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TWISTED DEFORMATIONS
VS. COCYCLE DEFORMATIONS
FOR QUANTUM GROUPS

GASTON ANDRES GARCIA’ , FABIO GAVARINI?

ABSTRACT. In this paper we study two deformation procedures for quantum
groups: deformations by twists, that we call “comultiplication twisting”, as they
modify the coalgebra structure, while keeping the algebra one — and deformations
by 2—-cocycle, that we call “multiplication twisting”, as they deform the algebra
structure, but save the coalgebra one.

We deal with quantum universal enveloping algebras, in short QUEA’s, for
which we accordingly consider those arising from twisted deformations (in short
TwQUEA’s) and those arising from 2—cocycle deformations, usually called mul-
tiparameter QUEA’s (in short MpQUEA’s). Up to technicalities, we show that
the two deformation methods are equivalent, in that they eventually provide iso-
morphic outputs, which are deformations (of either kinds) of the “canonical”,
well-known one-parameter QUEA by Jimbo and Lusztig. It follows that the two
notions of TwQUEA’s and of MpQUEA’s — which, in Hopf algebra theoretical
terms are naturally dual to each other — actually coincide; thus, that there exists
in fact only one type of “pluriparametric deformation” for QUEA’s. In particular,
the link between the realization of any such QUEA as a MpQUEA and that as a
TwQUEA is just a (very simple, and rather explicit) change of presentation.
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1. INTRODUCTION

Roughly speaking, quantum groups — in the form of quantized universal envelop-
ing algebras — are Hopf algebra deformations of the universal enveloping algebra
U(g) of some Lie algebra g. From this deformation, g itself inherits (as “semiclassical
limit” of the deformed coproduct) a Lie cobracket that makes it into a Lie bialgebra
— the infinitesimal counterpart of a Poisson group whose tangent Lie algebra is g.

When g is a complex simple Lie algebra, a quantum group in this sense, depending
on a single parameter, was introduced by Drinfeld [Dr| as a formal series deformation
Un(g) defined over a ring of formal power series (in the formal parameter i) and
by Jimbo and Lusztig (see [Ji], [Lu]) as a deformation U,(g) defined over a ring
of rational series (in the formal parameter ¢ ). Indeed, Jimbo’s U,(g) is actually a
“polynomial version” of Drinfeld’s Uy(g) .

Later on, several authors (cf. [BGH], [BW1, BW2|, [CM], [CV1], [Hay], [HLT],
[HPR], [Ko], [KT], [Mal], [OY], [Re], [Su], [Ta], to name a few) introduced many
types of deformations of U(g) depending on several parameters, usually referred to
as “multiparameter quantum groups”. In turn, these richer deformations induce
as semiclassical limits corresponding “multiparameter” bialgebra structures on g.
The construction of these multiparameter deformations applies a general procedure,
always available for Hopf algebras, following two patterns that we recall hereafter.

Let H be any Hopf algebra (in some braided tensor category). Among all possible
deformations of the Hopf structure of H, we look at those in which only one of either
the product or the coproduct is actually modified, while the other one is kept fixed.
The general deformation will then be, somehow, an intermediate case between two
such extremes. On the one hand, a twist deformation of H is a (new) Hopf algebra
structure on H where the multiplicative structure is unchanged, whereas a new
coproduct is defined by A”(z) := FA(z)F~! for x € H: here F is an invertible
element in H®? satisfying suitable axioms, called a “twist” for H. On the other
hand, a 2—cocycle deformation of H is one where the coproduct is unchanged, while
a new product is defined via a formula which only depends on the old product and
on a 2—cocycle o of H (as an algebra): again, this procedure can be read as a suitable
“conjugation” of the old product map by the 2—cocycle.

Inasmuch as a meaningful notion of “duality” applies to the Hopf algebras one
is dealing with, these two constructions of deformations are dual to each other,
directly by definition. In detail, if H* is a Hopf algebra dual to H with respect
to a non-degenerate (skew) Hopf pairing, e.g. H and H* := H° (i.e., Sweedler’s
restricted dual), then the dual of the deformation by twist, resp. by 2—cocycle, of H
is a deformation by 2—cocycle, resp. by twist, of H*; moreover, the 2—cocycle, resp.
the twist, on H* is uniquely determined by the twist, resp. the 2—cocycle, on H. In
order to stress this duality between the two types of deformation procedures that we
are dealing with, as well as the fact that both are in fact “conjugations” of some sort,
we adopt the terminology “comultiplication twisting” and “multiplication twisting”,
instead of “deformation by twist” and of “deformation by 2—cocycle”, respectively.

It so happens that the large majority of multiparameter quantizations of U(g) con-
sidered in literature actually occur as either comultiplication twistings or multiplica-
tion twistings of a one-parameter quantization of Drinfeld’s type or Jimbo-Lusztig’s
type. Indeed, in both cases the twists and the 2—cocycles taken into account are of
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special type, namely “toral” ones, in that (roughly speaking) they are defined only
in terms of the (quantum) toral part of the one-parameter deformation of U(g).

Technically speaking, Drinfeld’s Uy(g) is better suited for comultiplication twist-
ings, while Jimbo-Lusztig’s U,(g) is typically used for multiplication twistings (see
[Re], [Ma], [Su], [HPR], [HLT], [CV1], [Ta]). As we aim to compare both kinds
of twistings, we focus on polynomial one-parameter quantum groups U,(g), and
we adapt the very notion of “twist deformation”, or “comultiplication twisting”, to
them. Then we consider both comultiplication twistings and multiplication twistings
(of “toral type”, in both cases) of U,(g) — thus getting “twisted quantized univer-
sal enveloping algebras (=TwQUEA’s)” and “multiparameter quantized universal
enveloping algebras (=MpQUEA’s)”, respectively — and compare them. Moreover,
by natural reasons we restrict ourselves to twists and cocycles that are defined by a
rational datum, i.e., a matrix with rational entries.

As a first result, we describe the link twist <— 2—cocycle under duality. Namely,
quantum Borel (sub)groups U, (b4 ) of opposite signs are in Hopf duality (in a proper
sense): then we prove that any twisting on one side — of either comultiplication or
multiplication — and the dual one on the other side — of either multiplication or
comultiplication, respectively — are described by the same rational datum. Indeed,
we provide an explicit bijection between the sets of toral twists and toral 2—cocycles.

As a second, more striking result (the core of our paper, indeed), we find that,
in short, twisted quantum groups and multiparameter quantum groups coincide:
namely, any TwQUEA can be realized as a MpQUEA, and viceversa. Even more
precisely, the twist and the 2—cocycle involved in either realization are described by
the same (rational) datum. This result is, in a sense, a side effect of the “autoduality”
of quantum groups (in particular Borel ones). The proof is constructive, and quite
explicit: indeed, switching from the realization as TwQUEA to that as MpQUEA
and viceversa is a sheer change of presentation. We can shortly sketch the underlying
motivation: any “standard” (=undeformed) quantum group is pointed (as a Hopf
algebra); then any TwQUEA of “toral type” is pointed as well, and it is generated
by the quantum torus and (1, g)—skew primitive elements: these new “homogeneous”
generators yield a new presentation, which realizes the TwQUEA as a MpQUEA.

The direct consequence of this result is that (roughly speaking, and within the
borders of our restrictions) there exists only one type of multiparameter quantiza-
tion of U(g), and consequently only one type of corresponding multiparameter Lie
bialgebra structure on g arising as semiclassical limits, as in [GG1].

All the elements that lead us to the above mentioned results for TwWQUEA’s and
MpQUEA’s are also available for Hopf algebras that (like Borel quantum subgroups)
are bosonizations of Nichols algebras of diagonal type; thus, we can replicate our
work in that context too. In another direction, we extend further on this analysis
in the framework of multiparametric formal QUEA’s; a la Drinfeld — cf. [GG2].

We finish with a few words on the structure of the paper.

In Section 2 we collect the material on Hopf algebras and their deformations
that will be later applied to quantum groups. Section 3 is devoted to introduce
quantum groups (both in Drinfeld’s version and in Jimbo-Lusztig’s one) and their
comultiplication twistings (of rational, toral type), i.e., the TwQUEA’s: the part on
Drinfeld’s quantum groups could be dropped, yet we present it to explain the deep-
rooting motivations of our work. In Section 4, instead, we present the multiplication
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twistings (of rational, toral type) of Jimbo-Lusztig’s quantum groups, hence the
MpQUEA’s. Finally, in Section 5 we compare TwQUEA’s and MpQUEA’s, proving
that — in a proper sense, under some finiteness assumption — they actually coincide.
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2. PRELIMINARIES

In this section we fix the basic material on Hopf algebras and combinatorial data
that we shall need later on. In particular, N={0,1,...} and N, :=N\ {0}.

2.1. The combinatorial tool box.

The definition of our multiparameter quantum groups requires a full lot of related
material that we now present. First of all, k will be a field of characteristic zero.

2.1.1. Root data and Lie algebras. Hereafter we fix n € N, and [ :=
{1,...,n}. Let A := (aij)ijej be a generalized, symmetrisable Cartan matrix;

then there exists a unique diagonal matrix D := (di (5ij)i with positive inte-

el
gral, pairwise coprime entries such that DA is sylmrnetric’].€ Let g = ga be the
Kac-Moody algebra over C associated with A (cf. [Ka]); we consider a split integral
Z~form of g, and its scalar extension gz from Z to any ring R: when this ring is
k, by abuse of notation the resulting Lie algebra over k will be denoted by g again.

Let ® be the root system of g, with II = {(xi |i € I} as a set of simple roots,
Q = @,c; Za; the associated root lattice, ®* the set of positive roots with respect
to I, Q" = @,.; N, the positive root (semi)lattice.

Fix a Cartan subalgebra h of g, whose associated set of roots identifies with
® (so k@ C b*); then for all @ € & we call g, the corresponding root space.
Now set b’ := g’ Nbh where g’ := [g,g] is the derived Lie subalgebra of g: then
(h’)* =kQ C bh*. We fix a k-basis ITV := {hi =) }iel of b’ so that (f),H,HV) is
a realization of A, as in [Ka, Chapter 1]; in particular, a;(h;) =aj; forall i,j € I.

Let b” be any vector space complement of §’ inside h. Then there exists a unique
symmetric k-bilinear pairing on b, denoted ( , ), such that (h;,h;) = a;;d;*,
(hy, hYy) = o (RY)d; " and (b, h5) =0, forall i,5 € I, h{,hy € b”;in addition, this
pairing is invariant and non-degenerate (cf. [Ka, Lemma 2.1]). By non-degeneracy,
this pairing induces a k- linear isomorphism ¢ : h* —— B , with t(o) = djaf =
d; h; for all ¢ € I, and this in turn defines a similar pairing on h* — again denoted
(', ) — via pull-back, namely (¢7'(hy),t*(h2)) := (h1, ho) ; in particular, on simple
roots this gives (a;, ;) = d;a;; for all ¢,5 € I. In fact, this pairing on h* does
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restrict to a (symmetric, Z—valued, Z-bilinear) pairing on () ; note that, in terms of

the latter pairing on @), one has d; = (o, ai)/Q and a;; = 2(0”—%)) forall 7,5 € 1.

(a4, 05
We also notice that ¢ : h* —— b restricts to another isomorphism ¢ : (b’ )* — b
for which we use notation t, :=t'(a) = t(«).

When A is of finite type — which is equivalent to saying that ' = h — we
denote by P its associated weight lattice, with basis {wi }iel dual to {aj }jel,
so that w;(a;) = 0;; for 4,5 € I. If we identify h* with b via the isomorphism
t:bh* iﬂ) as above, the root lattice ) identifies with a suitable sublattice of
P: then there is also an identification QP = Q) — where hereafter we use such
notation as QQ = Q®zQ, etc. — and we have such identities as oa; = >_._; aj; w;
and (wi ,Oéj) = dz 57lj for all Z,] el.

jel

According to our choice of positive and negative roots, let b, , resp. b_, be the
Borel subalgebra in g containing h and all positive, resp. negative, root spaces.
There is a canonical, non-degenerate pairing between b, and b_ , using which one
can construct a Manin double g, = b, @ b_, that is automatically endowed with
a structure of Lie bialgebra — roughly, g is like g but with two copies of b inside
it (cf. [CP], §1.4), namely b, :=h @0 inside b, and h_ := 0@ b inside b_ ; accor-
dingly, we set also b, :=bh' @0 and b’ :=0® b . By construction both b, and b_
lies in g, as Lie sub-bialgebras. Moreover, there exists a Lie bialgebra epimorphism
Ty, 8, — @ which maps the copy of b. inside g, identically onto its copy in g.

For later use we fix generators e;, h;,f; (i € I') in g as in the usual Serre’s presen-
tation of g. Moreover, for the corresponding elements inside g, = b, ®©b_ we adopt
notation e; := (e;,0), hf := (h;,0), h; := (0,h;) and f; :== (0,f;), for all i € I.
Notice that we have by construction

¢ € 0o hy =d; 'ty € | f; €9 Viel (2.1)

2.1.2. Root twisting. Applying the twisting procedure to quantized universal
enveloping algebras, we shall eventually be lead to consider an operation of “root
twisting”, in some sort, that we formalize hereafter.

Let & be a formal variable, and k((&)) the corresponding field of Laurent formal
series with coefficients in k; for simplicity, we eventually will take a field F of
characteristic zero containing k((%)). Fix a subring R of k((%)) containing Q[[A]],
let RQ be the scalar extension of ) by R, and fix an (n X n)-matrix ¥ :=
(%-j)i’j o €M, (R) . We define the endomorphisms 4 : RQ) — R(E) given by

Volag) = ¢ =Y Yijaud;  ai, V(o) =( =Y bjiad; oy YLET (2.2)
igel igel

that in matrix notation reads
(Us(e) = ¢ )= ATVTD an) oy o (V(a0) = G )= ATUD ™ (a), o, (23)

where (ozk)k o = (041 e ,ozn)T is thought of as a column vector, and likewise for

(¢i(a£))£el = (Céi)eel‘ Now, borrowing notation from §2.1.1 we fix the R—integral

form b/, of b’ in g, spanned by the simple coroots h; (7 € I'), and the corresponding
isomorphism ¢ : (f];2 )>k — b, (a > ta) — this does make sense, because the
original isomorphism ¢’ : (f)’ )* =5 b’ in §2.1.1 is actually well-defined over Q.
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. / ' -1
Then we define endomorphisms ¥ of b, as YL = ¥ oy o (t’ )
Ty :=1t,, and H, := d;l T, for ¢ € I, these are obviously described by

; if we set

WV(TY) = S s ad N Ty = 3 o a0 H; vV olel
i,j€l 1,5€1

@/JE/(TK) = Z ¢ji Qjyp dl_l T; = Z wji (057 Hz V (el
i,j€l i,5€l

that in matrix notation reads
(w-hi-/(Té))gel = ATV D! (Tk)kel = ATV (H’f)
(1)), == A" WD (Th),_, = A"V (H,)

kel
kel

Note that, by definition, we have 1, = ¢_, or equivalently 1/11/ = wh_/, if and
only if ¥" =W  ie., U is symmetric.
Finally we introduce the following elements of (b%) L@ (l‘);z )_ ,forall i € I:

Ty = (g, +02) (11) = 05(T7) T = (idy+w2) (1) = 01(T)
The following two results will be of use later on:

Lemma 2.1.3.
(a) The maps i(¢+— w_) : (h%)* —— (h;{)* are antisymmetric with respect
to the (symmetric) bilinear product ( , ) on (b%)* ;

(b) The maps :E(l/)?,_l— Q/Jh_/) b, ——— bl are antisymmetric with respect to
the (symmetric) bilinear product ( , ) on b, .

Proof. Both claims in the statement follow by sheer computation. Namely, for the
map (¢+— w,) this gives, for all h,k € I,

(=)o) ) + (o, (04— 0 ) (o)) =
= 2 (wii ajnd; ', o) — (Vjiagnd; i, ak)) +

i,J€1

+ > <(@h7 Yij ajy d; Oéi) - (ah7 Vi ajy, it %)) =
igel
= Z (1/)1‘]‘ Qjp Qi — 1/’;‘1’ Qjp az‘k) + Z (%j Qi Qip — %’z‘ Ak aih) =
ijel ijel
h h h h
- (AT \1/A> - (AT \IITA> n (AT \IITA> - (AT \IJA) ~ 0
k k k k
where M} always denotes the (k,h)-entry of a matrix M. So =+(¢y — ¢_) is
antisymmetric. The proof for :E(Q/J:)_— lﬁ) is analogous. O

Lemma 2.1.4. Assume that the Cartan matrix A is of finite type.
(a) The maps (idh/ j:( '}r — wﬁ)) b, ——— b, are bijective.
b) The maps (b)), —— (b'), D (¥ defined by T — T, are injective.
R/+ R/+ R/— L 0,+

Proof. Set ¢ = (wi — Q/Jh_/)i this is antisymmetric, hence (idy—¢)(idy+¢) =
(idh/—qbZ) = (idb/+¢¢t). So the claim in (a) is the same as claiming that
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(id b+ O qzﬁt) is non-singular, which in turn is the same as stating that —1 is not an
eigenvalue of ¢ ¢': the claim then follows since the latter always holds true.
The claim in (b) is a direct consequence of (a). O

2.1.5. g—numbers. Throughout the paper we shall consider several kinds of “g-
numbers”. Let Z [q, qil} be the ring of Laurent polynomials with integral coefficients
in the indeterminate ¢. For every n € N we define

q" —1

0), =1, (n),:= p— =1+q+---+q"‘1=n2:ff (€ Zldl)

) = O, = 16, (1) = ! o (e zia)

n
s=0

0, =1, [n],:= q;__qq_ln ="t =nZ:q23‘"“ (eZ[g.q7'])
n n n !
[n]q' = [O]q[l]q [n]q - 51;[0[3]‘1 ’ {k} B k] |[[n]q_ k| ! ( < Z[% q_l})

Furthermore, thinking of Laurent polynomials as functions on F* | for any ¢ € F*
we shall read every symbol above as representing the corresponding element in [F.

2.2. Multiparameters.

The main objects of our study will depend on “multiparameters”, i.e., suitable
collections of parameters. Hereafter we introduce these gadgets and the technical
results about them that we shall need later on.

2.2.1. Multiplicative multiparameters. Let F be a fixed ground field, and let
I:={1,...,n} beasin §2.1.1 above. We fix a matrix q := (qij)mE] , whose entries
belong to F* and will play the role of “parameters” of our quantum groups. Then
inside the lattice I':= 7Z" one has a “generalized root system” associated with the
diagonal braiding given by q, in which the vectors in the canonical basis of " := Z"
are taken as (positive) simple roots o; (i =1,...,n).
We shall say that the matrix q is of Cartan type if there is a symmetrisable
generalized Cartan matrix A = (aij)i,je ; such that
Gij Qi = ;" Vi,jel (2.4)
In such a case, to avoid some irrelevant technicalities we shall assume that the Cartan
matrix A is indecomposable: that is, A is not expressible, after any permutation of
indices, as a block-diagonal matrix with more than one block (although this is not
necessary for the theory; it only helps in having the main results look better, say). In
particular, this implies that for all ¢, 7 € I, there exists a sequence i = ky,..., k=7
in I such that ag,,,, 70 for all 1 < s < £. Moreover — still in the Cartan case
— for later use we fix in F some “square roots” of all the ¢;’s, as follows. From
relations (2.4) one easily finds — because the Cartan matrix A is indecomposable
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— that there exists an index j, € I such that q; = qﬂiijo for some e; € N, for all
i € I. Now we assume hereafter that F contains a square root of q; ; , which we fix

throughout and denote by q; = ./ Bojy and also by q =, /qjojo ( = Qjo) . Then
we set also ¢; := qui (a square root of ¢;; ) for all i € I.

As recorded in §2.1.1 above, we fix positive, relatively prime integers dy, ..., d,
such that the diagonal matrix D = diag(ds,...,d,) symmetrizes A, i.e., DA is
symmetric; in fact, these d;’s coincide with the exponents e; mentioned above.

We introduce now two special cases of Cartan type multiparameter matrices.

is of integral type if it is of Cartan type

ijel? and there exist p € F* and b;; € Z

(i,j € I) such that b; = 2d; and ¢;; = p® for i # j € I. The Cartan condition
(2.4) yields b;; + bj; = 2d; a;;, for i,5 € I (with d;’s as above). To be precise, we
say also that q is “of integral type (p, B)”, with B := (bij)

Integral type: We say that q := (%’)i jel

with associated Cartan matrix A = (aij)

ijel
Canonical multiparameter: Given ¢ € F* and a symmetrisable (generalised)

Cartan matrix A = (aij)z‘jel’ consider

Gij = q Vijel (2.5)

with d; (i € I) given as above. Then these special values of the ¢;; = ¢;;’s do
satisfy condition (2.4), hence they provide a special example of matrix q = q of
Cartan type, to which we shall refer to hereafter as the “q—canonical” case.

Note also that q is of integral type (¢, DA).

is symmetric, i.e.,

A4
0

By the way, when the multiparameter matrix q := (qij)z' jel
¢ij = qj; (for all i,j € I'), then the “Cartan conditions” ¢;;¢;; = ¢;;” read qé =
q2%%i hence ¢;; = +q%%i (for all 4,5 € I'). Thus every symmetric multiparameter

is “almost the g—canonical” one, as indeed it is the g—canonical one “up to sign(s)”.

2.2.2. Equivalence and group action for multiparameters. Let q := (Qij )i,je I
be a multiparameter matrix. The generalized Dynkin diagram D(q) associated with
q is a labelled graph whose set of vertices is I, where the i-th vertex is labelled with
i , and there exists an edge between the vertices ¢ and j only if ¢;; = ¢;j¢;; # 1, in
which case the edge is decorated by ¢;; . An automorphism of a generalized Dynkin
diagram D(q) is an automorphisms as a labelled graph. In the set M, (F*) of all

F-valued multiparameters, we consider the relation ~ defined by
d ~d" = 40 =a%, G = V oi,5el:={1,....,n}. (2.6)

This is obviously an equivalence, which is known in the literature as twist equiva-
lence. Indeed, ~ is nothing but the equivalence relation associated with the map
q — D(q) , which to every multiparameter q associates its unique generalized
Dynkin diagram D(q). In particular, if 6 is an automorphism of D(q) — in the
obvious sense — then we have 6(q) := (QQ(Z')ﬂ(j))i’jeI ~(.

Observe also that M, (F*) is a group (isomorphic to the direct product of n?
copies of F*) with the Hadamard product, i.e., the operation — denoted ©® —

is the componentwise multiplication. For q = (Qij)ije ; € M,(F*), we have that
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_ _ _ _I\T -1
ql= (qijl)i,jel; moreover, we set q = (qji)i7j61 and g7 :=(q7') =(qF) =
(qﬁl)ijel . The group (M,(F*); ®) acts on itself by the adjoint action
v.q =veoqov ! V v,q e M, (F¥) (2.7)
In down-to-earth terms, this action is given — for all v = (Vij)z‘,jel ,q= (Qij)i,jel €
M, (F*) — by
v.q = q" = (qz = VijQijVﬁl)i7j€I (2.8)
The following lemma shows that the equivalence in M, (IF*) induced by this action
is just the twist equivalence introduced above (the proof is a trivial calculation):

Lemma 2.2.3. Let q = (qij)iﬁjel .q= (cjij)i,jel € M, (F*). Then

(a) q~q <= JveM,F*):q=v.q

It follows then that the ~ —equivalence classes coincide with the orbits of the M, (F*)—
action on itself. In particular, if q ~ q then:

(b) thev’s in M,(F*) satisfying q =v.q are those such that v;; Vj_il = §;j cjigl ;
~ ~—1 . .
. . - 7 Vi<
(c) an explicit v such that Q =v.q is given by v = @i % R J
1 Vi>g

(d) if F contains all square roots of the §;;’s and ¢;;’s, and we fix them so that for
the multiparameters formed by these square roots we have /% ~ /2 (as it is always
possible) then another explicit v such that q = v.q is given by v = q'2q 2. O

For multiparameters of Cartan type we also have the following:

Proposition 2.2.4. Fach multiparameter q of Cartan type is ~—equivalent to some
multiparameter q of canonical type.

Proof. Let q = (Qij)ijel € M,(F*) be a multiparameter of Cartan type. By

definition, — cf. §2.2.1 — this means that there exists ¢ € F* and a (generalised)
symmetrisable Cartan matrix A = (azj) ; such that ¢ q; = g’ — see (2.4)

ije
— and ¢;; = ¢*% for all 4, € I; altogether these imply
GG = G5’ = ¢ = ¢ B = Gy gy Vo,jel

while ¢;; = ¢*% also reads ¢; = ¢*% = §;; , so that in the end we have q ~ ¢ with
q:= (qdi‘”j)ijel a multiparameter of canonical type as in the claim. O

2.3. Conventions for Hopf algebras.

Our main references for the theory of Hopf algebras are [Mo] and [Ra]. We use
standard notation: the comultiplication is denoted A and the antipode S. For
the first, we use the Sweedler-Heyneman notation but with the summation sign
suppressed, namely we write the coproduct as A(x) = z(1) ® x(9) .

Although in most parts of the paper it is not needed, we assume that the antipode
S is bijective and denote by S™! its composition inverse.

Hereafter by k we denote the ground ring of our algebras, coalgebras, etc.

In any coalgebra C', the set of group-like elements is denoted by G(C); also,
we denote by CT := Ker(e) the augmentation ideal, where ¢ : C' — k is the
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counit map. If g,h € G(C), the set of (g, h)-primitive elements is defined as
Pu(C) ={zeClA(z)=2@g+h@z}

If H is a Hopf algebra (or just a bialgebra), we write H°P | resp. H®P | for the Hopf
algebra (or bialgebra) given by taking in H the opposite product, resp. coproduct.

Finally, we recall the notion of skew-Hopf pairing between two Hopf algebras
(taken from [AY], §2.1, but essentially standard):

Definition 2.3.1. Given two Hopf algebras H and K with bijective antipode over
the ring k , a k-linear map 7 : H ®x K — k is called a skew-Hopf pairing (between
H and K) if, for all h € H, k € K, one has

n(h, KK = n(hay, K)n(hey, &) . a2, k) = n(h', ko) n(h", k)
n(h,1) =eh) ., n(l,k) = ek) |, n(S*(h), k) = n(h,ST'(k))

Recall that, given two Hopf algebras H and K over k, and a skew-Hopf pairing,
say n: H®y K —— k, the Drinfeld double D(H, K,n) is the quotient algebra
T(H ® K)/T where T is the (two-sided) ideal generated by the relations

lpg=1= 1g , a®b = ab Va,beH or a,be K |,
T(1) @ Y1) U(y(z),xe)) = n(y(1)7x<1)) Y2) @ T(2) VeeK,ye H ;

such a quotient k—algebra is also endowed with a standard Hopf algebra structure,
which is consistent, in that both H and K are Hopf k—subalgebras of it.

2.4. Hopf algebra deformations.

There exist two standard methods to deform Hopf algebras, usually called “2—
cocycle deformations” and “twist deformations”: we shortly recall both, giving them
new names; then later on in the paper we shall apply them to quantum groups.

2.4.1. Multiplication twistings (or “2-cocycle deformations”). Let us con-
sider a bialgebra (H ,m, 1, A, (—:) over a ring k. A convolution invertible linear map
o in Homy(H ® H,k) is called a normalized multiplicative (or Hopf) 2-cocycle if

o(bay: cy) o(a, beyce) = olaq), bay) olawbe),c)

and o(a,1) = €(a) = o(1,a) for all a,b,c € H, see [Mo, Sec. 7.1]. We will simply
call it a 2—cocycle if no confusion arises.

Using a 2-cocycle o it is possible to define a new algebra structure on H by
deforming the multiplication. Indeed, define m, =oc*mxoc': H® H — H by

ma(a, b) =a-,b= J(a(l), b(l)) a(2) b(g) 0_1(a(3), b(g)) Vabe H

If in addition H is a Hopf algebra with antipode &, then define also S, : H — H
as S, : H — H where

S,(a) = 0((1(1), S(a(g))) S(a(g)) 0_1(S(a(4)), a(5)) VaecH

It is known that (H, my, 1, A, e) is in turn a bialgebra, and (H, my, 1, A, E,Sg) is
a Hopf algebra (see [DT] for details): this new bialgebra or Hopf algebra structure
on H, graphically denoted by H, , is usually called “cocycle deformation” of the old
one; we adopt instead hereafter the terminology “multiplication twisting”.
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2.4.2. Comultiplication twistings (or “twist deformations”). Let H be a
Hopf algebra (over a commutative ring), and let F € H ® H be an invertible
element in H®? (later called a “twist”, or “twisting element”) such that

Fio(A®id)(F) = Fos ([d@ A)(F) . (e®id)(F)=1= (id®e€)(F)

Then H bears a second Hopf algebra structure, denoted H”, with the old product,
unit and counit, but with new “twisted” coproduct A¥ and antipode S” given by

AN () = FA@)F S7(z) = vS(x)v! VeeH (29)

where v == Y - S(f]) f4 — with Y - fi ® f5 = F~! — is invertible in H; see
[CP], §4.2.E, and references therein, for further details. Note also that if H is just
a bialgebra then the procedure applies as well, with H” being just a bialgebra.

The Hopf algebra (or just bialgebra) H” is usually said to be a “twist deformation”
of H: we adopt here instead the terminology “comultiplication twisting” to denote
both this deformation procedure and its final outcome H¥.

2.4.3. Deformations and duality. The two notions of “2—cocycle” and of “twist”
are dual to each other with respect to Hopf duality. In detail, we have the following:

Proposition 2.4.4. Let H be a Hopf algebra over a field, H* be its linear dual, and
H® its Sweedler dual.

(a) Let F be a twist for H, and o, the image of F in (H* @ H*)" for the natural
composed embedding H ® H —— H** @ H* —— (H* ® H*)*. Then o, is a
2—cocycle for H® , and there exists a canonical isomorphism (HO)U = (HF)O .

Jf

(b) Let o be a 2—cocycle for H ; assume that H is finite-dimensional, and let F,
be the image of o in the natural identification (H ® H)" = H*®@ H*. Then F, is a

twist for H* , and there exists a canonical isomorphism (H*)F" ~ (H,)".

Proof. The proof is an exercise in Hopf duality theory, left to the reader — a matter
of reading the identities that characterize a twist or a 2-cocycle in dual terms. [

As a final remark, let us mention that the notions of 2—cocycle and twist and of
the associated deformations (by “twisting”, as precised above) can also be extended
to more general contexts where “Hopf algebra” has a broader meaning — essentially,
taking place in more general tensor categories than vector spaces over a field with
algebraic tensor product. In these cases, if a suitable notion of Hopf “duality” is
established (possibly involving different tensor categories), then Proposition 2.4.4
still makes sense, with no need of the finite-dimensionality assumption in claim (b).
For instance, this applies to Drinfeld’s “quantized universal enveloping algebras”
Ui(g) and their dual “quantized formal series Hopf algebras” Fj[G], that both are
topological Hopf algebras (with respect to different topologies) over k|[A]] .

3. QUANTUM GROUPS (AS QUEA’S) AND THEIR COMULTIPLICATION TWISTINGS

In this section we briefly recall the notion of formal and polynomial “quan-
tized universal enveloping algebra” (or QUEA in short), following Drinfeld and
Jimbo-Lusztig. Then we discuss their comultiplication twistings (via so-called “toral
twists”), and we provide an alternative presentation of these twisted QUEA’s.
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3.1. Formal QUEA’s (“a la Drinfeld”).

We begin by the description of formal quantized universal enveloping algebra
following Drinfeld and others, and some related tools.

3.1.1. The formal QUEA U,(g). Let k[[h]] be the ring of formal power series
in h. Let A := (aij)ije ; be a generalized symmetrisable Cartan matrix. The
quantized universal enveloping algebra, or QUEA in short, U (g’ (A)) = Us(g) is
the associative, unital, topologically complete k[[A]]-algebra with generators H; , F;

and F; (i1 € I :={1,...,n}) and relations (for all 4, j € I)

HH;— H;H;, =0, HE;—FE;H = +a;E; , HF;—F;H; = —a;F}

€+hdiHi _ e*h d;H;

e+hdi _ e—h d;

1—a;;
]_—CLZ“ —a;;— . .
S B ER =0 A0 G
k=0 i

1—a;;

1—CL2" —a;;— . .
Z(—l)k[ . ] FTREE =0 (i) (32)
k=0 qi

where hereafter we use shorthand notation e := exp(X), q =€, ¢q; := ¢% = e

It is known that U,(g) has a structure of (topological) Hopf algebra, given by

AE) =E &1+t e E S(E;) := —e Ml g, e(F;) =0
AF)=Fee" i1k,  S(F)=-Fet — «(F):=0

(for all ¢ € I') where the coproduct takes values in the A-adic completion Up( g)@’2
of the algebraic tensor square Uy(g)®* — see, e.g., [CP] (and references therein) for

details, taking into account that we adopt slightly different normalizations.

Finally, the semiclassical “limit” Uy(g) / hUi(g) of Un(g) is isomorphic, as a Hopf
algebra, to U(g) — via E; — e;, H; — h;, F; — f; (notation of §2.1.1) — hence
Un(g) is a deformation quantization of U(g'(A)), the universal enveloping algebra of
the derived algebra of the Kac-Moody Lie algebra g(A). Then the latter is endowed
with a structure of co-Poisson Hopf algebra, which makes g’'(A) into a Lie bialgebra.

Remark 3.1.2. Clearly, one can slightly modify the definition of Us(g'(A)) = Ux(g)
by allowing additional generators corresponding to the elements of the k—basis of
any vector space complement h” of b’ inside g (notation of §2.1.1), along with the
obvious, natural relations: this provides a larger (if g’ & g) quantum Hopf algebra
which is a formal quantization of Uy, (g(A)) and so endows the latter with a structure
of co-Poisson Hopf algebra, thus making g(A) into a Lie bialgebra for whom g'(A)
is then a Lie sub-bialgebra. For this larger quantum Hopf algebra one can repeat,
up to minimal changes, all what we do from now on.

3.1.3. Quantum Borel (sub)algebras and their Drinfeld double. We denote
hereafter by Uy(h), resp. Ux(b.), resp. Uy(b_), the h—adically complete subalgebra
of Un(g) generated by all the H,’, resp. the H;” and the E;’s, resp. the H;" and
the F;’s. We refer to Up(h) as quantum Cartan (sub)algebra and to Uy(b,), resp.
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Un(b_), as quantum positive, resp. negative, Borel (sub)algebra. 1t follows directly
from definitions that Uy (h), Un(b,) and Ux(b_) all are Hopf subalgebras of Uy(g) .

It is also known that the quantum Borel subalgebras are related via a skew-Hopf
pairing 7 : Up(by) @y Un(b-) —— K[[R]] given by

1

1

n(H;, Hy) = —dsa;; , n(E; Fj) =6 T a

, n(Ei, H;) = 0=n(H;,F;) (3.3)

Using this skew-Hopf pairing, one considers as in §2.3 the corresponding Drinfeld
double D (Uy(b4),Ux(b_),n); in the sequel we denote the latter by Ux(g,)-

By construction, there is a Hopf algebra epimorphism m; : Uy(g,) — Un(g) .
In order to describe it, we use the identification

Un(g,) = D(Un(b4), Un(b-),n) = Un(b-) i Un(b-)

as coalgebras, and adopt such shorthand notation as F; = E; ® 1, H = H;® 1,
H =1®H,;, F;=1®F, (for all i € I); then the projection 7, is determined by

Furthermore, Uy(g,) can be explicitly described as follows: it is the associative,
unital, topologically complete k[[R]]-algebra with generators E;, H;", H, and F;
(i e I:={1,...,n}) satisfying the relations (3.1), (3.2) and the following:

HfHf —H/H =0, HfH —H;/H' =0, H H —H;H =0
HYE; - EjHf = *ayE; ,  H7 Fj— FHT = Fa; Fj
ethdiH} _ —hdiH
e+hdi _ efhdi

In addition, the structure of (topological) Hopf algebra of Us(g,) is given by

AE)=FE®l+eM @ F | S(E):=—e"E | ¢(E):=0
AHF) =Hf®@l+1®H" S(H) :=—-H" | e(H):=0
AF)=Fee"% +1gF, | S(F) = —Fyeth4t €(Fi) =0

By construction, both Uy(b;) and Uy(b_) are Hopf subalgebras of Ux(g,): the
natural embeddings Up(b;) — Ux(g,) and Un(b_) — Ux(g,) are described by

Like for Uy(g) , if we look at the semiclassical limit of Uy (), resp. of Us(b,), resp.
of Up(b_), resp. of Uy(g,), we find U(h'(A)), resp. U(b'.(A)), resp. U(b"_(A)),
resp. U(g’D(A)) , where g’ (A) is the Manin double (see §2.1.1). This entails that
all these universal enveloping algebras also are co-Poisson Hopf algebras, whose co-
Poisson structure in the first three cases is just the restriction of that of U(g'(A));
in particular, all of h'(A), b’ (A) and b’ (A) are Lie sub-bialgebras of g'(A).

Finally, a suitably modified version of Remark 3.1.2 applies to Up(g,) as well.
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3.2. Comultiplication twistings of formal QUEA’s.

Following an idea of Reshetikhin (cf. [Re]), we shall consider special twisting
elements for Uy(g) and use them to provide a new, twisted QUEA denoted U} (g) .
Then we shall extend the same method to Us(g,) as well.

3.2.1. Comultiplication twistings of U;(g). Let us consider an (n x n)-matrix
U= (zﬂij)ije ; €M, (k[[A]]) . A straightforward check shows that the element

Fy = exp (7”1 Zn: Vi Hi ® Hj) (3:5)

ij=1

is actually a twist of Uy(g) in the sense of §2.4.2. Indeed, since Uy(h,) is com-

mutative, all computations follow from the simple fact that exp(ha)exp(hb) =

exp(h(a+0b)) for all commuting elements a and b; for instance, this implies that Fy

is invertible in Uh(gD)652 with inverse Fg' := exp (— hy i H ® Hj) . Also,
ij=1

since € is an algebra map (which is continuous in the fi—adic topology) we have that

(e®id)(Fy) = exp (h i%e(Hi)@Hj) =1

ig=1
and

(id @) (Fy) = exp (h S 4 HZ-®6(HJ-)) _

ij=1

Finally, let us check that Fy satisfies the cocycle condition. Since A is also an
algebra map (again, continuous in the h-adic topology), we have

(Fo)iz (A @ id)(Fy) = exp (h Sy Hy 0 H; @ 1) exp (h Sy A(H;) @ Hj)

i,j=1 6j=1

3,j=1

(Fa)as (id ® A) (Fy) = exp (ni Yy 1® H, @ Hj) exp (h S gy Hy A(Hj))

ig=1 ij=1

= exp(ﬁ Z@/)ij(1®Hi®Hj+H¢®Hj®1+Hi®1®Hj))

3,j=1

so that (Fy)i2 (A ®id)(Fy) = (Fu)as (id @ A)(Fy) as expected.

Therefore, the recipe in §2.4.2 endows Uj(g) with a new, “twisted” coproduct
A® = A" which gives us a new Hopf structure Uy(g)”? . An easy computation
proves that the new coproduct reads as follows on generators (for ¢ € I):

A“’)(Eg) = B, @ et Eijervijoiety o othdeHi+hY; e ¥ijajelli @ b
AY(Hy)) = H®1+ 1® H,
A(‘I')(Fe) = [, @ e MdeHemh3 jervijaiekly o o=h3 jer¥ijajelli @ By
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Using notation of §2.1.2 with R := k[[A]] and T, = d;H, for all ¢ € I, these
formulas read (for ¢ € 1)

A(\I,)(Eg) = E® e-&-hw,,(Tz) + €+h<idh/+¢i)(TZ) ® E,
AY(H)) = H®1+ 1®H,

AY(F,) = P e (e +0) @) | -nl @) o g
Similarly, the “twisted” antipode S™ := 87 is expressed by (for all £ € I)

S (Ey) = e tlidy o) @) g, o-he¥ (@)
S"(H,) = —H,

SW(F) = i@ g, o+ (g +0) (10)

and the (untwisted!) counit by E(Eg) =0, €<Hg> =0, E(Fg) =0 again (for £ € I).

In the sequel we shall use the shorter notation U (g) to denote Uy(g) ™ .

The previous formulas show that the quantum Borel subalgebras Uy(b,) and
Un(b_) are still Hopf subalgebras inside U)(g) as well. In fact, the element Fy
can also be seen as a twisting element for both Uy (b)) and Uy(b_), and then the
corresponding twisted Hopf algebras obviously sit as Hopf subalgebras inside U} (g) .

On the other hand, the previous formulas suggest a different presentation of the
quantum Borel subalgebras. Hereafter, we assume for simplicity that the Cartan
matrix A be of finite type; actually, this assumption can be lifted — indeed, we do
it in [GG2] — but it makes our discussion definitely simpler.

Namely, let us consider the “twisted generators”

2 K

EY = eI @E T = (id 4o — ")(T) viel

in UY(by): since, by Lemma 2.1.4(a) — which exploits the finiteness assump-
tion on A — the set {T}", ic; is a K[[A]]-basis of by, , we have that it gener-
ates Uy (h) = Ux(h); in particular, the k[[h]]-subalgebra generated (in topological
sense) by these twisted generators coincide with U} (b, ). Analogously, consider the
“twisted generators”

T = (id+ " — U\ (T , FY = et Viel

for UY(b_). Then the above formulas for A™ give (for all £ € I)
AYEY) = E} @1 + i @ B}
ANTYL) = Tpe @l + 10T (3.6)
AYNFY) = Ff @ e M- 4 1@ Fy

and those for €™ :=¢ and S™ yield (for all £ € 1)

e“‘”(El)I’) =0 , e(‘”(TZ’i) =0 , e(‘”(FE‘I’) =0 3.7
S(BY) = —e"hEy . S(TR) = -Tr . S(FF) = —Frethi (37)

Indeed, using these generators we may write down a complete presentation by
generators and relations of U}/ (g) and similarly also of U (b, ) and U;’(b_); in fact,
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a complete set of relations is the following (for all i,5 € I')

(id+ o — %) (@) = (d+o— o) (1)
T:i 721 = Tfi 71‘%} , T;i TJWHF - TJ\I’:F Ti\?i
LLE - BT = +pi B . TLE — EYT = +pj Ef
LCLF - FT, = —p By TLE = FYTL = —pi by
Ty _ o —hTY

EZ\P Fj\P N FJ?II EZ\I] - 5i’j ethpii/2 _ —hpii/2 <3'8)
1—ay;
1 — ay 1—ay;—k k .,
S0 e =0 40)
k=0 el pii/2
1—a;; 1
_a/i' 17aijfk k . .
O] E) R E) =0 )
k=0 eltbui

with p;; = a;((id + Y — ¢2/)(T,)) = (DA + A" (V" — \I/)A)Z € k[[h]] — where
the very first relation above makes sense because of Lemma 2.1.4(a).

Note, by the way, that the matrix P := (pm)ije[ =DA+ AT (\I/T— \II)A is also
described by p;; = ozj((id + Q/Jh,,— @bi)(Tz)) . Moreover, we notice that the matrix
P—DA= AT<\IIT— \I/)A is antisymmetric.

As we pointed out, thanks to Lemma 2.1.4(a), both sets {’.Z}ﬂ_}ie] and {ﬂ?_}ie[
are kl[[h]]-basis of by, so each one of them is enough to generate Uy (h) =
Un(h). It follows that U}(g) can be generated by either one of the smaller sets
{EZ‘I“,T;I’Jr ,F‘I’}iel or {EZ‘P T" F‘I’}iel; in both case, however, the presentation

) 1,— )

would be less good-looking than using the bigger set {Ef’ ST F ‘I’}ie .

3.2.2. Comultiplication twistings of U,(g,). Let ¥ := (wij)ijel € M, (k[[A]])
as in §3.2.1 above. Again, a direct check shows that the element

i,j=1

is actually a twist for Uy(g,) in the sense of §2.4.2. Henceforth, we have analogous
formulas for the new coproduct on generators similar to those in §3.2.1, namely

A(\I’)(Eg) _ EZ ® e+hzi,jel pijaiH; + e+hd¢H;+hZi7j61 bij aszi+ ® EZ
AY(Hf) = Hf ®1 + 1@ H
A‘“(Fg) = FQ e PdeHy —h3 2, jepvijaiely 4 o=h35; jervii ajeH} ® F,
Using notation of §2.1.2 with R :=k|[[A]] and {T;"},., thought of as a basis of b, ,
the formulas above read

A(\D(EZ) = FE® €+hd’h—/ (Ty) + 6+h (idb;""wk,) (T;)

AY(H)) = H®1+ 1® H,

—n (i, +02) 17

® E,

AY(F) = Fr®e e @) g R
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Similarly, the “twisted” antipode S := §7* and the (untwisted!) counit €™ :=
¢ are expressed by (for all ¢ € 1)

—n(id ) 1)

S (EE) - —¢ n E, e—ﬁwh,/(T[) , G(Eg) =0
SW(HE) = —HF | e(H7) =0
SM(F) = _e+ﬁwi'(T/f)F€ €+h(idbg +o ) @) ’ e(F) =0

Once more, acting again like in §3.2.1 — and again assuming for simplicity that
the Cartan matrix A be of finite type — we can consider the “twisted” generators
(in topological sense, as usual)

B = e NI T = () (1) — (1)) Viel
for Uy (b,) and

TY o= (id+ ") (1) - YT . F= MR Viel
for Uy(b_). Then the above formulas for the Hopf operations along with the com-
mutation relations in Uy (g,) = Ux(g,) — an identity of algebras! — yield a

presentation for U}/ (g,) , quite similar to that for Uy (g).

Finally, we remark that the epimorphism , : Up(g,) — Un(g) (see §3.1.3) of
(topological) Hopf algebras is also an epimorphism for the twisted Hopf structure

on both sides, i.e., it is an epimorphism 7 := 7, : Uy(g,) — Uy/(g) . Indeed,

this is a direct, easy consequence of the fact that 7r§92 maps the twist element (3.9)
of Uy (g,) onto the twist element (3.5) of U;’(g). As a matter of description, using
either presentation — the one with the E;’s, the T; 1 ’s and the F}’s or the one with
the E}"’s, the T}, ’s and the F;"’s — for both algebras, it is clear that 7] maps each
generator of Uy (g,) onto the same name generator of Uy’ (g) .

3.2.3. Twisting Borel subalgebras in Uy(g,). The formulas for the twisted
coproduct in §3.2.2 above show that the quantum Borel subalgebras Uy(by) and
Un(b_) are no longer (in general) Hopf subalgebras inside Uy (g,). Instead, let

U}f’(b+) , Tesp. U,‘f(b_) , be the complete, unital subalgebra of Uy(g,) generated by
{B:, (idy +03)(T7), 2(T7) }_vesp. by {w1(T)7), (idy ) (17). Vo

Then the same formulas yield
UY(b_) and UY(b_) are Hopf subalgebras of U} (g,) .
Clearly, the semiclassical limits of these twisted subalgebras are
Ug(m)/h O (b,) = U(6Y) and /h O¥(b) = U(6")

where (with notation of §2.1.1)

bi := Lie subalgebra of g’ (A) generated by {ei, <idh', —l—v,bil) (tj) , @/J‘l’ (ti_)}ief

b := Lie subalgebra of g’ (A) generated by {@DZ/ (tj) , (idh', +¢E/) (ti_) , fi}ie]
— where oY (tF) = Y (TF) mod hk[[h]] € b" C b/ (A) — so that a more
inspiring, self-explaining notation might be Uh(bi’) = U2 (by) .
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Note, however, that bﬁ and bY both have a larger “Cartan subalgebra” than §’,
so they cannot be correctly thought of as “twisted” Borel subalgebras inside g’D (A).

On the other hand, let us consider the complete, unital subalgebras U} (b;) and
Uy (b_) of Uy(g,) generated respectively by the “twisted generators”

EY = OO T = (idy 4 ) ) (T) — (1) Vel
and
FY o= YT R = (dy Y ) (1) = (IF) Vel

given in §3.2.2 — still assuming for simplicity that the matrix A be of finite type.
Then the above formulas for A® 8™ and ™ := e altogether yield (for all ¢ € I)

AV(E}) = B @1 + " @ B AM(TY) =T} @1 + 18T,
SW(BY) = —e "By SW(T},) = ~T},
e(Egp) =0 |, E(Tfi) =0
on the generators of U (b,) and
ANFY) = Froe - 10 FF | AT ) =T @1+ 10 T)
SU(FY) = —Fpr et SU(Ty.) = —Tp
e(F)) =0 e(Ty.) =0

(for all ¢ € I') on those of UY(b_). Altogether, these formulas show that both
Uy (by) and Uy (b_-) are Hopf subalgebras of Uy (g,) -

Now, at the semiclassical level, let us consider the elements
2y o= (idg = 00) () =0 () .t o= (idg +00) (D)= () Vel
and the Lie subalgebras
by := Lie subalgebra of g’ (A) generated by {e, j:Jr}iE]
b := Lie subalgebra of g’ (A) generated by {tl_, f}iel
Notice that the toral part of bY , that is the Lie subalgebra generated by the new

elements t, , is isomorphic to b’, thanks to Lemma 2.1.4(b).
Then one easily sees that the semiclassical limits of U}Y(b,) and U (b_) are

Ug(m)/h Ur(b,) = U(bY) and /h U (b U(6*)

so that the self-explaining notation Uy(b%) := U (b,) and Uh(bi’) = Uy (b_) can
be also adopted. All this, in turn, also reflects the fact that both b and b* are Lie
sub-bialgebras of the Lie bialgebra g’ (A) (and have the correct size for “Borel”!).

Note that, like in §3.2.1 above, from the previous observations we can also find out
a complete presentation by generators (the “twisted” ones) and relations for U,/ (b.)
and Uy (b_) , easily deduced from that for U;(g,): in comparison with those of the
corresponding untwisted quantum algebras, in these presentations the formulas for
the coproduct will read the same, while the commutation relations will be deformed
instead — just the converse of what occurs in the original presentations.
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Remark 3.2.4. Using the skew-Hopf pairing (3.3) between Uy(b,) and Ux(b_)
and the formulas in §2.1.2, one may define a “twisted” skew-Hopf pairing n* be-
tween Uy'(by) and Uy (b_), in such a way that the corresponding Drinfeld double
D(Uy(by), Uy (b-),n") is canonically isomorphic to Uy (g,)) -

Remark 3.2.5. It is worth noting that, strictly speaking, Uh(bi) cannot be thought
of as a comultiplication twisting of the isomorphic copy of Uy(by) inside Ux(g,);
indeed, this occurs because the twisting element

f\p = exp(h Ziﬂ”Hj@H])
i,5=1

that we used to deform Uy(g,) — cf. §3.2.2 — does not belong to Uj(b4).
On the other hand, when the (generalized) Cartan matrix A is of finite type (which

is equivalent to saying that A~! exists!), let us write (aj,), ey = A7! and consider
the elements T := D iy @i T (i € I'). Then by a straightforward calculation we
can re-write Fy as
Fy = exp (h S dt T ® PP (T,:)) (3.10)
k=1
and also as
Fy = exp (hzwi(T;) ®d,§1Tw_k> (3.11)
k=1

Lead by these formulas, we define Uy(b,) to be the complete, unital subalgebra
of Uy (g,,) generated by {Ei, d;*! T, (idh—l—z/zi) (Tf) v (T[)} . and Uy(b_)
ic

the one generated by {d;l T, ¢1 (Tf) , (idb+wh_) (Tf) , F; } . Then Up(by) is
ic )

a Hopf subalgebra of both Us(g,) and U (g, ), hence we shall write U;’(b_) when

we consider Uy (b_) endowed with the Hopf (sub)algebra structure induced from the

(twisted) Hopf algebra structure of Uy(g,). Now, by (3.10) and (3.11) we have

¥ (by) and Fo € Uy(b-)RU(b-)

Fo € Ur(b)RT
so that Fy can jndeed bq rightfully called “tvyisting element” for [Yh(bi) ——as it
does belong to Uy(bs)® Uy(by) and twisting Uy(b+) by it we actually get U¥ (b) .

3.3. Polynomial QUEA’s (“a la Jimbo-Lusztig”).

We shortly recall hereafter the “polynomial version” of the notion of QUEA, as
introduced by Jimbo, Lusztig and others, as well as some related material.

Let k, be the subfield of k[[A]] generated by k U { ¢*'/™ := e*"/™|meN,} ; in
particular ¢*' := e*" € k, and qfcl ;= ¢¥% €k, for all i € I. Note that k, is the
injective limit of all the fields of rational functions k(ql/ m) , but in specific cases we
shall be working with a specific bound on m, fixed from scratch, so in fact we can
adopt as ground ring just one such ring k(g"/") for a single, large enough N.

As a general matter of notation, hereafter by ¢" for any r € Q we shall always
mean ¢" = ¢/ = (ql/d)a if r=a/d with a € Z and d € N, .
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Remark 3.3.1. As a matter of fact, one could still work over subring(s) of k[[A]]
generated by elements of the set

{q¢ ::exp(hc)‘cek[[h]]} = {1+hc}c€k[[h]]}

This implies that one considers sublattices in h’ which might generate different Q-
vector spaces than b, but this makes no difference when it comes to polynomial
QUEA’s and their multiparameter versions. As a byproduct, later on we do not need
to restrict ourselves to ‘rational twists”, i.e., (toral) twists coming from ¥ € M, (Q).

3.3.2. The polynomial QUEA U,(g). We introduce the “polynomial” QUEA
for g’(A), hereafter denoted U,(g'(A)) = U,(g), as being the unital k,—subalgebra
of Uy(g) generated by {E;, K;' = e*'%i 'F, | i € I}. From this definition
and from the presentation of Uy(g) we deduce that U,(g) can be presented as the
associative, unital k,-algebra with generators F; , K and F; (i € I := {1,...,n})
and relations (for all 4, j € I)

KEK™ = ¢ "B , KEK' = q"F
K, — Kt
EiFy — FEy = 0y ————
1—a;; 1
Z(_l)k{ kaw:| Eil—aij—kEjEf = 0 (17&]) (3.12)
k=0 qi
1—(11']' 1
— Q5 a— ) )
k=0 qi

The formulas for the coproduct, antipode and counit in Uy(g) now give

AKH) =Ko K, S(K) = Kf' | (K™ =1
AF) =FoK'+1QF , S(F):=-FK; , e(F) =0

— for all ¢ € I — so that U,(g) is actually a (standard, i.e., non-topological)
Hopf subalgebra inside Up(g) ; cf. [CP], and references therein for details, taking into
account that we adopt slightly different normalizations.

3.3.3. Polynomial quantum Borel (sub)algebras and their double. We
consider now the “polynomial version” of the quantum Cartan subalgebra U, (h),
the quantum Borel subalgebras Up(b.) and the “quantum double” Ux(g,,) .

First, we define U,(h) as being the unital k,subalgebra of U,(g) generated by
{ K;' | i € I'}; thisis clearly a Hopf subalgebra of both Us(h) and U,(g) — in fact,
it coincides with Ux(h) N U,(g) — isomorphic to the group algebra over k,, with
its canonical Hopf structure, of the Abelian group Z" .

Similarly, we define U,(by), resp. U,(b_), as being the unital k,—subalgebra of
Un(g) generated by {Ei,KijEl | i€ I}, resp. by {Kiﬂ, F; ‘ i€ ]}. Then U,(b.)
is a Hopf subalgebra of both U,(by) and U,(g), coinciding with U,(by) N U,(g) -

From the presentation of U,(g) one can easily deduce a similar presentation for
U,(), Uy(by) and U,(b_) as well.
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The skew-Hopf pairing 7 : Up(b.) @y Un(b-) —— k[[A]] in §3.1.3 restricts to
a similar skew-pairing 7 : U,(by) ®y, U,(b_) —— k,; between polynomial quantum
Borel subalgebras, described by the formulas

Cdias Oij
U(Kij) =q ¢ v, W(Ei,Fj) = ﬁ ; U(Ez'>Kj) =0= U(Kij) (3.14)

Using this pairing one constructs the corresponding Drinfeld double as in §2.3, in
the sequel denoted also by U,(g,) := D(Uy(by), Uy(b-), 7).

Tracking the whole construction, one realizes that Uy (g ) naturally identifies with
the unital k,—subalgebra of Uy(g,) generated by

N e - - - :
{Ei; Ki,+:: eilez’ — eiTi, K@, — €id2Hi — eiTi : sz | = ]’}

Then U,(g,) can be presented as the associative, unital k,—algebra with generators
E;, K;+ and F; — with ¢ € I — satisfying (3.12) and (3.13), together with the
relations (for all ,j € I)

KKy = K;;K,+ , KK, = K, K, , K, K, =K, K,_
KRKR =1 =K1K | KIKT!=1=K!K!
Ki+ E; K[} = ¢"%E; | Ki+ F; KL = ¢ %" F,
E F,— FE = 5JL[_(1‘1
a4 — gq;
while coproduct, antipode and counit are described by the formulas
AE) =E®1+K, QFE , SE):=-K_lE e(E;) =0
AKH) =Kl K | S(K) =K, e(Kh) =1
AKH) =Ko Kt | S(KH) =K | (K1) =1
A(F;) ::Fi®Kif_l+l®Fi : S(F)=-FK,;_ , e(F;):=0

for all i € I — so that Uy(g,) is actually a Hopf subalgebra inside Un(g,) -
In terms of this description, and using the canonical identification

Uq(ﬂp) = D(Uq(bJr)a Uq(b—),n) = Uq(b+) Rk, Uq<bf)

as coalgebras, we have F; = F; ® 1, Kﬁl = Kiil ®1, Kli_l = 1®Kiﬂ7 F,=1®F;
(for all ¢ € I'). Moreover, the natural embeddings of U, (b, ) and U,(b_) as Hopf
subalgebras inside Uy(g,) = Uy(by) ®x, Uy(b-) are described by

Ei—E, KK ad F—F, K'-K?! Viel
Also by construction, the projection 7y : Us(g,) — Us(g) — an epimorphism
of formal Hopf algebras over k[[h]] — restricts to a Hopf k,—algebra epimorphism

mg 2 Uy(g,) — Uy(g) , which is explicitly described by
T B B, Kl KM, K2 KT F e~ F Viel (3.15)

3.3.4. Larger tori for (polynomial) QUEA’s. By definition, the “toral part”
of a (polynomial) quantum group U,(g) is its Cartan subalgebra U,(h): the latter
identifies with the group (Hopf) algebra of the Abelian group Z" , which in turn is
identified with the free Abelian group K¢ generated by the K;'s via K; — e; (the
i—th element in the canonical Z-basis of Z" ). As Z" is isomorphic to the root lattice
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Q =) 1 Za; via e; — a; , we have also an isomorphism (2 : Q SN Kqg given
by «; — K;; we then fix notation K, := 2g(«) (G ICQ) for every a € Q).

With this notation in use, note that the commutation relations between the K'’s
and the E;’s or the F}’s generalize to

K E;K;' = ¢t @), K FK;' = ¢ @) VaecQ,jel

i

where (, ) is the symmetric bilinear pairing on Q@ x Q@ introduced in §2.1.1.
Note that +(a, ;) € Z so that ¢=@) ]k[q, qil} C k,: in particular, Uy(g) is
actually defined over the smaller ring k[q, q_l] too — no need of the whole k, .

Let I'" be a sublattice of Q@ of rank n with Q C I'. For any basis {71, . .fyn}

of I', let C:= (cl])zll Z be the matrix of integers such that a; = > ¢;;; for

every i € I ={1,...,n}. Write ¢ :=|det(C)| € Ny : as it is known, it equals the
index (as a subgroup) of @ in I'; in particular, it is independent of any choice of

bases. Write C~! = (c;j)Fl’""n_- for the inverse matrix to C': then v, = >" ¢} oy

i=1,...,n; Jj=1"ij
for each i € I = {1,...,n}, where ¢j; € ¢ 'Z, forall i,j €.

We denote by U, r(h) the group algebra over k, of the lattice I, with its canonical
structure of Hopf algebra. So, each element v € I’ corresponds to an element
K, € U,r(h). Denote by Kr the subgroup of U, r(h) generated by all these K,’s.

This clearly yields a group isomorphism 2p : I' —— Kp given by v — K,
that extends the (2o given above. Moreover, as the group () embeds into I" we
have a corresponding Hopf algebra embedding U,(h) = U, o(h) —— U, r(h). In
particular, each K; = K,, is expressed by the formula K,, = [],¢; Ky’ -

Note that each of these extended quantum Cartan (sub)algebras still embeds, in
a natural way, inside Uy(h). To see it, we use again notation from §2.1.1: consider
the Q—span of the H;’s as a Q—integral form of fj, take the associated isomorphism
t bai% and look at the elements 7; := t,, = d;H; for all i« € I. By
construction, we have

K,, = K; := " = ot Viel
and more in general for a € Q written as o=, ;25 ; (with z; € Z) we have
Ka = HKZJ — HeﬁZjdiHi _ HethTj _ ethEIZjTj _ ehTa v OJEQ
j
jel jel jel

Now this picture extends to any other lattice I" in f]g = Q@ containing () . Indeed,
mapping K, — e"?r — for all ¥ € I' — provides a unique, well-defined monomor-
phism of Hopf algebras from U, r(h) to Us(h). In other words, U, r(h) canonically
identifies with the k,~subalgebra of Uy(h) generated by {K,:=e"™ ‘ yerl}.

3.3.5. Polynomial QUEA’s with larger torus. We aim now to introduce new
polynomial QUEA’s having a “larger Cartan subalgebra”, modeled on those of the
form U, r(h) presented in §3.3.4 above.

To begin with, let I' be any lattice in QQ such that ¢ C I'. Like we did for
U,(g), we define U, r(g) as being the unital k,—subalgebra of Uj(g) generated by
{ E;, K,:=¢e" | F, } rel, yel’ } . From this definition and from the presentation
of Uy(g) we deduce that U, r(g) can be presented as the associative, unital k,-
algebra with generators F;, K, and F; (i € [ := {1,...,n}, v € I') satisfying
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(3.12) and (3.13), together with the relations
K’Y/K'Y” = K’)’/+’Y” = K,y//K,y/ 5 K+'YK*'Y = 1 == K,7K+7
K’YEJ'K;I = QH%%)EJ‘ K’YF}K';l = qf(%aj)Fj
Ko, — K.}
4% —q "
hd

EiF; — FiE; =

(for all i,5 € I, ~,7,7" € I'), where ¢; := ¢% = "% as before. The formulas for
the coproduct, antipode and counit in Uy(g) then give

AE) = Ei@1+ Ky, ®E; ,  S(E)=-K'E , €kE)=0
AKT") = Ko KT S(KF'Y) = KF' e(K7') =1
AF)=FEoK'+10@F ,  S(F)=-FK, , €F)=0

(for all iel, yel') so that U, r(g) is (again) a Hopf subalgebra inside Uy(g) .

With notation of §3.3.4, let C':= (CU)Z: """"" : .
(for QQ ) from any basis of I" to the basis {al, ) ..ozn} of simple roots and set
c:= }det(C’)‘ € N; . Then from the above presentation one easily sees that U, r(g)
1s actually well-defined over the subfield k(ql/c) of ky.

With much the same method we define also quantum Borel subalgebras with
larger torus, modeled on the lattice I', hereafter denoted U, (b, ), resp. U, r(b_),
simply dropping the F;’, resp. the E;’s, from the set of generators.

Similarly, if we take as generators only the K,’s we get a Hopf k,—subalgebra of
Un(h) (hence of Uy(g) as well) that is isomorphic to U, r(h) — cf. §3.3.4 above.

Note also that definitions give U,(by) = Uy o(by) € Uy r(by) C Uy(by). More-
over, all these algebraic objects are actually well-defined over k(ql/c) as well.

Now let I'y and I~ be any two lattices in Q@ such that ¢ C Iy, and let
I, := I, x I . Then we define U, ;(g, ) as being the unital k,—subalgebra of Uy(g,)
generated by {EZ-, K, = e | F ‘ rel, vy ell } . From the presentation of
Un(g,) we deduce that U, 1, (g) can be presented as the associative, unital k,—algebra
with generators F;, K,, and F; (i € I := {1,...,n}, v+ € I} ) satisfying the
relations (3.12) and (3.13), together with the following:

Ky K, = K, K,,

" be the matrix of change of Q-basis

ngng - ngﬁ-vg = Kvg’:Kv’i ) Ko Koyy = 1 = Ky Kooy
KViEjK’;il = qJF(’Hnaj)Ej , KHFJ'Kw;l = q*(w,a]‘)pj
K+—K!
E,F;,— F.E; = 6;; ———
’ ’ Togi—q!

(for all 4,5 € I, va,7%, 71 € IL), where o is the copy of a; (€ Q) inside Iy and

gi = q% = "% as usual. Moreover, coproduct, antipode and counit of Us(g,) on
these generators read
AE) = E@l+ K, ®FE , SE)=-K!E , €FE)=0
AK) = Kle ks o S(KD) = KD, e(K) =1
AF) = FoK+10F , S(F)=-FK,, «F)=0

(for all i€l, v €Iy ). Thus Uy (g,) is also a Hopf subalgebra inside Ux(g,)
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Fix again two lattices I} and I_ in Q@ such that @@ C I'y. As U, (by) C
Un(bs), the skew-pairing 7 : Us(by) ®un) Un(b—) —— Kk[[R]] restricts to a similar
skew-Hopf pairing 7 : Uy (by) @k, Ugr (b—-) —— k,, which in turn extends the
one on U,(by) @y, Ug(b-) = Uy o(by) ®k, Uy q(b-); the formulas

0ij
(K%,K ) (”’7_) ) W(Ei,Fj) = ﬁ ) U(EiaKj) =0= U(Kz’>Fj)
uniquely determines this pairing. Using the latter, we construct the corresponding
Drinfeld double D (U, r, (b1),U,r (b-),n) as in §2.3. It follows by construction
that this double coincides with the Hopf algebra U, ;(g,,) considered right above.

Again by construction, we also have that the projection g : Us(g,) — Ux(g)
yields by restriction a Hopf k,—algebra epimorphism 7y : U, (g,) — Uyrn(9) .
where I, =1, +1_ (g QQ) whose explicit description is obvious.

An alternative method to construct these QUEA’s with larger toral part goes as
follows. Fix a lattice I in Q@ such that ) C I', and consider the associated Hopf
algebra U, () as in §3.3.4 and the canonical embedding U, () = U, o(h) C U, r(h).
The natural (adjoint) action of U,(h) onto U,(g) extends (uniquely) to a U, r(h)-
action -: U, r(h) x U,(g) — U,(g) given (for all i € I and v € I') by

K, E=¢9E | K -F=¢"9F K K=K,
that makes U,(g) into a U, r(h)-module algebra. Then we can consider the Hopf
algebra U, r(h) x U,(g) given by the smash product of U, r(h) and U,(g): the
underlying vector space is just Uy r(h) ®x, Uq(g) , the coalgebra structure is the one

given by the tensor product of the corresponding coalgebras, and the product is
given by the formula

(h X .CE) (k’ X y) = hk’(l) X (S(k’(g)) . 33) Yy (3.16)
for all h,k € U,r(h), z,y € U,(g). Since U,r(h) contains U,(h) as a Hopf
subalgebra, it follows that U, (h) itself is a right U,(h)-module Hopf algebra with
respect to the adjoint action. Under these conditions, it is easy to see that the smash

product U, r(h) x U,(g) maps onto a Hopf algebra structure on the k,~module
U,r(h) ® U,(g), which we can denote by U, r(h) x U,(g), see [Len, Theorem
Uq(h) Uq(h)

2.8]. Finally, tracking the whole construction one easily sees that this Hopf algebra
U,r(h) x U,(g) actually coincides with the Hopf algebra U, r(g) considered above.
Uq(h)

With the same approach, one can also realize U, (by), resp. U, p(b_), as Hopf

algebra structure on U, . (h) ® Uy(by), resp. Uy (h) ® U,(g,), obtained as quo-
Ua(h) Uq(6)@U4(b)
tient of the smash product Hopf algebra Uy (h) x Uy(by), resp. Uy (h) x Uy(g,) -

3.4. Comultiplication twistings of polynomial QUEA’s (=TwQUEA’s).
We introduce now the polynomial version of twisted QUEA’s, or twisted polyno-
mial QUEA’s, just by matching what we did in §3.3 and §3.2.

3.4.1. Comultiplication twistings of U,(g). Let k, := lim k(ql/m) ( k[[h )
meN

and U,(g) be as in §3.3. Fix also an (n x n)-matrix ¥ := (wij>ijel € M, (k[[r]) a

in §3.2.1, but now we make the stronger assumption that ¥ := (¢ij)ijel e M, (Q)
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Via the recipe in §3.2.1, we pick the corresponding twisted formal QUEA U} (g) .
Then inside the latter we consider the unital k,—subalgebra U,(g), generated by
{E;, K\ i=ethditli—ehTi [ | iel}, for which we have an explicit presentation.
On the other hand, the new, twisted Hopf structure of U} (g) on the generators of
U,(g) — with notation of §2.1.2 and §3.3.4 — reads

ANEy) = E® Kip_ (o) + Kiarv) © Be = Br® Koo + K00 © By
AV (KEY) = K o K&

A(Fy) = Fr @ K_asv_ o) + Koy @ Ft = FE® K_ (- + K_i+ ® Iy
S (Ef) = — K iy + )00 Be Koy_(ap) = _K—ag—g‘j By K—C[ ) G(Ef) =0
S(q/)(szl) _ KEFl ’ €(K€i1) 1
SU(Fy) = —Kipyan Fr Kvag vy = Koo FLR -+ €(F7) =0

(for all £ € I'). This shows explicitly that
U,(g) is a Hopf subalgebra (over k, ) inside U} (g) if and only if ¢4(Q) C Q.

In order to settle this point, we pick the sublattice in Q@ given by Q¥ :=
Q+ Vi(Q) + ¥_(Q), and for each lattice I in Q) containing Q¥ we consider
the corresponding polynomial QUEA, namely U, r(g) as in §3.3.5. Then U, r(g) is
naturally embedded inside Uy(g), and repeating the previous analysis we see that

U,.r(g) is a Hopf subalgebra (over k, ) inside U, (g) . (3.17)

To sum up, the previous analysis allows us to give the following definition:

Definition 3.4.2. We denote by U ~(g) the Hopf algebra defined in (3.17), whose
Hopf structure is given by restriction from U;'(g). We call any such Hopf algebra
twisted polynomial QUEA — or TwQUEA, in short — saying it is obtained from
U,r(g) by twisting (although, strictly speaking, this is not entirely correct).

Remark 3.4.3. The multiparameter quantum groups U (g) introduced by Costan-
tini and Varagnolo in [CV1, CV2, CV3] are a particular case of a twisted polynomial
QUEA, obtained by taking 2¢_ = —21, = ¢. More precisely, they fix assump-
tions on ¢ — hence on ¥ — that guarantee that it is enough to take, once and for
all, the “larger torus” modeled on the lattice I' = P.

3.4.4. Comultiplication twistings of Uy(g,). Let again k, := lim k(¢'/™) and
meN

U= (77Z)ij)ij€] € Mn(@) be as in §3.4.1. Following §3.2.2, we pick the twisted

formal QUEA Uy (g,) : inside the latter, we pick the unital k,—subalgebra U,(g,)

of §3.3.3, for which we know an explicit presentation.

Since we are working with a double copy of b, hence also with Q(Q x Q) =
QQ x QQ, we write Q+ to mean Q4 := @ x {0} and Q- := {0} x @, and also

— for every 7 € QQ — we set vy := (7,0) and v_ := (0,7) inside QQ x QQ.
Besides this, hereafter the notation is that of §2.1.2 and §3.3.4.
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The twisted Hopf structure of Uy(g,) on the generators of Uy(g,) yields
(¥) — _
AN(E) = B @ Koy ap) T Koarpnan) © Be = Be@ Ko + Koprigr © B
AY(KFY) = Ko K
A(\I})(Fg) = Fg X K—(id—i—lpf)(oc[i) + K_w+(a;) ® FK - FZ ® K_QZ_C[_ + K_Cé:_ ® FK

SM(Eé’) - _K—(idf,+w+)(a2')Eé K_w,(a;) - —K_a;_ga E, K_Cé—77 3 G(Ee) =0
SU(K;) = Kb, e(K;') =1
SU(F) = =Ky oty FIE o, v yor) = Kir, Felyomyee » e(Fr) =0

for all £ € I. From the formulas above we see that
Uy(g,) is a Hopf subalgebra (over k, ) in Uy (g,) if and only if 14 (Q+) C Q+ .

To fix this issue, we consider the sublattices Q(,) := (id + ¥1)(Q+) + ¥+(Q%)
inside Q@ x QQ and their sum QY := ‘(P+) + QE{) ; then for each lattice I} inside
QR x QQ containing ()Y we consider the associated polynomial QUEA U, 1,(g,) as
in §3.3.5. By construction U, r,(g,) sits inside Uy(g, ), and repeating the previous
analysis we find that

Uy (g,) is a Hopf subalgebra (over k, ) inside Uy (g,,) - (3.18)
At the end of the day, we are allowed to give the following definition:

Definition 3.4.5. We denote by U’ (g,) the Hopf algebra given in (3.18), whose
Hopf structure is given by restriction from U} (g,). We call any such Hopf algebra,
twisted polynomial QUEA — or TwQUEA, in short — saying it is obtained from
Uqr(g,) by twisting (although, strictly speaking, this is not entirely correct).

Remark 3.4.6. It follows by construction that the epimorphism of twisted formal
QUEA’s 7y := 7y : Uy(g,) — Uy(g) (cf. §3.2.2) restricts to an epimorphism
my =gt Uln(g,) — USr(g) of twisted polynomial QUEA’s, where I" is the
image of I, for the projection of Q(Q x @) onto Q@ mapping a4 € Q+ onto a € Q.

3.4.7. Comultiplication twistings of U,(b.). We still work with ¥ := (wij)i jer€
M,(Q) asin §3.4.1. Using it, we define suitable “comultiplication twistings” of the
quantum Borel algebras U, (b..) as Hopf subalgebras inside U, (g) and inside U; (g ,,) -

First we pick in Q@ the sublattices QY = (id + ¥+)(Q) + ¢¥+(Q), and for any
lattice I'y in QQ) containing ()} we consider I', := Iy + I and the corresponding
U,r.(g), as in §3.4.1; inside the latter, we consider the (polynomial) quantum Borel
(or “Borel-like”) subalgebra U, (by). Now, the formulas for the twisted Hopf
structure of U, r.(g) show that the subalgebra U, . (by) is also a Hopf subalgebra
in U*r, (g) . Therefore U, , (b+) with the twisted coproduct, antipode and counit is
a new Hopf algebra, that we denote by UYr (by), and call (polynomial) “twisted”
quantum Borel subalgebra.

Note also that both U} (by) and Uy (b_) are Hopf subalgebras in U . (g) .

Second, we pick in Q(Q x Q) the sublattices Q. := (id + ¥+)(Q+) + ¥=(Q=)
and for any lattice I in Q(Q x Q) containing szi) we consider [, 1= I'4)+1 (-
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and the corresponding (double) quantum group Uq‘I’F( )( g,); inside the latter, we fix
the (polynomial) quantum Borel subalgebra Usr (bi) Then the explicit formulas

for the (twisted) Hopf structure of Ugr, >( g,) show that
UYp  (b1) is a Hopf subalgebra of Upr, (gD).

q7F(i
However, a major drawback of both the subalgebras U, (b1) — inside U’ (g)

— and Ujp | (b1) — inside Upr, )(gD) — is that they have too large a toral part

to be rightfully called “(polynomial) quantum Borel (sub)algebras”. We tackle and
settle this problem in §3.4.8 hereafter.

3.4.8. Twisted generators for polynomlal twisted QUEA S. Let us consider
in Q(Q x Q) the elements 7.° := (1d+wi)( E) =Yz (af) = aF + = (iel)
— cf. §2.1.2 — and the sublattices Q[ with Z-basis {Ti ‘ vel } .

Let Q) = (id + ¥4)(Q+) + ¥+(Q+) and I be as in §3.4.7 above; then Qi
is a sublattice in the lattice Q) , hence in I{4) as well. Inside the (twisted) Borel

QUEA U} F(i>(b:|:) we consider the elements
v._ _ oL _
B =K y or)Bi= K—C‘ Bi s Ky = Kiarpoh)-v-or) = Ka af + ¢ =G

v, v
Fr=mRy onhli =Ko iy K= Ky o) -paeh) = Barre ¢,

(for all i € I') — hereafter called “twisted generators” — and then define U; (by),

resp. U;’(b_) , as being the unital k,—subalgebra of U ., (b ) generated by the E}’s

ES)
and the (K;’Jr) s, resp. by the F'’s and the (K‘I’ )il
More in general, for any other sublattice M, containing Q}, we define U o (b1),
resp. Uy, (b_), as the unital k,—subalgebra of U, ML +QY, (bi) generated by the
E’s and the K, ’s, resp. by the F;"’s and the K,,_’s, W11:h z €l and y €M, .

The key fact is that the (twisted) Hopf structure of U7, Qr, (bi) yields

ANEY) = By @1+ K, +oB , SY(E)=-K_+E . €E)=0
A(W><K ) = K. @ Ky, S(\P)( ) - K_l =Koy, €<Kyi) =1
AYF) =F'@K_-+1®F' , SY(F))=-F'K, -, €F') =0

forall £e1. Altogether, these formulas show that

in(bi) is a Hopf subalgebra of U/ +Qf’i)<bi) :

It is clear from definitions that if M, 2 @, then we have U;’ ay (bs) =
Uln.(by) — cf. §3.4.7. Thus U;M (by) = U/, (by) can be generated by either

set of generators {Ei’Ky+}z€I yoen, OF {EY Ky by yoen, o While U;M_(b,) =
Uy (b2) can be generated by either {F;, K,_ }iel7y_€M_ or {F" K, }iel,y_eM_ :

An entirely similar remark applies if we use the E’s, K,,’s and F}"’s altogether
as algebra generators of Uq‘f’n*)(gD) for Iy == I'4)+ Iy with T4 Qg’i)

Of course we can repeat this analysis for quantum Borel subalgebras inside U,’r(g)
— for suitable lattices I" in Q) — and introduce “twisted” algebra generators for
them, that will also be, altogether, (twisted) algebra generators of U *r(g) itself.
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Now, when we use the “twisted” generators, the above shows that the formulas
for the (twisted) coproduct, antipode and counit look exactly like those for the gen-
erators of the untwisted Borel subalgebras. In other words, for these quantum Borel
subalgebras twisting the algebra generators (as above) we end up with untwisted
formulas for the coalgebra and antipodal structure. This remark applies to both
cases: twisted Borel subalgebras (and their generators) inside a double quantum
group U, (g,) and embedded inside a (“single”) quantum group U'r(g) .

In all these new presentations, the new (twisted) generators of our Borel algebras
(inside U (g,) and inside U'r(g)) enjoy new “twisted” relations. The strik-
ing fact is that in these presentations the “twisted” relations happen to present a
well precise form, commonly formalized via the notion of “multiparameter quantum
group”: we shall investigate this in detail in the forthcoming sections.

3.4.9. Comultiplication twistings for polynomial TwQUEA’s. With nota-
tion as above, let ¥ € M, (Q) be as in §3.4.1, and let U -(g) be the corresponding
polynomial TwQUEA (for some lattice I") over g’(A). From its very construction,
it follows that the comultiplication twisting procedure can be iterated: namely, for
U € M,(Q) we can define the Hopf algebra ( q‘fp(g))q/ just reproducing the con-
struction of U *r(g) but with W’ replacing ¥ and U, *(g) replacing U, r(g) -

It is then clear that ( ;’F(g))q’/ = q‘f’lf‘l’/(g) , as this equality holds for the
TwQUEA U} (g) . Therefore, all these new Hopf algebras will still be called TwQUEA's.

The same construction is possible, and similar remarks apply, for TwQUEA’s
associated with g’ (A), b’ (A) and b’ (A).

4. MULTIPARAMETER QUANTUM GROUPS

We introduce now the multiparameter QUEA Uq(g,), or MpQUEA for short,
associated with a suitable matrix of parameters. Hereafter, F will be a field of
characteristic zero, and F* :=F \ {0} .

4.1. Defining multiparameter QUEA’s (=MpQUEA’s).
ijer € M, (F), with 4,j€1, i#j, and

a generalized, symmetrisable Cartan matrix A := (aij)ijel’ with the additional
compatibility assumption that ¢ # 1 for k = 1,...,max(1—a;;,2). Moreover,
when q is of Cartan type we assume that its associated (generalized, symmetrisable)
Cartan matrix — cf. §2.2.1 — coincides with the matrix A mentioned above, and we
fix scalars ¢; € F (i€ [) as in §2.2.1. Finally, like in §2.1, we denote by g = g(A)

the unique Kac-Moody algebra associated with A, by g’ its derived subalgebra, etc.

We fix a multiparameter matrix q := (qij)

Definition 4.1.1. (cf. [HPR]) We denote by Uq(g,) the unital associative algebra
over F with generators E;, F;, K', LF¥' (for all i € I') and relations

a)  KPLT = LK KPKF =1 =LFLT
b) KUK = KPKF O LU = LPLE

) KiE;K' = g;E LiE;L;" = q;' E;

) KiFKT =g F . LiFLT = ¢ F

—~

Y

A~~~

c
d
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K: — L.
Ei, Fj] = 0i i ————
©) B = 00—
l—aij
]-_a’L” K —Q;5— . .
0 e () s R =0 i)
k=0 qii
1—a;;
1_ai' 5 —aij—k . .
@ X)) Rt EE =0 )
k=0 Qi

Moreover, Uq(g,) is a Hopf algebra with coproduct, counit and antipode deter-
mined for all 7,7 € I by

AE) = EE®1+ K, ®F; | eE) =0, S(E) = —K;'E;

A(F;) = FL+1®F | e(F;) =0, S(F) = —FL;™
AKT) = K o K (K =1, SK1) =K
ALF) = L @ L e(Lif)=1, S(F) =17

Finally, for later use we introduce also, for every A = > ., \a; € @, the
notation K := [, Ki)‘i and Ly :=[[.o; L.

Remark 4.1.2. Assume that ¢ € F* is not a root of unity and fix the g—canonical
multiparameter ¢ := (qij = qdi“ij)i jel like in (2.5) above; then we can define the cor-
responding MpQUEA as above, now denoted Uq(g,) - The celebrated one-parameter
quantum group U,(g) defined by Jimbo and Lusztig is (up to a minimal change of
generators in its presentation, irrelevant for what follows) nothing but the quotient
of our Ug(g,) by the (Hopf) ideal generated by {L; — K; ' ‘ i=1,...,n}

As a matter of fact, most constructions usually carried on for U,(g) actually
makes sense and apply the same to Uq(g,) as well.

We introduce then the so-called “quantum Borel / nilpotent / Cartan subalgebras”
of any MpQUEA, say Uq(g,), as follows:

Definition 4.1.3. Given q := (Qij)i,jel and Uq(g,) as in §4.1, we define U(;) =
Ugh,), UFO, U0, Us = Ugn'), Uf = Uglny), US := Ug(b ) and
Ug = Uq(by) to be the k-subalgebras of Uq(g, ) respectively generated as

Ug = (KELLE) U = (K Ut = (L)

a icl

el el

qa tiiel

- . < ._ *1 > +1 o
Uy = (F)._,, US:= <F L >i€1, Uz = <Ki 7Ei>z‘el’ Ul = (E

We shall refer to UqS and UqZ as to the positive and negative multiparameter
quantum Borel (sub)algebras, and U}, US? and U;* as to the global, positive and
negative multiparameter Cartan (sub)algebras.

For later use, we also define G,, to be the free Abelian group of rank n := |I|, that
we will write in multiplicative notation, and we denote by Uq(h) the group algebra
of G, over F — which, in spite of notation, is independent of q. Letting {G},,
be a Z-basis of G, , we have natural Hopf algebra isomorphisms of Uq(h) with UF 0
and with U? given by GH s K and GF' v L' respectively.
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Remarks 4.1.4.
a et 9= 1(qi),_ .. e a multiparameter matrix or Cartan type. Following
L J1<H<nb 1ti ix of C Followi
e, dection we define the following braided vector spaces:
[He, Section 4], defi he foll g braided p
(i) Vg with F-basis {E},..., E,} and braiding given by

c(E;® E;) = q;; E; ® E; forall 1 <i,j<n,
(i)  Vp with F-basis {F] = L' Fy,..., F, = L7'F,} and braiding given by
o(F} @ Fj) = q; F] ® F] forall 1 <i,j <mn.

Then we have the corresponding Nichols algebras — of diagonal type — B(VE)
and B(VF), as well as their bosonizations over the group [ :=Z":

H(Ve) = B(Vp) #F[I]  and  H(Vp) = B(Vp) #F[[]

Directly from definitions, one has canonical identifications Uy = B(Vp) and
Ul = B(Vg) (as UF0-comodule algebras), and UZ = H(Vr) and Ug = H(VE)
as Hopf algebras, qu >~ F[I" x I'] as Hopf algebras, etc. For more details on the
relation with Nichols algebras and bosonization see [An|, [Gar|, [He].

(b) Tt is also known, see for example [AA], that the multiparameter quantum
group Uqg(g,) can be realized as a Drinfeld double of US = H(Vp) and UZ =
H(VE) using the Hopf pairing given in Proposition 4.1.5 below. Thus, in the end,
Uq(g,) is a Drinfeld double of bosonizations of Nichols algebras of diagonal type.

From [He, Proposition 4.3] — see also [HPR, Theorem 20] and [AY, Proposition
2.4] — we recall the following:

Proposition 4.1.5.
With the assumptions above, assume in addition that q; # 1 for all indices i € I .
Then there exists a unique skew-Hopf pairing n : qu & Uq§ —— F such that
F
— i

forall 1 <i,5 <n. It enjoys the following property: for every E € Ugf, FeUyg,
and every Laurent monomials K in the K;’s and L in the L;’s, we have

NEK,FL) = n(E,F)n(K,L) O

For later use, we also single out the following result, whose proof is trivial:

Lemma 4.1.6. Keep notation as above. There exists a unique Hopf F-algebra
epimorphism p: Uq(g,) — Uq(h) given by

p(E) =0=0pF) ., p(K") =G =pL) Viel. O

4.2. Multiplication twistings of MpQUEA’s.

We want to perform on the Hopf algebras Uq(g, ) a multiplication twisting process,
via special types of 2—cocycles, like in §2.4.1, following [AST], [DT] and [Mo].
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4.2.1. Special 2—cocycles of Uq(g,). Let q := (qij)ijel € M,(F) be a multi-

parameter, and let x : G, X G, — F* be any bicharacter of the Abelian group
G, . Then x is automatically a 2-cocycle of G, ; as such, it induces (by F-linear
extension) a normalized 2-cocycle of the group algebra of G, over F, that is Uq(h),
cf. Definition 4.1.3: we denote this 2—cocycle of Uq(h) by x again. Now, composing
X : Uq(h) ® Uy(h) —— F with p®? — where p: Uqy(g,) — Uq(h) is the Hopf
F—algebra epimorphism in Lemma 4.1.6 — we get a (normalized) bimultiplicative
Hopf 2-cocycle oy := x 0 p®* of Uq(g,,). This leads us to the following definition:

Definition 4.2.2. We denote by gg(Uq(gD) ,F) the set of all (normalized, bimul-
tiplicative) Hopf 2—cocycles of Uq(g,,) of the form o, (as defined above) for some
bicharacter y of the Abelian group G, . We call these “toral” 2—cocycles of Uq(g,) -

Note, in particular, that Z, (Uq( 9,) ,IF) is independent of the multiparameter q .

By construction, for every o, € Z, (Uq(gD) ,F) one has
o (B, Y) =0, o (X, F;) =0 VY XecUyg,), t,jel
UX(ZZ(,Z]’.’) = x(G;,Gj) V Zi,Z] € {Ki,Li}ier , 4,j €1
in particular, the 2-cocycle o, is determined uniquely by the values of x on the

Abelian group G, . Conversely, each (normalized) bimultiplicative Hopf 2—cocycle o
of Uq(g,,) such that

o(E,Y)=0 , oX,F)=0 VY, XeclUyg,), i,jel
O'(KZ',K]') = O'(Ki,Lj> = O'(LZ',KJ‘) = O'(LZ‘,LJ') V Z,j 6]

is necessarily of the form o = o, , as it is uniquely determined by its values on the

(4.1)

torus, hence o belongs to Z, (Uq( g9,) ,]F) . The corresponding bicharacter y is then
defined by the conditions (for all i,57 € I')

X(G;,G)) = o(K; , K;) (= 0(K;,Lj) = o(Li, K;) = o(L;, Ly))

Therefore, (4.1) are the conditions that characterize intrinsically those (normalized,
bimultiplicative) Hopf 2—cocycles of Uq(g,,) that belong to Z5(Uqg(g,) . F) .

4.2.3. Deforming MpQUEAs via 2—cocycles. For any multiparameter q :=

(qij)ijel € M,(F) we fix the notation Ky := [[., KZ-’\" and Ly = [],c; LN for

every A=) . Na; € Q; similarly, we shall also write g, = [] qi‘;i”j for each
ijel

po=> cr it and v =Y. vy in Q.

If q is of Cartan type, we fix a special element ¢ := ¢; € F* as explained in
§2.2.1 (so that ¢; = ¢2% for all i € I); accordingly, we have also a well-defined
multiparameter of canonical type, namely q := (qdi‘“j)ij6 ;-

Finally, Uq(g,) will be the MpQUEA associated with q as in Definition 4.1.1;
similarly, we have also Ug(g,) when q is of Cartan type.

The key result that we shall rely upon in the sequel is the following:

Theorem 4.2.4. (¢f. [LHR, Theorem 4.5] and [HPR, Theorem 28])

(a) If any two multiparameters are ~—equivalent (notation as in §2.2.2), then
their associated MpQUEA’s are multiplicative twistings of each other. In detail, if



32 G. A. GARCIA , F. GAVARINI

/

q = (qgj )Z,vjej,q” ::N(q% )i,jel € M, (F) are multiparameters such that q' ~ q",
then there exists o € Z5(Uq/(g,),F) such that Uq(g,) = (Uq/(gD))a .

(b) Any MpQUEA with multiparameter of Cartan type is a multiplicative twisting
of a MpQUEA with canonical multiparameter. In detail, if q := (qij)ijd € M, (F)
is a multiparameter of Cartan type, with associated q € F* and Cartan matriz A =
(aij)z‘jel , and corresponding multiparameter of canonical type q = (qdi‘“j)ijg,
then there ezists o € ng(Uq(gD) JF) such that Uq(g,) = (Us(g,)), -

(¢) Similar results hold true for quantum Borel (sub)MpQUEA’s as well.

Proof. For claim (a), by Lemma 2.2.3(a) there exists v = (Vij)l.jel € M, (F) such

5= Vi Qi yj’il for all 4,7 € I. Clearly there exists a

that q” = v.q’, that is, ¢
unique bicharacter x, of the Abelian group G, defined by x,(G;,G;) := v;; (for
i,j € I): then, like in §4.2.1, this x, defines a unique o =o,, € §Q(Uq/(gD) ,IE') )
Through a rather straightforward calculation — much like in [LHR] and [HPR] —

one may see that Ugr(g,) = (Uq/(gD))g , as claimed; for the sake of completeness,
we include below most of the computations. Asin §2.4.1, we write a-,b := m(a,b) .

First, we show that the generators E;, F;, K;-', Li' (for all i € I) of Ug(g,)
do satisfy the relations that define Ugr(g,) when computed with this new product.

In general, the product of any two group-like elements remains unchanged under
a multiplicative twist by a 2—cocycle, for

goh =a(g,h)gho (g,h) = e(g)e(h)gh = gh  forall g,h € G(Uqg(g,)) -
Since the elements Kl-il , L,L»il are group-like, for all ¢ € I, we have

() Ko L7'=L7"oK" , KT KT =1=L LT
b) K., Kt =K, K L, L = 17, L
1 o J J o ) ) ) o 7 j o 7

In order to compute the remaining relations, one has to keep in mind formulas
involving the coproduct and powers of the generators, for instance

ZZO 11 4:0 ¥
(2) ( 1k S k ¢ k—£ -0 =35 - J
AP(EF) =) / | ETTK@F K@ L
£=0 j=0 a; /g
F ek ¢ , . A
sty £, (1 e
¢=0 j=0 4 9

>
3
5

[

Bl 0 o .
( e) < > (Efe K!E,® B K! @ B/ +
£=0 j=0 i J i

+ BV KK, @B VK/B, @ B + EF'K! K, @ B, 'K/ K, ® E1E>
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for all 4,5 € I and all k> 0. Here A® := (A®id)o A = (id®A)o A. So, for
the relations in (¢ ) we have

K; w Ej = o(K;,E;) Kio ' (Ki,1) + o(K;, K;) K; Ejo™ ' (K;, 1) +
+ o(Ki, Kj)) K; Kjo ' (Ki, E;) = o(Ki, K;) Ki E; = v K, Ej
(KiEj) -« K" = o(K; B, K; ') KK o' (K, K7 +
+o(K K;, K7 K By K7 o (K K1) +
+o(Ki K, KK, K; K o (K, E;, K;') =
= o(K;K;, K] ) K, E; K7 o Y (K, K1) =
= o(K;, K[ K B, K7 = v KB, KT = v g B
for all 7,7 € I. Therefore,
K 5 By o K7 = vy (K By) o K71 = vijdvj;
Similarly, we have
Li ¢ Bj o Li' = (Li v Ej) -« L' = vy (LiEj) - L' = vy LiE; L7 =
= vy (45) Vi By = (vidhvs') B = () E;S
The computation for relation (d) is entirely similar: for all 4,j € I we have
K Fy = o(K;, F) K; Ljo ™ (K, Ly) + o(K;, 1) K; Fyo~ ' (K;, Ly) +
+ o(Ki, 1) Kjo (K, Fy) = v;' K; F
(KiFy) w K;'= o(K; F;, K7 K Ly Ko ' (K Ly, K1) +
+o(Ki, K7 K Fj K o Y (K Ly, K1) +
+ o(K, K K K, o ' (K Fy, K7Y)
= o(Ki\, K;)K Fy K7 o (K Ly, KY) =
= o(Lj, K) K F K7 = vp K Fy K7 = i (d) 7 F

J
whence, we obtain

Ko Fy o K = V5 (K)o K = v (ag) ™ v By = (vt Fy = (ai) " F)
Also, we have that L; -, Fj -5 L' = qj; Fj -
As to relation (e), it is enough to note that E; -, F; = E; F;, F; -« E; = F; E;
and ¢, = q; for all ¢,j € I. Thus, for instance,
E; - F; = o(E;, F;)L; J_l(l,Lj) + o(K;, F)) E; L; 0_1(1,Lj)+
+ o(Ki, F}) K; Lyo (B, L) + o(Ei, 1) Fjo (1, L;) +
+ o(K;, 1) E; Fjo ' (1,L;) + o(K;, 1) K; Fjo ' (E;, Lj) +
+ (B, 1) o (1, F}) + o(K;, 1) E; 0 ' (1, F)) +
+ o(K;, 1) K;0 (B, F}) = E; F;

hence Ej -, F;—Fj o By = [Ey, Fj] = 65 q; ](j}_ff = 0 4 Iéf,i/,_ji forall ,j € 1.
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Finally, we check that the assertion holds for the quantum Serre relations; we
prove only (f), since ( g) is completely analogous. We have to verify the equality

1—a;;
1_az k o(l—aj;— . . .
T () @O @ B B B =0 (i£)
k=0 a;

where Ezf"k denotes the k—th power with respect to the twisted product. A routine

k-1
check yields that E,"* = o(K;, K;)---o(K}™", K;) EF = l/'(' ’ )Ez for all k > 0.

(22

Thus for all 7 # j the left-hand side of (f ) above, that we denote by & , now reads

1—ay;

1_@.. k . i —
k k o(1—a;;—k ok
&= 3 o (1) @ @l E By B
k=0 0
g k[ 1—a; *) & Kok (975 (5Y) L (—ay—k) k
7 — —a;;—

= (-1) ( k j) (gi)\? Vij (qgj) Vii Vi Syt E; ! o By o B =

k=0 9

aij(ag—1) 1% p (1—ai; NG Nk bk aiktRi—k L (1—ai—k) k
= v Z(—l) < I > (@) (4i5)" vis vy vig” E; Y 75 Ej - E;

k=0 i

But since B . E; = Vi(jl*a”*k) R E; and

1—a;—k
(B 5) o BF =

l-aij—k ¢ k s
Y S (B K Ky B K By B Ko (B ) =

(=0 r=0 s=0t=0
1—a;;—k 1—aij—k 1—ai;—k)k 1—a;j—k
(R G 1) B b = e gl g
.. 2_ s — P Qs —
we have v} Vj_ik VZ-”Hk kE’i(1 @ik E; w EF = I/ilj 0 E’i(1 @is=H) E; EF and so
M l_aij 1_aij k 1 - az] / (k> 1 \k (l—ai]‘—k) k
® = Vij Z (1) i () (q;;)" E; E;Ef =0
k=0 4

This proves that there is a Hopf algebra epimorphism p : Ugr(g,) — (Uq/( gD))U
which is defined as the identity on the generators. Using the same relation among
the multiparameters q' and q” but written as ¢;; = Vi;1 qi; Vji, one may define
a multiplicative 2-cocycle o,-1 on Ugr(g,) and, via the same computations, one
gets an epimorphism t: Uy (g,) —— (an(gD))U _, - Also, one may consider the

multiplicative 2—cocycle o,, on (Uqu (g D)) ) and performing the twisting procedure

one again yields ((an(gD))U 4) = (UQ”(QD))U vo, = Uqr(8,,) - On the other
hand, since ¢ is an epimorphism oneymay push forward the cocycle deformation by o
and obtain an epimorphism ¢, : (Uy(g,)), —— ((Uq”(gf’»%—l)g,, =Uqg(g,)-
Composing the latter with p, one obtains a sequence of epimorphisms
P to
Uq”(gp) — (Uq/(gp>)a—> Uq"(gp)

whose composition acts as the identity on the generators, so that ¢, op = id.
Similarly, one proves that pot, =id, so that p is actually an isomorphism.

Claim (b) is a special case of (a), with @' :=q and " :=q.

Claim (¢) is treated like the previous ones. O
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Remark 4.2.5. Our (sketch of) proof of Theorem 4.2.4 above mimics that of Theo-
rem 4.5 in [LHR]: however, in the latter the very existence of a 2-cocycle as required
is, to the best of our understanding, not well proved. The proof of Theorem 28 in
[HPR] is along the same lines, but the 2-cocycle used there is that of Lemma 2.2.3(¢)
— hence needs the existence of suitable square roots.

Corollary 4.2.6. If q = (qij)ijel € M, (F) is a multiparameter, v = (Vz'j)ijel €

M, (F) and oy, € Z~2(Uq(gD) ,F) s the unique element of Z~2(Uq(gD) JF) such
that oy, (K, K;) =v,; for i,j € I (as in the proof of Theorem 4.2.4 above), then

Uval(8,) = (Ualgy,)),,
An entirely similar claim holds true for Borel (sub)MpQUEA’s as well.

Proof. By Lemma 2.2.3(a) we know that q ~ v.q; then Theorem 4.2.4(a) above
applies, and the claim follows at once. U

We still need some extra notation:

Definition 4.2.7. For any q = (q"j)i,jel’ q = (Qiﬂ')i,jel € M,(F), we say that
q ~ ¢ if and only if there exists a permutation v of I such that

G = Gine YERIED  or dy=qfe YijEl.

Proposition 4.2.8. Let q = (qij)ijel’ q = (q"j)ijel € M,(F) be multiparame-
ters. Then Uq(g,) = Uq(g,) <= a~dq .

Proof. We denote by E;, F;, K" and LF' (with i € I') the generators of Ugy(g,)
and by E, F, KJ’.jEl and L;ﬂ (with j € I') the generators of Uy/(g,) -

Assume first that there is a Hopf algebra isomorphism ¢ : Uq(g,) —— Uq(9,) -
Note that both Hopf algebras Uq(g,) and Uq(g,) are pointed, as they are gener-
ated by group-likes and skew-primitives: then, in particular, their coradicals coincide
with the subalgebras Uq(h,) and Ug(bh,), respectively, which are actually isomor-
phic. Moreover, by [Gar, Theorem 3.8], they belong to a special family of pointed
Hopf algebras introduced in [ARS]; then, using the coradical filtration one can write
gr (Uq(g,)) = R#Uq(h,) and gr (Uq(g,)) = R #Uqg(h,), where R and R’
are braided Hopf algebras in the category of Yetter-Drinfeld modules over Uq(h,)
and Ugq(h,), respectively. These are given by the subalgebra of coinvariants, i.e.,
R={zecgr(Uq(g,))|(idem)A(z) =z ®1}, where 7 : gr (Uq(g,)) — Uq(h,)
is the canonical projection. As @(Uq(l)D)) = Uqg/(h,), the map ¢ induces a braided
Hopf algebra isomorphism @ : gr (Uq(g,)) — gr (Uq/(g,)) such that p(R) = R’.
In particular, ¢ maps primitive element in R to primitive elements in R’.

Now take i € I. As (the image of the element in the graded algebra) FE; is
primitive in R, we have that @¢(FE;) is primitive in R’ as well. As the latter is
linearly spanned by the elements E; and L;’le with ¢, 5 € I — these are the linear
generators of Vg and Vg in Remarks 4.1.4 above — this implies that ¢(K;) = K ;
or o(K;) = L' for some j € I. In particular, one has that ¢(E;) = ¢;;E} or
o(E;) = diﬁjL;_lFJ(, respectively, for some ¢; ;,d; ; € F. Thus, in the end, ¢ induces
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a bijective map v : I — [ such that ¢(K;) = K’ and ¢(E;) = cl-,y(i)E;(i) or

1 _

Claim 1: ¢(E;) = ¢y El,;) forall i € I or ¢(E;) = d; ()le(’jpl() for all
vel.

Indeed, suppose that go(EZ) = ci‘ﬁ(?)E; @ and o(Ej) = dja) Lﬁ/(le for some
1 # j € I; as the Cartan matrix A is indecomposable — hence the Dynkm diagram
is connected — we can assume in addition that ¢ and j are adjacent in the Dynkin

diagram, i.e., a; # 0. Now, o(K;) = K! ;) and o(K;) = Ll L) ; since

G 9(E;) = (KiBjKY) = diain Koo Ly By Koy = doiey) #(E5)

it follows that ¢;; = ¢ ()“/(J . On the other hand,
Gip(B) = (BB K = cinnll G Elg Ly = dyang #(E)

which implies that ¢;; = q'/y(i)'y(j) . Therefore ¢ = ¢;;q;; = 1 and a;; =0, as
the ¢;;’s are not a;;—th roots of unity: but a;; # 0 by assumption, a contradiction.

Claim 2: Let i€ 1. 1f p(E;) = cm(i)E;(i) respectively p(E;) = d; ,) L., Lpy

v(@) © (@)
then @(F;) = riq@ L , respectively ¢(F;) = sm()K’()lE;(l) , for some 7; (),
SiqG) € Fx.

K, —L;
Indeed, since [E;, F;] = Gi —— € Uq(h,) , and o(Uqg(h,)) = Ug(h,), we
Qii —
must have o([E;, F}]) = [¢(E:),¢(F;)] € Uy(h,) . Hence, if p(E;) = Cimn) Bl o)
and ¢(F}) = siy0) K., ) LE " iy» we would have that [0(E;), o(Fy)] € Uq, NUg(h,)
is zero or the degree w.r.t. the PBW-element E ;) is 2. Thus [0(E;), o(Fy)] =0,
which in turn implies that ¢(K;) = ¢(L;), against the injectivity of ¢ . Therefore
we must have that ¢(F;) = i) 7, and o(L;) = L., .
The remaining case is analogous.

The claims above imply that ¢ is given by a Dynkin diagram automorphism
possibly composed with a “Chevalley involution”. Namely, if »(E;) = ¢; ) E.,
for all @ € I, then q; = qy(i)y(;) for all 4,5 € I and v is an automorphism of the
generalized Dynkin diagram D(q). If instead ¢(E;) = d; )L (l; ) foralliel,
then ¢j; = qﬂ/’(jl.)v(i) for all 4,5 € I, and ~ is an automorphism of D(q) composed

with a Chevalley involution. Altogether, this implies that q ~ q', q.e.d.

Conversely, assume now that q ~ q' . If qi; = ¢,()y(j for all i,5 € I, then the
algebra map ¢ : Uq(g,) — Uq(g,) given for all ¢ € I by
p(E) =By, eF)=Fq, oK) =K5, oL):=L5

is well-defined and yields a Hopf algebra isomorphism. Similarly, if ¢;; = q;é.)v(i)

for all 4,75 € I, then the algebra map ¢ : Uq(g,) — Uq(g,) given for i € I by

. r!/=1 v /—1 il, IF1 +1\ .__ g/ F1
o(E;) == Lo Fia o(F) =K ) ") oK) LZ(F) , o(L) = KWE)

is well-defined and yields a Hopf algebra isomorphism. U
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4.3. Multiparameter quantum groups with larger torus.

The MpQUEA’s Uq(g,,) we considered so far have a toral part (i.e., the subalgebra,
Ug generated by the K*'’s and the L;-H’s) that is nothing but the group algebra of
a double copy of the root lattice @ of g, much like in the one-parameter case (but
for the duplication of @), say). Now, in that (uniparameter) case, one also considers
MpQUEA’s with a larger toral part, namely the group algebra of any intermediate
lattice between ) and P ; similarly, we can introduce MpQUEA’s whose toral part
is the group algebra of any lattice I, x I, with Q C I, and @ C I..

4.3.1. Larger tori for MpQUEA’s. The definition of the “toral parts” of our
MpQUEA’s Uq(g,) — cf. Definition 4.1.3 — is actually independent of the multi-
parameter q . We will use this fact to define “larger toral MpQUEA’s” as toral parts
of some larger MpQUEA’s, as we did in §3.3.5. This requires some compatibility
constraints on q; for later use, we fix now some more preliminary facts.

Let I" be any sublattice of Q@) of rank n with @) < I'. For any basis {71, . .%}

of I', let C := (cij)jzl’""n; € Z™" be defined by «; = 7 ¢, for every

i=1,...,n;
n:

iel={1..,n}. Wite c:= |det(C)| € Ny and C7! = (¢ )jzl’"" » for the

ij)i=1,...
inverse matrix to C'; in particular, we have that cg'j =c- c;j S/ fo; ;171 Z] el.
For any such I', let U: 7’19 = [FI" be the group algebra with generators Kil (for
i€ l). If weset Ko =] Ky? for all i € I, then the F-subalgebra of U(:’]Q
generated by the K (il’s is an isomorphic copy of UJ 22 In the obvious symmetric
way we define also the “negative counterpart” U, 7’19 generated by the Lil’s.
Finally, given any two sublattices Iy of rank n in Q@ containing (), letting

Iy =T} x I'_ we define Uy, = U;’&% Uq_”g ; in this case, the basis elements

for Iy will be denoted by ~v* (i € I).

4.3.2. MpQUEA’s with larger torus. Let /', and I be any two lattices in Q@)
such that @ < I'y; thenset I, := Iy x I . For these lattices I, we have matrices

of integers CL = (cfj)mg and C. ' = (Cl:'l;’/)i,jel’ and also cg := }det(Ci)‘ .

For the rest of this subsection, we assume that for every i,j € I, the field F

/ey

contains a cx—th root of q;;, hereafter denoted by g;; = ; moreover, if the multi-

parameter q = (Qij)z‘j I of Cartan type we assume that the multiparameter

ql/es = (qii'/ ci) is of Cartan type as well. In the sequel, these assumptions
ijel

will always tacitly be taken whenever we consider MpQUEA’s with larger tori.

The natural (adjoint) action of UJ onto Uq extends (uniquely) to a Ug ,—action
- U§ 5 x Uy — Uqg, given by

a
r -1
Ky Ey=a; B, Lo-B= () E
1 I
Ky Fy=(ay) F Ly b5 = i B
K. Ke =Ko, L Koy = K,
1/c c+kw 1/c e
— where ¢} =T, (g ) and ¢ =Tl (¢ )~  — that makes U

into a Ug ,~module algebra. This allows us to consider the smash product Hopf
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algebra US,F. X Ugq; its product is given by the formula (3.16). As Ug,r. is a right

Ugfmodule Hopf algebra with respect to the adjoint action, one may consider the

vector space qu n @ Uq. Moreover, the smash product Ug n X Uy maps onto a
yle Ug yle

Hopf algebra structure on it, which hereafter we denote by Ug n X Uq — see, eg.,
L e UU

q

[Len, Theorem 2.8]. We define then
Ugr(9,) = Ugr == UgﬂU[xqu = Ugn, x Uq(g,) (4.2)
qa

q
Since the coalgebra structure is the one given by the tensor product, to give a
presentation by generators and relations like that for Ug(g, ), one has to describe
only the algebra structure. For this, one has to replace the generators Kl-il = K4,
and L' = Ly, with the generators Kj' = K, + and L = L, -; replace
relations (¢) and (d) of Definition 4.1.1 with the folléwing, generalized relations:
-1

(c’) K%f E; Kw}l = qi§+ E; Lv; E; L;l—l = (qJ‘I;_) Ej
(d) K.+ F; K}l = (qf;*)_le L,- £ L;*l = q;; I

finally, in relation (e) replace the elements K; and L; by K,, and L,, , respectively,
and leave the quantum Serre relations (f) and (g) unchanged.

With much the same approach, one defines also the “(multiparameter) quantum
subgroups” of Uq 1, (9,,) akin to those of Uqg(g,) (cf. Definition 4.1.3), that we denote

by adding a subscript I, , namely U;,F. , Ug s Uin , Uin , U(;’IO; and U;’g :

4.3.3. Duality among MpQUEA’s with larger torus. Let again I, be two
lattices of rank n in Q@ containing ), and set I, := [y x I . We repeat our
assumptions (cf. §4.3.2). We fix bases { 75 }SE[ of I'y , the matrices Cy = (CiiJ')ijGI ,
Cit = (cj?")i’jel, and write ¢y = |det(Cy)| and cjtj’” = cy - c;';" (i,jel). In
1/(c+c_
]

addition, we assume that F contain a (cy c_)-th root of g;;, say ¢ ), and that

overall the multiparameter q'/(¢+¢-) = <q;/(c+c’)

) be of Cartan type.

ijel

It is straightforward to check that the Hopf skew-pairing 7 : qu ® UqS — F
F

in Proposition 4.1.5 — cf. Remarks 4.1.4(a) too — actually extends to a similar
skew-pairing UZ . ® Uqu — F given for all 7,57 € [ by
2 Ya.r

q7F+
n(Ei®L,-) =0 nK+® Fj) = 0
ERy7——y
i 1/(c c_)\%hr Sjk
n(E; © Fj) = =0 K@l = hl}:[{(‘m ! )
ke

One easily sees that, using such a Hopf pairing 1 between (suitably chosen) quan-
tum Borel subgroups qu,ﬂ and UqS’R , every MpQUEA with larger torus Uq 1,(g,,)
can be realized as a Drinfeld double (of those quantum Borel subgroups), thus gener-
alizing what happens for MpQUEA’s with “standard” torus — see Remarks 4.1.4(b).

Remark 4.3.4. From the description above, it follows that one clearly can suitably
extend both Theorem 4.2.4 and Corollary 4.2.6 to the case of MpQUEA’s with
larger torus: Namely, let Iy be two lattices of rank n in Q@) containing (), and
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set I, := Iy x I_. In addition, assume that F contain a (¢ cz)-th root of ¢;;

/(0162)

with ¢; € {cy,c_}, say qi; . and that overall the multiparameter q'/(¢1%) =

(q.l,/(cl%)). - be of Cartan type. Pick the standard MpQUEA Ugr(g,) with
ij

ij
larger torus I, and canonical multiparameter . Then there exist a normalized
2—cocycle of the Hopf algebra Ug r;(g,) and a Hopf algebra isomorphism such that

Uq,n(8,) = (Ugn(g,)),

5. TWISTED QUEA’S vS. MULTIPARAMETER QUEA’S

In this section we show that, assuming the Cartan matrix A to be of finite type,
all TwQUEA’s — as considered in §3.4 — are actually (isomorphic to) MpQUEA’s
— for multiparameters in a special, yet quite general, subclass of integral type.
Conversely, any MpQUEA for such a multiparameter is (isomorphic to) a TwQUEA
for a single, specific twist element. In short — and up to sticking to twists of type
(3.5) or (3.9) and to multiparameters of integral type — we have

every TwQUFEA 1is (isomorphic to) a MpQUEA, and viceversa.
In all this section, we fix as ground field F :=k, := }_1£r_1 k(ql/m) , with k being a

meN
field of characteristic zero and ¢ an indeterminate. As before, by ¢" for any r € Q

we always mean ¢ = ¢%/? := (ql/d)a if r=a/d with a € Z and d € N, . In
addition, we assume that our (indecomposable) Cartan matrix A is of finite type.

5.1. Twists vs. “rational” multiparameters.

We introduce now a special subclass of integral multiparameters (cf. §2.2.1) in
F :=k,; then we link them with twist elements (as in (3.5) or (3.9) alike).

5.1.1. g—rational multiparameters. We fix now some more notation.

First of all, we remark that for any matrix C' € M,(Q) it is uniquely defined
de = min{d € N|dC € M,(Z) } . Second, for any given R € M,(Q) we adopt
notation f = (q”j)i’jel. We say that a multiparameter q := (qij)mel in F =k,
is of q-rational type R := (Tij)ijel if R e M,(Q) and q is of Cartan type with
q= f, ie., ¢; =q" forall ¢,7 € I. In other words, writing 7;; = bij/dR for some
bi; €Z (i,j € 1), we have that q := (qij)i,jel
if and only if it is of integral type (ql/dR, B .= (bij)

is of g—rational type R := (rij)ijel
ijel ) :

In the sequel, we call ¢—Mpg the set of all multiparameters of g-rational type (or
simply “g-rational multiparameters”) — for any possible R := (rij)

ijer —in kg -

5.1.2. The links {twists} = {multiparameters} = {2-cocycles}. We begin
defining two maps from M, (Q) to itself given by
U — (V) = dy' DA+ A" (V" - U) A (5.1)

and
R — &R) :==2"A"(dz'DA-R) A™! (5.2)
A moment’s check shows that the following hold:
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(a) Im(¥) = {R€ M,(Q)|R+R"=dp'2DA} =: 0,,,(Q)
(b))  Im(§) = {V e M/(Q)|V+T"=0} =: 50,(Q)
(C) §O19 = idson((@) 3 190§ = ida2DA(Q)

/. [ 3 3 3
As a consequence, ¥ = 79‘5% @ and ¢ := S‘OQDA(Q) yield mutually inverse bi-
19/ 5/
jections s0,(Q) — o0,,,(Q) and s0,(Q) «— 0,,,(Q) . Note also that,
being defined over antisymmetric matrices, ¢’ is described by the following modified
version of (5.1):

U () i=dg' DA+ A" (U= U) A = (d'D —2A"¥) A (53)

In addition, there exists also a natural bijection o,,,(Q) <X, q-Mpg given
by R+~ x(R):=¢". Using it, we can define the maps

xo’

50,(Q) —— ¢-Mpy U qpi=q"W (5.4)
and
fIOX_l
¢-Mpg —— 50,(Q) a=¢" = ¥y:=¢(R) (5.5)

that are inverse to each other, hence are bijections.

As a matter of notation, in the following when ¥ € 50,(Q) and q € ¢-Mpq are
such that g = (xo?')(¥) and ¥ = (£ o x')(q) we shall write in short ¥ e~ q .

Finally, by Definition 4.2.2, every multiparameter q € ¢—Mpg uniquely defines
a corresponding 2-—cocycle o0 = o4 on Ug(g,): this yields a map q + o4 which
is injective, hence g—Mpg is in bijection with the subset ZQ% of all o4’s inside the
set Z2 (Uq(gD),IF) of all 2—cocycles. Composing this bijection with the bijection
U «~ q we eventually get a third bijection between s0,,(Q) — encoding “rational
twists” — and ZQ% — encoding “rational 2-cocycles”. We shall shortly denote this
bijection by W «~ o : explicitly, it is described by

50,(Q) — ZAé , Vo with o (Ka,, Ka,) = g~ PATATYA (5 6)
On the other hand, we shall also consider yet another bijection, namely

50,(Q) — ZN([; , U +— o, with O'(Kai,Kaj) = g (ATTA) (5.7)

where ZQ% is nothing but the subset of all 2-cocycles in Z%(Ug(g,),F) of the form
given in (5.7); the inverse of this map is clearly given by

2 —50,(Q) , o U, :=-ATS, A7 (5.8)

where S, 1= (Sij)ijel is uniquely defined by o (K, Kq,) = ¢°7 .
In the sequel, we shall denote this last bijective correspondence by ¥ <— o .

5.2. TWQUEA’s vs. MpQUEA'’s: duality.

Roughly speaking — that is, up to technicalities such as dealing with finite-
dimensional objects, or dealing with Hopf algebras in categories with a well-behaving
notion of “dual Hopf algebra”, etc. — the two notions of “twist element” and of
“2-cocycle” are, by definition, dual to each other (in Hopf-theoretical sense). As a
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consequence the two procedures of “comultiplication twisting” and of “multiplication
twisting” are dual to each other as well (see Proposition 2.4.4 for a formalization).

Beyond this, we can prove the following: when the Hopf algebras H and K are
opposite (polynomial) quantum Borel subgroups in duality, the link between ¥ and
o is ruled precisely by the bijection W <— ¢ . In short, we can claim that

TwQUEA’s and MpQUEA’s of (opposite) Borel type are dual to each other

and in this duality the correspondence twists «— 2—cocycles is given by the bi-
jection W <— o . The precise statement is the following:

Theorem 5.2.1. Let U, . (by) be opposite Borel quantum subgroups and let also
n:Ugr,(by) ® Uppr (b_)——k, be a skew-Hopf pairing as in §3.3.5. Given ¥ €
]kq

50,(Q), let I, == (d+v4)(Iy) — Y- (I's) + Q= . For every o € Z*(U, r(b-),k,),
consider the corresponding twistings U;Ijm(bJr) and (Uq,pl(b_))a . Then the extended
linear map n : qulrjr(m-) ® (Uyr (b)) — k, given in §3.3.5 (see also §4.3.3)
) kq - g

with respect to I'y = I, x I is again a skew-Hopf pairing with respect to the new,
deformed Hopf structures if and only if ¥ <— o . In other words, the deformed
coproduct A on Uy ri (b)) and the deformed product -, on Uy (b-) are dual to
each other (via n) if and only if ¥ +— o .

A symmetric, parallel result holds true when switching the roles of ¥ and o from
left to right and viceversa.

Proof. This is a sheer matter of computation. Indeed, let us consider for instance
the element A™(E;): by construction, if we consider the standard ()-grading on

U, (b_) then for Y € U, 1+ (b_)*? we see that n(E;,Y ) # 0 can only occur with
elements which actually belong to the k,—span of elements of the form K, -, F; or
F; - K, with v_ € I" ; in fact, to simplify the notation we can assume v_ = a; .
Now write AW (E;) = (Ej)%i) ® (Ej)?;) =LE® KH)_(D[;) + K+(id+¢+)(aj) Q E; .
Then, a direct computation gives
(n@n) (A (E), K- @ F;) = n((E)Qy Koo )n((Bi)ia: ) =
= (B Ko ) 1Ky 0o ) + 1K a oy Ko ) (55 ) =
—((i at ,Q
= 77(K+(id+w+)(aj) K ) n(B; Fy) = g Grenen ey (B 1)
On the other hand, for the deformed product -, in (U, p/_(b,))a we have

Koo I = U((Ka;)(l) ; (Fj)(n) K,; D) (F5) (2 ‘7_1((Ka;)(3) ; (Fj)(g)) -
= U(Ka; ; (Fj)a)) o (Ka; ; (Fj)(s)) K- (F)) @) = o (Ka; 7K;j+1) Ko I
so that
0B Koo B) = 07 (Ko K (B K, ) =
= oM K K 0B K 1(E) B =
= g o (K K ) n(Ey )
Comparing with the above, this means that we have
(n@n)(AY(E), K,- @ F}) = n(E;, K, F}) (5.9)
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if and only if
- _ gdiaij—((d+ey)af),a7) _  —(ATTA);
O'(Kai ,Kaj) q i J q J (5.10)
and the last condition means that ¥ <— ¢ . Similar computations show that
n(AY(E), F; @ K,-) = n(E;, Fj K,-) (5.11)

if and only if (5.10) holds, again, that is if and only if ¥ +— 0.
Furthermore, notice that A®™ (Kw) = A(K%) and Ky - Kw = K, K, for
all v,~v1 € Iy, so that we automatically have

U(A(\P) (K’Y+) Ky @ K’Yﬁ) - 77<K’Y+ Ky o KWZ) (5.12)

Now, conditions (5.9), (5.11) and (5.12) altogether are the conditions for A™ and
-» to be dual to each other via n — so that the pairing 7 itself be a Hopf skew-pairing
w.r.t. the new, deformed structures. The above proves that the sole necessary and
sufficient condition for all this is (5.10), i.e., that ¥ <— o, as claimed.

The same argument proves also the last part of the claim, when the roles of W
and o are interchanged. U

5.3. TWQUEA’s vs. MpQUEA'’s: correspondence.

We shall presently prove the following striking fact: the classes of TwQUFEA’s and
of MpQUEA’s associated with “rational” data actually coincide. More precisely, if
we consider a (rational) antisymmetric twist ¥ and a g-rational multiparameter q
such that ¥ «~ q, then any TwQUEA (over by, g or g,) with twist ¥ and any
MpQUEA (over by, g or g, ) with multiparameter q are isomorphic to each other.

In other words, as each MpQUEA is a 2—cocycle deformation of the canonical
quantum group, this result can be read as follows: every comultiplication twisting
by a (rational) twist of a canonical quantum group is a multiplication twisting by a
(rational) 2—cocycle, and viceversa, with the correspondence twist = 2—cocycle
ruled by ¥ e~ o .

The precise statement of our main result — formulated here for “double” quantum
groups — reads as follows:

Theorem 5.3.1. Let ¥ € 50,(Q) and q € ¢-Mpg be such that ¥ «~ q . Let
My be any lattice in QQ containing @, with {,uf}iel any Z-basis of it, let MY
be the sublattice of QQ** with Z-basis {w; = pi + by (1) — ¥+ (uf)}iel and
consider in QQ*? also the lattices My = M, x M_ and MY = MY + M?.

Let Uq,M.(gD) be the MpQUEA associated with the lattice M, (inside QQ*?),

and (A];:M*\p (g,) be the TwQUEA associated with MY (cf. §3.4.8). Then there exists
a Hopf algebra isomorphism Ugq i, (g,) = U v (g,) given (for icl) by
Ei = 4l = aK_y o Ei s K = Kyrrg by = Biap
Lz = K rvv@-vsety = Koo v B F= Koy on) B

K3

In other words, letting o = o4 be the (rational) 2—cocycle corresponding to q so that
U e g (asin §5.1.2), we have a Hopf algebra isomorphism

(UflaMo(gD))a = A;ME’(QD)
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given by the same formulas as above.

Proof. Define an algebra map ® : Uqg s, (gD) — U;’Mf,(gD) on the generators

of Uq m, ( g D) as above. We only have to prove that such a ® is well-defined, for then
it is clearly surjective. Actually, ® is well-defined indeed, since the defining relations
of Uq M. (gD) — see Definition 4.1.1 and §4.3.2 — are all mapped to zero: this follows
straightforward calculations, so we provide only some of them as guidelines.

It is clear that ® “respects” the commutation relations (a) and (b) in Definition
4.1.1, so now we go for the other ones. As in §3.4.8, write

3 e —
K = Kayp) o) —v(07) = Bapoer, -

and
v R —
K = K arg Yot 0h) = Koaro 1cr,
Recall that, through the correspondence ¥ «~ q, we have

Gij = qﬂl(\ll)ij — q(ai+¢+(ai)—¢f(ai):%) Vijel .
Now, by definition we have Kf;+Kf1 =K ,Kfl . forall 2,5 € I. Moreover,
f = —w; w,
_ —1
CIGE K = ¢ (K1) Ef (KL) - =

_ -1 _
= 6 Koty 0o @) Bop_ @) Bil gy (- (ar) =

= q(ai‘i’w-ﬁ-(ai)*w— (ai)7aj) q_] K—d)f(aj_)EJ =

O(LiELT) = ¢ (K ) B} (K!) ™ =
=g K—af —1#(Oéf)+7/J+(a;r)K_wf(a;)EjK—_‘i;_w*(O‘;)+¢+(O‘i+) B

—o = (ay @), o ®
( P (o) +44 (o) J)qj Kfzjz,(aj_)Ej =

=q
E;, =

® q_(aj+¢+(aj)—¢7(aj)va") q; K—w J

—(aj)
_ q—ﬁ/(\ll)ji 4 E]\I/ — qj_il 4 E]\IJ _ qj_z‘l ®(E])
where the equality £ follows from Lemma 2.1.3. This proves that ® “respects” the

commutation relations (¢) in Definition 4.1.1; similar computations prove the same
for relations (d) as well. To check the relations (e), we first observe that

(w+(ozj),ozi) = ij@bk’ga&j ag; = (ozj,z/)_(ozi)) forall 7,7 €1.
Then, for all 7,7 € I we have
[®(E:), ®(F)] = @B F] = a[K_y o) Ei Ky o) F)]
= 0 (K y o) Bi Ky o0 B = Ky o) B Ky (or) B)

= g Kﬂp_(a;) K oh) (q_(aia¢+(aj))Ei Fj — q—(aj,wf(ai))pj Ez)

+eo4(
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(a4 () —Ka'+ s
= qq "V K_¢,(a;) K+w+(aj+) 0ij gi — q.—ll
= 6 qiq AV Kot pe@h=v-o7) ~ Koar+vrtah—v-(o))
J ¢ —q; "
Ky, — Ky
= 5iqu‘2’(]2—_1 = O([E;, Fjl)

Finally, for the quantum Serre relations (f) and (g), we use that for all m € N we
have formal identities involving g—nmumbers and q%—numbers, namely

m

q" —1 mo1 g2 —q 2 m—1 m —k24km | M
m = = 2 — = 2 m , = 2
( )q q— 1 9 q% —q*% ¢ [ ]‘1% (k‘)q g |:k:|q%

and the identities ((LDJr — w,)(ai),aj) = —(ai (Vg — w,)(aj)) , (z/1+(ai),aj) =
(o, ¥_(aj)) and (¢_(0y), ) =0 forall i,j€l.

It is not hard to see that ® is also a Hopf algebra map too: for example, we have

ANR(E)) = a AV(EY) = a A (K (o) Bi) = a: AV (K oo)) AY(E)
= GH_y o) Ei® 1 + Koy 0y (ar) @G Ky ) Bi =
= ¢E'®1+ K, @¢E' = (20 9)(A(E))

and €™ (®(E;)) = ¢;e™(EY) = €(q K—d;,(ai)Ez‘) =0 =¢€(E;) foral 1<i<n.

Now define an algebra map @' : U” (gD) — Uq . (gD) by @’(Ef) =

q,.MF
G E, ©(FY):=F, & ((K+w_+)i1> =KX and @ ((K_w,,)ﬂ) = L*, for
all 1 <14 < n. By means of calculations quite similar to the previous ones, one proves
that such a ' is well-defined, and definitions clearly yield ® o ® =idy, ,,. (4,) and

®od =idye (a,) " So in the end (A];”M;p (gD) = Uq M, (gD) as Hopf algebras. [

q,MY

Similar arguments as those used in the proof above lead to a simpler version of
Theorem 5.3.1 for Borel MpQUEA’s and Borel TwQUEA’s:

Proposition 5.3.2. Let ¥ € 50,(Q) and q € ¢-Mpg be such that ¥ «~ q . Let
M be any lattice in QQ containing Q) , with {W}z‘el any Z-basis of it, and let M
be the sublattice of QQ) x QQ with Z—-basis {w;t = M;t + Y4 (M;t) — g (,uf) }iel :

Let Uq m(by) be the (positive/negative) Borel MpQUEA associated with M, and
Uq‘l”Mi\p)(bi) be the (positive/negative) Borel TwQUEA associated with MY (cf.
§3.4.8). Then there exist Hopf algebra isomorphisms

A~ A~

Uga(by) = Ufyon(by) 5 Ugu(bo) = UF) (b

q q,M_

respectively given by

Ei= B =Ky oy By K= K= K un vy = Kyor

Ly = KL = K iy ety = Bowr v B F= Koy on B

@

. )
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In other words, letting o = o4 be the (rational) 2—cocycle corresponding to q as in
§5.1.2, so that ¥ «~ o, we have Hopf algebra isomorphisms

(Ug (b)), = UWMM([%) o (Ugm(b0), = U (b))

given by the same formulas as above. In particular, when M 2O Qi + ¥+ (Q+) +
V+(Qx) we have U (\I,)(bi) U,y (by) , hence the isomorphisms above read

(Ugar(bs)), = Uqar(bs) = U%,(bs)

A similar claim holds true as well for twisted quantum Borel subalgebras and
multiparameter quantum Borel subalgebras inside the MpQUEA'’s Uq‘f’M(gD) . O

Finally, we shall presently see that any TwQUEA of type U, q‘f’F( g) can be seen as
a (still to define) “g—rational MpQUEA over g”. We begin by defining the latter.

Definition 5.3.3. Let ¥ € 50,(Q) and q € ¢-Mpg be such that ¥ «~ q , and let
1+ be the map associated with W (cf §2.1.2). Let My be lattices in QQ containing
@ such that ¢ (My) C My ; denote by {,uf:}ie[ any Z-basis of it. Let Z, be the

two-sided ideal of Ugq as, ( g D) generated by the elements
Kuf Luf - KZW(MT) LQW(MZ) (Z = I) :

Then we denote by Uq ar,(g) — that we loosely call “MpQUEA over g” — the
quotient Hopf algebra

Uan(8) = Uqan(s,) /T

Remark 5.3.4. If M is any lattice in Q@ containing ) and such that ¢ (M) C M |
then for M, = M =: M_ we write M, := M, x M_. In particular, M =
My +M_=M"= M+ (M) +1p_(M).

Now, under the assumption ¢, (M) C M for the lattice in Q@ , we have that
Uq‘f’M(g) = Uy(g) . In fact, (A]q‘f’M(gD) is the Hopf subalgebra of U *,/(g,,) generated
by the elements E := wa_(a;)Ei’ F' =K (a 1, K += K i ()= (u7)

i +Y+(a
and K_- =K -, (,~)_y, .+ foralliel. Besides, by Remark 3.4.6, Uq‘f’M(g) is

the i 1mage of the Hopf algebra epimorphism 7 UqWM( g9, — U +(8) given by
A;(Ez\y) =B, A\II(K +) = K2 () » A;(K ’) = K29 (u;) and 7T (F\I’) =

Wi @i

FY for all i € I; therefore K? = 7Y (K_+K_-) € Uq‘f’M(g). This implies that

Koy, (u) € U v (g) and consequently K, € Uq‘f’M(g) for all + € I; hence, the
toral part (the group of group-like elements) of both Hopf algebras coincide. Since
the other generators of U, (g) differ only by a group-like element, the two Hopf

algebras U v (g) and U'),(g) must coincide.

We are now ready for the result comparing TwQUEA’s and MpQUEA’s “over g”:

Theorem 5.3.5. Let ¥ € 50,(Q) and q € ¢-Mpg be such that ¥ «~ q . Let
also M be any lattice in QQ containing Q and such that (M) C M . Then there
exists a Hopf algebra isomorphism

Ugn(9) = Ugu(g)
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gwen by the formulas Ky, «— Kitdtp—v ) » Lu = K Gato —v)(m)
Ei «— ¢ K_y_ () Ei and Fy<— Kiy (o) F; , foralliel.

In other words, letting o = o4 be the (rational) 2-cocycle corresponding to q as
in §5.1.2, so that ¥ «~ o, we have a Hopf algebra isomorphism

(Ugar(9)), = USwl(9)

given by the same formulas as above.

Remark: as we assume ¥ to be antisymmetric, which is not restrictive, we can
re-cast the formulas above as K, <— K (dt2¢,)(u) » Lu < K_(d4+20_)(u) »
E;, +—— q; K+¢+(ai) E;, and F, +— K*w—(ai) F; forall i e1.

Proof. Let { ,ui}ie ; be any Z-basis of M and denote by { /ﬁ}ie ; the corresponding
Z-basis of M, . From Remark 3.4.6 we know that U;M( g) is the image of the Hopf

algebra epimorphism 7" : U qf’M( g D) ——U +(g), where the latter Hopf algebra
equals U,"),(g) by Remark 5.3.4.

On the other hand, thanks to Theorem 5.3.1 we have a Hopf algebra isomorphism
®:Uq,(g,) — qu:M(gD) . Hence, under the conditon that (7 o®)(Z,) =0,
there exists a surjective Hopf algebra morphism ¢ : Uq a,(g) — Uty (9)
defined on the generators by

O(Kp) = Kygd s o)) = Kitds2e0)0) 0(Es) = i K_y_(a;) Ei
(L) = K aro_ ) = K_Gar2p_)m) e(F) = Kiyy(a Fi

for all ¢ € I, where we denote by K,,,, L,, , E; and F; the generators of Uq i, (9).

Now, the fact that (7%;’ o CID) (Zy) = 0 follows by direct computation. In fact, since
by assumption M contains @ and ¢, (M), and ¥ is antisymmetric, we have that
(g 0 @) (K,+) = 7y (K or) = Kuropyuy and (73 0 @)(L,-) = 7y (K_-) =

g 1 g
K_(id+2y_)(u;) - Therefore, we have also

(7%; o D) (Kuf LMZ) - (ﬁ; o ) (K2w+(uf) L2w—(uZ))
Conversely, let ¢ : U */(g) — Uqar,(g) be the algebra morphism given by
¢(Kﬂi> = Kuffm(uf) Lw+(u2) ’ 95(E:P) =q B 95<qu/) =k

for all 4 € I', where B :=q; K_y_(a,) B and F}' := Ky, () Fi are the images in
Uq 1. (g) of the same name elements in Uq y, (g,) . With this definition we have

p(ry (Kot)) = ¢(Kaszpnw) = Kot

p(7y (Ky-)) = o(Kaaveyoywn) = Lo,
Indeed, since ij = Ty (K + K_-) for all j € I, setting ¢ (u;) := > jer Myikt
yvields 73 (K_+) = Kpi20, ) = K, HjeI(Kij)m” . Therefore

W

53 () = #(K T (R2)™) =

2m; 2my; _
= Kirwown Locwn) Tierk e 2y oy Therky o) =

(5.13)
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2my; 2my;

= Koy ur )+2¢+(MZ)L¢+(MZ)'HJ61K—1& (i )'Hﬂ‘efLw+<u§ )
= Kurvvon Lvewry e (K- 294 (1) L—Wf(ﬂj_)) b=

= Kyrpp ) Loy Tlier (Ks L) 7 =
K j+¢+(ul)L¢+(MZ)K—¢+(Mi)L—¢+(u{) = K3

Similarly, one may check the equalities in (5.13). In particular, ¢ is surjective.

Since () € M , there exist ¢;; € Z such that «; = Z.EI cji v forall 2 € I'. Then
Ky = HJGJKC“ and K;', = Hjechﬁ . This implies that @(7)(K")) =
@7y (HJHKCJ;)) = HjGIK:;f =K.+ Smularly, one sees that @(7y (K" )) =
L__- , and from this it is easy to verify that ¢ is indeed a Hopf algebra morphism.

Fmally, since ¢ o and ¢ o ¢ are the identity on the generators, we conclude
that Uq ar,(9) = Uy (g), via the formulas given in the claim, q.e.d. d

Remark 5.3.6. A final remark is in order. In the previous results — Proposition
5.3.2, Theorem 5.3.1 and Theorem 5.3.5 — we took from scratch ¥ € s0,(Q), i.e.,
our “twisting datum” ¥ was antisymmetric. However, we can also start with any
twisting matrix W € M, (Q) : then those results read the same as soon as we replace
U e~ q with (yo0)(¥) =q (notation of §5.1.2). Notice then that one has

q = (xo?)(¥) = (xov)(V,)

where U, := 271 (\If — \IJT) is the antisymmetric part of . Eventually, the outcome
of this discussion, in short, is the following:

The (polynomial) TwQUEA’s built out of any matriz V € M,(Q) are exactly the
same as those obtained just from antisymmetric matrices ¥ € 50,(Q) .
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