. { HE r T L 11 < ’n> K Lki/2] 11 Fﬂ(tft)
qi t=N

jel J el k; i

(as well as variations of these, changing the order of factors in the PBW monomials).

eh)lj)ki)ft eN }

In addition, ﬁq n resp. Uq,r, resp. Ugq, p , resp. Uq.r, , coincides with the R q-
subalgebra of Uq n, generated by Uq r, and U s TEsp. by U= a.ls and U s Tesp. by
Uq—F and U s Tesp. by U— r, and U—F_

Pmaf Indeed, the result follows at once by construction, together with the fact that
Uz O ﬁqg’ll, etc., actually are integral forms of the corresponding quantum Borel

subgroups defined over k, and with the PBW Theorems for them. O
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~ We are also interested in yet other mixed integral forms, defined as follows. Inside

U qz, r (or inside Uq I it is the same), denote by ﬁq% 1’{ the R fsubalgebra generated
by U4 and Uo?,m (recall that by Remark 5.2.9, one has Uo?,r C Uq r, € U(?’FJr); this
is indeed an R g-integral form of U, qZ r (as a Hopf subalgebra), and the non-degenerate
skew-Hopf pairing 7 : U qZ’ r, ®Rgq (~]q§7 p — Rgq restricts to a similar pairing n:
U q% 1’{ qU qr. ——— Rq- Similarly, we consider the R q—subalgebra U S’T of [7 < F_
(or of U= ar. ) generated by Uy and U > which again is an R o-integral form of U ar.

for which we have a non-degenerate skew-Hopf pairing 7 : U= a.r. ORq qu 17{ — Rq

induced by the original skew-Hopf pairing between our multlparameter quantum Borel
subgroups over k. In addition, we do not assume that the multiparameter q be of integral
type, nor we assume Iy and I'_ to be in duality (as in §3.3.3). All this allows the following

Definition 5.6.3. For any multiparameter q (of Cartan type) and Iq := 1} x I | we
define the following Hopf algebras over R 4 as Drinfeld doubles with respect to the above
mentioned skew-Hopf pairings:

() T () _ 72t 17<
qTFo - quli(g) - D<Uq, +’U . "7)
T 7T () 7> r<,T
a,le *T “Ya,le 9) = D(Uq,ﬂ’ q, 7’77) %

The main properties of these more Hopf algebras are summarized as follows:

Theorem 5.6.4. Keep notation as above.

(a) The Hopf algebras U(;TI)W and U( 1, are both R q—integral forms (as Hopf algebras)
of Uq,r, , with PBW-type basis

{HEeh Lk K" HF

jel Yoder o=

eh7lj7ki7ft € N} )

and {HEehHL [1K" HF(ff

J€el Yioder Vi =

ehaljvkiaft eN }

(notation of §5.4.1) for U(;J}. and UOE,_F)- respectively, as well as variations of these (chang-
ing the order of factors in the PBW monomials).

(b) Uq”} , Tesp. U(; r » coincides with the R q—subalgebra of Uq 1, generated by U

~ -~ qF ’
UOF and Uq L resp. by Uq—i:ll , Uo?,]“. and Uq_,r.'

(¢) Both Uq”}. and Uéf}. have obvious triangular decompositions analogous to those
in Propositions 5.2.15 and 5.3.4.

Proof. Here again, everything follows easily by construction, through our previous results
on integral forms of multiparameter quantum Borel subgroups. O

Remark 5.6.5. Defining UOE*}. and Uéf}. , as well as ﬁqﬂ , ﬁqﬂ , ﬁq 1, and ﬁq’]; )
as Drinfeld doubles provides great advantages, namely we get for free that

(1) they are Hopf algebras,

(2) they have nice PBW bases (and triangular decompositions),

(3) they are R q-integral forms of Uq 1, — since they are tensor products (as Drinfeld
doubles!) of integral forms of multiparameter quantum Borel subgroups.

In fact, we already saw that these algebras coincide with suitable R q—subalgebras in
Uq.1, ; yet, proving properties (1)-(3) by direct approach would not be trivial.
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5.6.6. The link with the uniparameter case. For the uniparameter quantum group
U,(g) of Drinfeld and Jimbo, possibly with larger torus, one can define R o-integral forms

ﬁq(g), ﬁq(g) and ﬁq(g) much like we did with our MpQG's, constructing them as gen-
erated by quantum divided powers and binomial coefficients or by renormalized quantum
root vectors; note that now Rq = Z[q, qil] . Similarly, one can define another R o

subalgebra of U,(g), denoted by Uy (g), generated by (,qu_ , (7(? and ﬁj , first introduced
in [HL]. This is again an R q—integral form of U,(g), for which triangular decomposition
and PBW Theorems hold true, deduced from the similar results for IA]q(g) and ﬁq(g).
One also has its “symmetric counterpart”, say Uéﬁ) (g), generated by 17(; , ﬁg and ﬁq* .

The construction of R q-integral forms (again with Rq = Z[q,q_l] ) of restricted or
unrestricted type also extends to the context of twisted quantum groups U;p w(g) ala

Costantini-Varagnolo (see [CV1, CV2]), still denoted U Tu(g) and U (@) in the re-
stricted and the unrestricted case respectively. Then one has also corresponding integral
forms for the various relevant (Hopf) subalgebras (Borel, nilpotent, etc.), triangular de-
compositions, PBW bases, etc. — see [Gav]| for details. Moreover, one can define also in

this context mixed integral forms Ué;\lﬁ(g) and U, ;ww(g) , namely

(a) Uég\)/}“o(g) is the R —subalgebra of Uqu(g) generated by 17(;, ﬁq?M, 17(;“,

(b) Uéww(g) is the R q—subalgebra of U "), (g) generated by ﬁq_, ﬁq?M, ﬁj,

(note that the occurrence of ¢ is irrelevant at the algebra level, so that Uéj}w(g) =

g ﬁ&(g) as R q—algebras; the coalgebra structure, on the contrary, is affected).

Using the properties of ﬁf , ﬁqoM and ff[;t presented in [Gav|, one can prove that
(v];’}\)/ﬁ(g) and 0;3)/1’“0(9) are again R q-integral forms — as Hopf algebras — of U %, (g) -
In fact, the trivial case ¢ = 0 gives U;‘j;lo(g) = Uy m(g), the standard uniparameter
quantum group associated with M, so the case of Uq‘pM (g9) and its R q-integral forms (re-
stricted, or unrestricted, or mixed) is a direct generalization of what occurs with Uy as(g) -

On the other hand, it is proved in [GG1] that Costantini-Varagnolo’s twisted quantum
groups U qu(g) are just quotients of MpQG’s Uq mx@(g) with q ranging in a special subset
of strongly integral type multiparameters. It follows that the same link exists among their
integral forms of either type, including the mixed one.

5.6.7. Applications to topological invariants. As mentioned above, the mixed form
Uy (g) was introduced in [HL]. In that paper, the authors provide a construction of a
“universal quantum invariant” of integral homology spheres, call it Jy;: this “lifts” the
well-known Witt-Reshetikhin-Turaev (=WRT) knot invariant 73, (g) of M associated with
g and any root of unity ¢, in that 73, () is obtained by evaluation of Jj; at e. Unlike the
definition of the WRT invariant, the construction of this “universal” invariant Jj; does not
involve representations, so it provides a unified, representation-free definition of quantum
invariants of integral homology spheres, performed in terms of the form Uéf)(g) .

Now, having introduced “multiparameter mixed integral forms” Uéj)/[’“p(g) and even

VéiJ)\/IXQ(g) , we might expect that the construction of Jyr could be extended, starting from

(v];’i]\)/[’“p(g) or even (v](l(’i])wXQ(g) instead of Uy (g), thus providing entirely new topological
invariants for knots (and links) and integral homology spheres.

6. SPECIALIZATION OF MPQG’s AT 1

In this section we study those MpQG’s for which all the g;;’s are 1; in fact, as every ¢;;
is a power of a single ¢ € k*, requiring ¢; = 1 for all ¢ amounts to requiring ¢ = 1.

Note that if ¢; = 1 for some i, the very definition of Uq(g) makes no sense, so we
have to be more subtle. First we take Uq(g) as defined over a “generic” multiparameter
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q:= (Qij)i,jel of Cartan type; then we consider its Z-forms ﬁq(g), [A]q(g) and ﬁq(g),
defined over R 4 (under suitable “integrality” assumptions on q for the first two cases);
finally, for either form we specialize ¢ — hence all the g;;’s — to a root of unity (or to 1,
in particular), which will make sense just because our ground ring will be set to be R .

6.1. The “generic” ground rings.

As a first step in the process sketched above, we formalize the loose ideas of “generic
parameter of Cartan type” and of “generic parameter of (a specific) integral type”. Indeed,
this “universal ring of multiparameters” will be the ring of functions on the Z-scheme of
all multiparameter q of Cartan type, or of (fixed) integral type.

Similarly, we introduce also the (universal) rings generated by “square roots of indeter-
minate parameters”, both for the Cartan type and for the integral type case.

6.1.1. The universal ring of multiparameters (of Cartan type). Let hereafter
Z[Xil] = Z[{xiijl ijel] be the ring of Laurent polynomials with coefficients in Z in
the indeterminates x;; (i,7 € I), and let A := (a;j)
matrix of finite type. Consider the quotient ring

Z A [qil] = Z[xil]/<{$ij Tjs _xi?j}i,jel>

in which we denote by ¢;; the image of every wx;; (for 4,5 € I'). This is the ring of global
sections of an affine scheme over Z, call it €4 : by definition, the set of k—points of this
scheme (for any field k) is just the set of all matrices q = (qij) of parameters of

ijer be an indecomposable Cartan

Cartan type A with entries in k as in §2.3.2. e

From all the identities ¢;; ¢j; = ¢;;° in Za[g™'], one finds — by direct inspection of
different cases of possible Cartan matrices A = (aij)iu‘ T that there exists j, € I such
that ¢; = q;;"jo for some n; € N, for all ¢ € I'; indeed, we can take n;, =d; (i € I) as
in §2.3.2. From this and the relations between the g¢;;’s, it is easy to argue that €4 is a
torus, of dimension (g) + 1: in particular, it is irreducible. Then Z4 [qﬂ} is a domain,
so we can take its field of fractions, denoted by Q4(q); in the following, we denote again
by ¢i;j (4,j € 1) the image of x;; in Qa(q) too.

By construction, the matrix q := (q"j)i,j cr sa Cartan type matrix of parameters in
k :=Qa(q) in the sense of §2.3.2; in addition, none of the g¢;;’s is a root of unity.

Now consider the ring extension R of Zg [qil] generated by a (formal) square root

of Bydy — hereafter denoted by ¢ := qjt/ ]20 — namely

Rq = (Z,q[qil})[x]/(:v2 —qjojo) so that qjl/2 =T € Rq

0do
and then let Fq be its field of fractions, such that Fq = (Qa(q)) [x]/( z? — aj, j0> . We

still denote by ¢;; the images in R4 and in Fq of the “old” elements with same name in
Za [qﬂ] and Q4(q). We shall also write q;tl = ¢t% for all i € I, so to be consistent
1/2

with §2.3.2; in particular, a4 5, = 4=, - Note in addition that we also have

Rq = (2[{sF),, ) / (Lo — o0} pey U2 1))

In turn, we define also

RY = 2[{e5),  1[E) / ({aal- @™}, ule™-40})

which is again a domain, and F (‘{ as being the field of fractions of the former. In both

/ +1/2 the image of §.i.1/2

i and £+1/2 respectively (in short,

cases, we denote by qij;l % and by q



44 G. A. GARCIA , F. GAVARINI

one reads these symbols as “¢ := /x 7). Note that qu and F (*( are naturally isomorphic
with R ¢ and Fgq respectively, but we rather see the formers as ring or field extensions of
the latters via the natural embeddings Rq — R‘qf and Fgq —— F ,‘{ given — in

both cases — by qij (qil/z) and ¢*l — (qﬂ/z )2

Finally, observe also that the ring Z[q,qil] , Tesp. Z[q1/2, q*1/2] , of Laurent polyno-

1/2

mial in the indeterminate ¢, resp. ¢*/“, naturally embeds in R g, resp. in R\qf, and the

same occurs with their corresponding fields of fractions. Then each module over Z [q, qil] ,

1/2
)

resp. Z[q VY 2} , turns into a module over R 4, resp. R*qf, by scalar extension.

The very reason for introducing the above definitions, which explains the “universal-
ity” of both R4 and R‘qf, is the following. If k is any field and q := (@ij)i jel is any
multlparameter of Cartan type A chosen in k — i.e., all the g;;’s belong to k — then
there exist unique ring morphisms R4 — k and R‘qf — k given by ql-]i.1 — cjiji.l and

+1/2 -+1/2
Gj 7 G
by the fields Fq and F qf . The images of these morphisms are the subrings Rg and

(for all ,j € I') respectively — and similarly if R 4 and R‘qf are replaced

R}{ of k respectively generated by the g;;’s and by the (jé/z’s, like in §5.1.2 — or the
corresponding fields, if one starts with Fq and F g{ .
6.1.2. The universal ring of multiparameters of integral type. Let A := (aij)ijel
be a fixed indecomposable Cartan matrix of finite type as in §6.1.1, and let B := (bij)
be a matrix with entries in Z like in §2.3.2. We consider the rings

Ry =1Z[gq ] , Ry =1Z[¢" ¢ ]

and the corresponding fields of fractions FJ := Q(q) and .F(‘f"f = Q(ql/z) , together
with the natural ring embeddings R ——— Rﬁ*‘f and FJ —— F f’f given (in

i,J€l

both cases) by ¢*! — ( +1/2 )2 . In all these rings, we consider the elements ¢;; := qbi €
RG S Fgq and qil/2 = (qil/Q)b“ € Rf”l"f - ]-"Of*‘f forall 4,5 €1I.

Much like for the previous case of R q and R‘qf , the rings T\’,ﬁ; and R%f are “universal”
among all those generated by multiparameters of type B in any field k, in the following
sense. If k is any field and q := (qij)z‘jel is any multiparameter of integral type B in

k, so that ¢; = g% for some ¢ € k (for all 4,5 € I), then there exist unique ring
morphisms R — k and R’fl’f — k given by ¢*' — g*! and ¢*'/2 — g*/2

bij . . .
that q;; == ¢% — ¢ = g;; and qiji-l/2 — ((jﬂ/Q) (1;1/2 (i,7 € I); similarly with

the fields 7§ and FJ V" replacing R and RY . The images of these morphisms are the
:|:17

, SO

subrings Rq and qu (independent of B) of k respectively generated by the 4 s and

by the q;; / s, i.e. by ¢! and by g+1/2
fields, if we deal with FZ and FZV ).

respectively, like in §5.1.2 (or the corresponding

Finally, notice that we have a natural, “hierarchical” link between our universal rings
(or fields) of Cartan or integral type: namely, there exist unique epimorphisms

Rq— RE (qilHq ) an R\f RB\f (qi1/2._>qi1/2

)
» Rq/({qij _qbij}i,jel) = R and 73f/ qli/z (@) ij}ijEI) =Rq

6.2. Specialization at 1.

Let g, Rq and R‘qf be fixed as in §6.1 above together with all related notation.

We consider the quotient ring Rq,1:=Rgq / (¢ —1) R ; by construction, the latter is
generated by invertible elements yggl = qf;l mod (¢—1) R ¢ which obey only the relations
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Yiojo = 1 and y” yﬂ =1, so that yﬂ = y” /I;c follows that R g1 is just the ring of

Laurent polynomials in the (2) indeterminates yij , 1 < j. In the sequel, we write y,
for an element in R o1 defined like in §3.2 but for using the y;;’s instead of the g;;’s
It is clear that R 41 is also an R q—algebra by scalar restriction through the canonical

ring epimorphism R q — Rq/( ¢g—1)Rq = Rq,1-
For every matrix B := (bw) jer with entries in Z as in §2.3.2, we define the ring
a1 = RB/(q —1)Rg . Note that RY¢,; = Z since RY = Z[q,q_l], and the
epimorphism R q— R’fl induces a similar epimorphism Rq 11— R%J at ¢ =1.
Similarly, the “specialization at ¢/?2 = 17 of both R‘qf and Rﬁ’f will be R\ci1 =
Rf/( 1/2—1) R\f and RB"f = R%f/(qlﬂ—l) Rﬁ’f ; we write yél/z for the image
+1/2 v 1/2 . 1/2
of 45 in Ry ; and qu , i el yl/2 . (yl] )z‘,jel'
we have an eplmorphlsm R}gl — RZ’?{ induced by ”R*qf — ’R%f. Finally, the
ring extensions Rq—— RY and RY —— R%Y yield extensions Rq1— R\¢£1 and

R4 1<—>R

and overall y := (yw) Again,

q.1 > In fact, the latter is actually an isomorphism R};l SN Rz’:{ ( = Z) .

Before going on and studying specializations of our objects at ¢ = 1, we recall some
well-known facts of quantization theory:

6.2.1. (Co-)Poisson structures on semiclassical limits. Let A be any (commutative
unital) ring, let p € A be non-invertible in A, and A,— := A / (p)=A / pA. Whatever
follows applies to A € {Rq,Rﬁ} and p:=¢g—1or A€ {R}{,Rﬁ“ﬁ} and p:=¢'/2—1.

Consider an A-module H , and let Hp,—o := H / p H be its specialization at p = 0;

clearly the latter is automatically an A,—g-module. If in addition H has a structure of
A-algebra, or of a A-coalgebra, or of a bialgebra or Hopf algebra over A, then the H,—
also inherits the same kind of (quotient) structure over A,—g .

Furthermore, the following holds (see, e.g., [CP, Chapter 6]):

(a) If H has a structure of (unital, associative) A-algebra such that Hy—g is commuta-
tive, then H,—o bears a canonically structure of (unital, associative) Poisson algebra over
Ap—o , whose Poisson bracket is uniquely given by

ol
{z,y} ::% mod p H V z,y € Hpoo

for any ',y € H such that z:= 2’ mod pH, y:= 3y mod pH .

If in addition H is a bialgebra or Hopf algebra over A, then the above Poisson bracket
together with the quotient structure of bialgebra or Hopf algebra (over A,—y ) make Hp—
into a Poisson bialgebra or Poisson Hopf algebra over Ap—g .

(b) If H has a structure of (counital, coassociative) A-coalgebra such that H,—q is
cocommutative, then Hy,_ bears a canonically structure of (counital, coassociative) co-
Poisson algebra over A,—q, whose Poisson cobracket is uniquely given by

A(x") — A°P(z')
p

for any 2’ € H such that x:= 2’ mod p H .

If in addition H is a bialgebra or Hopf algebra over A, then the above Poisson cobracket
together with the quotient structure of bialgebra or Hopf algebra (over A,— ) make Hy,—
into a co-Poisson bialgebra or co-Poisson Hopf algebra over A,—g .

V(z) = mod p H V x € Hyo

As a last remark, we recall that if [ is a Lie algebra and the Hopf algebra U ([) is actually
a co-Poisson Hopf algebra, then [ canonically inherits a structure of Lie bialgebra, with
the original Lie bracket and the Lie cobracket given by restriction of the Poisson cobracket
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in U(I). As a consequence, if Hp—o = U(I) as Hopf algebras (H as above) for some Lie
algebra [, then the latter is bears a Lie bialgebra structure, induced by H as explained.

Now we fix Fq, Rq, and Fg, R, as in §6.1. Note that their generators g¢;; (for

all 7 and j) form inside either field Fq and F§ a multiparameter matrix q := (qﬁ)ij el
of Cartan type, and even of integral type (namely, type B) in the case of Fj. We
consider then the associated MpQG’s defined over Fq and over F (f, both denoted by

[13

Uq(g) ; nevertheless, we shall loosely distinguish the two cases by saying that we are “in
the general, resp. integral, case” when the ground ring is Fq or Rgq, resp. ]:5 or R%.

In the general case, we consider in Uq(g) the unrestricted integral form ﬁq( g), defined
over the ring R4 as in §5.3. In the integral case instead, we pick in Uq(g) the restricted

integral forms U q(9) and — in the strictly integral case — ﬁq( g) , defined over R as in

§5.2, and the unrestricted form ﬁq(g) too — over R{ again.

We can now introduce the first type of specialization we are interested into:

Definition 6.2.2.
(a) Let q be of integral type. We call specialization of f]\q(g) at g =1 the quotient
Uqa(0) = Ualo)/(a-1)Ua(o)
endowed with its natural (quotient) structure of Hopf algebra over RY | (: Z) .

As a matter of notation, setting ﬁq = (,qu( g) we shall denote

<kn c> a (Kn C)q mod (g —1) Uy . <l;> = (i)q mod (¢ —1) Uq
(5) = (57) it (2) (%) oo
<hn c) _ <Gn C)m mod (¢ 1) Uq (i) = (i)q mod (q 1) Uq

7

() = () e ()

~ ~

el :=EM™ mod (¢-1)TUq , £ = ™ mod (¢ —1)Uq

(0% (0%
forall icl, c€Z,neN, acdt.
If q is of strongly integral type, then we call specialization of ﬁq(g) at ¢ = 1 the

uotient ~ ~ ~
) Oan(s) = Dal®) /(¢ —1) Uae)

endowed with its natural (quotient) structure of Hopf algebra over R , (=2). Like
above, setting ﬁq = ﬁq(g) we shall write (for i€ I, c€Z, neN, a e d1)

ki ; K;; 7y ki Ki U,
( C> — < C) mod (q _1) Uq , < ) = < ) mOd (q _1) Uq
n n a n n qi
<li;c> = (L,;c) mod (q_l)ﬁq ; <lz> = (L
n g "
<hi;c> - <Gi;0) mod (q—l)ﬁq , <hz> = <G’> mod (q—l)ﬁq
n S n /g

() we()

el™ = EM mod (¢—1) ﬁq , £ .= F(™  mod (¢ —1) Uq

(8} «

~

! d(qg-1)U,
) w07

&
Il
7N
_
~~
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(b) Let q be arbitrary (of Cartan type). We call specialization of 5(1(9) — defined
over either Rq or Rg — at ¢ =1 the quotient

Ua1(9) = Ualg) /(a—1) Ua(a)

endowed with its natural (quotient) structure of Hopf algebra — over Rgq,1 or Ry,
respectively. As a matter of notation, we shall denote (for all a« € T, i € I)
Jo = Foz mod (q _1) ﬁq(g) ) €a = Ea mod (q _1) [7(1(9)

=L mod (¢ —1)Uq(g) , k=K' mod (¢—1)Tq(g) 3

Remark 6.2.3. Note that the specializations introduced above can be also realized,
alternatively, as scalar extensions, namely Uq,l(g) = Rg.1 7(}53 ﬁq(g) , ﬁq,l(g) =
q

R 7(}2'93 Uq(g) and Uq1(g) == R 7(?3 Uq(g) or — according to what is the chosen
q q

ground ring for Ug(g) — also Uq1(g) := Rq.1 7(? Uqg(g) .
qa

Our first, key result about specialization at ¢ =1 is the following;:

Theorem 6.2.4. Let q := (qij = gbis )ijel be as above, with B := (bij)
such that B+ B! = DA . Then the following holds:

ijer © My(Z)

(a) ﬁqg(g) is a (cocommutative) co-Poisson Hopf algebra, which is isomorphic to
UZ(gB) — ¢f. Definition 2.3.6 — the latter being endowed with the Poisson co-bracket
uniquely induced by the Lie cobracket of g, — cf. Definition 2.3.4(a). Indeed, an explicit

isomorphism ﬁq,l(g) . UZ(QB) is given by

(ki>'_><ki>7 <1i>'_>(li>’ <hi)'_><hi>7 e s oM | £y £
n n n n n n

Similar statements hold true for the specialization at ¢ =1 of ﬁqz , /U\'qg , ﬁg , etc.

(b) ﬁqJ(g) is a (cocommutative) co-Poisson Hopf algebra, which is isomorphic to
UZ(QB) — ¢f. Definition 2.3.6 — the latter being endowed with the Poisson co-bracket
uniquely induced by the Lie cobracket of g, — cf. Definition 2.3.4(c). Indeed, an explicit

isomorphism ﬁqvl(g) — Uz(8,) is given by

()= (5) ()= () ()= (R) oo et w0
n n n n n n

~

Similar statements hold true for the specialization at ¢ =1 of qZ , Us ,

Proof. By the definitions and the structure results for ﬁq’l(g) and ﬁq,l(g) in §5.2 (in
particular, Theorem 5.2.13) the proof is a straightforward check. Indeed, from the pre-
sentation of U q(g) and Uq( g) in Theorem 5.2.13 we get similar presentations of U q.1(9)
and ﬁq,l( g) : comparing these presentations with those mentioned in Remark 2.3.7 (a) for
UZ( gB) and UZ( @B) , sheer calculations show that the formulas in the above statement
provide well-defined isomorphisms, as claimed.

Hereafter we give a sample of these “sheer calculations”. Out of the commutation

formulas among generators of (/}q( g) — cf. Theorem 5.2.13(a) — we get

Ki\ L)y _ L) (Eisnbg\ _ (K AT

= Ej( ) ( 1 )q + (’I’Lb”)qu( )Kl
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Then, when we specialize this formula at ¢ = 1 — that is, we take it modulo (¢—1) U a(9)
— the left-hand side and right-hand side become, respectively,

Ki n kz n ~
() = (1) (mainin)
B (1 )q + (nby), EVE; = ef >( 1) + nbjel”  (mod (¢ -1)Uq(o))

K; BY
because K; =1+ (¢—1) < 1Z> = 1 mod (¢ —1) Uq(g) . This shows that the relation
q

Ki\ ) _ L) (I (n)
(1 >qu = E; ) q+ (nbij), B;" K

involving some generators of U q(9) , through the specialization process turns into

<1>ej() = ej()(1> +leijej()

among the corresponding elements in UZ( g B) ; but this relation is indeed one of those
occurring in the presentation of UZ( g B) itself by generators and relations.

With a similar analysis, one sees that the generators in U q,1(g) do respect all relations
that hold true among the same name generators of UZ( gB) . In addition, there are no

extra relations because we have PBW bases for ﬁq( g) which specialize to similar bases

for ﬁqvl(g) , and the latter correspond to PBW bases of Uz(d,,) -
Ki ~
Finally, since K; =1 + (¢ —1) < ) > =1 mod (¢ —1)Uq(g) and also L; = 1 +
q

(¢—1) (ﬁ’) =1 mod (¢—1) ﬁq(g) , it follows from Theorem 5.2.13 that A(Ei(n)) =
q

ZEZ-("_S) ® EZ-(S) and A(Fi(”)) = ZFZ.(”_S) ® Fi(s) modulo <(q —-1) ﬁq(g) ®@Uq(g) +

s=0 s=0

ﬁq(g) ®(g-1) ﬁq(g)> . This implies that ﬁq,l(g) is a cocommutative Hopf algebra. [

Remark 6.2.5. In sight of Theorem 6.2.4 above, the fact that the g s, resp. the g’s,
for different q’s be all isomorphic as Lie coalgebras — cf. Remarks 2.3.5(c) — is a direct

consequence of the fact that all the U q(9)’s, resp. the Uq( g)’s, for different q are isomorphic
as coalgebras, as this happens for the Ug’s.

Next, we study the structure of ﬁqyl(g) = ﬁq(g)/(q —1) ﬁq(g) . For the first results,
the multiparameter q is assumed to be generic, i.e. just of Cartan type.

Let (7({:: R‘qf ®Rq(7q , and let ﬁoﬂ(g) = ﬁ{/(ql/z—l) ﬁqf be the specialization
of U&f it ¢'/?2 = 1. For any afﬁrie Poisson group-scheme G}, over Rq‘ﬂ dual to g, ,,
ie. Lie(GD*A) =g, welet (’)f(GD*A) be its representing Hopf algebra.

Proposition 6.2.6.
ﬁcfl(g) is a 2—cocycle deformation of Of(ég‘A) for some (uniquely defined) connected,

simply connected affine Poisson group-scheme éD*A over Rq‘f’l dual to g, , (as above).

Proof. Having taken the largest ground ring ’R‘(( instead of R o , Proposition 5.3.2 applies,
giving us Ug{(g) = (Ug{(g)) for a specific 2—cocycle o as in Definition 3.2.1 — in
g
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/2

particular, depending only on the qi? V2o By its very construction this ¢ induces, modding

out (ql/ 2 1) , a similar 2—cocycle, denoted o , of the specialized Hopf algebra ﬁg{l( g) =
ﬁq(g)/(qlm—l) ﬁq(g) ; therefore we get

0y (9)/(¢"*-1) T (9) = (T (9)/(a"*-1) T (9)) (6.1)

9
Now, for the usual one-parameter quantum group U,(g) in [DP] — cf. also [Gav] —

one has a similar construction for ﬁq(g) — which is nothing but the quotient of [7(1,1( 9)
modulo (LZ-—K i 1) for all # — for which one has

Ui(s) = Uglg) /(¢"2~1)Tyla) = O(G") (6.2)

for some (uniquely defined) connected, simply connected affine Poisson group-scheme G*
whose cotangent Lie bialgebra is such that Lie (é*) >~ (ﬁDA/(krF li)id) as Lie
bialgebras. Once more, this result can be easily “lifted” to the level of the quantum
double of U,(g), which is nothing but Ug(g): the resulting construction is exactly that of

the integral form ﬁq( g) within Ug(g), and the results in [DP] then turn into (sort of) a
“quantum double version” of (6.2), namely

Uai(s) = Us(e)/(a-1)Tale) = O(Gg)

with éf; 4 @ connected Poisson group-scheme whose cotangent Lie bialgebra is g, , . Ex-
tending scalars from R g1 to R‘gl this yields

Ui(0) = U (9)/(a*-1)T (a) = 07 (Gy,) (6.3)
Finally, matching (6.1) and (6.3) the claim is proved. O
The previous result can be reformulated as follows: up to scalar extension — from

Rq,1 to R\c£1 — the Hopf algebra ﬁqJ(g) is a 2—cocycle deformation of the Hopf algebra

O(éD* A) . Actually, we can provide the following, more precise statement:

Theorem 6.2.7. [70171(9) is a y-polynomial and Laurent y-polynomial algebra over
Rq (with y as in §6.2), namely

Uai(s) = Rau[{fan bk oy

where the indeterminates y—commute among them in the following sense:

foc’ fa” = Yoo fo/’ fo/ ) €o/ fo/’ = fa” €a’ €a/ Ea/t = Yol Eal Eof
k:iil eo = yoitlla o k;ﬂ , ll?tl eo = yojfall €n l;tl
k;ﬂfa:yoilafak;tl y l;tlfa:yozltol@fal?ﬂ
kzil k]il — k]il k,ljzl ’ klil ljil — l;tl k,ljzl ’ klil k,]il — k,]il kzil

Proof. All formulas but those in the first line are direct consequence of definitions, so we
can dispose of them, and we are left with proving the first three.

We begin with the mid formula ey for = far e, for which we have to compare
Ey F.» with Fo E, within Uq(g); and in order to do that, we shall compare these
products with the similar product taken inside ﬁq( g) , where the multiplication is deformed
by a 2—cocycle o as in Proposition 5.3.2.

Indeed, in the rest of the proof we extend scalars from R q to R*qf and thus work with

[7(‘{(9) and (75‘((9); for the former we identify (7(‘{(9) = (ﬁ((g))a as R‘(ffmodules,

which is correct by Proposition 6.2.6. In particular, inside (7(‘( (g) we shall consider the
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b

original product of ﬁqf (g), hereafter denoted by “* 7, and the o—deformed product —

yielding the product in (70‘{(9) — denoted by “+”.
By the results in [DP] — cf. also [Gav] — suitably adapted to the present “quantum
double setup”, we know that Ug(g) is commutative modulo (¢ —1): this implies that

Eq " For in Ug(g) can be written as

Eow For = For " Eo + (¢—1) Y s Mg (6.4)

for some ¢, € R g, where fa/ and fa/f are (renormalised) quantum root vectors in [7}1( g)
and the ﬂs ’s are PBW monomials in a PBW basis of ﬁq(g) like in Theorem 5.3.3(d).

Let us look now for the counterpart of formula (6.4) in ﬁq( g) — thought of as embedded
into ﬁ(‘{(g) = (ﬁ({(g))g . Thanks to Proposition 4.1.1 we have

Ea’ = mz/ (qil/z)ﬁa/ ) Fo// = My (qil/z)foﬂ

for suitable Laurent monomials m", (qﬂ/ 2) and m_, (qil/ 2) in the qilj g (each of which

O[l
is trivial if the corresponding root is simple); Now, the formulas in §4.4.2 give

Ea’ *ﬁa” = Ea’ v fa// R Fa" *Ea’ = Fa// < Ea/

(by the same analysis as that before Proposition 3.2.4); on the other hand, again by
Proposition 4.1.1 and by §2.2.2 we have that every PBW monomial in Ug(g), say M ,

has the form M = mm(qﬂ/ 2) M’ where mﬂ(qil/ ?) is a suitable Laurent monomial

+1/2,

in the ¢;; " 7’s. Tidying everything up, from (6.4) and the identities here above — writing

mE =m (qﬂp) and my; := mm(qﬂ/z) — we find

= mfyman ((m) ™ (mg) ™ Far Bt + (-1) Syeamg, M, ) =

— Fa// *Eal + (q —1) ZS Cs m:, m;,, mﬂs Ms

that is, in the end,

EO/ * Fa// = FO// * Ea/ —+ (q — 1) Zs Cg m;t/ m;,, mms M (65)

S

which is almost what we need, as the right-hand side belongs to (NL{ (g) but possibly

not to Uq(g). To fix this detail, we take the expansion of E., « F.» as an R g linear

combination of the PBW basis of the ﬂ: ’s (which includes Fy» « E, too), namely

Ey « For = 3, Ky M: for some K, € Rq; comparing the latter with (6.5) we get

cs ml,m_, my € Rq for every s. Then (6.5) is an identity in Uq(g), which implies
Ea’ * Fo/’ = Fa// * EO/ mod (q —1) ﬁq(g)

whence eventually ey for = faren , q.e.d.

We turn now to proving the identity e, e = Yoo €a €or, for which we need to
compare Eo B, with E.n E, within ﬁq(g) . To begin with, from the results [DP, §§9,
10 and 12] — suitably adapted, as usual, to the present, “quantum double framework” —
in the standard case of ﬁq(g) we have

Ey  Eqr = (jo/,a”Ea” TEo/ + (q _1) ZQéQE . (6'6)

for all o/, 0 € &+, where Goror = ¢@*")/2 by definition, & € Z[¢,q7!] (S Rq) for

all @ and the f;g ’s are PBW monomials in the Eva’s alone.
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Now from (6.6) we deduce a parallel identity in ﬁq( g) . Namely, acting like in the first
part of the proof — basing again on the formulas in §4.4.2 — we find

— = = _ +1/2 ~
E,«~Ey = m;r/ m;r// Ey~Eqr = mz’ mon qa’,o{” Eo = Eor =

— +1/2 ~ - ~ . = e
= m;', mn qa/7C{// (qa/a// E, " E, + (q —1) ZQCQEO?*) =

+1/2 -1 -1 —-1/2 = il
= it 032 o () (2) " 0 B - B

o +1/2 71 €a
(0 =1) S oyt 0 B =

+1/2 . —1/2 = Enl -~ +1/2 e
qa/p{// qa’7a” qa//,é[/ Ea// * Ea/ + (q —1) ZQCQ m;t/ m;/, qa/,O{” /Lg Egg

where p is yet another Laurent monomial in the q?;- 1/2:5 and each Egeg is the unique PBW

monomial in the E,’s that corresponds (in an obvious sense) to Egeg. Thus

= = +1/2 -1/2+% 5 T o
Ey «Eqr = qa/p{N do/ o qauﬁé/ Eor~Ey + (¢ 1) Zg Ca Egei (6.7)
where ¢y = & m,m}, q;flo{,% Mo € R‘qf . But we also know that the E,’s form a

PBW basis over R for Uq(g), hence E, + Eur uniquely expands into an R q-linear
combination of these monomials: comparing such an expansion with (6.7) we find that all
coefficients ¢, therein necessarily belong to Rq: then (6.7) itself is an identity in ﬁq( g)
— i.e., not only in [73{ (g) . Therefore, from (6.7) we deduce

- - ~ 1/2 . -1/2 = - r7
Ey ~ Eqr = qoj?o{// 4o’ " qa/lvé/ Eqor + Ey mod (C] _1) Uq(g) (6'8)

Finally, since q := (Qij)i,jel and ¢ := q%%i = q%% for all i,j € I, we just compute
that q;lﬁ Go! o q(;/léf = (o' , Whose cosetin Rq 1 := Rq/(q—l) Rq is just yorar ;
therefore (6.8) yields ey €nr = Yoo €ar €or as claimed.

A similar procedure shows that f./ for = Yarar forr for, Which ends the proof. O

Remarks 6.2.8. In [An4, §3], a different construction eventually leads to a result com-
parable with Theorem 6.2.7 above, although slightly weaker. In general, we prefer to
follow a different approach, because it exploits an independent argument and is more
consistent with our global approach in the present work, mostly based on the fact that
Uq(g) = (Uq( g))a . In addition, some results of [An4] cannot be directly applied to our
context of integral forms and specializations, so we must resort to an alternative strategy.

When the multiparameter q is of integral type the last two previous results get a stronger
importance from a geometrical point of view. In fact, the following is a refinement of
Proposition 6.2.6 but we provide for it an independent proof.

Theorem 6.2.9.
Let q be of integral type, and ﬁqyl(g) defined over RY = Z[q,qil] . Then ﬁq’l(g)

is (isomorphic to) the representing Hopf algebra (’)(éB*) of a connected affine Poisson
group-scheme over Z whose cotangent Lie bialgebra is g, as described in Definition 2.3.4.

Similar statements hold true for the specialization at ¢ =1 of ﬁqz , ﬁqﬁ , ﬁ(f , etc.

Proof. First of all, when q is of integral type, so ¢;; = qlii (for all 4, j ), we have
Yij = ¢ij mod (¢ —1) = ¢% mod (¢g—1) = 1b =1 Vi,j€l

therefore Theorem 6.2.7 tell us that (70171(9) is a commutative Hopf algebra (of Lau-

rent polynomials); it follows then that Ug1(g) = O(G) for some affine group-scheme,
say G. Moreover, from Proposition 6.2.6 (with notation as in its proof) we know that

0Gg) = ﬁq,l(g) =0(G), )01 where the group-scheme G, , is connected — in other words,
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(’)(C:’D* A) has no non-trivial idempotents. Now, as ¢;; = g% for ¢ =1 the “specialized”
cocycle oy is trivial — namely, o1 = € ® e — which implies that O(G) = O(G,, ), =
1

(9(@; 4 ) hence G = G, as group-schemes. In addition, by Remark 6.2.1(a) the Hopf
algebra O(G) = ﬁqjl(g), being commutative, inherits from (NJq(g) a Poisson structure,
hence it is a Poisson Hopf algebra: thus G itself is in fact a Poisson group-scheme.

We point out that the Poisson structure on O(G) = fqu( g) is induced by the multipli-
cation in ﬁq(g) = (ﬁq(g))aq , which in turn depends on q. Thus G and é;A , although

coinciding as group-schemes, do not share, in general, the same Poisson structure.

What is still missing for having G = é,: is proving that the cotangent Lie bialgebra of
G is isomorphic to g, , defined as in Definition 2.3.4.

First we recall the definition of the cotangent Lie bialgebra of G. If m, := Ker (e@(g))

is the augmentation ideal of O(G), the quotient m, / m?2 has a canonical structure of

Lie coalgebra, such that its linear dual is the tangent Lie algebra of G. In addition, the
properties of the Poisson bracket in O(G) imply that m, is a Lie subalgebra (even a Lie
ideal, indeed) of the Lie algebra (O(G),{ , }), and m? is a Lie ideal in (m.,{ , }),

whence m, / m?2 has a quotient Lie algebra structure; together with the Lie coalgebra

2

o into a Lie bialgebra. As a matter of notation, we set

structure, the latter makes m, / m

T e me/me2 to denote the coset in me/me2 of any z € m, .

As a consequence of the PBW Theorem for ﬁq(g) — i.e. Theorem 5.3.3, or directly of
Theorem 6.2.7 — taking into account that the e, ’s, the f,’s, the (k;—1)’s and the (1;—1)’s,

2
e

with a € ®*, i € I, all lie in m,. , one has that a basis of me/m is given by the e, ’s, the

fa’s, the (k;—1)’s and the (I;—1)’s altogether. Our aim now is to prove the following

Claim: there exists a Lie bialgebra isomorphism ¢ : m, / m?2 — g, given by
G: g Cas farrty, (ki—1)—k; and (I —1)—1;, forall a € ®+ iel.

To begin with, given a,3 € ®*, we show that gb([@,@]) = [gb(@),qﬁ(@)] . First
observe that our root vectors e, in g come from the simple ones via a construction a la
Chevalley (see [Hu, Chapter II, §25.2]), so that [eq,eg] = cqg€qtp for suitable cop € Z.
Moreover, since (under our assumption that g be simple) there are only two possible root
lengths, we have dn4g € {da,dg};soif do = dg we write ds := d (= dg) and if dn # dg
we call ds the unique element of {dq,ds} \ {da+p}. Then recall that (for all v € &)

~ ~

ey = E, mod (¢ —1)Uq , ey := E, mod (¢—1)Uq
[@,@] = {ea,eg} mod m? | {ea,eg} = (q—l)_l[Fa,Eg] mod(q—l)ﬁq
Second, since (7(1 is commutative modulo (¢ —1), we have [Ea ,Eﬁ] = (¢g—1)& for

some & € ﬁq NUS = (7;‘ — so that {eq,eg} := & mod (¢ —1)Uqg . On the other hand,

from [eq,eg] = capeats (see above) and e, := E,mod (¢ —1)Uq together we get
[Eo,Eg| = capEatrp+ (¢—1)€ for some €€ Uq N Ug = ﬁ(gf . The latter implies
[Bo Ep] = (daa—1) (285 — 1) [Ea, Eg] =
= Ca8 (9aa —1) (485 = 1) Eayp + (1) (doa — 1) (g55 — 1) € =
= Cap (965 = 1) Eatp + (1) (daa — 1) (gs5 — 1) €
and comparing the last term with the previous identity [Ea ,Eg] = (¢ —1)& yields
£ = cap(2ds), Easp+ (doa —1)(qss —1) €

Then expanding & w.r.t. the R (—PBW basis of (7; (made of ordered products of ¢—
divided powers Ea(,nv)’s) and comparing with the expansion of (qaa — 1) (qg/g — 1) ¢ —
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which must necessarily belong to CNI;F — in terms of the R —PBW basis of (7; (made of
ordered monomials in the E,’s) we eventually find that

(q@a - 1) (qﬁﬁ - 1) ¢ = k2>:2 Zeq)fIWL-..,W E’Yl' : 'E’Yk + (q _1) &g
Z4 Y15k

for some ¢, . € Rq and some & € (~f+. Therefore

& = Cocﬁ(Qdé) at+p t k% Z@f@l,...,ykfw'fm + (¢-1)¢&
Y1y Vk

which in turn implies

E mod(q—l)ﬁq = (Caﬂ(2d5) a+s mod (g — )Uq)+

(2 2 4 BBy mod(g-1)Tg ) =

kZQ ’Ylv"-v’ykeq)—‘r

= cCap2dsearp + D Y Copp €41 ey
k22 51, p€dt

with ¢, . = (. mod(q—1)Rq) € Rq/(¢q—1)Rq = Rq.1 - This yields
VL oo Vi a a q a,

- <<(Q—1)—1[EQ,E5] mod(q—l)ﬁq> mod mf) =
= ((5 mod(q—l)ﬁq) mod mf) =

= << a8 2ds €arp + D o Coppn Eyp e%) mod me2> = Ca,p2ds €atp
k22 i, €T

that is in short [a,@} = 2ds cq8 €ayp - Now, from the last identity we compute
¢([€a.e5]) = &(2dsCapCatp) = 2dsCap é(Catp) = 2dsCaplars  (6.9)
by definition of ¢. On the other hand, we have also
[¢(2a) , #(€8)] = [6a85] = 2da2ds[ea,es] = 2da2dgcapears = 2dsCapéats
comparing this with (6.9) eventually gives qb([a,@]) = [(b(a) ,qb(@)] , g.e.d.
Acting in the same way, one finds also
(k1,7 = ({ki—1.ca} modm?) =
= (((a=17((K: =1)Fa — Ea(K; ~1)) mod(q —1)Ug(g)) mod m2) =
(( EK mod (g — 1)U(g)) modme2> =
= (dfieaki modm?) = df e

where d:a 1=+ jerbije; with a= 3", cjay, so in the end

jel
[ki—1,ea] = df e Viel, aed" (6.10)
Similarly, one finds also
[li—1,ea] = d;,ea Viel, acdt (6.11)
with d; , == =3 bjic; for a =3, cja;. Likewise, parallel formulas to (6.10) and

(6.11) hold true when the €,’s are replaced by the f,’s.
Finally, comparing the Lie brackets (inside m, / m?2) given explicitly in (6.10) and

(6.11), and the similar ones where the f?’s are replaced by the e5’s, with the analogue
brackets inside g, of the corresponding elements through the map ¢ as given in the Claim,
one easily sees that the latter map is indeed a Lie algebra morphism. In addition, it is
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invertible because it maps a basis to a basis. Moreover, this is also an isomorphism of Lie
bialgebras because the formulas for the Lie cobracket do correspond on either side on all
elements of the form &;, fi, k; —1 and [; —1 (with 4 € I'), which is enough to conclude
— cf. Remarks 2.3.5. In fact, this is again a matter of bookkeeping: for instance, writing

2
m([@} =m.@m?2+m2®m,, one has

5(e) = ((Ales) = A%(e) mod mf ) =
- ( <(A(EZ) h AOP(EZ')) mod (g —1) ﬁq(g)@) mod m@) =

= ((((Ki—1)®Ei—Ei®(Ki—1)) mod (q—l)ﬁq(g)@)?) modmg]) _

= ( ((ki—1)®e; —e; @ (ki —1)) mod mg]) =
= (ki-1)®e — o (k1)
which means 6(e;) = (k; —1) ®€ — & ® (k; —1) . Through the formulas given in the
Claim, this last identity corresponds to 0(€;) = k; ® & — & ® k; given in Definition
2.3.4(b) for g, . Likewise it holds for the other cases. O

7. SPECIALIZATION OF MPQG’S AT ROOTS OF UNITY

In this section we study MpQG’s for which all parameters g;; are roots of unity. Once
again, this amounts to requiring ¢ itself to be a root of unity, or just 1. As we already
considered the case ¢ = 1, we assume this root to be different from 1 itself.

7.1. Specialization at roots of unity.

Let again Rq and R be fixed as in §6.1; fix also a positive, odd integer ¢ which is
coprime with all the d;’s (i € I) given in §6.1, and let py(x) be the ¢~th cyclotomic
poynomial in Z[z]. We consider the special element ¢ € R4 and the quotient ring

Rq,e:= Rq/pg(q)Rq , and we call € the image of ¢ in Rqc .
By construction, the ring R o, is generated by invertible elements 551 each of whom

is the image in R g, of the corresponding generator qij;l of R g; since 52-‘; =1 forall ¢, all

these generators only obey the relations (z-:ijjEl € ﬁl)z = 1. We denote by £, the element
in Rq,e defined like in §3.2 but for using the ¢;;’s instead of the qij;l’s, so that 81:1‘:% is
nothing but the image in R . of qi}/ € Rq. Finally, Rq. . is an R qalgebra by scalar

restriction via the canonical epimorphism Rq — Rq,- -
Replacing R q with RE everywhere, we set RY . := RY / pe(q) R, for which we use

again such notation as e, &;;, etc., noting in addition that now g;; = ebi . Then the
natural epimorphisms R q — R yields a similar one Rq,- — RY - -
Furthermore, it is worth stressing that the isomorphism R = Z[q,qil] induces in

~

turn RE . = Z[q, q_l] /pg(q) Z[q, q_l] =: Zle], the latter being the ring extension of Z

by any (formal) primitive ¢~th root of unity ¢ .

Similarly, we define R‘ég = R‘qf/pg(q 1/2) R‘qf and denote by £'/2, 5-1/2, etc., the

1
/2

1/2 , etc., in RY, _ ; and likewise for ’R%’[ = R%f/pg (q 1/2) R%f , for

1
9 qzj q,e
which we have in addition R%f = Z[e 1/ 2] where £1/2 is again a primitive £-th root of

image of ¢

unity. The projection quf — Rﬁ’f induces an epimorphism R{s —»Rf;”[, while

the embeddings Rq——RY and Rq.——RY . induce embeddings RY——REY

and RY . <—>R%’[ respectively. In addition, for the last map the following holds:
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Lemma 7.1.1. The morphism RB RB %, given by etl (gﬂtl/Q)2
£1/2 L o (041)/2

, 1§ an 1so-
morphism, whose inverse R ‘f;» R, is given by €

~

We introduce now the “specialization at ¢ = ¢” of the integral forms ﬁq( g), Uq(g) and
Uq(g) — over the ring R or Rq — of our MpQG’s Uq(g) -

Definition 7.1.2.
(a) Let q be a multiparameter matrix of Cartan type: given ﬁq( g) over the ground

ring R o, we call specialization of ﬁq(g) at g = € the quotient

Ua.=(8) = Ua(g) /pe(0) Ua(®) = Rq.c®p Uale)
endowed with its natural (quotient) structure of Hopf algebra over R q . .
(b) Let q in addition be of integral type — hence Rg = Z[q, q_l] . Then:

— (b.1) given ﬁq(g) over the ground ring R, we call specialization of ﬁq(g) at
q = £ the quotient

Uac(9) = Ua(e) /pe(@) Ua(9) = RY . @5 Uale)
endowed with its natural (quotient) structure of Hopf algebra over RY . ;

— (b.2) we call specialization of Uq( ) at g = ¢ the quotient

Ua.e(s) == Ualo) /m(@) Uale) = R . @y Uale)

endowed with its natural (quotient) structure of Hopf algebra over Rq o

— (b.3) if q is of strongly integral type, we call specialization of Uq( ) at ¢ = ¢ the
quotient

Uae(9) = Ua(9) /pe(@) Uale) = RY . @ Uale)
endowed with its natural (quotient) structure of Hopf algebra over RY . .

Note that, using the isomorphism R = RE _ of Lemma 7.1.1, all the above men-

q,€e
tioned specializations of MpQG’s at q = 5 can be also considered as Hopf algebras over
the ring R%: q. ¥/, by scalar extension: hereafter we shall freely do that. &

The above definitions and our results in §5 yield the following;:

Therrem 7.1.3. The PBW bases (over Rq or RY ) of (qu,e(g) , resp. of ﬁqﬁ(g) , Tesp.
of Uq,(g) — cf. Theorems 5.2.16 and 5.3.3 — yield, through the specialization process,

similar PBW-bases (over Rq,e or RY ) of ﬁq,s(g), resp. of ﬁqyg(g), resp. of ﬁqﬁ(g) .

Basing on the remark at the end of Definition 7.1.2, consider now both (,qu75( g) and
Ug,c(9) as algebras over R%:Q. Let 0. be the unique 2-cocycle of Uy, -(g) ~naturally
induced by the 2-cocycle o of Ug(g) as given in Definition 3.2.1: that is, o : Ug,-(9) ®
Ug,e(9) — Rq,e is the unique R 4 .—linear map given by

oe(z,y) == Eul,é? if =K, or x=L,, and y=K, or y=1,

and o.(x,y) := 0 otherwise. The results in §5 then lead us to the following
Theorem 7.1.4. Let q be a multiparameter matriz of Cartan type. Then

(a) The Hopf Rq,. —algebra ﬁqja(g) is a 2—cocycle deformation of ﬁqyg(g), namely
Uq,(9) = (Uq,=(9)),, -
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(b) Assume that q is of integral type; then the Hopf R .—algebra ﬁq,g(g) is a 2—
cocycle deformation of ﬁqys(g), namely ﬁqyg(g) = (ﬁqﬁ(g))

o

Proof. Directly from definitions along with Proposition 5.3.2, we get claim (a) from
Uq,a(g) =Raq,e ®Rqu(9) =Raq,c ®Rq( UQ(g))U = (Rq,a ®RqU51(g)>JE = (Ufl7€(g))g

and likewise we prove claim () as well. O

€

7.2. Quantum Frobenius morphisms for MpQG’s.

When dealing with uniparameter quantum groups, the so-called “quantum Frobenius
morphisms” set a strong link between specializations of these quantum groups (either
restricted or unrestricted) at 1 and specializations at roots of unity.

When one chooses the restricted and the unrestricted integral forms, these quantum
Frobenius morphisms (for uniparameter quantum groups) look as

ﬁg . Us(g) Zle] ®Z(71 (9) (restricted case)
and - N N
Fry: Zlel®,Ui(g) — U:(g) (unrestricted case)

where Z[e| = Z[q,07] /(@) Z[a.a7"] . Tilg) = Ug(e) / (pela) Uy(@)) and similarly

also Us(g) := Uq(g)/(pg(q) ﬁq(g)) , for s € {1,2}. Roughly speaking, Fry is given by
taking “l-th roots” of algebra generators of [75 (g) , namely quantum divided powers and
quantum binomial coefficients, while (dually, in a sense) F'r, is given by raising to the “/-th
power” the algebra generators of U(g), i.e. quantum root vectors and toral generators.

In the present subsection we shall show that similar quantum Frobenius morphisms do
exist for MpQG’s as well, with a similar description.

7.2.1. Quantum Frobenius morphisms in the restricted case. We start by con-
sidering quantum Frobenius morphisms in the restricted case, i.e. for the specializations

at roots of unity of ﬁq( g) and ﬁq( g). Like in the uniparameter case, they will map any
specialization at a root of unity € onto a specialization at 1.

The following provides our quantum Frobenius morphisms for restricted MpQG’s:

Theorem 7.2.2. Let q := (qﬁ)ijel be a multiparameter matriz of integral type. Then

there exists a Hopf algebra epimorphism (over RY .= Z[e])

~

Fry: Uge(e) — R @rp Uaale) = 2l ©, Uz(g,) (7.1)
(cf. Theorem 6.2.4(a)) given on generators by
(n/0) . (n/e)
oL NN v g‘n : JHARR b iy E’n (7.2)
i 0 if e)(n i 0 i e)(n
ki+0> . <L'+C> .
. if £n . if £|n
(Kl,c> . < i) ¥ | | <L2,0> RISYIE | -
noJe 0 if z)(n noJe 0 if e)(n
hz+C> .
. if £|n
(szc . ( n/t ‘ , K1, L w1 (7.4)

" Ve 0 if E/fn
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Moreover, the image Im (ﬁ“g) is co-central in RY . @pp 1[7(1’1(9) , that is
qa,

(A — A%)(u) € Ker(ﬁy) ® Ker(ﬁ"g) for all e ﬁq,g(g) (7.5)

In addition, when q is of strongly integral type, there exists yet another Hopf algebra
epimorphism (over RY . = Zle] )

~

Fro : Ugelg) —— RO Uaale) = Zle @, Ua(d,) (7.6)

(cf. Theorem 6.2.4(b)) for which similar properties and a similar description hold true

with each < J ’C) , Tesp. < J ’c> , replaced by ( J ’C) , resp. < J ’C> )
o) ko). L) ko)

J

Proof. We present the proof for ﬁ“g and U q,2(8) , the rest being similar.
By Theorem 5.2.13(a), we have a presentation of ﬁq,g = ﬁq,a(g) by generators and
relations. Then this also yields a similar presentation for RY . ®’Rﬁ ’1[7 q,1(9), which is

isomorphic to Z[e] ®, Uz(d,) as a Hopf algebra, by Theorem 6.2.4(a). Now, a moment’s
check shows that under the prescriptions given in the claim each relation in the presenta-

tion of (/}qﬁ is mapped by }/77"@ onto either a similar relation in U q,1 or zero, hence they
do provide a well-defined algebra morphism as required.
To show what happens in a specific example, let us consider the relations

(22

mAn
Gi;2s—m—n
S

Ei(m) Fi(n) _ Z Fi(n_S) 4 ) Lf Ei(m_s) V m,neN
s=0 qii

for every index i, holding true in U q (cf. Theorem 5.2.13). By specialization, these yield

in Ugq, ¢ the relations

mAn
E™ g _ Z F(n=s) s (Gz; 2s—m— n> L M) (m,n €N) (7.7)
Eig

i i
S
s=0

and likewise in ﬁq’l = Uz(g,) the relations (cf. Definition 6.2.2 and Theorem 6.2.4)

mAn
_ h; 2s—m — _
ei(m) fi(n) _ Z fi(n s) < i +(2s—m n)) efm s) (m7n c N) (7.8)

(]
S
s=0

where one uses a bit of arithmetic of p-binomial coefficients (namely, the sixth line identity
in the list of Lemma 5.2.2) and of (classical) binomial coefficients to realize that specializing

(G“%S_m_")m at ¢ =1 eventually yields (hi +2 Ss_m_")> .
Now, a moment’s thought shows that if in left-hand side of (7.7) either m or n is not

divisible by ¢, then for each summand in right-hand side all of (n—s), s and (m—s) are

not divisible either; hence our prescriptions for }/77"5 actually do map both sides of (7.7)
to zero. If instead both m and n are divisible by ¢, then there are also summands in
right-hand side for which all of (n—s), s and (m—s) are divisible as well; more explicitly, if
m = h{ and n = k/{, say, then the “relevant” summands on right-hand side are exactly
those with index s = r /¢ for all r € {0 ,1,...,h A k} . In this case, our prescriptions for

ﬁ"@ map the left-hand side of (7.7) to ei(m/ E)fi("/ b= ei(h) fi(k) and the right-hand side to

i%k ¢ (k=T 0)/0) (hH—(QrZ—hZ—kZ)/Z) o((he=r0)/0) _ ’%’f (k=) (hi+(2r—h—k)> o (A=)
= 7 re/e i = ) r )

where the right-hand side is equal to ei(h)fi(k) , by (7.8) for m:=h and n:=k.
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Therefore the given formulas do provide a well-defined morphism of algebras ﬁﬂg as

I

required. By construction Fr 7 is clearly onto, as the generators of RY . RB U a.1(9)
Zlel ®, Uz(d,) are the images via F r, of the corresponding generators of U

Finally, we must prove that Frg is also a Hopf algebra morphism and that its image is co-
central. This follows from the uniparameter case, as the coalgebra structure of the integral
form of these MpQG’s (cf. Theorem 5.2.13(a) and [DL, Proposition 6.4]) is the same as
in the canonical case (the cocycle deformation process does not change the coalgebra
structure), and our quantum Frobenius morphism is described by the same formulas. O

7.2.3. The unrestricted case: quantum Frobenius morphisms for ﬁq(g) . In the

unrestricted case, i.e. that of ﬁq( g), quantum Frobenius morphisms, in comparison with
the restricted case, “go the other way round”. Indeed, like in the uniparameter case, we
shall find them mapping the specialization at 1 (of the given unrestricted integral form of
a MpQG) into any specialization at a root of unity ¢.

The very construction of such quantum Frobenius morphisms requires some prepara-
tion. Mimicking what was found in [DP] for the canonical case, the first ingredient is the
subalgebra of [7%5( g) generated by the /~th powers of its generators.

Definition 7.2.4. We define Zj to be the R o .—subalgebra
—¢ _
Zy = <fa, liﬂ, kiﬂ, el

[0

>a€Q,i€]
of ﬁq,a(g) generated by the /~th powers of the generators of ﬁq@(g) . &

B.: the original definition of Zj given in [DP, Chapter 5, §19.1] reads different, but
it is also proved — still in [loc. cit.] — to be equivalent to the one given above.

The main properties of Zj were investigated in [And, §4], with a slightly more general
approach. The main outcome reads as follows:

Proposition 7.2.5. (cf. [An4, §4])

(a) Zy is e—central in (70175(9) , i.e., for each monomial b in a PBW basis of ﬁq,g(g) as

l-ié, k/,'if EE}

o JacQ icl of Zy there exists

in Theorem 7.1.8 and each generator z € {f,f,

a (Laurent) monomial m,p(e*%) in the Sf;é 's such that
zb = mz7b(sﬂ)bz

In particular, when q is of integral type Zy is central, hence normal, in ﬁq75(g) .
(b) Zy is a Hopf subalgebra of ﬁqys(g), which is isomorphic as an algebra over R g,
to a partially Laurent e—polynomial algebra, namely

Zo = R {1 el by

acdt

where the indeterminates e—commute (notation as in §6.2) among them i.e.

Lhth = elun thth . elth = fhel . eliels = elineliel
kel = 60:::6& el el — FL Lt
L = TR B = A
kiﬂ R — kiﬂ kiﬂl.ﬂ _ kiﬂ kiﬂ Rl — kiﬂ
In particular, if q is of integral type — hence Rq, = Z[e]] — then ﬁq,s(g) s a com-

mutative Hopf algebra of partially Laurent polynomials.

(c) ﬁq,g(g) is a free (left or right) Zo—module of rank gdim(e)
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Proof. Almost everything is proved in [An4, §4], so we just stress a single detail concerning
claim (¢). Indeed, in [An4, Proposition 4.1] yields claim (b) as well as (¢), but for the latter
the involved coefficients read differently, for instance one has f of, f Oﬁ, = o v [, Cﬁ, f Cf .

But the symbol €, 5 is bimultiplicative in a and 8 — i.e., it is a bicharacter on @ x @
2
— hence &,/ por = sé,,a, , and we are done. g

We shall now compare the subalgebra Zy, a sub-object inside (7017 (@), which is the
specialisation of (NJq(g) at ¢ = e, with the specialization at ¢ = 1, that is (~fq,1(9).
This leads to find a special morphism, which we call quantum Frobenius morphism for
ﬁq( g), which links (70171( g) with ﬁq7€( g) — once again generalising what occurs in the
uniparameter case. In order to formalise this, we need to make ﬁq,l(g) into a Hopf algebra
over R q.c , so that we can compare it with Uq . (g) .

Let us consider the unique ring embedding
~ +1 02 (o (21220
Raqn ? R\és ( = R(LE) ) Yij © &5 (Z (Ez‘j / ) ) (7.9)
where in right-hand side we take into account the isomorphism R‘({E = Rq,e given by
Lemma 7.1.1; we use this embedding to perform scalar extension from R g 1 to Rq,. for
Uq,1(9) , so to make Rq . ®, Uq,(g) into a (Hopf) algebra over R, .

q,l
Besides, recall — from Proposition 4.1.1 — that for any o € ®T there exists suitable

(Laurent) monomials m_} (qi1/2) and m, (qﬂ/2) in the qf;-l/Q’s such that

E, = m;t (qil/Q) Ea ) Fo =my (qi1/2) Fa

(e}

where E, , resp. F,, , is the quantum root vector associated with o € ®T | resp. —a € &,
in Ug(g) and E, , resp. Fy, is the similar vector in Ug(g) = (Uq(9)), -

_As a direct consequence, we have similar relations among quantum root vectors in
Uq1(9) = (Rq,l Bz(g,q1] Uq,l(El))J and Uq,c(g) = (Rq,a Bz, e=1] Uq,s(g))a7 namely

o = mE(y e, Fa=mi(N) T, i Uau(e)  (710)

and

€a = m(—)t ( €i1/2) éa ) ?a = ’I’I’L; (€i1/2) fa in ﬁq,s(ﬂ) (711)

Our main result in this subsection is the existence of quantum Frobenius morphisms for
unrestricted MpQG’s, that are the monomorphisms mentioned below:

Theorem 7.2.6. There exists a Hopf algebra monomorphism

ﬁ“g : Rq,a ®R ﬁq,l(g) — ﬁq,e(g)

q,l
uniquely determined (still identifying R‘({E X Rq,e) forall ae®t,iel, by

2 2
= N 4 +1 +¢ +1 +0 - +1/2\¢ 4 _y
fa'_>ma(€ 1/) Jar i =07 ki =k eaHmI(e 1/) €a (%)

whose image is the e—central Hopf subalgebra Zy of l?qyg(g) ; as a consequence, the Hopf
algebra Zy itself is isomorphic to Rq,e ®p, quﬂl(g) .
qa,

In particular, when q is integral the morphism Fr, is described by the simpler formulas
(for all a € ®*, i€ 1)

- -4 +1 +0 +1 +¢ - ¢
far fo 7 =1 , k=" — K, , €a > €,

Proof. To begin with, the morphism in (7.9) maps every yilﬁm € R\<£1 = Rg,1 into

2
the corresponding sié/ ’ e R‘és >~ Rq.e. Moreover, for q = g the analysis in [DP]

yields a (“quantum Frobenius”) morphism 1/77“2/ . Ugqi(g) ——— Uq.c(g) of Hopf
algebras which is determined by the formulas given for the integral case in the above
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_ ~ —~V = ~
statement when f, = f,, etc., that is Fr, ( fa) = f, ‘ and so on; in particular, this
Fr rg preserves the coproduct Now extending scalars, we obtain yet another Hopf algebra
monomorphism  Fry : Ra,e g4 Uga(g) — Rq,e Qg o1 }Uq,g(g) that fits
into the commutative diagram
_ Fry _
Uq.1(g) € Uq,=(9)

@) )

Ra1 ©gjq,q-1) Ua,1(9)

m

Ra,e ORqn (Rq,l Ozlq,q71] ﬁq,l(g)) CT) Ra.e @ e ﬁq,s(G)
¢

Let us check that Fr, satisfies the equalities in (x). First, as by (7.10) we have e, =
mZ (y*/?) €, we find that

— — 2 —
Fri(es) = Fro(m}(y*V/?)2,) = mi(e¥/2)" Fr,(z,) =
2 —
= mg(sﬂﬂ)‘f Fr, (éa

)
( i1/2)f ( :|:1/2)_£E£

«

_ m+(€i1/z)fzé
- «

oy ayn ity
=mJ (e ) s

— thanks to (7.11) — i.e. Frg(ea) = m( ﬂ/g)f 2y ot

[7%1(9); similarly one finds Frg (fo) =mg (ejﬂ/2)Z y fa when dealing with the f,’s,

and Fr(IF) = 12, Fry(kfY) = k2 forall iel.
Now recall that we have identifications of coalgebras

Uan(9) = (Raa @y Uan(9) o Uaele) = (Rae @gpc o Uae(@)

for every root vector e, in

hence the monomorphism ﬁ;’e defines also a monomorphism of coalgebras — over R q ¢
— from Rgq.e®p_, Ug1(g) to Uq,:(g). To prove that Fr, is also a Hopf algebra

morphism, it is enough to prove that }/77"[(3: ‘o Y) = ﬁ'g(l’) ‘oo Z/J'V?“Z(y) for all z, y in
Ra,e Oz, 4-1] Ug,1(g). This in turn follows from the fact that

aa<ﬁvr’g(x) ,ﬁz(y)) = o1(z,y) for all 2,y € Rq,e g 41 ﬁq,l(g) (7.12)

which can be checked by direct computation with x and y being generators of ﬁq,l( g) and
using the ring embedding (7.9); for example, one has

ag(ﬁz(ki),ﬁg(kj)) - Jg<k€ k‘) = e =yl = oi(kiky) forall ijel.

iy ij
In fact, from (7.12) we get
Fry(a o, y) = Fro(or(za),vm) 72 v 01 (1), 9))) =
= o1z yw) Fro(ew) Frolye) o (@@ ve) =
= 0O¢ (ﬁe(iﬁ)u) >ﬁ’z(y)(1)) ﬁé(-’”)(z) ﬁe(@/)(g) %_1 (ﬁ’z(l‘)(s) vﬁe(y)(s)) -
= Fry(z) 0. Fry(y)
thus the proof is completed. O
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7.3. Small multiparameter quantum groups.

In the study of uniparameter quantum groups, a relevant role is played by the so called
“small quantum groups”. These are usually introduced as Hopf subalgebras of the re-
stricted quantum groups at roots of unity; nonetheless, they can also be realized as Hopf
algebra quotients of the unrestricted quantum groups at roots of unity. In this subsection
we extend their construction to the multiparameter context.

7.3.1. Small MpQG’s: the “restricted realization”. Let q be a multiparameter
of integral type, hence possibly of strongly integral type. Correspondingly, we consider

the restricted MpQG’s (7%5 and ﬁq,s at a root of unity ¢, like in §7.1. Inside them, we
consider the following subalgebras, defined by generating sets:

~ A~ n Lz Kz n O§n§€
Uqg,e = uq,s(g) = <Fi( )7Liila < > ’Kiil’ ( ) ,EZ’( )> (7'13)
e €

n n icl

e = ﬁqys(g) , when q is integral, and

q
R R L: K 0<ns/
g = fg.(p) = <Ff”>, L, (n) K (n) ,Ef”>> (7.14)
£ £ el

as a R q . —subalgebra of

as a R q,.—subalgebra of [70175 = ﬁq,e( g), when q is strongly integral. Similarly, one
+ A+0 20 2 : :

defines g ., Ugle, Uqg o

A< ~> . . A~ e . ~ ~+.0 . .
Ug . and ug . inside g ., and similarly Ug e, Uq'e, etc., inside

Uqg e, just mimicking Definition 5.2.12 but working inside ﬁq or ﬁq, respectively, and
imposing the restriction “n < €7 everywhere. All these objects will be called “restricted
small multiparameter quantum (sub)groups”.

Note that for q = g the canonical multiparameter, the small quantum group g . is a
quantum double version of the one-parameter small quantum group by Lusztig.

Our first result is a structural one:

Theorem 7.3.2. For any q of integral type, fiq@ is a Hopf R .—subalgebra of f]\q75 =
ﬁq75(g) . In addition, if q of strongly integral type, then g . is a Hopf R .—subalgebra

of ﬁq,E = ﬁq,E(g) . Moreover, ﬁqﬁ admits a presentation by generators and relations that
is the same as in Theorem 5.2.13 (with q specialized to €) but for the bound on generators
— d.e., they must have 0 < n < ¢ as in (7.13) — and for the additional relations

n M M;c—
X! )X.(m):(], < C>< ¢ n)zO Vamsl:n+m>0 (7.15)
€ €

K3 K3 n m

for all X € {F\E}, M € {K,L}, c € Z. Similar statements hold true for all the

ia, ﬁqijg, ﬁgvs, ﬁ(ia and ﬁ;a, and — in the
. ~ ~4+ ~£0 =~ ~ < ~>

strongly integral case — Uq e, Uq,e, Uqle, Uq,e, Ug,e and Ug,e -

other restricted small MpQG'’s, namely u

Proof. The claim follows from the very definitions together with Theorem 5.2.13 — noting
in particular that all relations between generators given there do “fit properly” with the
bound n < ¢ on generators of the small MpQG. In particular, the additional relations in
(7.15) are direct consequence of the relations

Xi(n)Xi(m): (n+m> Xi(n+m) ’ (M;c) (M;c—n) _ <n—|—m) (M;c)
n qii n q m q n q n+m q

(for all X € {F,E}, M € {K,L} and ¢ € Z) holding true in our restricted MpQG’s
for every n,m € N, that for n,m < ¢ such that n +m > ¢ yield (7.15) because then

<n+m> =0 and <n—|—m> =0 for g=-¢.
n Qii n q
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Similarly, the result about the Hopf structure follows from the explicit formulas for the

coalgebra structure of ﬁq(g) or ﬁq(g) coming from Lemma 5.2.11. O
Our second result yields triangular decompositions for restricted small MpQG’s:

Proposition 7.3.3. (triangular decompositions for restricted small MpQG'’s)

The multiplication in ﬁq@ provides Rasfmodule isomorphisms

A0 ~ /‘\S ~ A0 A /'\Jr ~0 ~ /‘\2 ~ ~0 PN
uq)s ® uq7€ - u 76 - uq7€ ® uqﬂs ) uqia ® uq7€ - uq’e - uq)s ® uqis
qa,e Raq,e qa,e Raq,e
S+,0 S=0 ~ 50~ 50 S+,0 =< 5>~ S ~ 5> =<
uq,E ® uq7€ - uq,f - uq,E ® uq,E ) uq7€ uq7€ = Uq.e uq,f uq,e
q,e Raq,e Raq,e Raq,e
A4 0 Ao o A ~ N A0 A4
u u ® u = u = u ® u ® u
s€ ,E ,E q,¢ ,E ,E ,E
4 Raq,e 4 Raq,e 4 Raq,e 4 Raq,e 4

and similarly with “qp replaced by “u” if q is strongly integral.

Proof. This is proved like for restricted MpQG’s: one observes that the presentation of
(restricted) small MpQG’s given in Theorem 7.3.2 above presents the same special features
that were exploited for the proof of Proposition 5.2.15, so the same arguments apply again.
A quicker argument is the following: the isomorphisms of Proposition 5.2.15 restricts to
maps for small quantum groups which are linear isomorphisms by Theorem 7.3.2. O

The third result is a PBW-like theorem for these restricted small MpQG’s:

Theorem 7.3.4. (PBW theorem for restricted small MpQG’s)

Every restricted small MpQG is a free R .~module with R .~basis the subset of a
PBW basis — as given in Theorem 5.2.16 — of the corresponding specialized restricted
MpQG made by those PBW-like monomials in which the degree of each factor is less than
(. For instance, Uq,. has Ry .~basis

1 L 7. Gz la N e
{ I Fﬁ(}{k) I1 (ZJ) L L2 ( > G, loi/2] HEéhh) ‘ 0 < fr,lj, 9 en <€}
k=N q Gii

jer J iel \ Yi h—1

+ A+ 0 A0 AL A>

a.cr Uqler Uqes Ug e and ug .,
. —~ ~ ~+,0 -~ o~ ~>
integral case — for ugq ., uiis s Ugle s uoq,‘E ,Uuge and ug ..

and similarly holds for m as well as — in the strongly

+
q,e?

“truncated” (ordered) PBW monomials B := {HthlEﬁ(,Zh)

Proof. First we discuss the case of 1 whose “candidate” R¢ .~basis is the set of

Oﬁel,...,eN<€}.

In the canonical case q = q the required property (i.e., Ba“ is an R ~basis of ﬁ;E)
is proved by Lusztig (cf. [Lu] and references therein). For general q, we deduce the claim

from the canonical case, arguing like in the proof of Theorem 5.2.16 (a).

+

q,c» coming (through

Let us consider a quantum root vector Eg for 8 € O in u

specialization) from the same name quantum root vector in U ;r . We want to prove that

Eén) € ﬁ;e for all 0 < n < £: indeed, once we have Eén) € ﬁ;e for all B € ®T and
0 <n < { we argue that all of S := Spaan’e(Ba') is included in ﬁj{’g.
Let us resume notation as in §4.4.2. As we said, the claim being true in the canonical

case implies F é(n) € ﬁ;e , so that Eﬂ () can be written as a non-commutative polynomial

— with coefficients in R . — in the EZ.T (Vs with i € I and ¢ < 0, say
“(n) _ (o)
B, = P({E; }iel,c<£) (7.16)
Now, the formulas in §4.4.2 tell us that Eg(n) = (El/z)zﬁ E/;,(n) and

E-*(Sl) % E-*(S2) o E*(sk) _ (61/2)ZL§ EV(Sl) 7E7(52) v VEV (sk) (717)
1k 1 12 1k

i1 i i
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for some 25,z € Z — with § € @7, k € N, i := (il,ig,...,ik) € I* and s :=
(31,32, .. .,sk) € NF — where £1/2 arises as specialization of ¢'/2 but identifies with
elt+/2 ¢ R - These identities together with (7.16) lead us in turn to write

Eﬂ*(n) = P ({Ei*(C) }iel,c<€ )

)y

where P, is again a non-commutative polynomial in the Ei*( s with coefficients in R¢ .,

so that Eﬁ*(n) € ﬁ;E, q.e.d.

We have seen above that Sq := Spaan E(B;r ) C ut now we prove the converse.

Qe

First of all, by construction ﬁg . is spanned over R g . by monomials in the EZ-(n)’s of
the form E;(é) = E;;(Sl) * E;;(SQ) - Eiz(s’“) that can also be re-written as E;(é) =
(61/2)Zi’§ E;l(sl) TEi;(SQ) Y. VE:(S’“) = ( 1/2)%@ E3 ) _ with notation as above; we aim

*(s)

to prove that each such E; belongs to Sq , as this will then entail at once that u u . € Sq

(8)

The claim is true in the canonical case, so E; ' € uq, . = S4 hence E; () expands as

E; (&) _ ZE:(QeBJr Ke E;(Q) for suitable k. € Rg,e = R .. Using (7.17) again we get
a a

Ex) _ ZE;(E)eBJr( 1/2) ke By ) for suitable Zc € L, so that Ej 8 ¢ Sq, qe.d.

2

Just like for uy _, the same arguments prove the claim is true for u Uz . as well.

q,e”’ q,c

Astoug?, 1% and u¥ _, the claim follows at once from the analogous PBW theorem

a,e7 ta,e q,e7
together with the relations < ' C> < H ¢ n> =0 for all n,m < ¢ such
n € m €

that n+m > ¢ when M € {K, ,L~}. (cf. Theorem 7.3.2).

for qu,

Finally, the claim for uq ., foru u a . and for ﬁq7 ¢ follows from the previous results

together with triangular decompositions (cf. Proposition 7.3.3).

The cases where “u” is replaced by “u” are treated similarly. O

@ Note: from now on, for the rest of the present discussion of restricted small MpQG’s,
we extend our ground ring from R .= Zle| to Q., the latter being the /~th cyclotomic
field over Q — i.e., the field extension of Q generated by a primitive /~th root of unity €.
Thus, all our MpQG’s at a root of unity will be considered — via scalar extension from
R‘;a to Q. — as Hopf algebras defined over Q. .

A first, elementary result follows easily from definitions:

Proposition 7.3.5. Assume that q is of strongly integral type. Then we have

~

(a) Uq7€ - Uq7€ ’ Uélt,ﬁ - Uq:ts ’ Cl e = Uq>5 ’ UqS,E = Uqg,e ’ U(g],s = (?,s and
(73572 = ﬁqig-o via natural identifications;

(b) uq =1Uq,., and both algebras are generated by {Ei,Lil Kt F‘}iel ;

c —ug ., and both algebras are generated respectively by {E; or the
Ugq,

“+7 case — and by {F }iel — for the “—7 case;

(d) uq . = u?;(; , and both algebras are generated respectively by {Kiﬂ}ie[ — for
the “+” case — and by {L-ﬂ} — for the “=7” case;

(e) uq . =uY.., resp. ﬁq uq e, Tesp. uq = ﬁ%g , and both algebras are
generated by {Kzﬂ,L;tl}ieI , resp. by {Lil F} jer o+ TSP by {Ei,Kiil}iE[.
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Proof. As to claim (a), by construction it is enough to show that U d:= (7(35 or more

precisely U i D = ﬁquéo . In turn, the latter identity follows from definitions together with
the following formal identity among quantum binomial coefficients

(), = . (),

which proves that the e—binomial coefficients and the e;,—binomial coefficients generate
n
over Q. the same algebra, since [] (di)as is invertible in the field Q. .
s=1
As to the remaining claims, everything follows again from a simple remark. Namely,
definitions give

' Xie"™"—1) = -1 (7
n >gi ’ rl;ll( ) ) I =1 < n )5
forall X € {K,L}, i€l and 0 <n < /-1, and similarly Z" = [n]_! Z,L-(n) for all
Ze{F,E}, i€l and 0 <n </{¢—1. Now, the condition n < ¢—1 implies that all the

n
coefficients [] (ef—1), [] (¢"—1) and [n] .| that occur above are non-zero elements
1

r—= r=
in Q. , whence we deduce at once our claim. O

Remark 7.3.6. From the PBW Theorem 7.3.4 and Proposition 7.3.5 it follows that

liqc =Tq. is a finite-dimensional Q.-Hopf algebra of dimension £ ™))

Next result yields a strict link (a multiparameter version of a well-known result) between
small MpQG’s and quantum Frobenius morphisms for restricted MpQG’s; indeed, one
could take it as an alternative way to introduce small MpQG’s.

Theorem 7.3.7. Let q := (qij)i,jel be of integral type, let Uq7€(g)ﬂ>UQa(gB) be
the scalar extension of the quantum Frobenius morphism of Theorem 7.2.2 and finally let
ﬁq75 %ﬁq,g the natural embedding of ﬁq78 imnto ﬁqjg. Then

B A Fr .
1 ” qu7g — qua(g) i> UQe(gB) — 1

is an exact sequence of Hopf Q.—algebras which is cleft.
A similar statement holds true for Uq . and the scalar extension of the quantum Frobe-

~ Fr . . .
nius morphism Uqg <(g) SN Uqg. (gB) when q is strongly integral.

Proof. By Theorem 7.3.4, U q,:(9) is free over ﬁq7€ . So, to show that the sequence is exact
it is enough to prove that Ker (ﬁ“e) =U q,e( g)ﬁ:lL e - This follows along the same lines
as for the canonical case (proved in [A, Lemma 3.4.2]), so we skip it.

To prove that the extension is cleft, we use the well-known fact that an extension of
algebras is cleft if and only if it is Galois and has a normal basis (see, e.g., [DT]). Since

the extension is a Hopf algebra extension, it follows that it is Galois, see [Sch2, Remark
1.6]. The normal basis property follows from [Schl, 4.3] since U q,2(9) is pointed. Indeed,
by the PBW Theorem 7.1.3 one may define an algebra filtration U,, of ﬁq,g( g) such that
Uy is the subalgebra generated by Kiil, LZ:-tl (i € I), and Ei(n), Fi(n), (Mn’ ) e U,
(i € I, n € N). By Theorem 5.2.13 and Lemma 5.2.2, this is a coalgebra ﬁltraiion, SO
the coradical of (7 q.:(9) is contained in Uy . As the latter is the linear span of group-like

elements, it follows that U q.c(9) is pointed. O
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Remarks 7.3.8.

(a) The proof that the Hopf algebra extension above is cleft also follows by the proof of
the canonical case given in [A, Lemma 3.4.3]. On the other hand, let us point out that the

normal basis property means that /U\'q,s(g) is isomorphic to ;ﬁqﬁ ® Ug, (gB) as left ﬁq,f
module and right UQE(gB)—comodule. Hence, the MpQG at a root of unity U q,:(9) =
Uq.<(g) can be seen as a “blend” of a restricted small MpQG, namely tq c(g) = lq.(g),
and a “classical” geometrical object, namely Ug, ( g B) = Ug. ( g B) = Ug. ( g B)

(b) Beside the canonical case, some variations of the quantum Frobenius homorphism
are treated in the literature. For example, Lentner [Le] studies the quantum Frobenius
map for the positive Borel algebras at small roots of unity, which are in fact Nichols
algebras. Another is in [Mc|, which provides the construction of the quantum Frobenius
homomorphism for the positive part using Hall algebras. As in the Hopf algebra case, the
quantum Frobenius map is used to study exact sequences of Nichols algebras. In [AAR2]
it is shown how Nichols algebras give rise to positive parts of semisimple Lie algebras as
images of the quantum Frobenius morphism.

7.3.9. Small MpQG’s: the “unrestricted realization”. We introduce now a second
type of small MpQG'’s, defined in terms of unrestricted MpQG’s. As in the restricted case,
these are defined for a multiparameter of integral type q. We shall eventually see that
these “unrestricted” small MpQG’s actually do coincide with the “restricted” ones.

Let q be a multiparameter of integral type, hence possibly of strongly integral type.
Let Fry:Z[e]®, Uqa(9) = RY . ®Rq71Uq71(g) «——— Uq.c(g) Dbe the unrestricted
quantum Frobenius morphism introduced in Theorem 7.2.6, a Hopf algebra monomor-
phism whose image is the central Hopf subalgebra Zj of Uq -(g) given in Definition 7.2.4.
We consider the Hopf cokernel of Fr,, i.e. the quotient Hopf algebra

ﬂq,a = ﬁq,a(g) = Nq,s(g)/ﬁq,a(g)ZOJr

— where Zyt dAe/notes the augmentation ideal of Zy — and similarly the cokernels of the
restrictions of F'r, to all various relevant multiparameter quantum subgroups of uq .(g):
for instance, ﬁ%s = T}q?s ﬁqz’g (ZOZ)Jr , and so on and so forth. We call all these
objects “unrestricted small multiparameter quantum (sub)groups”. When q = q is the

canonical multiparameter, this definition coincides with the one for the one-parameter
small quantum group associated with g given in [BG, IIL.6.4].

Since, by Proposition 7.2.5, ﬁq,E(g) is a free ﬁqJ (g)—module of rank ¢
m(E(D))

dim(@p) it follows

that uq . is a finite-dimensional Hopf algebra of dimension ¢ di ; indeed, we shall show

that it actually coincides with g, =1Uq,c -

As direct consequence of definitions and previous results, we find structure results for
unrestricted small MpQG’s. The first one is about triangular decompositions:

Proposition 7.3.10. (triangular decompositions for unrestricted small MpQG’s)

The multiplication in g, provides R q,.—module isomorphisms

~— ~0 ~< ~0 ~— ~+ ~0 ~ 2> ~0 ~+
uq’g ® uq75 = uq75 = uq7€ ® uqas ’ uq7€ ® uq75 = uq,f = uq,f ® uq,E
q,e q,e q,e Raq,e
S0 om0 o S0 o 0~ < > oz = > = <
Ugle ® Uqle = ug,e = Ugle @ Uqle , Uge @ Uge = Uge = Uge ® Uqgpe
RQaE Rq,e RQvS Rq,a
. © . ® lige 2 Hq. ¥ dg. © 0. ® id.
q, d, q, q, q, q, q,
Ra,e q,e Raq,e Ra,e

Proof. This can be proved like the similar result for unrestricted MpQG’s, or can be
deduced from the latter: details are left to the reader. O
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The second result is a PBW-like theorem for unrestricted small MpQG’s:

Theorem 7.3.11. (PBW theorem for unrestricted small MpQG’s)

Every unrestricted small MpQG is a free R q,-module with R q .—basis made by the
cosets of all PBW monomials — in the subset of a PBW basis (as given in Theorem
5.3.8) of the corresponding specialized unrestricted MpQG — in which the degree of each
factor is less than £ . For instance, Uq . has R q,-—basis

1 — . . N*
{ H nglz H Lé-J H Kfz HE;Z 0< fk,lj,ci,eh </ }
k=N eI 7 el h=1

o ~ ~+0 ~ ~< ~>
and similarly holds for uqijg, Ugle, uoq’g, Ug,e and ug.c .

Proof. This follows at once from definitions and from Proposition 7.2.5. OJ

The results in §5 and Theorem 7.1.4 lead us to the following theorem.

Theorem 7.3.12. The Hopf R q c-algebra uq - is a 2—cocycle deformation of Ug. e .

Proof. Denote by Zj the subalgebra of ﬁq} (g) that defines ug .. Since q is of integral
type, Zo and Zy are both central Hopf subalgebras of ﬁq75(g) and ﬁq75(g), respectively.
By Theorem 7.1.4(a), we know that the Hopf R o, .—algebra ﬁq’s(g) is a 2—cocycle defor-
mation of 17(175( g). As the 2—cocycle giving the deformation is

oe(x,y) = 61}52 if =K, or x=L,, y=K, or y=1L,

0:(Uq(9) ,Uq(8)®) == 0 = 0-(Uq(9)®,Uq(g))

it follows that o, = e ® €, the trivial 2—cocycle, with € the counit

- ‘ﬁd,s(9)®zo+zo® Uae(0) ’
of Uge(g); in particular, Zy = (Zo),. = Zo as Hopf algebras. Finally, if we define
Ocillge®@lge— Ry . by 5:(z,7) == oc(z,y) for z, y € ﬁq}s(g), a straightforward
calculation shows that &, is a 2-cocycle for ug . and (ﬁq75)0 = Uge - O

@ Now we extend the ground ring from RY . = Z[e] to the cyclotomic field Q. gener-
ated over Q by an {—th root of unity: all algebras then will be taken as defined over Q.
(via scalar extension), even though we keep the same notation. In this case, we have the
following structural result:

Proposition 7.3.13. Let us consider [7%6 and g ., as well as their quantum subgroups,
as defined over Q. (via scalar extension). Then we have:

(a) ﬁma is generated by {Ei,Liil,Kiﬂ,Fi}i
sponding set of cosets;

(b) Uq and Uqg. are generated respectively by {Ei},., and by {Fi}
simalarly 'Lvl;;g and g . are generated by the corresponding sets of cosets;

~ O ~ __ O -~ .

(c) Uqf;-i,l Uif and US ¢ are generated respectively by {Kiﬂ}ie[ , by {L?ﬂ}ie[
and by {K;,L; }ieI’
sponding sets of cosets;

(d) ﬁqg’a} resp. ﬁq%e, is generated by {Llil,Fi}iE[ , resp. by {Ei,Kiﬂ}

stmilarly ﬁée , Tesp. 5575, is generated by the corresponding set of cosets;

el and g, . is generated by the corre-

jer » and

and similarly 552, UgY and WY, are generated by the corre-

iel 7
(e) in all claims (a) through (d) above, one can freely replace any E; or F; with E; or
F; respectively, and still have a set of generators.

Proof. Tt is enough to prove claim (a), as the other are similar. By construction, ﬁqﬁ is
generated by (the specialization of) all the K iﬂ’s, all the Llil’s and all the quantum root
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vectors E, and F,,. Now, E, = (€a7a — 1) E, so the E,’s can be replaced with the E,’s,
because (504706 — 1) is invertible in Q.. Moreover, each quantum root vector F, can be
expressed, by construction (cf. §4.1), as a suitable g—iterated quantum bracket of some of
the E;’s; as F; = (f-:i2 — 1)71 E;, the E;’s alone are enough to generate all the E,’s over

Q. . A similar argument works for the F,’s, hence the claim for ﬁq, . follows, and that for
Uq,c is an obvious consequence. Claim (e) is clear as well from the above analysis. O

By construction, the projection 7 from ﬁq, ¢ to uq, . and the scalar extension of the
quantum Frobenius morphism Fr, match together to yield a short exact sequence of Hopf
Q-—algebras. As before, this sequence allows to reconstruct the unrestricted MpQG Uy .

as a cleft extension, as the following shows:

Theorem 7.3.14. Let q:= (qij) be a multiparameter of integral type.

i,5€1

~ Fr ~
Let Uq 1(9) S N Uq,:(g) be the scalar extension to Q. of the unrestricted quantum
Frobenius morphism of Theorem 7.2.6 and let

Hq,e(0) = Uqe(9) / Uq,o(9) Uqr(9)
be the quotient Hopf algebra. Then

+

~ Fr ~ T ~
1l ——— Uqi(g) ———— Uq.c(g) —— 1uq.c(g) —— 1 (7.18)

is a central exact sequence of Hopf Q.—algebras which is cleft.

Proof. By Proposition 7.2.5 we know that Uq -(g) is a free ﬁqﬁ(g)fmodule of rank

¢I680) | Gince ﬁq,l(g) is central and uq -(g) := (701,5(9)/(701,5(9) ﬁq71(g)+, by [Mo,

Proposition 3.4.3] we have that ﬁq,l(g) = Uq,:(g)®°™ and the sequence is exact. As
we did before for the restricted case, to prove that the extension is cleft we show that
it is Galois and has a normal basis. Since the extension is a Hopf algebra extension, it
follows that it is Galois, see [Sch2, Remark 1.6]. The normal basis property follows from
[Schl, 4.3] as ﬁq, -(g) is a pointed Hopf algebra, since it is generated by group-like and
skew-primitive elements. O

Remarks 7.3.15. (a) By the normal basis property, ﬁqyg(g) is isomorphic to ﬁqvl(g) ®
tq,:(g) asleft Ug 1(g)-module and right uq .(g)—comodule. Hence, the MpQG at a root
of unity Ugq .(g) can be understood as a “blend” of a classical geometrical object —

namely ﬁq,l(g) , which is O(éB*) since q is of integral type, see Theorem 6.2.9 — and a
quantum one — the unrestricted small MpQG 4 :(g) .

(b) Borrowing language from geometry — without claiming to be precise, by no means

— the exact sequence (7.18) can be interpreted as follows: Uq .(g) defines a princi-

pal bundle of Hopf Q.—algebras over the Poisson group Spec(Zp) = Spec(Uq,l(g)) =
Spec((’) (é; )) = GB* , and, as the extension is cleft, that bundle is globally trivializable.

7.3.16. Small MpQG’s: identifying the two realizations. So far we considered
small MpQG’s of two kinds, namely restricted and unrestricted ones. We will show now
that these two types over Q. actually coincide, up to isomorphism:

Theorem 7.3.17. Consider the associated small MpQG’s of either type over the ground
ring Qe (via scalar extension from Rg . = Z[e] ).

Then tq,-(g) = Uq,(9) (=1q,:(9)) as Hopf algebras over Q. .

A similar statement holds true for the various (small) quantum subgroups, namely
Ug:.=2uz,(=10g.) , et
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Proof. We prove that uq .(g) = ﬁq,g(g) (=1gq,:(g)) , the rest being similar.

To begin with, from Proposition 7.3.5 we know that ﬁq@ = ﬁq,e(g) — when defined
over the extended ground ring Q. — is generated by {EZ , Lfﬂ, K iﬂ, FZ}Z el Moreover,
from Theorem 7.3.2 we can deduce a complete set of relations for this generating set:
indeed, these relations can be also described as being of two types:

(a) the relations arising (through specialization) from those respected by the same-

name elements — ie., F; ,Liil,Kiil,Fi (i € 1) — inside the restricted MpQG (A]q,e
(before specialization) just by formally writing “c” instead of “q”,

(b) the “singular” relations Ef =0, L{f-1=0, Kf=1=0, Ff =0 (iel)

that are induced from the relations in U a,e

1y l/ct1 Yiil— o
é () S (& 19
Xf = mqi!Xi() ’ Ho( 1 ) N Hl( c ) ( 1 >
§= q c= q q

—foralliel, X € {E,F} and Y € {L,K} — when specializing q to ¢ .

Overall, this provides another concrete, explicit presentation of ﬁq@ over Q. by genera-
tors and relations (with less generators than that arising from Theorem 7.3.2). In addition,
as a byproduct we find — comparing with Theorem 7.3.4 — another PBW theorem for
Uqg e (over Q.), stating that Uq . admits the following Q.—basis

{ Hk:NFﬂ’“k HJ'GILj] HielKic thlEﬁe}? }ngk;ljvci,eh<€ (7'19)

On the other hand, we know by Proposition 7.3.13 that uq . 1= tq,(g) is generated
over Q. by {Ei,Li,Ki,Fi}iel , because Lf =1= Kf in ug ., by definition (so that
we can get rid of Li_1 and K ! ); in particular, from Theorem 7.3.11 we can deduce that
another possible PBW Q.—basis for uq . is

{Hk:Nngk HjeILj] HieIKic Hh:lEge;f }Oéfk,lj,ci,eh<f (7-20)

Now, the generators E;, L;, K;, F; (i € 1) of g, do respect all relations that come by

straightforward rescaling from the relations respected by the generators E;,L;,K;,F;
(i € ). In turn, the latter are of two types:

(a) the relations arising (through specialization) from those respected by the same-
name elements — i.e., E;, LZ:.H, Kiﬂ,fi (i € I ) — inside the unrestricted MpQG Uq .
(before specialization) by formally writing “c” instead of “q”,

s ; .= — .
(b) the “singular” relations E; = 0, Lf —1 =0, K/!~-1 =0, F; =0 (icI)

1
induced from the “relations” in Uq .

Yf =0 mod (Zy)" Y/ =1 mod (Zo)*

)

—forall X e {E,F}, Y e€{L,K}, i € I — when one specializes q to .

The outcome is that all this yields an explicit presentation of i . over Q. by generators
—namely F;,L;,K;,F; (i € 1) — and relations.

Comparing the previous analyses, we find that Uq, . and 14 . share identical presenta-
tion: more precisely, mapping F; — E;, L;— L;, K; — K;, F; — F; (z € I) yields
a well-defined isomorphism of Q.—algebras; in addition, tracking the whole construction
one sees at once that this is also a morphism of Hopf algebras. Finally, comparing (7.19)
and (7.20) shows that this is indeed an isomorphism, q.e.d. O

Remark 7.3.18. As an application of the previous result, even for the classical (unipa-
rameter) small quantum groups one can always make use of either realization of them:
the (most widely used) restricted one, or the unrestricted one.
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