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Abstract

This paper dwells upon two aspects of affine supergroup theory, investigating the links among them.

First, I discuss the “splitting” properties of affine supergroups, i.e. special kinds of factorizations they
may admit — either globally, or point-wise. Almost everything should be more or less known, but seems
to be not as clear in literature (to the author’s knowledge) as it ought to.

Second, I present a new contribution to the study of affine supergroups by means of super Harish-
Chandra pairs (a method already introduced by Koszul, and later extended by other authors). Namely, I
provide a new functorial construction W which, with each super Harish-Chandra pair, associates an affine
supergroup that is always globally strongly split (in short, gs-split) — thus setting a link with the first
part of the paper. One knows that there exists a natural functor ® from affine supergroups to super
Harish-Chandra pairs: then I show that the new functor ¥ — which goes the other way round — is indeed
a quasi-inverse to @ , provided we restrict our attention to the subcategory of affine supergroups that are
gs-split. Therefore, (the restrictions of) ® and U are equivalences between the categories of gs-split affine
supergroups and of super Harish-Chandra pairs. Such a result was known in other contexts, such as the
smooth differential or the complex analytic one, via different approaches (see [16], [19], [7]): nevertheless,
the novelty in the present paper lies in that I construct a different functor ¥ and thus extend the result
to a much larger setup, with a totally different, more geometrical method. In fact, this method (very
concrete, indeed) is universal and characteristic-free: I present it here for the algebro-geometric setting,
but actually it can be easily adapted to the frameworks of differential or complex-analytic supergeometry.

The case of linear supergroups is treated also as an intermediate, inspiring step.

Some examples, applications and further generalizations are presented at the end of the paper.l
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1 Introduction

The study of “supergroups” is a chapter of “supergeometry”, i.e. geometry in a Zo—graded
sense. In particular, the relevant structure sheaves of (commutative) algebras sitting on top of the
topological spaces one works with are replaced with sheaves of (commutative) superalgebras.

Every superalgebra A is built from (homogeneous) even and odd elements. It is then natural —
especially in the commutative case, when these elements can be thought of as “functions” on some
superspace — to look for some “separation of variables” result for A, in the form of a “splitting”,
i.e. a factorization of type A = A ® A’ where A is a totally even subalgebra and A’ is a second
algebra which encodes the “odd part” of A. Actually, in the commutative case the best one can
hope for is that A’ be an algebra freely generated by some subsets of odd elements in A, hence A’
is a Grassmann (super)algebra, i.e. the “polynomial (super)algebra” on some set of odd variables.

When coming to supergeometry, we deal with “superspaces” such as smooth or analytic su-
permanifolds (in the differential and complex holomorphic setup) or superschemes (in the algebro-
geometric framework). Any such superspace can be considered as a classical (i.e. non-super) space
— in the appropriate category — endowed with a suitable sheaf of commutative superalgebras.

A natural question then arises: can one parallelize this sheaf? In other words, is it globally
trivial, in some “natural” sense? For superspaces (in any sense: differential, analytic, etc.) the
answer in general is in the negative: indeed, counterexamples do exist. Instead, if we restrict
to supergroups then the answer in most cases is positive. Indeed, this is the case for real Lie
supergroups (see [1], [17], [6]) and for complex analytic supergroups (see [21] and [7]); in the
algebro-geometric setting, the best result I am aware of is by Masuoka (see [18]), who proved that
for all affine supergroups over fields of characteristic different from 2 the answer still is positive.

It might be worth minding the analogy with the situation of the tangent bundle on a classical
space: for a generic space (manifold, complex analytic variety or scheme) in general it is not
parallelizable; for groups instead (real Lie groups, complex analytic Lie groups and group-schemes)
it is known to be parallelizable. This might lead us to expect, from scratch, that a similar result
occur with supergroups and their structure sheaf — although this is nothing but a sheer analogy.

Note that in the affine case having a parallelization of the structure sheaf on a superspace X
amounts to having a “splitting” of its superalgebra of global sections O(X) : this sets a link with the
previously mentioned theme of splitting (commutative) superalgebras, and also leads us to saying
that X has a “global splitting”, or it is globally split, whenever its structure sheaf is parallelizable.



On the other hand, one can study any supergroup G, like any superspace, via its functor of
points: then, for each commutative superalgebra A one has the group G(A) of A—points of G.
Such a group may have remarkable “splittings” (in group-theoretical sense) on its own; this kind
of “pointwise splitting” is often considered in literature (e.g. in Boseck’s papers [3], [4], [5]), but
must not be confused with the notion of “global splitting”.

Roughly speaking, a parallelized “supersheaf” S over a superspace X is “encoded” by a pair
(SO,S%) where Sg is the “even part” of & and S% is the fiber of S over some point xg; as
So is encoded in the classical (i.e. non-super) space Xo underlying X , one can also use the pair
(Xo , S%) instead. When X = G is a supergroup, we can take zg to be the identity element in the
(classical) group Go and approximate Sz, with the cotangent space at Go in that point; we can
also replace this cotangent space with its dual, i.e. the tangent Lie superalgebra g := Lie(G) of G.

This leads us to another — tightly related — way of formulating the problem, namely inquiring
whether it is possible (via a “parallelization” of the structure sheaf, etc.) to describe a supergroup
G in terms of the pair (GO, g) which is naturally associated with it. Indeed, this is the core of
the problem of studying supergroups via “super Harish-Chandra pairs”, as I now explain.

The notion of “super Harish-Chandra pair” (a terminology first found in [9]), or just sHCp in
the sequel, was first introduced in the real differential setup, but naturally adapts to the complex
analytic or the algebro-geometric context (see, e.g., [21] and [7]). Whatever the setup, a sHCp is
a pair (G4, g) made of a classical group (real Lie, complex analytic, etc.) and a Lie superalgebra
obeying natural compatibility constraints. Indeed, the definition itself is tailored in a such a way
that there exists a natural functor ® from the category of supergroups to the category of sHCp’s
which associates with each supergroup G its sHCp (Gev , Lie (G)) made of the “classical subgroup”
and the “tangent Lie superalgebra” of G. The question is: can one recover a supergroup out of
its associated sHCp ? In other words, does there exist any functor ¥ from sHCp’s to supergroups
which be a quasi-inverse for ® 7 And if the answer is positive, how much explicit such a functor is?

In the real differential framework — i.e. for real Lie supergroups and real smooth sHCp’s —
Kostant proved (see [15], and also [16]) that ® is an equivalence i.e. one has a quasi-inverse for it.

Besides, Vishnyakova (see [21]) fixed both the real smooth and the complex analytic cases.

As to the algebraic setup, more recently Carmeli and Fioresi (see [7]) proved the same result for
algebraic affine supergroup schemes (and the corresponding category of sHCp’s) over a ground ring
k that is an algebraically closed field of characteristic zero. Indeed, their method — which extends
Vishnyakova’s idea, so applies to the real smooth and complex analytic setup too — provides
an explicit construction of a quasi-inverse functor ¥ for ®. This was improved by Masuoka (in
[19]), who only required that k be a field whose characteristic is not 2, and applied his result to a
characteristic-free study of affine supergroup schemes. Later on (see [20]), Masuoka and Shibata
further extended Koszul’s method up to work on every commutative ring, via an algebraic version
of the notion of sHCp — devised to treat the matter with Hopf (super)algebra techniques.

In the second part of this paper I present a new solution to these problems, providing explicitly
a new functor ¥ (different from those by other authors), which does the job; in particular, I also
show that any positive answer is possible if and only if we restrict our attention to those (affine)
supergroups which are globally strongly split — thus setting a link with the first part of the paper.

The above mentioned construction of the functor ¥ is made in the setup (and with the language)
of algebraic supergeometry. Nevertheless, it is worth stressing that one can easily reformulate
everything in the setup (and with the language) of real differential supergeometry or complex
analytic supergeometry: in other words, the method presented here also applies, mutatis mutandsis,
to real or complex Lie supergroups (which, as we mentioned, are known to be all globally split).

The paper is organized as follows. First (Sec. 2) we establish the language and notations we
need. Then (Sec. 3) we treat the notions of “splittings” for superalgebras, Hopf superalgebras,



superschemes and supergroups; in particular, we present some results about global splittings of
supergroups and about their “local” splittings, i.e. splittings on A—points. Finally (Sec. 4), we
study the relation between supergroups and super Harish-Candra pairs, and the construction of a
functor ¥ which is quasi-inverse to the natural one ® associating a sHCp with any supergroup.
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2 Preliminaries

In this section I introduce some preliminaries of (affine) supergeometry. Classical references for
that are [9], [17] and [22], but I shall mainly rely on [6].
All over the paper, k will be a commutative, unital ring.

2.1 Superalgebras, superspaces, supergroups

This subsection is devoted to fix terminology and notation for some basic notions.

2.1.1. Supermodules and superalgebras. A k-supermodule is by definition a k-module V'
endowed with a Zy—grading, say V = Vo @ V3, where Zs = {0,1} is the group with two elements.
The k-submodule Vg and its elements are called even, while V4 and its elements odd. By |z| or
p(z) (€ Z2) we denote the parity of any homogeneous element, defined by the condition z € V.

We call k—superalgebra any associative, unital k—algebra A which is Zy—graded (as a k—algebra):
so A has a Zo—splitting A = Ag ® A1, and Az Ap C Aayp - All k—superalgebras form a category,
whose morphisms are all those in the category of k—algebras that preserve the unit and the Zo—
grading. A Hopf superalgebra over k is a Hopf algebra H = Hg @ Hi in the category of k—super-
algebras, where the multiplication in a tensor product H’ % H" is given by (R} ®@hY)-(hh@hY) =

(—1)mlIRzl(p) - BY) @ (RY - BY) . Morphisms among Hopf superalgebras are then the obvious ones.

In the following, if H is any Hopf superalgebra with counit ¢ we shall write H' := Ker (¢).

A superalgebra A is said to be commutative iff zy = (—1)'”‘3| Wly 2 for all homogeneous z,
y € A and 22 =0 for all odd z € A;. We denote by (salg) the category of commutative
k-superalgebras; if necessary, we shall stress the role of k by writing (salg), . A Hopf superalgebra
is said to be commutative if it is such as a superalgebra, and we denote by (H-salg), , or simply
(H-salg) , the category of commutative Hopf k—superalgebras. We shall also denote by (alg), — or
simply (alg) — the category of (associative) commutative unital k—algebras.

For A € (salg), , n € N, we call Al[n] the Ag —submodule of A spanned by all products 9 - -- ¥,
with ¥; € Ay for all 7, and then A(ln) and A7 respectively the unital k-subalgebra and the ideal
of A generated by Al[n] . Similarly we consider Hl[n], Hﬁn), H" for H € (H-salg), .

We need also to consider the following constructions. Given A = Ag @ Ay € (salg),, let
Ja = (A1) be the ideal of A generated by Aj: then Jy4 = A[lz] ® A, and A = A/JA is
a commutative superalgebra which is totally even, i.e. A € (alg), ; moreover, there is an obvious
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isomorphism A := A / (A1) = Ao / A[12] . Also, the construction of A is functorial in A ; and similarly
for the constructions of Ag and of A(ln). This yields functors (), ( )q : (salg), — (alg), and
( )(1"): (salg), — (salg), respectively defined on objects by A+ A, Ars Ag, A A(ln) (neN).
On the other hand, there is an obvious functor %Slzli)k : (alg), — (salg), given by taking any
commutative k-algebra as a totally even superalgebra; both () and ( )o are retractions of %Slzli)k

We shall now introduce the affine superschemes, which by definition are representable functors
from (salg) to the category (sets) of all sets:

Definition 2.1.2. For any R € (salg), , we call spectrum of R, denoted Spec (R) or also hg, the
representable functor Spec(R) = hpr : (salg), — (sets) associated with R. Explicitly, hg is
given on objects by hpg(A) := Homs,g), (R , A) and on arrows by hgr(f)(¢) := fo¢ . All such
spectra are also called affine k—superschemes. Any affine superscheme is said to be algebraic if its
representing (commutative) superalgebra is finitely generated.

When hp is actually a functor from (salg), to (groups), the category of groups, we say that hp
is a (affine) group k—superscheme, in short a (affine) k—supergroup; indeed, this is equivalent to the
fact that R be a (commutative) Hopf superalgebra, i.e. R € (H-salg), . In other words, the (affine)
group superschemes are nothing but the functors from (salg), to (groups) which are representable.
Any affine k—supergroup is algebraic if it is such as an affine k—superscheme, i.e. its representing
(Hopf) k—superalgebra is of finite type.

All affine k-superschemes form a category, with suitably defined morphisms, denoted by (assch),

which is isomorphic to the category (salg), opposite to (salg), : an isomorphism (salg), — (assch),
is given on objects by R +— hpr, and we denote its inverse (assch), = (salg)y by X — O(X) .
Similarly, all affine k-supergroups form a category, denoted by (sgroups), , isomorphic to the cat-
egory (H-salg), opposite to (H-salg), : explicit isomorphisms are given (with same notation) by
restrictions of the previous ones between (salg), and (assch), respectively.

More in general, we call respectively superset k—functor and supergroup k—functor (possibly
dropping the “k-") any functor X : (salg), — (sets) and any functor G : (salg), — (groups).

Example 2.1.3. The affine superspace Ai‘q, denoted kPI7 too, is defined (for p, ¢ € N) as
Aﬁlq := Spec (k[z1, ..., 2] @k[&1 ... &]) where k[& ... €] is the exterior (or “Grassmann”) algebra
Ea— k

generated by odd variables &, ..., &, and k[z1,...,xp] the polynomial algebra in p commuting

variables. The superdimension of Ailq is easily seen to be plq. ¢

Remark 2.1.4. More in general, one can consider the broader notions of (not necessarily affine)
superscheme and supergroup, still defined over (salg), — see [6] for more details. In the present
work, however, we do not need to consider such more general notions.

The next examples turn out to be very important in the sequel.

Examples 2.1.5.

(a) Let V be a free k—supermodule, that is a k—supermodule for which both Vy and V; are
free as k-modules. For any superalgebra A we define V(A) := (A®V)y = Ao @ Vo® A1 ® V1 .
This is a representable functor in the category of superalgebras, whose representing object is the
k—superalgebra of polynomial functions on V. Hence V can be seen as an affine k—superscheme.

(b) GL(V) as an affine algebraic supergroup. Let V be a k-supermodule which is free and
whose rank, i.e. the pair rk(V) := (rk(Vo),rk(V1)) , is finite, i.e. rk(Vp),rk(V1) € N. For any k-
superalgebra A, let GL(V)(A) := GL(V(A)) be the set of isomorphisms V(A4) — V(A) . If we



fix a homogeneous basis for V and we set p := rk(Vy), q := rk(V1) € N, we have V 2 kPI% : then
we also denote GL(V') with GL,|,. Now, GL,,(A) is the group of 1nvert1ble (p, q)-block matrices
— whose size is (p + q) — with diagonal block entries in Ay and off-diagonal block entries in Ay .
It is known that the functor GL(V) is representable, so GL(V) is indeed an affine k—supergroup,
and it is also algebraic; see (e.g.), [22], Ch. 3, for further details. ¢

Definition 2.1.6. For any superset k—functor X : (salg), — (sets), we respectively set

Xi=Xogm¥ o), Xo=Xogmo()y, X{":=Xo(){"

(alg)y (alg),
to denote its composition with the functor () : (salg), — (alg),, ()o : (salg), — (alg), and
( )(1n) : (salg), — (alg), (n € N), followed, in the first two cases, by j(salg)k : (alg), — (salg),
— see §2.1.1. Similar notation applies when X = G is in fact a supergroup k—functor. O

2.2 Lie superalgebras

The notion of Lie superalgebra over a field is well known: in particular, it is entirely satisfactory
when the characteristic of the ground field k is neither 2 nor 3. However, it is not as well satisfactory
— in the standard formulation — when that characteristic is either 2 or 3. This motivates one to
introduce the following modified formulation, whose main feature is to describe a “correct” notion
of Lie superalgebras as given by the standard notion enriched with an additional piece of structure,
namely sort of a “2-mapping” that is a close analogue to the p—mapping in a p-restricted Lie
algebra over a field of characteristic p > 0.

Definition 2.2.1. Let g = go ® g1 be a k—supermodule. We say that g is a Lie superalgebra if we

have a (Lie super)bracket [-,-]:gxg — g, (x,y) — [z,y], and a2-operation (-)<2> jg1 — go,
2+ 22 which satisfy the following properties (for all z,y €goUg1, wE€ go, 2,21,22 € g1):

(a) [-,-] is k-bilinear, [w,w] =0 [2,[2,2]] =0 ;

(b) [z,y] + (=))W, 2] = 0 (anti-symmetry) ;

() (D) Ty, 2] + () L2 a)) + ()P, [ y)) = 0
(Jacobi identity);

(d) (-)<2> is k—quadratic, i.e. (c z)<2> = %22 forall cek;
(e) (z1+ 20)@ = z§2> + [21,22] + z§2> ;
(f) [Z<2>a$] = [Z,[Z,.T”

All Lie k-superalgebras form a category, denoted (sLie), , whose morphisms are the k-linear,
graded maps preserving the bracket and the 2—operation. &

Remark 2.2.2. The conditions in Definition 2.2.1 are somewhat redundant, and in some cases
may be simplified: for instance, condition (e) yields [z1,20] = (214 22)? — z§2> - z§2> SO one
could use this as a definition of the Lie bracket on g1 x g1 in terms of the 2-operation. Conversely,
when 2 is invertible in k the 2—operation is recovered from the Lie bracket, via condition (e), as

202 =271z, 2] .



Example 2.2.3. Let V = Vp & V5 be a free k—supermodule, and consider End(V'), the en-
domorphisms of V' as an ordinary k-module. This is again a free k—supermodule, End(V) =
End(V)o@®End(V)1, where End(V)g are the morphisms which preserve the parity, while End(V)1
are the morphisms which reverse the parity. If V has finite rank, and we choose a basis for V' of
homogeneous elements (writing first the even ones), then End(V)g is the set of all diagonal block
matrices, while End(V); is the set of all off-diagonal block matrices. Thus End(V) is a Lie k-
superalgebra with bracket [A,B] := AB — (—1)|AHB| BA for all homogeneous A, B € End(V')
and 2-operation C‘? :=CC for all odd C'.

The standard example is V := kPI4 = k? @ k?, with Vo := kP and V; := k?. In this case we
also write End(km‘”) = End(V) or gl,|, = End(V) . ¢
2.2.4. Functorial presentation of Lie superalgebras. Let (salg), be the category of com-
mutative k-superalgebras (see section 2.1) and (Lie), the category of Lie k-algebras. Any Lie
k-superalgebra g € (sLie), yields a functor Ly : (salg), — (Lie), , which is given on objects by
Ly(A) = (A®g )0 = Ap®go & A1 ®g1, forall A€ (salg), : indeed, A®g is a Lie superalgebra
(in a suitable sense, on the k—superalgebra A) on its own, its Lie bracket being defined canonically
via sign rules by [a®X, a ®X’] = (—1)‘X| g o/ @ [X, X'] , and Lg4(A) is its even part, hence
it is a Lie algebra (everything is trivial to verify: see [2], or [6], Proposition 11.2.5, for details). In
particular, this applies to the Lie superalgebra g := End(V), where V is any free k—supermodule.
Note also that GL(V') — see Example 2.1.5(b) — is then a subfunctor of Lgpq(v) -

This “functorial presentation” of Lie superalgebras can be adapted to representations too. In-
deed, let V be a g—module, for a Lie superalgebra g: by definition, V is a k—supermodule, and
we have a Lie superalgebra morphism ¢ : g — End(V) (the representation map). Now, scalar
extension induces a morphism idy ® ¢ : A® g — A® End(V) for each A € (salg),, whose
restriction to the even part gives a morphism (A ® g)o — (A ® End(V))O , that is a morphism
L4(A) — Lgpaevy(A) in (Lie), . The whole construction is natural in A, hence it induces a
natural transformation of functors L4 — Lguqev) -

In the sequel, we shall call quasi-representable any functor L : (salg), — (Lie), for which
there exists a Lie k-superalgebra g such that £ = £y . Any such functor is even representable (in
the usual sense) as soon as the k-module g is finitely generated projective: indeed, in this case g is
a k-direct summand of a finite rank free k-supermodule, say f = g @ b, thus {* = g* © h* and L,
is then represented by the commutative k—superalgebra generated by g* inside S(f*) .

Finally, note that all this has a natural, non-super counterpart which is obtained by letting “Lie
algebras” replace “Lie superalgebras” all over the place.

2.3 The tangent Lie superalgebra of a supergroup

We now quickly recall how to associate a Lie superalgebra with a supergroup scheme. Further
details can be found in [6], §§11.2-5.

Let A € (salg) and let Afe] := A[z]/(2?) be the superalgebra of dual numbers over A, in which
€ :=x mod (a:2) is taken to be even. Then Ale] = A @ Ae, and there are two natural morphisms

i P
i, A— Ale], a3 a, and p,  Ale] — A, (a—i—a’s) 3 @, such that pyoi, = idy .

Definition 2.3.1. Given a supergroup k-functor G : (salg), — (groups), let G(pa) : G(A(e)) —
G(A) be the morphism associated with py : Ale] — A . There then exists a unique functor
Lie(G) : (salg), — (sets) given on objects by Lie(G)(A) := Ker (G(p)a) - O
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The key fact is that when G is a supergroup Lie(G) is a Lie algebra valued functor, i.e. a functor
Lie(G) : (salg), — (Lie), : this is by no means evident, since the very definition only assures that
that functor is group-valued. In fact, stating that Lie(G) is actually Lie algebra valued requires a
non-trivial proof (like in the classical case): we refer for this to [6], Ch. 11 (with the few adaptations
needed for the present setup), and restrict ourselves to quickly sketching here the main steps.

The Lie structure on any object Lie(G)(A) is introduced as follows. First, define the adjoint
action of G on Lie(G) as given, for every A € (salg), , by

Ad: G(A) — GL(Lie(G)(A)) Ad(g)(z) == G(i)(g) -z - (G(i)(9))
for all g € G(A), = € Lie(G)(A). Second, define the adjoint morphism ad as
ad := Lie(Ad) : Lie(G) — Lie(GL(Lie(G))) := End(Lie(Q))
and finally define [z,y] := ad(x)(y) for all z,y € Lie(G)(A). Then we have the following:

-1

Proposition 2.3.2. Given G € (sgroups), , let w.(G) := (’)(G)Jr/((’)(G)Jr)2 and g :=T.(G) =
we(G)* = Homy (we(G), k) be the cotangent and tangent supermodule to G at the unit e € G .

(a) Lie(G) with the bracket [-,-] above yields a Lie algebra valued functor
Lie(G) : (salg),, —— (Lie),

(b) if Lie(G) is quasi-representable, namely it is of the form Lie(G) = L, (see §2.2.4), then p
identifies with g and the latter is endowed with a canonical structure of Lie k—superalgebra.

(¢) Lie(G) is quasi-representable if and only if w.(G) is finitely generated projective (overk).
When this is the case, Lie(G) is actually representable.

Proof. Claim (a), i.e. the fact that Lie(G) with the bracket |-, -] considered above be a Lie algebra
valued functor, is a well known fact: cf. [6], §11.4 (for instance) for further details.

As to claim (b), it is also standard (cf. [6], §11.2) that if Lie(G) = L,, then p necessarily
identifies with g := T¢(G), and then the existence of a “Lie structure” on Lie(G) = L4 endows
p = g with a structure of “Lie k—superalgebra” in the usual “weak sense”: i.e., g has a Lie super-
bracket for which conditions (a)-(b)-(c) in Definition 2.2.1 are fulfilled. In addition, one has similar,
canonical identifications Lie(G) = Ly and Lie(G) = Ly where ¢’ := Den (O(G),k) is the k-
superalgebra of k-valued superderivations of O(G) and g” := Derf(O(G)) is the k-superalgebra
of left-invariant superderivations of O(G) into itself. Also, both g’ and g” bear structures of Lie
k—superalgebras which are isomorphic to that of g (yielding the Lie algebra structure on each
Lie(G)(A), for A € (salg), ) — see e.g. [6], §§11.3-6; there G is assumed to be algebraic, but the
arguments (taken from classical sources, such as [8], Ch. II, §4) only require our assumption in (b).

What we still need to fix is that, under the assumption in (), g := T.(G) is also endowed
with a 2—operation such that g is a Lie k—superalgebra in the sense of Definition 2.2.1. Actually,
I introduce such a 2-operation on g” and then I use the previous isomorphism(s) to “transfer”
such a structure onto g (and onto g') as well. Indeed, the Lie bracket in g” := Derf(O(G)) is
given by [X,Y] = XoY — (—1)|X‘ Y1'yo X ; in addition, looking Z € g1 as an (odd) left-invariant
superderivation of O(G) one sees at once that Z2 = ZoZ is an even left-invariant superderivation,
ie. Z2 e go. Then g1 — go, Z — Z? := Z?  is well defined and yields a 2-operation in g that
along with [-, -] makes it into a Lie k—superalgebra as desired (i.e. in the sense of Definition 2.2.1).

For claim (c¢) the “if” part is well-known again: if w.(G) is finitely generated projective then
the same holds true for g = w(G)", hence (see §2.2.4) the functor Lie(G) = L, is representable.
As to the “only if” part, here is a proof (kindly suggested to the author by prof. Masuoka).



First, by definition of “quasi-representable” (see §2.2.4) and by claim (b) above we have that
Lie(G) is quasi-representable if and only if there exist isomorphisms (natural in R € (salg), )

Lie(G)(R) = L4(R) = (g ®x R)g = (90 ®k Ro) & (91 @k R1) (2.1)

On the other hand, definitions give Lie(G)(R) = Hom(smod)k(we(G) ,R) — where (smod),
denotes the category of k—supermodules — so that

I_Iorn(smod)]k ( we(G) 3 R) = I_Iorn(mod)]k (( we(G)>0 ) R0 ) S Hom(mod)k (( we(G>)1 ) Ry )
where now (mod), denotes the category of k-modules. Thus (2.1) above reads (for all R, etc.)
Hom 1noq), ((we(G))g » Ro) @ Hommoq), ((we(G)); , R1) = (g0 ®k Ro) ® (g1 ®x R1) (2.2)

Given M € (mod), we associate with it a couple of (super)commutative k-superalgebras M
and M_ defined as follows. As k-algebras they both are the central extension of k by M (that is
My :=k® M =: M_ with m’"m” =0 for m’,m"” € M), but the Zs—grading is different, namely

(My)g =k® M, (My); :={0}, (M_)g =k, (M-); =M
Now assume that Lie(G) is quasi-representable, hence (2.2) holds true. For R := M this gives

Hom(mod)k (( O‘)E(G))O ’ RO ) = Hom(mod)k (( we(G))O ) ]k) D Hom(mod)k (( we(G))O ) M)

and go®kRo = go®k(kdM) = (go®kk)€9(go®kM) , whereas Hom(mod)k((we(G))l ,Rl) = {0},
g1 ®k R1 = {0} . Therefore condition (2.2) reads

Hom(mod)k((we(G))O k)@ Hom(mod)k((we(G))O M) = (go @k k) ® (go ®x M)
and eventually (as Hom moq), ((we(G))O,k) = ((we(G))O)* = ((we(G))*)O = go = go Rk k)
HOIn(mod)]k ((WB(G))O ) M) = go®x M (23)

This last condition is natural in M : this together with the fact that the functor M — g ®x M
preserves surjections, implies that (we (G))O is k—projective.

For R := M_ we can repeat the same argument. We find

Horn(mod)]k (( we(G))O , Ro ) = Hom(mod)k (( we(G))O ) k)

and  Hom(yoq), ((we(G)); , R1) = Hom(meq), ((we(G))y, M) , while go @k Ro = go ®k k = go ,
g1 ®k R1 = g1 ®x M . Thus condition (2.2) now reads

HOm moa), ((e(G))g K ) @ Hom(mea, ((we(G))y, M) = (go 24 k) @ (g1 @i M)

and then eventually (like before)
Hom(mod)k ((we(G))l aM) = g1 ®k M (24)

As (2.4) is natural in M, we can now argue like above to infer that (we(G))l is k—projective.
The outcome is that w.(G) = (we(G))O @ (we(G))l is k—projective, q.e.d.
Let now 7 : F = @ik — (we(G))O
F = ®;c; of rank |I| onto (we(G))O. By projectivity of (we(G))O there exists a splitting o :
(we(@))y = F of . Then o € Hom (0q), (we(@)g,F) = g0 @ F = go @k (Dier k) —
by (2.3) with M := F — hence there exists some finite index subset J C I such that o actually

belongs to go ®x (@ie] k) , which means that the image of o is contained in F’ := @®;c k. But
then the restriction of m to F’ is still surjective, hence (we(G))O is finitely generated.

be a k-linear surjection from some free k—module

An entirely similar analysis shows that (we(G))O is finitely generated as well. O
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In the following we are interested in affine k—supergroups of a specific class, characterized in
terms of Lie(G), as the following definition (not very restrictive, indeed) specifies:

Definition 2.3.3. We call fine any affine k—supergroup G € (sgroups), whose associated functor
Lie(G) is quasi-representable, say Lie(G) = Lg, for some Lie k-superalgebra g whose odd part
g1 is free of finite rank as a k-supermodule. We denote by (fsgroups), the full subcategory of
(sgroups), whose objects are all fine k-supergroups. &

3 Splittings

In this section we consider the notion of “global splitting” — roughly, a “separation of variables”
property — for superalgebras, Hopf superalgebras, (affine) superschemes and supergroups. We shall
see that if k is a field then all (affine) k—supergroups do admit “global splittings”: this is essentially
due to a result by Masuoka on the splitting of commutative Hopf superalgebras over a field.

We shall also introduce some other (easy, yet interesting) “splitting results” for the A—points
of a k-supergroup when A ranges in special subcategories of (salg), .

3.1 Augmentations and split superalgebras

In the following, we shall think of k as being a totally even superalgebra, i.e. we identify k with

sal
‘Z;lgi)k(k) — see §2.1.1.

3.1.1. Augmentations for superalgebras and related constructions. For any superalgebra
A € (salg), , we call augmentation of A any morphism of k-superalgebras € : A — k. We denote
by (a-salg), the category of “augmented (commutative) superalgebras”: its objects are pairs (A , € )
where A € (salg), and e is an augmentation of A, and its morphisms (A’, ¢') — (A", ¢") are
given by morphisms ¢ : A’ — A” in (salg), such that €’ o¢ =e. We also identify (4,¢e) = A.

Given (A, ¢€) € (a-salg), one has Ker(e) = Af & Ay where A := Ker(e) N Ag. Define
WA = Ay JA§ A1 and let \ W4 be the exterior k-algebra of W4 ; recall also that A(ll) is the unital

k-subalgebra of A generated by A; (see § 2.1.1). Then A := A / Ja, A(ll) and A\ W4 all inherit
from (A, € ) a natural structure of augmented k—superalgebra.

It follows also that both A ®y A(ll) and A ®; A W4 have a natural structure of commutative,
unital, augmented k-superalgebra, i.e. A @y A(ll), A N\WA € (a-salg), -

Definition 3.1.2. Given any A € (a-salg), , we say that it is weakly split if there exists a section
o, : A — A of the projection m, : A —» A — both being meant as morphisms in (a-salg), . All
pairs (A , O'A) as above form a category, denoted by (wksp-salg), , or just (wksp-salg), where mor-
phisms are all those in (a-salg), which are compatible (in the obvious sense) with the sections. <

Remark 3.1.3. Given (A,O'A) € (wksp-salg), , write A = O'A(Z) C A. Then the multiplication

_ _ m/
map m, in A yields an A-linear projection A ®y A(ll)—A» A.

The above remark shows that any weakly split superalgebra A can be recovered as a quotient

— in the category of A-modules, via the multiplication map — of A ® A(ll) . This invites us to
consider those cases when this description is “optimal”, which leads naturally to next definition:
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Definition 3.1.4.
(a) Any (A,0,) € (wksp-salg), is said to be split if the natural A-linear morphism (see above)

_ m/
Ak A(ll)—A» A induced by multiplication in A is an isomorphism in (wksp-salg), . We denote by
(spl-salg), the full subcategory of (wksp-salg), of all split k-superalgebras.

(b) Any augmented superalgebra (A , g) € (a-salg), is said to be strongly split if there exists an

isomorphism ¢ : A——» A @, AW in (a-salg), . We denote by (stsp-salg), the full subcategory
of (a-salg), given by all strongly split k-superalgebras. &

We introduce now another special subclass of (commutative) superalgebras.

Let A € (alg), and let M be an A-module. Then A4 := A@® M has a natural structure of
unital, commutative k—superalgebras defined as follows: the Zs—splitting is given by (A A, M)o =
A, (A A, M)l := M, and the k—algebra structure is the unique one such that A is a k—subalgebra,
M-M:={0} and a-m:=am = m- -« for all « € A, m € M, where a.m is given by the
A-action on M . In a formula,

(a+m)- (/+m) == ad + (a.m'+ o' m) V a,o € A, m,m' e M

By construction, the k—superalgebra A := A4 s has the property that A7 = {0} . Conversely,
let A € (salg), be such that A7 = {0}: then A is of the previous form, namely A := A4, for
A:=Ag and M := A;.

Definition 3.1.5. We call augmented central extension (k-superalgebra), or simply central exten-
sion, any (A,e) € (a-salg), which (as a superalgebra) is of the form A = A4 as above with
e(M) = 0 — in other words, such that A7 = {0} and €(A;) = {0}. We denote by (cex-salg),
the full subcategory of (salg), whose objects are all the central extension k-superalgebras. O

Next (easy) result shows the links between these special subcategories of (salg), :

Proposition 3.1.6.

(a) The category (stsp-salg), identifies in a natural way with a subcategory of (spl-salg), , and
similarly (spl-salg), identifies with a subcategory of (wksp-salg), . In other words, all strongly split
k-superalgebras are split, and all split k—superalgebras are weakly split.

(b) The category (cex-salg), identifies in a natural way with a subcategory of (spl-salg), : i.e.,
all central extension k—superalgebras are (naturally) split.

Proof. (a) Given A € (stsp-salg), , by the isomorphism ¢ : A =2 A ®, AW" one has A; =

A @k (0525 (WA)AS> hence A(ll) =k (Z Rk (/\ WA)+) , and then an easy calculation shows

that A € (spl-salg), , as expected. Moreover, if A € (spl-salg), then the monomorphism A —
A®y A(ll) (a—a®1) composed with the isomorphism A @y A(ll) — A (inverse to the one given
by definition) yields a section A —— A of m, : A —» A, so that A € (wksp-salg),, q.e.d.

(b) Let A= Ag® Ay € (cex-salg), , so that A7 = {0}. Then definitions give Jy := (A1) =
A2@ Ay = Ay hence A= A/Jy = AJA; = Ag, and AV = k@ A;. Thus A = Ao @ 4y =
AP A =2 AR A(ll) , so that A € (spl-salg), , q.e.d. O
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3.1.7. Strongly split Hopf superalgebras. Any commutative Hopf k—superalgebra, say H €
(H-salg), , is naturally augmented, in the sense of §3.1.1, its augmentation being the counit: so
(H-salg), naturally identifies with a subcategory of (a-salg), , and all constructions therein make
sense for Hopf algebras. In addition, there are now some extra features.

First, in the Hopf setup Jy := (Hl) is in fact a Hopf ideal of H. Therefore, H := H/JH s a
classical (i.e. super but totally even) commutative Hopf algebra.

Second, the coproduct of H induces also a structure of super left H—comodule on H (via the
projection H — H ), such that H is a counital super left H-comodule k-algebra.

Third, letting € : H — k be the counit map of H, let H™ := Ker(e), Hy := HoNn H™,
wH .= Hl/H0+H1 and AW asin §3.1.1,

Asin §3.1.1, H® AW has a natural structure of a commutative superalgebra, endowed with
a counit map; moreover, the coproduct of H induces on H ® AW a super left H-comodule
structure, so that H ® /A WH is a super counital left H-comodule k—algebra. The notion of “split”
(commutative) Hopf superalgebra — introduced by Masuoka — then reads as follows:

Definition 3.1.8. Any H € (H-salg), is said to be strongly split if W is k—free and there is an
isomorphism ¢ : H —» H AWH  of super counital left H-comodule k-algebras. &

Remark 3.1.9. The right coadjoint coaction of H canonically induces a right H-coaction onto
H ; it is easy to see that this induces a H-coaction onto W | hence on A W too.

Now assume H is strongly split and ¢ : H « »H®x AWH s a splitting map as in Definition
3.1.8, we can endow then H ®; AW with the push-forward (via () of the coproduct of H :
thus H, := H ® A\WH itself is a Hopf superalgebra (isomorphic to H) such that H, = H and
WHe = WH in a canonical way. Now, the right coadjoint coaction of H, induces again a right
coaction of H, onto A\ WHe (as above): it is then immediate to see that — via the identifications
H, = H and \WHe= AWH — this coaction is the same as the one of H on A\ WH

The following result, due to Masuoka, ensures that H is strongly split (yet he omits the “strong”)
when the ground ring k is a field with char(k) # 2 (see also [3], Theorem 1):

Theorem 3.1.10. (cf. [18], Theorem 4.5)
If k is a field with char(k) # 2, then each commutative Hopf k—superalgebra is strongly split.

3.1.11. Examples and counterexamples.

(a) Consider on k[g,g] = ]k[xl, R S T ,fm] € (salg), the standard augmentation
given by €(z;) :==0, €(&) :==0. Then (k[z,£], €) € (stsp-salg), .

If in addition we consider on ]k[gé ] the (standard) Hopf superalgebra structure given by
Aw) =@ 1+10m, Alg) =& 81+18¢, e(n) =0, (&) =0, S(n) = —;,
S(&5) == —¢;, then k[g,g is even a strongly split Hopf superalgebra.

(b) For any invertible u € k*, let TFo, := k[w,y,f,n} /(a:y +&n — u) with the unique

augmentation € given by €(x) =1, €(y) =u and €(¢) = ¢(n) = 0. Then we have Fa,, = k[¢,t71]
(via T+ t, g ut™!), and moreover there exists a section O, : Fa.,, — Fa.,, of the projection

Moy - B2 —> Fow given by o () :=1x, aFm(t_l) =u"ly(1+&n); thus Fa € (wksp-salg), .

Furthermore, we have (Fg;u)l = k[ﬁ, 7]} and one easily sees that o, = O'H,Zu(FQ;u) Rl k[‘f, 17} SO
that Fo,, € (stsp-salg), .
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(c) Again for any u € k*, let Go,, = k[w,y,f,n,ﬁ,x]/(xy +&n—u, 19)() with the unique
augmentation € given by e(z) =1, €(y) = u and €(§) = €(n) = €(¥) = €(x) = 0. Then acting like
in (¢) one finds that Gg,, € (spl-salg), but Go,, & (stsp-salg), .

(d) Let Fop := k[:c,y,{,n] /(xy + §n) with the unique augmentation € given by e(x) =
€(y) = €(&) = €(n) = 0. Again like in (¢) one finds easily that Fo,g ¢ (wksp-salg), .

(e) Let E, ., = k[ml, R S T ,§m}/({ & & }j i—1 m) with the obvious augmentation
induced by that of k[z,{] in (a) above. Then E, ., € (cex-salg), .

(f) — “Super numbers” on classical algebras: Let A € (alg), be a commutative k-algebra. If
n is a formal odd variable, then A[n] := A®gk[n] can naturally be thought of as an object in (salg), ;
if we assume 4 to have some augmentation, and extend it to .A[n] by setting €(n) := 0, then clearly
A[n] is even a(n augmented) central extension. Letting (a-alg), denote the category of commutative
k-algebras with augmentation, all this yields a faithful functor (a-alg), — (cex-salg), .

3.2 Global splittings of superschemes and supergroups

We begin with a general discussion about “global splittings” for affine superschemes; later on
we shall look at the case of affine supergroups.

We resume notation as in §2.1.1. Let X € (assch), be an affine k-superscheme, and R := O(X)
the commutative (unital) k—-superalgebra representing it; then let Jg := (Rl) = le @ Ay and
R:=R/Jr = Ro/RI.

Definition 3.2.1. The affine superscheme X, := hy; represented by R = O(X), i.. such that
O(Xey) = O(X), is called the classical scheme associated with X . &

The terminology just introduced is motivated by the following result:

Proposition 3.2.2. For any X € (assch), , we have:
(a) Xey= Xo (see §2.1.1), and it can be thought of as a representable functor from (alg), to
(sets), i.e. as a classical — that is, “non super” — affine k—scheme;

(b) the k—superscheme X., = Xo identifies with a closed supersubscheme of X ; moreover,
every closed supersubscheme X which is classical is a closed subscheme of X¢, = Xo .

Proof. (a) Let R = O(X) € (salg),, so that X = hg and X, := hg . For any A € (salg),
we have X,(A) = hz(A) = Hom(salg)k(ﬁ,A) = Hom(alg)k(E,Ao) because R is totally even. In
addition, HOIH(alg)k(ﬁ,Ao) = Hom(salg)]k(R7A0) = hR(A()) = X(Ao) = X()(A), in that, letting
7:R— R, forevery ¢ € Homyyg), (R,Ag) we have pom € Hom(alg)k(R , Ao) , and conversely
every ¢ € Homyg), ( R, Ao) kills Jg and thus it factors through R . Therefore X, and X coincide
on objects, and similarly they do on morphisms.

(b) The identification X, =Xy is a sheer consequence of the (well known) definition of closed
supersubscheme, see for instance [6], §10.1. Moreover, let ¥ be any (closed) supersubgroup of
X which is also classical: then the commutative superalgebra O(Y') representing Y is a quotient

of R := O(G), and it is totally even, i.e. it is a (commutative) algebra. Now, any quotient
superalgebra of R which is totally even is actually a quotient of R =: O(X.,) = O(Xp), by
construction; applying this to O(Y) we get Y C X, =X as a closed subscheme. O
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As a consequence of the previous Proposition, we shall hereafter denote the classical scheme
associated with X by Xo rather than X, .

We can now introduce the notion of “global splitting” for an affine superscheme:

Definition 3.2.3. Let X € (assch), be an affine k-superscheme. We say that X is globally split
(or “g-split”) if there is a superscheme isomorphim X = Xg x X,4¢ for some totally odd affine
k—superscheme X,44 having only one k—point. In addition, we say that X is globally strongly split
(or “gs-split”) if X,qq = A% is indeed a (totally odd) affine k—superspace. &

The following algebraic characterization is entirely straightforward:

Proposition 3.2.4. Let X € (assch), . Then X is respectively globally split (=“g-split”) or globally
strongly split (=“gs-split”) if and only if O(X) is split or strongly split.

Proposition 3.2.2 of course applies also to every (affine) supergroup G, as a superscheme itself.
In addition, we have the following (more or less well-known) result:

Proposition 3.2.5. Let G be an affine supergroup, over a ring k, and let H := O(G) be its
representing (commutative Hopf) k—superalgebra. Then every closed supersubgroup of G which is
classical is a closed subgroup of Gog = Gy .

Proof. If K is any (closed) supersubgroup of G which is also classical, then the commutative Hopf
superalgebra O(K) representing K is a quotient of H := O(G), and it is totally even, i.e. it is a
(commutative) Hopf algebra. Now, any quotient Hopf superalgebra of H which is totally even is
actually a quotient of H := O(Gp), by construction; applying this to O(K) we get K < Go. [

In sight of Masuoka’s factorization result for commutative Hopf superalgebras (over fields) in
Theorem 3.1.10 the notion of “globally strongly split” (or “gs-split”) for supergroups deserves to
be made more precise than in the superscheme setting.

Let G be an (affine) k—supergroup, and let H := O(G) be the supercommutative Hopf k—
superalgebra representing it. The coproduct map O(G) =: H — H ® H = O(G) ® O(G) =
O(G x G) corresponds to the multiplication map G xG — G . Similarly, the quotient map
7: H :=O(G)—» O(Go) = H corresponds to a canonical embedding j : Gy = Go— G. Via
this, the H-coaction

O@G) = H — HoH = O(Go) ® O(G) = O(Go x G)

corresponds to a left action Go x G — G of Gg onto G, given by restriction of the (left) action
of G onto G by left multiplication: so G is a left Gg—scheme. In addition, G’ has a special point,
the unit element — corresponding to the counit map for H := O(G) — so that G itself can be
thought of as a pointed superscheme.

On the other hand, if Agd’ is any totally odd affine k—superspace (with d_ € N), then the
direct product Gg x Aﬂgld* has a left Gg—action, given by left multiplication in Gg: this makes
Go % Agd‘ into a left Gog—scheme. In addition, Gg is also a pointed superscheme, whose special
point is the unit element — corresponding to the counit map for H = O(Gp). But also Agd’
is a pointed superscheme, the special point being the zero of Aﬂgld_ as a free supermodule — this
corresponds again to the counit map of the Hopf superalgebra representing Aﬂgld’ . Therefore, the

direct product Gg X Aﬂzld_ is a pointed superscheme as well.

All this lead us to strengthen the notion of “globally split” concerning supergroups:
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Definition 3.2.6. Let G be an affine k—supergroup. Assume that there exists a closed subsu-
percheme G1 of G such that

(a) 1,€ G1, hence we look at G as a pointed superscheme;

(b) the product in G restricts to an isomorphism Go x Gy «—» G of pointed left Go—
superschemes;

(¢) G1 is (isomorphic to) a totally odd affine superscheme Aﬂzld*, as a pointed superscheme.

When all this holds, we say that G is globally strongly split, or in short that it is gs-split.

We shall then denote by (gss-sgroups), and (gss-fsgroups), , respectively, the full subcategories
of (sgroups), and (fsgroups), , respectively, whose objects are all supergroups and all fine super-
groups, respectively, over k which in addition are globally strongly split. &

Remark 3.2.7. Let G be an affine k—supergroup for which Lie(G) is quasi-representable. Then if
G is globally strongly split, it is also clearly fine — in the sense of Definition 2.3.3.

The main facts to take into account at this stage are the following:

Theorem 3.2.8. Let G be an affine supergroup, defined over a ring k, and let H := O(G) be its
representing (commutative Hopf) k—superalgebra. Then G is globally strongly split if and only if
the Hopf superalgebra O(QG) is strongly split. In particular, if k is a field whose characteristic is
not 2, then G is globally strongly split.

Proof. 1t is clear that the very last part of the statement is a sheer consequence of Masuoka’s
Theorem 3.1.10. We just need to prove the rest.

In one direction, the proof is obvious. Indeed, assume that G is globally strongly split, so
G=Gg -G1=2GoxG1=Go x Agd_ (see Definition 3.2.6): then we have isomorphisms

O@) = O(Go x G1) = O(Go) & O(G1) = O(Go) @i O(AN™)

of k—algebras. Moreover, the fact that G = Ggo - G1 = G¢ X G1 as pointed superschemes implies
that the resulting isomorphism O(G) = O(Go) ®k O(Agd_) is also counital. Finally, as the
isomorphism Gg x Aﬂgld_ =~ (Gg - G1 = G is one of Gg—superspaces, one sees in addition that the
isomorphism O(G) = O(Go) ®k (’)(Agd*) is also left O(Gyg)—coinvariant.

The converse step almost entirely follows from definitions (along with Remark 3.1.9) and Ma-
suoka’s result (Theorem 3.1.10). Indeed, assume that the Hopf superalgebra H := O(G) is

strongly split, i.e. there exists an isomorphism O(G) =: H «— »H ®x AWH  of counital H-
comodule superalgebras, with H = O(G) = O(Gp) : using this isomorphism we can identify both
H = 0(G) = O(Gy) and AWH with subalgebras of O(G) = H whose product is all of H itself.
Taking superspectra, this yields an isomorphism Gg x G1 = G — as pointed superschemes with
left Gp—action — for some closed subsuperscheme G in G such that O(Gy) = AWH . To put it
in down-to-earth terms, we look pointwise: if A€ (salg), one has

G(A) = Hom(salg)k (H 5 A ) 5 G()(A) = Hom(salg)k (F 5 A )
G1 (A) = Hom(salg)k ( /\WHa A)

and the isomorphism then is given by (m , being the multiplication in A )

Go(A) x G1(A) — G(A),  (vo, 1) = myo (po® 1)
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in particular, Go(A) and G1(A) as subsets of G(A) are characterized as
Go(A) == {9 €GA) | s(low) = € (@) Ywe AW}
Gi(4) == {peGA) | o(Fel)=c (B) VEcT)

Thus, the only non-trivial point which is left out is that this isomorphism actually is realized
through restriction of the product in GG: we check it now pointwise.

The standard embedding o, : O(Go) = O(G) = H —— H @ A\WH = H =: O(G) induces
a natural supergroup morphism G — Gy, which is a retraction of the embedding Go — G
because o, itself is a section of the canonical projection ,: H —» H . Putting it in down-to-earth
terms, for A € (salg), the above mentioned retraction reads

G(A) = Hom(salg)k (O(G)7 A) - GO(A) = Hom(salg)k (O(G0)7 A) y gr*>go:=goo

for all g € G(A). In other words, if g € G(A) then go := goo can be seen as the restriction of
g (which is a morphism from H := O(G) to A) to H = O(G) embedded in H = O(G) via o.
Notice also that gg := g o o belongs to Go(A), and when we embed the latter (canonically) into
G(A) the image of gp is go o m, : in other words, when thinking of gy as an element of G(A) we
realize that we are actually taking go := goom, .

Now for each g € G(A) consider gg :=goo € Go(A) and gy := goom, € G(A) as above; then
define g1 :=gy5 ' g (€ G(A)). By construction we have g = go - g1 — a product inside G(A4) —
so we are only left to prove that actually g1 € G1(4) = Hom(salg)k(/\WH,A) . To this end, we
recall that the product in G(A) = Homyg,1g), (H , A) is given by convolution

qg-g" = on(g’®g”)oAH V ¢,9" € G(A) = Homy (H,A) (3.1)

salg),
By the characterization of G1(A) given above we have that ¢g; € G1(A) if and only if

g(h®l) =1,, (ko) forall heH (3.2)
so this is our goal. Definitions along with (3.1) give

g1 =35 g =m0 (G ®g) oA, =mo (g5 ®g)o(m, @id,) oA, (33)

Recall that, by assumption, the isomorphism H < » H®yg AWH  of counital superalgebras is also
left H—covariant: this means that

(my id,)oA,)(hel) = (A @id, ) (Fel) = by @hyel Y hel
hence (3.3) and the identity E(g) ®1= 0(5(2)) together give

g(h©1) = (myo (9o @g)o(m®id,)oA,)(hel) =
= 90 (hw) 9(hy @ 1) = g0 () (90 0) (b)) = 90" (Rw) g0(h2) =
= (go_l-go)(h) = 1G0(A)(h) = 1G(A)(h®1)

for all h € H, so that (3.2) is proved. O
The above characterization of gs-split supergroups yields an interesting consequence:

Corollary 3.2.9. Let G be a globally strongly split supergroup. Then (with notation of Definition
3.2.6) G is stable by the adjoint Go—action.
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Proof. Applying Remark 3.1.9 to H := O(G) we find that A\ W = O(G4) is stable by the right
coadjoint O(Gg)—coaction. But at the superscheme level this implies exactly that Gy is stable by
the adjoint Gp—action, q.e.d. O

Remark 3.2.10. To be complete, we mention that in Boseck’s approach (see [3, 5]) each affine
algebraic supergroup is assumed to be “globally strongly split” (in our sense) by definition.

3.2.11. Consistent splittings for embeddings of gs-split supergroups. If we consider a
(closed) supersubgroup within a supergroup, and both are gs-split, we can ask whether there exist
“splittings” of both supergroups which are “consistent” with each other, by which we mean that
they are “compatible”, in some natural sense, with the embedding of the first supergroup inside
the second one. We shall now make this rough idea more precise and find some significant results.

Let us start with an affine, fine supergroup G over k, with g = Lie(G). Set A := O(G) ,
A = A/(Al) , WA = Al/AgAl . Recall that A = O(G) = O(Geu), the commutative

Hopf algebra which represents the affine group G, associated with G, and (WA)* = g1 . By
assumption G is fine, so g1 is k—finite free. Recall also that g is endowed with a 2—operation and
the universal enveloping (super)algebra U(g) involves the relations v*> = v'? | for v € g1 . Just as
in [20], Lemma 4.24, there exists a canonical Hopf pairing ( , ):U(g) x A — k which gives rise
to the superalgebra map x: A —— U(g)" defined by x(a) := ( ,a).

Choose a totally ordered k—free basis X of gy , and define a unit-preserving super-coalgebra map
Ly P AB1 —U(g) by ty(x1 A~ ANxp) := 212y for n >0 and 21 < -+ <z, in X . Define

LE ~
also p, : A — AW to be the composition py + A L U(g) —=> (/\ g1 )* —— AWA where
the last arrow denotes the canonical isomorphism; this p is a counit-preserving superalgebra map:
see [18], page 301. Now, assume that the Hopf superalgebra A is split (or equivalently G is gs-

x(

split): thus there exists a counit-preserving isomorphism A =54 Qu AW of left A-comodule
superalgebras. The following result proves that one can choose a particular such splitting;:

Lemma 3.2.12. (Masuoka) The map v, : A—— A®y AWA | a Yy (a) :==aqy@py (a)
where a — @ denotes the natural projection A —» A, is bijective. In fact, it is a counit-preserving
isomorphism of left A—comodule superalgebras.

Proof. The claim follows from [20], Lemma 4.27; note in particular that the cited Lemma actually
holds over an arbitrary ring k (moreover, A may not be finitely generated, as long as W4 is k-
finite free: see the proof of Theorem A.10 in [20]). Since the map p,, , composed with the natural
projection AW#4 —— W4 | coincides with the natural composite
A=kpAT — A+/(A+)2 . (A+/(A+)2) — WA
1
we conclude that p satisfies the assumption required by the cited lemma. ]

9

We can now state and prove the promised result about the existence of “consistent” splittings

for a closed embedding between gs-split supergroups:

Theorem 3.2.13. (Gavarini and Masuoka) Let H and K be (affine, fine) supergroups over k,
with H being a closed subsupergroup of K . Setting b := Lie(H), ¢:= Lie(K), assume that:

(a) the quotient k—supermodule ‘El/hl is free;
(b) H and K are globally strongly split.
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Then, for a given splitting H = Ho X Hy of H , there exists a similar splitting K = Ko X K1
of K which is consistent with that of H , that is one has Ho C Ko, H1 C K1 and the diagram

1%

H()XHl H
!
Ko x K1 iK K

(11, being an isomorphism of pointed affine Ho—superschemes, and similarly u, ) is commutative.

Proof. Set A:= O(K) and B := O(H). By assumption #; and h; are k-finite free, so the same
holds true for their linear dual Ay /AJ Ay =€ and Bi/Bg By = bj . Moreover, (a) ensures that
there exists a free k—subsupermodule q of €; such that €, = b1 @ q. Finally, let K7 and Hy be
the pointed (affine algebraic) superschemes represented by /\(gik ) and /\([)i" ) respectively. Since
H is a closed subsupergroup of K , it follows that Hg = H,, can be seen as a closed (classical)
subgroup of Kg = K, ; similarly, H1 can be seen as a closed pointed subsuperscheme of Kj .

If X is an ordered basis of £; and Xj is one of h; we can construct splitting isomorphisms
Uy, and th as in Lemma 3.2.12 for A" := O(K) and A" := O(H) respectively. Then moving
backwards from Hopf superalgebras to supergroups we find splitting maps p, : Ko x K3 =N ¢
and p,, : Ho x Hy —— H as in §3.2.11 for H and K , with O(p,0) =y, . O(py,) =y, -

Now, by assumption the natural injection h; —— #; is k-linearly split, as ¢ = h1 & q;

moreover, q is k—free: therefore we can choose X and X; as above so that the former is an ordered
subset of the latter. For such a choice, the diagram

L

Aby —— U(fh)
Aty o U (k)

is commutative, which in turn implies that the diagram

)

(

H) ®k /\(hf
(K) @ A8

S)

O

*
) s
is commutative too. When turning back from superalgebras to superschemes, this implies that the

diagram in the statement is commutative as well. O

Remark 3.2.14. The assumption (a) in Theorem 3.2.13 obviously holds true when k is a PID, or
— more in general — whenever every finitely generated projective k-module is free.

3.3 Splittings on A—points

In this subsection we dwell upon some special splittings of supergroups which arise when
we take their A—points for some special superalgebras A, i.e. when we restrict them — as functors
— on special subcategories of (salg), .



Definition 3.3.1. Let G : (salg), — (sgroups) be a supergroup k—functor. Then there exists a
unique, well defined normal subgroup k—functor of &G, denoted Ker(m), and given on objects by
Ker(m)(A) := Ker(G(m,)) for every A € (wksp-salg),, . &

In general, in the study of a supergroup functor G the normal subgroup functor Ker(r) is not
of great use. But restricting to weakly split superalgebras, next result shows that it splits into a
semidirect product, in which Ker(7) is the normal factor.

Proposition 3.3.2. Let G be a k—supergroup functor and A € (wksp-salg), .

(a) The group G(A) splits into a semidirect product G(A) = G(A) x Ker(r)s(A) with (see
Definition 2.1.6) G(A) := G(A) and Ker(r),(A) := Ker(G(r,)) . Therefore, denoting by F the
restriction to (wksp-salg), of any superfunctor F, we have that G : (wksp-salg), — (groups) splits

into a semidirect product G = G MKef(w)G .

(b) The group Go(A) splits into a semidirect product Go(A) = G(A) x Ker(r)g, (A) with
(see Definition 2.1.6) Ker(m)g o(A) := Ker(m)g(A) N Go(A). Thus the k-supergroup functor
Go : (wksp-salg), — (groups) splits into a semidirect product Go = G D<Ke1."(7r)G0
Proof. As A € (wksp-salg), , we have a projection m,: A —» A with section o,: A — A within
(salg), . Applying G we get that G(o,) : G(A) — G(A) is a section of G(m,) : G(4) — G(A),
so G(o,) is a monomorphism and G(m,) an epimorphism. In turn, this yields then a semidirect
product factorization of G(A), namely G(A) = Im(G(0,)) x Ker(G(m,)) . Looking at definitions
one finds Im(G(0,)) = G(A) whence claim (a) follows.

As to claim (b), one can repeat the previous argument: just replace G with Gg — such that
A~ G(Ao) — and Ker(m), with Ker(r), wherever they occur. O

The previous result reads better when applied to split superalgebras.

Proposition 3.3.3. Let G be a k—supergroup functor and A € (spl-salg), .

(a) The group G(A) splits into a semidirect product G(A) = G(A) x G(ll)(A) with (see Defi-
nition 2.1.6) G(A) :==G(A) and G(ll)(A) = G(A(ll)) . Therefore, denoting by F the restriction to
(spl-salg), of any superfunctor F', we have that G : (spl-salg), — (groups) splits into a semidirect
product G = G Ké(ll) .

(b) The group Go(A) splits into a semidirect product Go(A) = G(A) x G(lz)(A) with (see
Definition 2.1.6) G(12)(A) = G(A(lg)) . Thus, with notation as in (a), Go : (spl-salg), — (groups)

splits into a semidirect product Go =G Ké(lz) .

Proof. From the natural embedding A(ll) — A @ A(ll) = A in (wksp-salg), we get a group
morphism G(ll)(A) = G(A(ll)) — G(A) . Directly from definitions, one finds that the latter too is

an embedding and moreover Ker(m),(A) = G(ll)(A) for A € (spl-salg), ; then claims (a) and (b)
follow from this and Proposition 3.3.2 right above. O

Next result still improves the previous one when we restrict to central extension algebras:

Proposition 3.3.4. Let notation be as in Proposition 3.3.2. Let G € (sgroups), be a k-supergroup
and A € (cex-salg), . Then G(A) splits into a semidirect product G(A) = G(A) x G(ll)(A) with
G(A) = Go(A). Thus, letting F' be the restriction to (cex-salg), of any superfunctor F, we have
that G : (cex-salg), —> (groups) splits into a semidirect product G = G Mé(ll) = Go Né(ll) .

Proof. As A € (cex-salg), we have A = Ag, whence everything follows. O
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3.4 Examples and applications

We provide some examples to illustrate the previously explained ideas. Besides their intrinsic
interest, these will also be useful in the sequel.

3.4.1. Supergroups on “super-numbers” as (classical) groups of “super-points”. Let
A € (alg), be a commutative k-algebra. Like in Example 3.1.11(c), we consider the associated
central extension A[n] = A@® An € (cex-salg), . Loosely inspired by the similar construction of
“dual numbers” — either in the non-super or the super framework — we call its elements “super
A-numbers”, thinking at those in A itself as “even super-numbers” and those in An as “odd
super-numbers”. Now, as A[n] € (cex-salg), we have (A[n]), = A, (A[n])(ll) =k ® An. Then
for any G € (sgroups), Proposition 3.3.4 above yields

G(Aln]) = Go(A) x G{(k® An) (3-4)

Now, the left hand factor Go(A) of G(A[n]) is the group of A-points of the classical (= non-super)
affine group-scheme Gg, hence its elements are nothing but classical (= non-super) points of a
classical group-scheme. For this reason, we suggest to think of these as being “even A-superpoints”
of G, and similarly to think of the elements of the right hand factor G(ll)(]k ® An) of G(A[n]) as
being “odd A-superpoints” of G .

Now assume in addition that G is strongly split, say G = Gey X Gogg = Go X Gogq with
G odad = Af{dd (notation of Subsection 3.2). Then we have

G(ll)(k@fln) = Goa(k®An) = A (ko An) = A% = A (3:5)

where 0]/ is the (possibly infinite) super-dimension of A2 and A’ is taken with odd parity. Thus
G (11)( kpAn) = Al identifies with the set of A-points of the classical (= totally even, or non-super)
affine scheme A! = Al Therefore, by (3.4) and (3.5) together we conclude that computing the
k—superscheme G on the central extensions given by “super-numbers” on classical algebras — e.g.,
on A[n], say — is the same as computing the (classicall) k-scheme Go x Al on classical algebras
— namely on A, say.

3.4.2. Splittings on “Grassmann-points”. Let G be a k-supergroup, and A = k[{fi}iel]
any Grassmann algebra, possibly infinite-dimensional. Obviously A € (stsp-salg), — for a unique,
canonical augmentation — hence we have a splitting of the group G(A) of A-points of G as in
Proposition 3.3.3(a). In particular, this is exactly the splitting mentioned by Boseck in [3], §2,
where indeed only A—points of supergroups are considered.

3.4.3. Global splittings of general linear supergroups. Let GL(V') be a linear supergroup as
in Example 2.1.5(b), defined over some ground ring k. Letting p|q := rk(Vp) |rk(V1) be the (finite,
by assumption) superdimension of V', we shall also write GL,, := GL(V). In particular, this means

A) := (GL(V))(A) can be written as a block matrix < a } g ) where
Y

a,B,v,d are matrices of size pxXp, pXx q, ¢ Xp, q X q respectively, and whose entries respectively
belong to Ao, Al, Al and A().

The condition that such a block matrix in gl ,(A) belong to GLy,(

— amounts to a and d being invertible on their own (see [6], §1.5).

that each element of GLp|q(

A) —i.e., that it be invertible
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Note also that (GLP‘ q)ev(A) has a neat description: it is the subgroup of all those block matrices
for which (in the previous notation) f=0=1.
We shall now show that GL(V) is strongly split: note that this does not depend on the nature

of the ground ring k — in particular, we do not need it to be a field.

Define  (GLyg), 40 = 1+ (6ly)
(p+¢q) X (p+ q). This is clearly a totally odd affine superspace, which is stable by the adjoint
action of (GLP|Q)eu — both being considered embedded inside GL Now, a direct check shows

, » Where I := I, is the identity (block) matrix of size

plg -

a
that any < | g ) € GLp‘q(A) admits a unique factorization, w. r. to the matrix product, as
Y

alB\ _ (al0N (L, |a”'B
via) ~ Gora) Uan,
plg(A) — (GLP\‘Z)ev(A) X (GLP|‘1)odd (A) which, for A ranging in (salg), ,

eventually provides a global splitting as we were looking for.

This provides a map GL

Instead of the above geometric approach, one can follow an algebraic one. For that, one simply
has to notice that

O(GLyg) = K[{why, afis €is G305, det(X) ™", det(X")™] =

6j i,j=1,...p; ’
_ ’ n Yhk=1,..q; n—1 m—1 / n k=1,
= k[{xi,j’ ThkSij=1,..p; ° det(X") ", det(X") } K k[{fi,k’ Eh.j i,j:l,...,p;}
: ! . / " . " : :
with X' := (wi,j)m:l,m’p; , X' = (xhvk)h,krzl,..,,q; , is strongly split as a Hopf superalgebra.

In any case, looking in detail we find that we have proved the following

Theorem 3.4.4. FEvery general linear k—supergroup GL(V) := GLy,|4 s globally strongly split.

4 Supergroups and super Harish-Chandra pairs

Whether in a differential, analytic, or algebraic geometrical framework, with any given super-
group G one can always associate, in a functorial way, its super Harish-Chandra pair (or sHCp in
short), namely the pair (G, g) formed by the classical (even) Gg subgroup and the tangent Lie
superalgebra g := Lie(G) of G itself. The key question is whether one can come back, and in the
positive case what kind of (functorial) recipes one can explicitly provide to reconstruct the original
supergroup out of its sHCp. In this section I present my own solutions to these problems, showing in
particular that a positive answer is possible if and only if we restrict our attention to those (affine)
supergroups which are globally strongly split — so fixing a link with the first half of the paper.

At first strike I shall deal with the linear case, i.e. with supergroups and sHCp’s which are
linearized. This is presented as a sheer source of inspiration, after which I treat the general case,
which indeed might as well dealt with independently.

4.1 Super Harish-Chandra pairs

4.1.1. Super Harish-Chandra pairs. We introduce now the notion of super Harish-Chandra
pair, indeed a well known one. Typically, it is considered in the framework of real or complex
analytic super Lie groups (see [16] and [21] respectively): here instead we consider the corresponding
version adapted to the setup of algebraic supergroups in algebraic supergeometry (cf. [7], §3).
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Definition 4.1.2. We call super Harish-Chandra pair (=sHCp) over k any pair (G4 , g) such that
(a) G4 is an affine k-group-scheme, g € (sLie), , and g; is a finite rank free k-module;
(b) Lie(G4) is quasi-representable and Lie(G4) = go ;
(c) there is a G —action on g by automorphisms, denoted Ad: G — Aut(g), such that its

restriction to go is the adjoint action of G4 on Lie(G4) = go and the differential of this action is
the Lie bracket of g restricted to Lie(G4+) X g = go X ¢ .

All super Harish-Chandra pairs over k form the objects of a category, denoted (sHCp), . The

morphisms in (sHCp), are all pairs (Q4,w) : (G, ¢') — (G, g") of a morphism Q : G/, —

" of k—group schemes and a morphism w : g’ — g” in (sLie), which are compatible with the
additional sHCp structure, that is to say

(d) w’go = dQ; Ad(Q4(g9)) cw = wo Ad(g) VY g€ G4 &

There is a natural, well-known way to attach a sHCp to any supergroup, which indeed motivates
the very notion of sHCp. In the present context — letting (fsgroups), be the category of fine k-
supergroups, see Definition 2.3.3 — it reads as follows:

Proposition 4.1.3. There exists a functor @ : (fsgroups), — (sHCp), given on objects by
®: G — O(G) := (Go,Lie(G)), and on morphisms by @ : ¢ ®(p) := (@‘GO,Lie(gp)) :

4.1.4. The inversion problem for ®. The main question about the functor & : (fsgroups), —
(sHCp), is whether it is an equivalence. In down-to-earth terms, this amounts to asking: can one
associate (backwards) a supergroup to any given sHCp, and can one reconstruct any supergroup
from its associated sHCp (and conversely)? In order to answer this question, one looks for a
quasi-inverse (i.e., “inverse up to isomorphism”) functor to @ .

In the present, algebraic framework, a solution was given by Masuoka (see [19]) with the assump-
tion that k be any field of characteristic different from 2, using purely Hopf algebraic techniques.
A weaker result is due to Carmeli and Fioresi (see [7]), who apply Koszul’s original method (cf.
[16]) to the context where the ground ring k be a field of characteristic zero; the same approach
was recently extended to any commutative ring k by Masuoka and Shibata in [20].

In the next two subsections, I present yet another, totally general solution.

4.2 The converse functor: linear case

In this subsection I present my own approach to solve the inversion problem explained in §4.1.4
above, with a (functorial) geometrical method. The first approach that I follow is a representation-
theoretical one: the basic ingredient to work with is a sHCp together with a faithful representation,
which means that I restrict myself to linear sHCp’s and linear supergroups. Later on, I adapt this
construction to the general framework of all super Harish-Chandra pairs and all fine supergroups.

To start with, we define the notions of “linear” supergroups and super Harish-Chandra pairs:

Definition 4.2.1.

(a) We call linear gs-split fine supergroup over k any pair (G, V) where G € (gss-fsgroups), ,
V is a finite rank faithful G-module (that is, V' is a free k—supermodule of finite rank such that
G embeds into GL(V') as a closed k-supersubgroup), and gl(V), / g1 is k—free — or, what is the
same, gl(V); = g1® q for some k-free submodule q of gl(V), .
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We denote by (lgss-fsgroups), the category whose objects are linear supergroups over k and
whose morphisms (G', V') — (G”, V") are given by pairs (¢4, 9,) where ¢, : G' —— G” and
D, : GL(V’ ) — GL (V” ) are morphisms of supergroups which obey an obvious compatibility
constraint (namely, ¢, is induced by @, via restriction).

(b) We call linear super Harish-Chandra pair (over k) any pair ((G+,g) , V) where (G4,g) €
(sHCp),,, the V' is a finite rank faithful (G4, g)-module — this means, by definition, that V' is
a free k—supermodule of finite rank with representation monomorphisms ry: Gy — GL(V), as
k—supergroups (in particular, G is closed in GL(V) ), and p : g — gl(V), as Lie k—superalgebras,
such that p‘go = dry Ad(r+(g)) op = poAd(g) (V g e G+) — and identifying g1 with p(g1),

we have that g[(V)l/gl is k—free, or gl(V'); = g1 & q for some finite k—free submodule q.

We denote by (IsHCp), the category whose objects are linear super Harish-Chandra pairs
over k and whose morphisms ((G’,,¢'),V’) —— ((G’[,¢"),V") are given by pairs (¢4, ®,)
where ¢ : (G, ¢') —— (G'L,g") is a morphism of super H-C pairs — i.e. in (sHCp), —
®, : GL(V') —— GL(V”) is a morphism of supergroups, and a natural (obvious) compatibility
constraint linking ¢, and @, holds. &

Remark 4.2.2. It is worth recalling that the constraint for a supergroup to be linear is not that
restrictive: indeed, it is well known that any (finite dimensional) affine supergroup G is linearizable
— i.e., can be embedded inside some GL(V) — if its ground ring k is a field. Even more, the same
is true — essentially by the same arguments — also when k is only a PID, under the additional
assumption that O(G) be free as a k-module.

It is easy to see from definitions that the functor @ : (fsgroups), — (sHCp), considered in
Proposition 4.1.3 above naturally induces a similar functor among the “associated linear” categories.
The precise claim reads as follows:

Proposition 4.2.3. There is a unique functor ®, : (Igss-fsgroups), — (IsHCp), which is given
on objects by Oy : (G, V) — ®((G,V)) := ((Go, Lie(G)) ,V) .

We can now undertake the construction of a quasi-inverse functor to ®, .

4.2.4. The functor V¥, : (IsHCp), — (Igss-fsgroups), . Let us consider a linear sHCp over k,
say ((G4,9),V) € (IsHCp), . As G4 embeds into GL(V), we identify G itself with its (closed)
image inside GL(V); similarly, we identify g with its image inside gl(V'). The very definition of
linear sHCp then tells us that the pair given by these two images do form a linear sHCp on its own.

We can now introduce the following definition:

Definition 4.2.5. Let P := ((G4,g),V) € (IsHCp), . Let 1, € gl(V) be the identity en-
domorphism, fix in g7 (which is finite free) a k—basis {YZ}Z ¢; — for some finite index set I —

and fix also a total order in I. For all A € (salg), consider in GL(V)(A) the set (1,4 41Y;) :=
{(1,+nY;)|ne€ A1} forall i € I. Then set

— —
G=(A) =11, + A1 Y;) = {H(1V+nm) ‘nieAl Vie[}
el el

5
where [] denotes an ordered product (with respect to the fixed total order in I'), and
i€l
Gp(4) == (G UGZ(A) ) = (G U (Uies(1,+A173)) )
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the subgroup of GL(V)(A) generated by the subset G4(A4) U G=(A), or by G4(A) and the (1, +
A1Y;)’s — with G4 (A) := G4 (Ap) by abuse of notation.

Finally, we denote by G= : (salg), — (sets) and G, : (salg), —— (groups) the k—functor
and the k-supergroup functor defined by A — G=(A) and A~ G,(A) — by the above recipes
— on objects and in the obvious way on morphisms.

N.B.: by definition G = depends on the choice of the k—basis {Yi}iel of g1 . On the other hand,
we shall presently see that G, instead is independent of such a choice. &

Lemma 4.2.6. Let G € (sgroups), be a k-supergroup such that Lie(G) is quasi-representable,
say Lie(G) = Ly for some g € (sLie), . Let A € (salg),, n,n',n" € A1, ¢ € Ao such that ¢* =0,
Y, Y'eg1, X€go and gy € Go(A). Then we have (notation of Definition 2.2.1)

(a) (14 cX)€eGo(A), (1+nY)eG(A) ; in particular (1+ nn'[Y,Y']) € Go(A) ;

(0)  (1+nY)go = go (1 +nAd(g")(Y))
(C) (1 + 77/ Y/) (1 + 7,’// Y//) — (1 + 7,]// 77/ [Y/’ Y//]) (1 + ,,7// Y//) (1 _|_ 77/ Y/) ’,
()  (14+nY)(14+9Y") = Q1+ +Y") = A+9Y")(Q+0Y") ;
() (A+7Y)A+7"Y) = 1+9"7YD) QA+ +9")Y) ;
(f) A +nY)A +00"X) = 1+ 99" X) (1 + g0y [Y,X]) (1 +nY) =

= (1 +7"X) (1 +nY) (1 + nn'n"[¥,X])
(9) Let (h,k):=hkh™'k™! be the commutator of elements h and k in a group. Then
(1+nY),1+7Y"))=10+0nY,Y']), (1+9Y),(14+nY") =1+ +Y"))

((1_1_77/1/)7(1_‘_17//}/)) _ (1+77//77/Y<2>)2 _ (1—1—77”77/2Y<2>) _ (1+77//77/ [Y,Y])

(N.B.: taking the rightmost term in the last identity, the latter is a special case of the first).

Proof. Recall that G(A) = Homsg), (0(G),4A) C Hom(gpoq), (O(G),A), the latter being the
k—supermodule of all morphisms between O(G) and A in the category of k—supermodules; the sum
in the formulas then is just the sum in the k-supermodule Homgyod), (O(G) ,A) . Also, in those

formulas the “1” stands for the unit element in G(A) = Hom (O(G), A), which is the map

given by composition 1:= 1404 : O(G) N Y

Once this is fixed, everything follows easily by straightforward calculations and from the iden-
tities gl + nn'[Y,Y]) = exp(nn/'[Y,Y"]) (see [6], §11.5, for details), Y =Y® and g;'Y go =
Ad(go_ )(Y), which do hold in any representation of g. In particular, claim (g) directly follows
from the identities in (¢), (d) and (e).

It is possibly worth adding some details for claim (a), which holds by extending to the present

super-context a standard trick for group-schemes.
Let (a,Z) be (¢, X) or (n,Y). From Z € g we have

aZ :=a®Z € (A]k®g)0 =:g(4) .

By the standard identification of g(A) = L£4(A) with Lie(G)(A) := Ker(G(p) ) — see §2.3 and
references therein — we have that (1+ caZ) € G(A[e]) . But now, as e = 0, the fact that
(1 +eaZ ) S G(A[s}) = Homg,g), ((’)(G) ,A[e]) be multiplication preserving is equivalent to the
fact that a Z € Homgpoq), (O(G) ,A) be an A-valued €o ) —derivation, i.e.

salg),

aZ(f' - f") = aZ(f') cow (") + eow(f) aZ(f") v L e oG)
But then, in turn, as a € {c,n} also satisfies a®> = 0, we have that (1 + aZ) is multiplication
preserving too, so that (1+aZ) € Homyg,g), (0(G),A) = G(4), qed. O
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This lemma is the key to prove the next relevant result:

Proposition 4.2.7. For any A € (salg), , there exist group-theoretic factorizations

G

P

(A) = G4(A)-G=(4) , G

P

(4) = G=(A)- G (A)

Moreover, the group G, (A) is independent of the choice of an ordered k—basis {Yi}z’el of g1 used for

its definition; the same holds true for the whole functor G, . Similarly, the sets G (A(12)) G=(4)
and G=(A)G4 (A(IQ)) — ¢f. §2.1.1 — both coincide with the subgroup of G,(A) generated by
Gy (A(lg)) and G=(A), and they are independent of the choice of an ordered k—basis of g1 .

Proof. First of all, as we need it later on, we notice that the even part of G, is, directly from

definitions, nothing but G4, i.e. (Gp) o = G+. Definitions imply also that the inverse of any

element (1+17;Y;) € G=(A) is nothing but (147;Y;)"' = (1 —;¥;) € G=(A). Taking this into
account, our goal amounts to showing that

- —

gy II(L+75Y) - gL TI(L+niYi) € Gi(A)-G=(4) (4.1)
iel iel
— —
for all ¢/, , ¢/l € G(A) and 7}, /€ Ay, i.e. we can re-write ¢y [[(1+n)Y;) - ¢/ [1(1+n/Y;) as
iel il

the product of an element in G4 (A) times an ordered product of factors of type (14 1,Y7).
First of all, claim (b) of Lemma 4.2.6 gives (for all i € I')

(L+n Yo gl = gf (L+nAd((6}) ) (Y0) = gf (14 EserciV5)
for some ¢; ; € k (j € I'). But now the special case of claim (d) in Lemma 4.2.6 implies
—
(1 + 152 e Cig Yj) = [T(1+njeiy V) = [T +mici;Y;) € G(A) (4.2)

jel jel

as in particular the factors in the product(s) do commute among themselves.
— —

Applying all this to ¢/, [T(1+n,Yi) - ¢4 TI(1 +n/'Yi) we eventually find
i€l iel
/ = / ! = 1 / " = = / = 1
9+H(1+77iyi)‘9+1_[(1+77z‘yi) = (9+9+)'HH(1+77iCi,ij)H(1+in)
iel iel iel jel iel

in which the first factor (g/, ¢/{) of the right-hand side does belong to G (A). Therefore, in order
to prove (4.1) we are left to show that the following holds:

Claim: Any (possibly unordered) product of the form H,]f\[:l (1 + Mk sz) can be “re-ordered”,

i.e. it can be re-written as an element of G4 (A(12)) -G=(A).

In order to prove the Claim, let a be the (two-sided) ideal of A generated by the n;’s, and
denote by a” its n—th power, for any n € N. As the n’s are finitely many odd elements, we have
a” = {0}, forall n > N.

Looking at the product H,ivzl (1 + Nk sz) , we define its inversion number as being the number
of occurrences of two consecutive indices ks and kg11 such that iy, ﬁ ik, : the product itself then
is ordered iff its inversion number is zero.
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Now assume the product g := H/ivzl (1 + Mk Y%) is unordered: then there exists at least an
inversion, say ig, A ik,,, , i.e. either iy, > iy, or iy, =i, . Using claim (c) or (e), respectively,

of Lemma 4.2.6 we can re-write the product (1 -+ nkSYiks) (1+ 77ks+1Yiks+1) as

(L mYe,) (U meYa ) = (Wb e [Yan, > Yo ) (Ui Ya ) (L Ye)
(1 + T]kSYiks) (1 + nksﬂYiks) = (1 + Mgt nksYi;i?) (1 + (M, + nkerl) Ylks)

Thus, re-writing in this way the product of the ks—th and the ks1—th factor in the original product
g:= H,]f\[:l (1 + Mk Y%) , we find another product expression in which we did eliminate one inversion,
but we payed the price of inserting a new factor. However, in both cases this new factor is of the
form (1+aX) for some X € go € G4(A) and a € a?.

By repeated use of Lemma 4.2.6(f) we can shift this new factor (1 +aX ) to the leftmost
position in g (now re-written once more in yet a different product form) up to paying the price of
inserting several new factors of the form (1 + b Zt) for some Z; € g1 and b; € a®. Moreover, by
Lemma 4.2.6(d) each one of these new factors can be written as a product of factors of the form
(1+m, YZZ) where 7}, € Ay is a multiple of some b;, hence 7}, € a® too.

Eventually, we find a new factorization of the original element ¢ := H,]CV:1 (1 + Nk sz) in the

new form g := g, - Hthll (1+m, Y;;) where g € G4 (A) and the factors (1 + 1, Y,yh) satisfy the
following conditions:

— (a) each new factor (11}, Yi’h) is either one of the old factors (147, Y;,) or a truely new
one;

— (b) for every (truely) new factor (1+ 1, YZ-;L) one has 7, € a®;

— (c) the number of inversions among factors (1 s/ Yi%) = (1 + Mk sz) of the old type is
one less than before.

Iterating this procedure, after finitely many steps we can achieve a new factorization of the
original element ¢ := ngl(l + n,Y;,) as a new product g = g - HhN:”l(l + 0y Yz‘;{) where
g0 € G4(A) and the factors (1 + Yi;{) enjoy properties (a) and (b) above plus the “optimal
version” of (c), namely

— (c+) the number of inversions among factors of the old type is zero.

Now we apply the same “reordering operation” to the product HhN:Nl (1 +ny Yz‘;;) . By assump-
tion, now an inversion can occur only among two factors of new type or among an old and a new
factor. But then, the two coefficients n; involved by the inversion belong to a and at least one of
them belong to a®. It follows that when one performs the “reordering operation” onto the pair of
factors involved in the inversion the new factor which pops up necessarily involves a coefficient in
a’. As this applies for any possible inversion, at the end of the day we shall find a new factorization
of g of the form

9 =90 Go- Hi\;(l‘*'ﬁtygt)
in which go € G4(A) and the factors (1 + 7 Y;t) are either old factors (1 + n;Y;,), with no
inversions among them, or new factors for which 7; € a°.

The end of the story is clear. We can iterate at will this procedure, and then — since a” = {0}
for n > N — after finitely many steps we have no longer any new factor popping out; thus, we
eventually find a last factorization of g of the form

~ — ~
9 = Go- T (+Y;) = Go-TINL, (1 + 7 Y3)
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~ — ~
in which go € G+(A) and Hévzl (1+7 Y;[) = IV, (147 Y;Z) € G=(A) is an ordered product,
as required, so that g € G (A4)-G=(A), q.e.d.

For the last part of the main statement, let {Yi}iel and {Zi}iel be two (finite) k—bases of gy ;
then Z; =% ,.;c;Y; (with ¢; € I') for each j € I. The same argument proving (4.2) also yields

%
1—1—77/)ij = 1+¢j%:IClY; = 1;[](1+¢301Y;) S GEY(A) (43)

where G="7 is relative to the group G defined as in Definition 4.2.5 making use of the basis of the
{Yi}iel' Letting G=7 be the similar group defined via the basis of the Z;’s, formula (4.3) proves

that G,~7(A) C G4 (A(IQ)) GV(A), so by symmetry we eventually get G (A(12)) G % (A) =
G4 (AP G (A). 0

To improve the previous result, we need a couple of additional lemmas.

Lemma 4.2.8. Let A € (salg), , let 0,7 € A1 and let q be an ideal of A such that 7);,7; € q

and o; :=1; —1; € q" (i € 1) for some n € N. Then
— — —
L0 i) T ) = T+ ad¥i) € Gp(4/a)
1€ 1€ 1€

— —

where [[ and [] respectively denote an ordered and a reversely-ordered product (w.r. to the given
il i€l

order in I ) and la], , € A/q "+l stands for the coset modulo "' of any a € A.

Proof. This is an easy, straightforward consequence of claims (e) and (f) in Lemma 4.2.6. O

Lemma 4.2.9. For any given A € (salg), , let (; € A1 (i € 1) be such that

—
g=11(1+¢Yi) € GL(A)NG=(A). Then ;=0 forall icl.
el
Proof. By our global assumptions we have G, (A) C GL(V)(A4) € Endg(V)(A), with Endy(V)(A)
being a unital, associative Ag—algebra: indeed, fixing a homogeneous k—bases for V' we can read
Endy(V)(A) as an algebra of block matrices, in which the diagonal blocks have entries in Ag and
the other ones have entries in A; (like in Example 2.1.5(b) and references therein). Thus, inside
_)

Endy(V)(A) we can expand the product g:= [[(1+¢,Y;) € G,(A) C Endy(V)(A) so to get
i€l

g = ﬁ(1+<iYi) =14+ X ea(¢) (4.4)

i€l TLEN+

where each ¢, ( () denotes a (block) matrix in Endy(V)(A) whose entries are homogeneous poly-
nomials in the (,’s of degree n.
In particular we have ¢,(¢) =0 for all n> |I|, and moreover ¢1(¢) = ;c;¢. Yi.

Now let a := ({Ci}iel) be the ideal of A generated by all the ¢,’s. For all n € N, let
Pp i A — A/a" =: [A],, be the canonical quotient map, for which we write [a], = pn(a)
for every a € A. Correspondingly, we let G, (pn) : G,(A) —> G, (A /a™) =: G, ([A],) the
associated group morphism and we write [y], := G, (pn)(y) for every y € G,(A4).

Applying this to (4.4) above we find

gl = [1+a(d)], =1+ 2[GLY € G ([Al) (4.5)

i€l
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On the other hand, the assumption g € GL(A)[G=(A) implies also [g], € G+([A]2), which

means that all entries — belonging to [A], — of the matrix [g], actually belong to the even part

of [A],. This together with (4.5) forces Y [¢ i]Z Y; = 0. In turn, by the linear independence of
i€l

the Y;’s — inside g7, hence inside A7 - g1 C (A QK g)o C End(V)(A) — this implies [Ci]Q =
[0], € [A],:=A/a?, hence ¢, €a? forall iel.

Now, {Ci}iel C a2 = ({Ci}ig)z automatically entails {Ci}iel C a™ for all n € Np. As
a”™ = {0} for n>>0, we end up with ¢, =0 forall i€, q.e.d. O

Remark 4.2.10. An alternative argument to finish the previous proof is the following. Once we
have found that ¢, € a? for all ¢ € I, we remark that this implies cn(§ ) €a® forall neN,.
Then (4.4) yields the analogue of (4.5), namely

[9}4 = [1 + C1(§)]4 =1+ %[Ci]4m € G’P([A]4)

and again, acting like above, by a parity argument in G, ([A ] 4) along with the linear independence
of the Y;’s we get ¢, € at forall ic 1.

We can now iterate this procedure, thus finding ¢, € a?m (for i € I) for all n € Ny. As
a?™ = {0} for n>> 0, we end up with ¢, =0forall iel, qed.

Thanks to the previous lemmas, we can improve Proposition 4.2.7 as follows:

Proposition 4.2.11.

(a) The restriction of group multiplication in G, provides k-superscheme isomorphisms

Gy xG= =2 G, G=xGy = G,
b) There exist k—superscheme isomorphisms G= = X AN = A% ith @ = 1)
k k
el

Proof. (a) It is enough to prove the first identity, which amounts to showing the following: for
any A € (salg),,if g+ g- =g+ g for g+,g+ € GL(A), then gy =g, and g =g
From the assumption ¢4 §— = . j— we get ¢ := §_g§_' = Q;l g+ € G1(A), as G4 (A)

~

—
is a subgroup in G(A). Now §- € G=(A) has the form §_ = [[,c;(1+%Y;) and similarly
— — — —

g =ILie/(1+mY;) so that 9= =1L (1 —1};Y;) , where once more [ and [] respectively denote
an ordered and a reversely-ordered product. Therefore we have

g = g_gt = @(1+ﬁi%) g(l—mm € Gi(A) C G,(A) (4.6)

We define a:= ({ Uy }iel) the ideal of A generated by all the 7),’s and the 7,’s. Like in the
proof of Lemma 4.2.9, for n € N we write p, : A — A/a” =: [A],, for the canonical quotient
map and [a], := pp(a) for every a € A, and then also, correspondingly, G, (p,) : G,(A) —
G, (A /a™) =: G,([A],) for the associated group morphism and [y], := G, (pn)(y) for every

P

y € G,(A). Now (4.6) along with Lemma 4.2.8 gives

gl = E[I(l+[ﬁi]m) ﬁj (1 [, Yi) = ﬁj (14 [y ¥)) € Go(lAl)
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with a; := 9 —7; € a for all i. Since it is also [g], € G4 ([4],) N G=([A]l;), we can apply
Lemma 4.2.9, with [A], playing the role of A, giving [a;], = [0], € [A],, that is a; € a?,
for all i+ € I. But now Lemma 4.2.9 applies again, with [A], playing the role of A, yielding
[a;]; = [0]; € [A]; hence «; € a®, for all i € I. Then we iterate, finding by induction that
a €a™ (for i €1) forall n e Nyj;as a” = {0} for n >0 we end up with 7; —7; =: oz =0,
ie. §; =1m;, for all ¢ € I. This yields §g— = g—, and from this we get also ¢4 = g+, q.e.d.

(b) By definition there exists a k—superscheme epimorphism © : Augld’—> G = which is given

on every single A € (salg), by

On + AN (A) = A7 GE(A) , (m)., — Oal(m),,) = ﬁ[ (1+mY;)

We prove now that all these ©4’s are injective, so that © is indeed an isomorphism.

_>
Let (i),ep (i) ,c, € A" be such that ©4((%:),,) = ©a((7ii),.,) . that is 1 (1+7Y;) =
ic
ﬁ (14;Y;) . Then we can replay the proof of claim (a), now taking g4 :=1 =: §; : the outcome
i€l
will be again 7; =7; forall i € 1, i.e. (ﬁi)z‘el = (ﬁi)iel . O

The first key consequence of the previous results is the following

Corollary 4.2.12. The supergroup k-functor G, considered above is representable, hence it is an
affine k—supergroup.

Proof. By Proposition 4.2.11 one has an isomorphism G, = G4 x G= as functors, hence as k-

superschemes. As G, is representable by assumption, and G = & Agd’ is representable too (by

Proposition 4.2.11(b) above), we get that G, = G x G= is representable as well. O

With next step we fix some further details, so to see that the assignment P — G, eventually
yields a functor of the type we are looking for.

Proposition 4.2.13. For every P € (IsHCp), , let G, be defined as above. Then:

(a) G, is globally strongly split;

(b) the defining embedding of G, inside GL(V') is closed, so that G, identifies with a closed
subgroup of GL(V);

(c) the above construction of G, naturally extends to morphisms, so to provide a functor

U, : (IsHCp), — (Igss-fsgroups),, .

Proof. (a) We already noticed that, by the very construction, one has (GP)O = (G4 ; this together
0ld—

with G= = A" yields G, 2G4 x G= = Gy X Aﬂzld_ (see above). Furthermore, by construction

and Lemma 4.2.6(b) we have that G= = Aﬁld_ is stable by the adjoint action of (GP)O =Gy

Eventually, all this means that that G, is globally strongly split, g.e.d.

(b) Due to Proposition 4.2.7 and Proposition 4.2.11, it is enough to prove that both G and
G = are closed subsuperschemes in GL(V). The first property holds by the definition of a IsHCp,
so we are left to cope with the second.

In the proof of Proposition 4.2.11(b) we saw that there exists a k—superscheme isomorphism
©: A G< given by

(m)ie[ — @A((m)iel) = Hi€[(1+niYi) =) for any A € (salg), .
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Expanding the last product — inside Endy(V')(A), say — yields
d_
Yy = eA((Ui)iel) =1+ Zk:1 i1 <<iy i " Mg, Yi Y, = y(/) + yi{

where we set ), = ZZ;I(—l)(g) [T ni--m,Ys,---Ys, € Endg(V)y(A) and similarly

k even 11 <<l
d_ k—1
V= 2 =00 T myom i Vi, € Endi(V),(A) .
k odd 1< <tp

Now recall that gl(V') is k—free and gl(V'); = g1 ©q with both g1 and q being k—free. Then the
given expansions of )} and )| prove that, with respect to some k-basis B of Endy(V) = gl(V)
extending that of g1 given by the Y;’s, the coefficients ¢, (b€ B') of both )}, and ) are polynomials
in the n;’s. In particular, the coefficients in Y] of each basis element Y; is of the form n; + O;(3),
where 0;(3) is some polynomial in the 7;’s in which only monomials of degree odd and at least 3

can occur. These polynomials yield a k—superscheme endomorphism A of Aﬂ(yd’ given on A-points
by Aa: (m)i:l P s (m + (92-(3))2.:1 4 which is automatically an isomorphism (exploiting the

fact that the variables n; are nilpotent). Setting 7; := A;ll(m) , all this implies that the previously
mentioned coefficients ¢, (b€ B) are also polynomials in the 7;’s, say ¢, = Pb({ﬁj }jzl d,) ; in
particular when b =Y, (for some i) we have ¢; := Cy, = 7; . Therefore, our G= is the set of zeroes

ceey

O(Endk(V)) : here we think of the ¢;’s as being elements of (’)(Endk(V)) , which clearly makes
sense in that they are defined as “coordinate functions”. Therefore G= is closed in Endg(V'), hence
also in GL(V'), so that it is a closed k—subsuperscheme of GL(V'), q.e.d.

(c) The previous claims ensure that G, is a k—supergroup, actually a linear one; moreover, we
also remarked that (Gp)o = G4+ . In addition, again by the very construction and by Proposition
4.2.11 we find that Lie (GP) = g: in particular, by the assumptions on g this implies that the
supergroup G,, is fine. Overall this means that G, € (Igss-fsgroups), .

In order to have a functor ¥, : (IsHCp), — (lgss-fsgroups), we still need to define ¥, on
morphisms of (IsHCp), . Letting (Q4,w) : P’ := (G, g') — (G'L, ") = P” be a morphism
in (IsHCp), , we define W;((Q24,w)) on A-points — for any A € (salg), — as follows. Given
g € V(P), let ¢ =g Tlicp (1 +n}Y;) be its unique factorization after the factorization
G, =G xG_ of G, :=Vy (P") as in Proposition 4.2.11(a): then set

Ve((24,0)) 4 (6) = Qe (94) - Thiep (L + i (YD)

It is then a bookkeeping matter to check that this map is actually a group morphism, and that all
properties required for that to yield a functor, as desired, are indeed satisfied. O

In the end, our main result is that the ¥, above is a quasi-inverse such as we were looking for:

Theorem 4.2.14. The functor ¥y : (IsHCp), —— (lgss-fsgroups), is inverse, up to a natural
isomorphism, to the functor ®, : (Igss-fsgroups), —— (IsHCp), . In other words, these two are
category equivalences, quasi-inverse to each other.

Proof. The previous results altogether show that, for any P € (IsHCp), , the sHCp associated with
¥y(P) := G, is nothing but P itself, up to isomorphism: in other words, we have ®; (¥, (P)) =
P, (Gp) = P . Moreover, tracking the whole construction one realizes at once that it is natural,

i.e. all these isomorphisms match together as to give ®y 0 W, = Id(lsHCp)k .
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As to the composition ¥, o &y, let G € (Igss-fsgroups), and P := &,(G) = (Go,g) €
(IsHCp), — with g = Lie(G) — and G, := ¥, (P) = ¥, (®¢(G)): clearly, everything amounts
to proving that G, = G — as closed subgroups inside GL(V'), with V' as in Definition 4.2.1(a)
above. Note that the inclusion G, C G holds true by construction, since all generators of G, (A)
belong to G(A).

First, by Proposition 4.2.13(b) we have that G, is a closed subgroup of GL(V) ; the same holds
for G', by assumption. As G, C GG, we can argue that G, is closed also inside G'.

Then we apply Theorem 3.2.13 to H := G, and K := G, finding global splittings (GP)O X
(GP)1 = G, and Go x G1 = G which are consistent with each other, as in the cited Theorem, in
particular (Gp)o C Go and (Gp)l C Gy

Third, the inclusion (Gp)o C Gy is an identity by the very construction of G, . So we are only
left to prove that the inclusion (GP)1 C (1, provided in the second step above, is an equality too.

Now, the fact that the splittings of G, and G are compatible is equivalent to the fact that the
projection

m: O(G) = 0(Go) ® O(G1) — O((Gp)o) ®O((G7>)1) = 0(G;)
is of the form m = mg ® ™, where mqg : (’)(GO) = (’)(Gev) —» O((Gp)ev) =: (’)((GP)O) is
canonically defined and 77 : (’)(Gl) — O((Gp)l) is a suitable morphism. Now, by construction
(’)(Gl) is a Grassmann algebra, namely O(Gl) = /\Lie(Gl)*, and (’)(Gl) = /\Lie((Gp)l)* by
similar reasons. But still by construction we have Lie(G1)= g1 = Lie((G,) 1) inside Lie(GL(V))=
gl(V) so the inclusion map Lie((Gp)l) = Ag1 < A g1 = Lie(G1) is just the identity; hence its
dual, namely the projection map 7y : O(Gl) — O((Gp)l) , is the identity from O(Gl) =ANgs
to (’)((Gp)l) = A g7 . In turn, the inclusion (Gp)l C (§1 is necessarily the identity too. O

4.3 The converse functor: general case

We shall now face the task of providing a quasi-inverse to the functor & : (fsgroups), —
(sHCp),, in greater generality. In the end, it will turn out that this will be successful only if we
bound ourselves to deal with fine supergroups which are globally strongly split: in other words,
a fine supergroup G can be “reconstructed” starting from its associated sHCp if and only if it is
globally strongly split, i.e. only if G € (gss-fsgroups), — notation of Definition 3.2.6. Therefore,
for sheer notational purposes we introduce the following

Definition 4.3.1. We denote by ®, : (gss-fsgroups), — (sHCp),. the restriction to the subcatego-
ry (gss-fsgroups), of the functor ® : (fsgroups), — (sHCp), considered in Proposition 4.1.3.

By the way, note that by Remark 3.2.7 if Lie(G) is representable for a supergroup G, then
asking G to be fine and gs-split actually amounts to asking that G be gs-split only.

We are ready to go and construct a quasi-inverse functor to ®,. As we shall presently see,
the very construction is modeled on that of ®,, and also many arguments used in the proofs are
essentially the same, up to technical modifications. The key difference with the linear case is the
following. Roughly speaking, in that setup having an embedding of P inside gl(V') allowed us to
construct G, as a subsupergroup of GL(V). Also, we could investigate the properties of such a
group, hence proving all our results, just exploiting this “native” embedding of G, into GL(V') and
then into Endg (V') too. In the general case such a linearization is not available: nevertheless, we
can achieve a “partial linearization”, which will still be enough for our purposes.
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Indeed, first we construct our candidate for G, by bare hands, in the form of a k-supergroup
functor. Then we find a suitable representation of P, and we show that this naturally “integrate”
to a representation of G, : this representation, though not faithful, is still “faithful enough” to
make it possible to apply again the arguments we used in the linear case. Thus we can replicate,
mutatis mutandis, the process we followed in that case, and eventually find that our candidate for
G, actually does the job, namely P — G, yields the converse functor we were looking for.

As a first step, we start with the definition of G, :
Definition 4.3.2. Let P := (G4 ,g) € (sHCp), be a sHCp over k. We fix in g1, which is k—free,
a k—basis {Y;'}z ¢; (for some index set I') and a total order in I .

(a) We introduce a k-supergroup functor G, : (salg), —— (groups) as follows. For any given
A € (salg), , consider a formal element (1+17,;Y;) for each pair (i,7;) € Ix Ay .
We define G, (A) by generators and relations: the set of generators is

FA = {9+7(1+77z1/;)‘9+€G+(A)a(Zaﬁz)EIXAl} = G+(A)U{(1+77’LY;)}(17771)61XA1

(where G4(A) :== G4+(Ap), by abuse of notation) and the set of relations is

di- gt = dho, 9t V gy, g1 € Gi(4)
(L+mYi) g+ = g+ (Ltem¥y) - (1 +cjemi V)
¥ (im) € IxAr, gy € Gy(A),  with Ad(g')(Yi) = ¢, Yy, + - + ¢, Y,
(1Y) (U Y) = (Lot al i Y®) (14 (o4 o) Y) viel
(1+nY) - Q+mY:) = (1G++ minj [Y;-,Yj])@- (L+mY) - (1+n;Y5) Vj>i(el)
(1+04Y;) =1 Viel

where the first line just means that for generators chosen in G4 (A) their product — denoted with
“.” — inside G, (A) is the same as in G (A) — where it is denoted with “ &, moreover, notation

like < 1, + 0!, Yi<2>>c and ( Lo, +minj [Yi, Y}])G denotes two well-defined elements in G (A)
+ +
— see the proof of Lemma 4.2.6 for a reminder — that in the sequel we shall denote more simply

as (1 + 73 n; 12<2>> and (1 +min; [YVi, Yj])
This yields the functor G, on objects, and one then defines it on morphisms in the obvious way.

(b) We define a k—functor G = : (salg), — (sets) as follows. For A € (salg), we set

—
G=(4) = {H(l—i—in)’nieAl Vie]} ( CGL(A))
i€l
—
where [] denotes an ordered product (with respect to the fixed total order in I'). This defines the
i€l
functor G= on objects, and its definition on morphism is then the obvious one. &

Remarks 4.3.3.
(a) By its very definition G = can be thought of as a subfunctor of G, .

(b) By definition both G= and G, depend on the choice of the ordered k-basis {Y,}Z I of g1;
nevertheless, basing on remark (¢) here below one can easily show — by the same arguments used
for Proposition 4.2.7 — that G, is actually independent of this choice.
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(¢) Alternatively, one can modify the very definition of G, , giving a different presentation of
it which is intrinsically independent of any choice of basis of g1, as it does not make use of any
k-basis {Yi}ie[ of g1. Indeed, for each A € (salg), one takes the group G7(A) with the (larger)
set of generators

FA{ = {g+a(1+77y)‘9+€G+(A)v(Y,U) € ngAl} = G+(A)U{(1+77Y)}(Y,77)691><A1

and (larger) set of relations is (for ¢/, , ¢l € G4 (A), .7, 0" € A1, Y., Y'Y € g1)

gy df = g 9t (1+0Y) g1 = g+ (1+nAd(g;")(V))
(140 Y) - (L40"Y) = (1g,+ n”n’Y<2>>G+- (1+ (o +1")Y)
(L0 Y") - (40 Y) = (1o, + 00" | Y’,Y”DG Y)Y
(I+nY")-(1+nY") = (1+n(1+/’+Y”))
(1+n005) =1 , (14+0.Y) =1

Here almost all relations are sheer generalizations of those in Definition 4.3.2(a), the exceptions
being (14+n0g) =1and (1+nY") - (14+nY") = (1+n(Y'+Y")) . In particular, the latter
together with (1 + 77Y) “gr = gy - (1 + nAd(gll)(Y)) yields

(L+mYi) gy = gr- (L eum¥s) o (14 c5m: ¥,)
when Ad(gj_l) (V) = ¢;, Yj, + -+ + ¢;, Y}, . Furthermore, again the relations of type (14 nY’) -
(1+nY") = (1+n(Y'+Y")) imply that for ¥ = Z’;zl ¢j,Y;, we have

(L+nY) = (1+n S5 eY5) = T (1+ e Vi)

where the product actually can be done in any order, as the factors in it mutually commute;
thus each generator ( + 77Y) can be obtained via the (1 + ng) ’s. This easily implies that
mapping ¢+ and (1 —i—m 1) in G, (A) respectively to g4 and ( + 7 Z) in G7(A) yields a well
defined epimorphism ¢, : G,(A) — G5 (A). Conversely, considering inside G, (A) the elements
(1+nY) = ngl (1+ ¢j,nY;,) — for each Y = ZS 16.Yj, € g1 — one easily sees that
all relations considered above to define G5 (A) also hold true inside Gy, (A), as they follow from
the defining relations of the latter group. This implies that there exists also an epimorphism
Y, + Go(A) — G, (A) which is the inverse of ¢, above. The construction of ¢, and ¢, is natural
in A, so in the end G, and G are isomorphic as group functors.

Our goal is to show that assigning to each P its corresponding G, one eventually gets a functor
U, : (sHCp), —— (gss-fsgroups), and also that such a functor is an equivalence, quasi-inverse to
O, : (gss-fsgroups), —— (sHCp), . We shall achieve this result in several steps.

4.3.4. The representation G, —— GL(V). Let g = go @ g1 be our given Lie superalgebra,
for which gy is k—free of finite rank (see Definition 4.1.2), hence we can fix a k-basis {Y,;}Z o of
it, where I is some finite index set in which we fix some total order. Recall that the universal
enveloping algebra U(g) is given by U(g) := T(g)/J where T(g) is the tensor algebra of g and J
is the two-sided ideal in T'(g) generated by the set

{wy_(_l)lml\ylyx_[%y] ) 22—Z<2) ‘xay690U91>Z691}

It is known then — see for instance [22], §7.2, with the few, obvious changes needed to take into
account the relations of type 22— 22 =0 (that are superfluous in the setting therein) — that one
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has splitting(s) of k—supermodules (actually, even of k—supercoalgebras)

U(g) = U(go) @ Ao1 = Ag1®kU(go) (4.7)

In addition, by the freeness assumption on g; and our choice of a basis for it we have that A g1
is k—free too, with k-basis {V;, Y, ---Yj, } s <|I],4i1<ip<---<is } — hereafter, we drop the sign
“A” to denote the product in A g7 .

Now let 1 be the (one-dimensional) trivial representation of gg. Then by the standard process
of induction from gg to g — the former being thought of as a Lie subsuperalgebra of the latter —
we can consider the induced representation V := Indgo(]l) . Looking at 1 and V respectively as a
module over U(go) and over U(g), taking (4.7) into account we get

Vs Indg(1) = Ulg) © 1= Am@l = An (4.9
U(go) k
The last one above is a natural k-module isomorphism, uniquely determined once a specific element
b e 1 is fixed that forms a k-basis of 1 itself: the isomorphism is w ® b+ w for all w € Ags.

This representation-theoretical construction and its outcome clearly give rise to similar func-
torial counterparts, for the Lie algebra valued k-superfunctors Ly, and Ly, as well as for the
k-superfunctors associated with U(go) and U(g), in the standard way.

On the other hand, recall that go = Lie(G.), and clearly 1 is also the trivial representation
for G4, as a classical, affine k—group scheme. Then, by construction and by (4.8), it is clear that
the representation of g on the space V also induces a representation of the sHCp P = (G4, g)
on the same V, in other words V itself bears also a structure of (G4, g)-module, in the sense of
Definition 4.2.1(b) — just drop the faithfulness requirement. For later use, we denote by (7, p) :
(G4+,9) — Endg(V) the pair of representation maps ry : G — GL(V) and p: g — gl(V)
which encode this (G4, g)-module structure on V. Moreover, we shall also use again p to denote
the representation map p: U(g) — Endg(V) describing the U(g)-module structure on V.

Our key step now is to remark that the above (G4, g)-module structure on V actually “inte-
grate” to a G,—module structure, in a natural way.

Proposition 4.3.5. Retain notation as above for the (G4,g)-module V. There exists a unique
structure of (left) G, —~module onto V' which satisfies the following conditions: for every A € (salg), ,
the representation map v, ,: G,(A) — GL(V)(A) is given on generators of G,(A) — namely,
all g+ € GL(A) and (1+n;Y;) foriel, n; € A1 — by

T 4(9+) = r(94) T (1L+n:Ys) == p(1+n;Y;) = idy, +n; p(Yi)

or, in other words, g+.v := r(9+)(v) and (1+mn;Y;).v = p(1+n;Yi)(v) = v+n p(Ys)(v) for
all v e V(A). In particular, this yields a morphism a k—supergroup functors r,: G, — GL(V) .

Proof. This is, essentially, a straightforward consequence of the whole construction, and of the
very definition of G, . Indeed, by definition of representation for the sHCp P we see that the
operators 7, ,(g4) and 7, (1 +7;Y;) on V — associated with the generators of G,(A) — do
satisfy all relations which, by Definition 4.3.2, are satisfied by the generators themselves. Thus
they uniquely provide a well-defined a group morphism 7, , : G,(A) — GL(V)(A) as required.
The construction is clearly functorial in A, whence the claim. O

The representation 7, of G, on V' will play the role which in the linear case was played by the
“Intrinsic” representation V yielding the embedding of G, into GL(V'). In that case the represen-
tation was faithful, by assumption; in the general setup it is not the case any more. Nevertheless,
next result ensures that this representation is still “faithful enough” to allow us, in a sense, to
adapt to the general setup the arguments used for the linear one.
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Lemma 4.3.6. .
Let 'V be as above, and A € (salg),. For any §— = [Liesr(1 +n:Y;) € GL(V)(A) and

ﬁ
g— = Liet(1 +m:Y:) € GL(V)(A), the following are equivalent:
(a) n; =1 forall i€l ;

(b) g- =9-
(c) g_. g W forall vevV ;
(d) g-.b=g-.b , where be 1 form ak-basis of 1 — see the remark after (4.8).

Proof. Clearly (a) = (b) = (¢) = (d), thus we only need to prove that (d) = (a).

To avoid confusion, let us fix some additional notation. When we are describing V as V =
Ag1.b = Ag1, we write the elements of the k-basis {Y;},c; of g1 as Y; instead of Y;: thus
the k—linear isomorphism Agi.b = Ag1 is given by (V;,Yi, - Y;,). b — Y, Y, ---Y,, — for all
i1 < ig < -+ < i5. Now, in terms of these k—bases the element ¢§_.b € V = Ag1.b can be
rewritten (by construction) as

ﬁ(1+m b = (14 S a¥i +0@)b = 1+ L Vi + 0

il

alagl!

— —

here above by (1 + > Y + (’)(2)) we denote the expansion of the product [[(1+ 7;Y;) as
i€l i€l

an element of U(g), with O(2) which represents further summands of order at least 2 in the n;’s,

ﬁ —_ —
using the Y;’s as basis elements of g7 . Then of course (1 + > Y+ (’)(2)) is the analogous
- iel
object written in terms of the Y;’s. Similarly, taking §_ instead of g_ we find

= HO+ny)b = (14 aYi+0@).b = o)

i€l

AL
§<

— _ _ — _ _

Then the identity g—.b=g-.b yields 1+ > % Y; + O(2) = 1+ > 7% Y; + O(2) , an identity in
i€l el

A® (/\ 91) , which in turn implies 7; = 7; for all ¢ € I', like in the proof of Proposition 4.2.11. [J

Roughly speaking, the equivalence between claims (b) and (¢) in the above lemma is sort of a
“partial faithfulness” of the G,-module V. This is what we need for our next result.

Proposition 4.3.7.
(a) The restriction of group multiplication in G, provides superscheme isomorphisms
Gy xG=> =G, , G=xGy =2 G,
Moreover, the group G, (A) is independent of the choice of an ordered k—basis {Yi}z’el of g1 used for
its definition; the same holds true for the whole functor G, . Similarly, the sets G (A(lz)) G=(4)
and G=(A) G4 (A(IQ)) — cf. Section 2.1.1 — both coincide with the subgroup of G,(A) generated

by G4 (A(IQ)) and G=(A), and they are independent of the choice of an ordered k-basis of g1 .

0ld—

(b) There exists a k-superscheme isomorphism A"~ = G=, with d_ = |I| = dimk(gl) ,

—
given on A—points by Akld_(A) = Al’—> G=(A), (m)ie] = [T +n7Y5) .
i€l
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Proof. (a) The proof follows by the same arguments we used for Proposition 4.2.7 and Proposition
4.2.11(a). Indeed, acting exactly like in the proof of Proposition 4.2.7 we see — working on A—
points, for each A € (salg), — that G- G= = G, , i.e. the multiplication in G, maps G4 xG=
onto G, itself. Indeed, the point is that the arguments in the proof of Proposition 4.2.7 actually
only make use of some commutation formulas among elements of G4 (A) and elements of the form
(1+n;Y;): but exactly the same formulas do hold again in the present G, we are dealing it now, by
its very construction (see Definition 4.3.2), hence we can succesfully replicate the same procedure.
The same strategy of course also proves that G=- G4 = G, , i.e. the multiplication map from
G= x G4 to G, is onto again.

After this, we can adapt the arguments used for Proposition 4.2.11(a) to show that the multi-
plication map from G=(A) x G4 (A) onto G,(A) is also injective, for each A € (salg), , so to prove
the claim about G= x G4 = G, ; similarly for G4 x G= = G, . In this case the “adaptation”
consists in applying Lemma 4.3.6.

Our goal amounts to showing the following: for any A € (salg), , if §— g+ = §— g+ for g—, g— €
G=(A), G+,9d+ € G4(A), then g_ = g_ and gy = g4+ . Actually, the first identity implies the
second one, thus we cope only with the former. From ¢§_g; = §— gy we get (g_ §+).v =
(- g4+).v for every v € V(A). But definitions yield (§—g+).v = g—.(g+.v) = g—.v and
(g_ g+).v = g_.(g+.v) = ¢g_.v, hence (Q_ Q+).v = (g_ g+).v reads also g_.v = g_.v . Writing

— —

g— =[liet(1+m;Y;) and g— = [Jier(1 + 7 Y;), so by Lemma 4.3.6 we find g_ = g_ .
Moreover, G, is independent of the choice of basis of g1 because of Remarks 4.3.3(b)(c).
As to the last part of claim (a), it is proved again like in Proposition 4.2.7.

(b) By construction there exists a morphism Aﬁld* = G= of k—superschemes given on A—points

H
by Aﬂ2|d—(A) = Af*—> G=(4), (m)ie] — HI(l +n;Y;) . By the very definition of G= this is even
1€

onto. On the other hand, it is an isomorphism because on A—points it is injective too: indeed, this
follows directly from Lemma 4.3.6, namely by the equivalence of claims (a) and (b) therein. O

Like in the linear case, the previous result yields the following, direct consequence:

Corollary 4.3.8. For every super Harish-Chandra pair P € (sHCp), , the supergroup functor
G, given by Definition 4.3.2 is representable, hence it is a(n affine) k—supergroup indeed. More
precisely, G, is represented by a k-superalgebra O(G,,) , with k—algebra isomorphisms

O(G,) = 0(G4) @ 0(G2) = 0(Gy) @ k[{&}ic]
Indeed, O(G

') is a Hopf k-superalgebra, and the above are isomorphisms of super counital left
O(G+) -comodule algebras.

Proof. By Proposition 4.3.7 the k—functor G, is the direct product of the two k-superschemes G 1

and G= & Aﬂ(yd_, which both are representable as functors. Then G, is representable as well,
namely it is represented by

0(Gy) = 0(Gy) @ O(G2) = 0(Gy) @xk|{&i}ie]

Moreover, the unit element of G, is the product of the unit in G and the unit in G= — in both
factorizations G, = G4+ -G= and G, = G=-G4, so the above isomorphisms are counit-preserving.
Finally, using the factorization G, = G4 - G= the left multiplication restricted to G4 corresponds
to left multiplication in the left-hand factor G , whence the above isomorphisms also preserve the
left O(GJr)fcoaction. The claim follows. O
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We still need to fix some details to see that the recipe P +— G, in the end does provide a
functor of the type we are looking for. This is the outcome of next step.

Proposition 4.3.9. For every P € (sHCp), , let G, be defined as above. Then:

(a) G, is fine and globally strongly split, in short G, € (gss-fsgroups), ;

(b) the above construction of G, naturally extends to morphisms in (sHCp), , so it yields a
unique functor W, : (sHCp), — (gss-fsgroups), given on objects by V,(P) := G, .
Proof. (a) Directly from definitions one has that (GP)O = (Gp)ev coincides with G . Together
with Proposition 4.3.7 and Corollary 4.3.8, this implies that G, is globally strongly split, a global
splitting being the factorization G x G= = G, given in Proposition 4.3.7.

In addition, from this factorization one sees — by bare hands computation, following the very
definition of Lie (G) given in Definition 2.3.1 — that

Lie (G,) = Lie(G4 xG=) = Lie(G4) ®T.(GZ) = Ly ® Ly, = L4

that is (identifying £y with g as usual) simply Lie (Gp) = g, this being an identification as Lie
k—superalgebras. As g1 is k—free of finite rank, by assumption (see Definition 4.1.2, we conclude
that G, is fine, as required.

(b) This is trivial, directly from definitions. O

We have now available a functor W, : (sHCp), —— (gss-fsgroups), which is our candidate to
be a quasi-inverse to ®, : (gss-fsgroups), —— (sHCp), .
We first need to establish some additional results. The first one is technical:

Lemma 4.3.10. Let H = H @ A€W be a strongly split Hopf k-superalgebra. Identify H with
H®pl and A\WH with 1@ A€W ; also, for K € {H,H, /\WH} let Kt := Ker (eHlK) . Then
for each ¢ € (/\WH); = (/\WH)1 we have (using Sweedler’s like notation)

Alg) = ¢@1 + 1@¢ + Xg+ by @By

where (gb?'l) ,qf)a)) € (H1[2] ><H1) U (Hl XﬁJr) U (Hl ><H1[2}) — with notation as in §2.1.1.
Proof. Let us start with n = 1. Since €(¢) = 0, we can always write A(¢) in the form A(¢p) =
PR1+1R0+ Z(¢) qbzrl) ® gbzg) with (25?_1) , qﬁé) € HT . After that, recall that the “strong splitting”

H = He A{WH is an isomorphism as augmented algebras with a left H-action. By the way these
H-actions are defined (see §3.1.7) we see that this means that A(¢) =1® ¢ mod (JH ®kH) ; in
turn, this implies that we can write

Ag) = 91+ 106 + X4 0 @0 with ¢}y € Jir, ¢ € HF

By the way, note that Jy = Hlm @ H; CHT and H = H o Jg = T o Hlm ¢ Hy.
Finally, as A is parity-preserving one has ‘A(qb)‘ =|¢| =1, thus ‘gzﬁzrl)} + ‘¢a)| =1 too.
First assume ‘gf)a)‘ = 0; then we have ‘QSEE)} = 1, which means d)&) € (H1 N H+) =Hy. In
6| =0 means ¢, € Ho, s0 ¢y, € (HoNJu) = (Ho N (H{Y @ Hy)) = H,?.
Second, let |q§a)‘ =1, then ‘qbz;)‘ = 0, which means qbé) € (Ho N H*) , hence from the above
remark gba) € (HoNnH*) = (Ho N (FJr@ HI[Q] ® Hy)) = H e Hlp] . Eventually, we can split

addition,

gb(z) cH'oH 1[2] into the sum of a term in H plus another in H 1[2], getting a result as claimed. [J
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Next three results concern a finer analysis of a gs-split fine supergroup.

Proposition 4.3.11. Given G € (gss-fsgroups), , a k-basis {Y;},.; of g1 and A € (salg), , con-
sider in G(A) the elements (1+n;Y;) for all m; € A1, i € I (as recalled in the proof of Lemma
4.2.6). Then G(A) is generated by Go(A U{ +nY; ‘ i,m;) € I><A1} .

Proof. As G is globally strongly split the k-superalgebra O(G) identifies, up to isomorphism,
with O(G) @x AWC@ = O(Go) @k O(G1), where AWOE) = O(G1) in turn identifies with
k[{&};e;] — for some finite set I such that |I| = rki(g1) — W with Spany ({&},c;) and g1
with (WH )* := Homy (WH , k) . Moreover, by definition the subgroup Gg of G can be characterized
as follows: for any A € (salg), one has

Go(A) = {g € Homyg), (O(Go) ®x O(G1), A (4.9)

‘ 9‘1®ko (G1) — 6’1®k0 Gl)}

Recall — see the proof of Lemma 4.2.6 — that if Z € g and e € A are homogeneous of the
same degree and e? = 0, then (1+eZ) € G(A) ; in particular this applies for any Y := Z € g1
and n € Ay, so that (1+7nY ) € G(A). Hereafter nY € Ajg; C g(A) is thought of as the
unique A—valued eo(corderivation of k[{fi}ie I] which maps every &; to nY (&) — through the
k-module identification g1 = (WH)* := Homy(W# k) = Homy (Span; ({&},c;).k) mentioned

above — and acts onto O(Go) as the counit map €,

Note that, since > = 0, each morphism (1 + 7Y ) vanishes on (O(G)+)2 , hence in particular
on (O(G)1)2 . Moreover, such a (14 7Y ") also vanishes on O(Gg)™, by construction.
Let us now fix a (finite) k-basis {Y;},.; of g1: namely, we take the unique one for which

Yi(&5) = d;; for all i and j; also, we set d_ := |I| and we fix a total order in I by numbering its
elements, so that I = {i1,...,iq_}.
d—
Given g € G(A), set n; :=g(&) € Ay, for every i € I, and v, := [[(1 +7m;Y;) € G(A).
i=1
1 1
First consider g1 :=g-7,'=g- [T 1 +mn V)"t =g- [](1=n;Y;) — the product now being
i=d_ i=d_

in reversed order. Second, as the product in G(A) = Homgag), (O(G), A) is given by convolution,
for any ¢ € (/\VVH)1 = k[{&};cs], we have

0@ = (o Wa-wx)e = m,((so( 4 a-a)) @) -

i=d_

= (%3) g(e@) - T (1= mYs) (i)

where ) 1) ®P2) @ ®P(q_41) = A% (¢) as usual. Now, by repeated applications of Lemma
4.3.10 to H = O(G), we can achieve such an expansion in the form

A (9) = Yoena 190900 1% + 351 1) ® B2y @+ ® da_41)
where each monomial ¢(1) ® ---® ¢4_41) satisfies either one of three possible properties, namely:

(1) Py ® 2) @+ @ Prg_y1) = 1¥7® ¢ ® 1% for any possible (r,s) giving 7+ s = d_
— and any such possibility actually occurs;

() G € (W*u (’)(G)lm) - (O(G ) uo@) [2}) for some £>1 ;

() by @@ © - @da_11 € @='0G)  with e, >3 .
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When case (I) occurs, the contribution to

91(¢) = Z(¢)9(¢(1)) g - n:Yi) (b i+1))

is g(¢) for r =0 and (1 —nYy)(¢p) for all » > 1; then summing over all values of r €
{0,1,...,d_} yields the total contribution g(¢)+ Zf;l(l — - Yr)(9) .
When case (IT) occurs, the product [[i_,; (1 —mn;Y;) (¢(i+1)) vanishes: indeed, it contains the

zero factor (1 —n¢Yy)(@(e41)) = 0, because we saw above that (1 — 17, Y;) vanishes on O(Go)t U

O(@) . So the contribution to g1(¢) is g(¢a)) - [Tiea (1 — mYi)(¢esn) =0
In the end, when case (III) occurs the product g(qb(l)) . Hzlz a (L= Y;)(cﬁ(iﬂ)) belongs to

d_+1

[Zszl €

al g

S] Cay", with a:= ({77Z = g(fi)}ig) the ideal of A generated by all the 7;’s.
Eventually, the outcome is that, for every ¢ € (/\WH)1 = k[{&}c/] 1 » one has

91(9) = 9(6) + L5 (L= meYo)(9) + g for some a3 € af’
We apply this result to ¢ = §; with j=1,...,d_ : this yields

a1(&) = 9(&) + 25 =Y (&) + az = g(&) + S5 (—mdey) + a3 = a3 € a)’

since 7; 1= g(ﬁj) by construction. Therefore, we have proved the following

Claim: g1 :=g-v;' when restricted to 1@y, O(G1) = 1@ k[{&};;]| takes its values in al(g),

the unital k—subalgebra of A generated by a1[3] .

We can repeat the procedure with g replacing g. Then we consider the corresponding -, ,
which we use to define g9 := g1 -7;11 =97 1 '7;11 . The same arguments — or, more directly, the
claim above applied to g; instead of g — prove that go when restricted to 1 @, O(G1) takes its

2 2
values in a1(3 ), the unital k—subalgebra of A generated by al[3 ]

Iterating the process, we construct elements g5 := gs—1 -fyg_sl_l =g- fyg_l "yg_ll -’yg_Ql . -fyg_sl_l for
increasing s by recursion; their remarkable property is that each gs when restricted to 1®y O(G1)

takes its values in a1(35), the unital k—subalgebra of A generated by a1[35] .

Now, as a is an ideal generated by finitely many odd elements, we have ul[n] for n > 0. Thus

there exists an s € N} such that gs when restricted to 1 ®x O(G1) takes its values in k, which
means that the restriction of g5 to 1 ® O(G1) coincides with the counit map of O(G) followed by
the unit map of A. But this means that gs € Go(A), thanks to (4.9).

Finally, from g; = g - 7;1- 7511. 7;21- : .,Yg;l_l we get g = gs - Vgs_1 " Vgo " Vo1 - Vg » Which shows
that g belongs to the subgroup of G(A) generated by Go(A) and all the (1 +7;Y;)’s. O

Corollary 4.3.12. Keep notation as in Proposition 4.3.11 above. Fizx a total order in I, and for
— — —
any A € (salg), let G1(A) = Hi€1(1+A1 Yl) = { Hie[(1+ in) ‘ (i,m;) € I><A1} where [ier

denotes an ordered product. Then there exist group-theoretic factorizations
G(A) = Go(A)-G1(4) ,  G(A) = Gi(A)-Go(A)

Proof. We apply again, almost verbatim, the proof of Proposition 4.2.7. Indeed, the arguments
therein only used the relations mentioned in Lemma 4.2.6, which do hold in G'. O

The previous result can be improved as follows:
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Proposition 4.3.13. The factorizations in Corollary 4.3.12 above correspond to k—superscheme
isomorphisms: namely, the multiplication in G provides k—superscheme isomorphisms

G()XGlgG s G1XG02G

. . . old— ~, . .
Moreover, there exists a k—superscheme isomorphism Ak| >~ Gq1 with d_ := |I| , given on

N
A-points by Agd’(A) = Aff—> G1(4), (171»)1.61 — ]_[I(l +n:Yi) .
1€

Proof. The statement is a strict analogue of Proposition 4.2.11 and Proposition 4.3.7, and can be
proved along the same lines. However, the main technical device — which previously was provided
by Lemma 4.2.9 and Lemma 4.3.6 respectively — must now be re-conceived in yet another way,
tailored for the present context.

Given A € (salg), , assume that one has §o g1 = go g1 for some gy, go € Go(A) and g1, g1 €
G1(A); we number the elements of I following their order, so that we can write

o d_ o d_
a=[10+nY) =1110+nY), H(l—i-m V) = [1(1+%Y;) for some ;1 € Ay .
el i=1 icl i=1
We shall prove now that 7; = 7; for all ¢ € I. In particular, assuming go = go this is enough
to prove the last part of the statement: namely, this proves the injectivity of the superscheme
morphism therein, whose surjectivity is automatic. In addition, this also implies that g1 = g1,
whence (as §o g1 = go g1 by assumption) it follows go = go too.
Letting H := O(G), we act much like in the proof of Proposition 4.3.11. Therefore, for any
¢ (AWH), =0O(G1), we find

(9091)(0) = Go(oq)) G1(d2)) = Jo(d) + 91(9) +90(¢(1)) 1 ( (2)) = §1(9)

because A(¢p) = gb?‘l) ® qj&) =1® ¢ mod (JH Rk H) , by the fact that H = O(G) is strongly

LLV??

split (see Theorem 3.2.8), and go(Jy) = {0}. The same occurs of course for
everywhere: hence in the end we have

(9091)(0) = 91(8) ,  (J01)(9) = 31(¢) vV ¢ € 0(G1), (4.10)

On the other hand we have

replacing “g”

d— d_
o) = (I0+a))w) = 3 T10+7)(00)
where Z(¢>) 1) ® P2y @ R Prg_y = A4-~1(¢) as usual. Now, like for Proposition 4.3.11, by
repeatedly applying Lemma 4.3.10 we eventually find, for every ¢ € (/\I/VH)1 = k[{{i}iel] 1

d_

g1(d) = X (L= Yo)(9) + ap()

(=1

where ay = a¢(ﬂ) = agy (771, . ,Udf) is some polynomial (depending on ¢) in the variables 7,
.., M4_ € Az in which only monomials may occur whose degree is odd and at least three. Applying
all this ¢ =¢&; (j=1,...,d- ) and writing «a; := a¢, for each j, we get
d_ d_
0(&) = 2 O=mY)(&) +05(2) = Xiedes +o5(0) =i + o;(1)
-1 =1
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Clearly, the parallel result holds for §;, hence in the end we have (with the same «; twice!)

91(&) =+ o) a(G) =0+ a(n) Vel (4.11)
As Gogr = Jogr , from (4.10) and (4.11) we get 9; + a;(0) = 7; + o;(n) forall j €. As
a last remark, we notice that (TIj =+ ai(n), Vi 6[) defines (the value on A-points of) a

k—superscheme automorphism of Aﬂzld* : therefore, from 7); + aj(ﬁ ) =17 + aj(ﬁ) forall j el
we get eventually 7; =7, forall j €I, q.ed. O

We are ready for next result, the main one of the present section, which extends Theorem 4.2.14:

Theorem 4.3.14. The functor V¥, : (sHCp), —— (gss-fsgroups), is inverse, up to a natural
isomorphism, to the functor ®4 : (gss-fsgroups), —— (sHCp), . In other words, the two of them
are category equivalences, quasi-inverse to each other.

Proof. In the proof of Proposition 4.3.9 we saw that, for P = (G4, g) € (sHCp), and G, := V,(P),
we have (GP)O = G4 and Lie (GP) =g, thus @, (\Ifg(P)) =P . So in one direction we are done.
Conversely, let G € (gss-fsgroups), , and set g := Lie(G), P := ®4(G) = (Go,g). We look at
the supergroup ¥, (@Q(G)) = V¥, (P) := G, , aiming to prove that it is naturally isomorphic to G .
Given A € (salg), , by abuse of notation we denote with the same symbols any element gy €
Go(A) as belonging to G(A) — via the embedding of Go(A) into G(A) — and as an element of

G, (A) — actually, one of the distinguished generators given from scratch.

With this convention, it is immediate to see that Lemma 4.2.6 yields the following: there exists
a unique group morphism 2, : G,(A) —— G(A) such that ,(go) = go for all gy € Go(A)
and QA((1+ni§/;)) =14+nY;) foral nje Ay, iel.

By Proposition 4.3.11 above we have that the morphism 2, is actually surjective. On the other
hand, the direct product factorizations for G, (see Proposition 4.3.7) and for G (see Proposition
4.3.13) easily imply that the morphism €2, is also injective, hence it is a group isomorphism. Finally,

it is clear that the morphisms €2,’s are natural in A, thus overall they provide an isomorphism
between G, = W,(®,(G)) and G, which ends the proof. O

4.3.15. An alternative realization of G,. Let P = (G+ ,g) € (sHCp), be a super Harish-
Chandra pair; we present now a different way of realizing the k-supergroup G, introduced in
Definition 4.3.2(a). In the following, if K is any group presented by generators and relations, we

write K = <F>/(R) if I' is a set of free generators (of K ), R is a set of “relations” among
generators and (R) is the normal subgroup in K generated by R. As a matter of notation, given
a presentation K = <F>/(R) = <F>/(R1 U 732) with R = Rq U Ry , the Double Quotient

Theorem gives us
K = (I')/(R) = (I')/(RiURs) = (I')/(Ry) / (RiURy) [(R1) = (T)/(Rz)  (4.12)

where I' and R5 respectively denote the images of I" and of R in the quotient group <F > / (’Rl) .
For a fixed A € (salg), , we consider G4 (A) and inside it the normal subgroup G~ (A) given by

Gx(A) = <{g+€ G+(A) ‘ g+ = (1+n9'n"X), 0, n" € Ay, X € [g1,01] U 9<12>}>
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Then consider also the three sets
L= Gy(4) ., TF = Gx(4) , Ty =TTU{0+0Y)}y 0 canets

and the sets of relations (for gy,¢' , ¢ € GL(4), g~,.92 € G=(4), n,',n" € A1, X €
[g91,01] U g<12>, Y, YY" € g1, with &, and _ being the product in G4 (A) and in Gx(A)
respectively)
Ri: di-df = die, dt
( g/‘g// :g/ . g//
~ ~ ~ G~ I=
(1 +17Y) O = Gm (1 +17Y) . (1 +17Ad(g;1)(Y))
(L4 Y) - (L4n"Y) = (T YE) - (14 (o +9") V)

1+7Y") - (1 +7Y") = (1+ n [Y/’YND YY) (LY

(T+nY")-(1+nY") = 1+n(Y'+Y"))
\ (4n0) =1 .  (1+0,7) = 1

Ry g9+ =9+ (905 ¢, 9~ e, 9+) » (L+nY) gy = g4 (L +nAd(g1)(Y))
Ri: (9=) , = (9),

T4

=0

Ra = Ry URy URG URY

and define a new group, by generators and relations, as G_(A) :

(T7)/(R3) -
It follows from Remarks 4.3.3(¢c) that
Go(4) = (TfUTT) /(Ra) = (THUTT)/(RIURTURSURE)  (413)

indeed, we are just taking larger sets of generators and of relations, with enough redundancies as
to get in the end a different presentation of the same group.

From this we find a neat description of G, (A) by achieving the presentation (4.12) in a series
of intermediate steps, namely adding only one bunch of relations at a time. As a first step, we have

(CHUT)/(RTURT) = (L) /(RE) « (T3) /(Ry) = Go(4) « G(4)  (414)

where G (A) = (I'}) / (RS) by construction and * denotes the free product (of two groups).

For the next two steps we can follow two different lines of action. On the one hand, one has
(TTUTy >/(RXU RIURL) 2 (Gy(A) xG_(A) )/(RTj) >~ G, (A) x G_(A)

because of (4.12) and (4.14) together, where G (A) x G_(A) is the semidirect product of G (A)
with G_(A) with respect to the obvious (“adjoint”) action of the former on the latter. Then

(TyUT ) /(Ra) = (UL ) /(REUR;URSURY) =
~ (G+(A)KG,(A))/(7T;) ~ (G+(A)><G,(A))/Nz(A)

where Nx(A) is the normal subgroup of G (A)xG_(A) generated by {( ~:0=") ‘ g~ € Gz(A)} )

42



This together with (4.13) eventually yields
H(4) = (G4(4) x G(4)) [N<(4)
On the other hand, again from (4.12) and (4.14) together we get

<FA+UF;>/(RXUR;UR§) o~ G+(A)*G,(A)/(R7§) = Gi(A) %, G (4)

where G’+(A)G >f<(A)G,(A) is the amalgamated product of G4(A) and G_(A) over Gx(A) with
respect to the obvious natural monomorphisms Gx(A) — G4 (A) and Gx(A) — G_(A) . Then

(THUTT)/(Ra) = (TIUTT)/(RIURTURFURS) =

= (Ged) x, G() [(RE) = (G(A) =, G-(4)) /N(4)

where N, (A) is the normal subgroup of G’+(A)G TA)G, (A) generated by

_ —1

U {g+-gz~9+~(9+c'; 9~ & 9+)i1}
+ + g+ €G+(A) 7ngGz(A)

All this along with (4.13) eventually gives
Go(4) = (G+(4) = G-(4) /NN(A)
for all A € (salg), . In functorial terms this yields

G

P

= (GixG)[Ne  and Gy = (GipGo) [N or G = (Gh G

where the last, (hopefully) more suggestive notation G, = (G+CE<~G,) tells us that G, is the

“amalgamated semidirect product” of G4 and G_ over their common subgroup G .

4.4 Examples, applications, generalizations

We shall now illustrate how the equivalence we established between (globally strongly split fine)
affine supergroups and super Harish-Chandra pairs applies to specific examples. In particular, we
show that one recovers the construction of “Chevalley supergroups” as presented in [10, 11, 12, 13].

We also have applications to representation theory. First, if G and (G4, g) respectively are a
supergroup and a sHCp which correspond to each other under the previously mentioned equivalence,
then we shall find an equivalence between the category of (left or right) G-modules and the category
of (G4, g)-modules. Second, given a supergroup G € (gss-fsgroups), and any Go-module V we
provide an explicit construction of the induced G-module Inng(V) .

Finally, we discuss a bit the possibilities to extend our results to a more general setup.

4.4.1. The example of “Chevalley supergroups”. Let g be a simple Lie superalgebra over
an algebraically closed field K of characteristic zero. A complete classification of these objects was
found by Kac (and others, see e.g. [14]), who split them in two main (disjoint) families: those of
“classical” type — still divided into “basic” and “strange” types — and those of “Cartan” type.
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In a series of papers, Fioresi and Gavarini devised a systematic procedure to find affine Z—
supergroups G having the given g as tangent Lie superalgebra — see [10, 11, 12] for the classical
type, and [13] for the Cartan type. Indeed, the outcome there is an explicit recipe to construct all
supergroups of this type which in addition are connected. Their construction starts with a faithful,
finite-dimensional g—module V', and eventually realizes one model of the required Z-supergroup
G as a closed Z-subsupergroup of GL(V). The procedure mimics and extends the classical one
developed by Chevalley to construct (connected) algebraic groups associated with any simple Lie
algebra over K: for this reason, the resulting supergroups are named “Chevalley supergroups”.

On the other hand, if one revisits the work of Fioresi and Gavarini in the spirit of the present
paper, one realizes the following: the construction of Fioresi and Gavarini is nothing but a special
— and peculiar, for extra features occur, of course — instance of Theorem 4.2.14. Indeed, once
g, a faithful g-module V, and suitable Z-forms g, and V,, of them are fixed, one can consider the
even part go and realize, following Chevalley, a (classical) affine group-scheme G over Z which is a
(connected) closed subgroup-scheme of GL(V') such that Lie (Go) = go. Then P := ((Go,g),V )
is a linear super Harish-Chandra pair over Z, i.e. P € (IsHCp),

Now, after Theorem 4.2.14 it makes sense to consider the associated linear fine supergroup
G, = Uy (P) € (Igss-fsgroups), over Z. Then a direct comparison shows that the very definition
of this G, actually coincides with the definition of the Z-supergroup Gy provided by the recipe
of Fioresi and Gavarini. Indeed, we can say that Fioresi and Gavarini’s construction consists in
“composing” Chevalley’s classical construction — to produce a group scheme G out of a faithful
g+—module V. | if g, is a Lie algebra (plus technicalities) — and (as a second step) the functor ¥y .
It follows then that all “Chevalley supergroups” (both of classical or of Cartan type) as provided
by Fioresi and Gavarini are linear fine supergroups; in particular, they are globally strongly split.

4.4.2. Representations 1: the equivalence [supergroup modules ~ sHCp-modules]. An
important byproduct of the equivalence between (gss-fsgroups), and (sHCp), comes as an applica-
tion to representation theory. Indeed, let G € (gss-fsgroups), and P € (sHCp), respectively be a
supergroup and a sHCp which correspond to each other through the above mentioned equivalence
— namely, G = ¥,(P) and P = ®4(G). Then we let G-Mod and P-Mod respectively be the
category of G—supermodules and of P—modules; in short, here we mean that a G—module is the
datum of a finite free k-supermodule M’ with a morphism 2 : G — GL(M’) of supergroups,
i.e. in (sgroups),, whereas a P-module is the datum of a finite free k-supermodule M"” with a
morphism (Q4,w) : P — (GL(M")y,gl(M")) of sHCp’s, i.e. in (sHCp), .

Now assume M’ is a G-module. Applying @, : (gss-fsgroups), — (sHCp), to the morphism
2: G — GL(M') we find a morphism ®4(£2) : ®4(G) — ®,(GL(M’)) between the correspond-
ing objects in (sHCp), . But ®4(G) =P by assumption and ®4(GL(M’)) = (GL(M’)y,gl(M")),
so what we have is a morphism ®4(£2): P — (GL(M)y,gl(M’)) making M’ into a P—module.

Conversely, let M"” be a P-module. Applying the functor ¥, : (sHCp), — (gss-fsgroups), to
the corresponding morphism (Q4,w) : P— (GL(M")q, gl(M")) we get a morphism ¥y ((Q,w)) :
Uy(P) — Uy((GL(M")g,al(M"))) between the corresponding supergroups. As ¥y (P) = G by
our assumptions while W, ((GL(M")y,gl(M"))) = GL(M"), we find a morphism ¥, ((Q,w)) :
G— GL(M") in (gss-fsgroups), which makes M” into a G-module.

The reader can easily check that the previous discussion has the following outcome:

Theorem 4.4.3. Let G € (gss-fsgroups), and P € (sHCp), correspond to each other as above.

(a) For any fixed finite free k—supermodule M, the above constructions provide two bijections,
inverse to each other, between G-module structures and P—-module structures on M .

(b) The whole construction above is natural in M, in that the above bzgectzons over two k-
supermodules M and M are compatible with k—supermodule morphisms from MtoM. T hus, all
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the bijections mentioned in (a) — for all different M’s — do provide equivalences, quasi-inverse
to each other, between the category of all G-modules and the category of all P—modules.

Remarks 4.4.4. Professor Masuoka kindly shared with the author the following observations:

(a) Here above we considered modules M (over supergroups or over sHCp’s) that are finite
free as k—supermodules — which is consistent with our description of GL(M) as given in Examples
2.1.5(b). On the other hand, one can weaken this assumption, requiring only that M be finite
projective: Theorem 4.4.3 above will then still hold true.

(b) With the above mentioned projectivity assumption, our Theorem 4.4.3 improves Proposition
5.4 and Theorem 5.8 in [20]. Indeed, Proposition 5.4 holds true over any commutative ring, just
assuming (with notation of [20]) that the map O(G) — hy(G)* be injective (geometrically, it
means that G is connected).

4.4.5. Representations 2 — induction from Gg to G . Let a supergroup G € (gss-fsgroups),
be given, with associated classical subsupergroup G., = Go. Let V be any Gg—module: we shall
now provide an explicit construction of the induced G-module Indgo(V) .

Being a Go—module, V is also, automatically, a go—module. Then one does have the induced
g-module Indg(V), which can be realized as
Ind&(V) = Ind;® (V) = U(g) @u)V
By construction, it is clear that this bears also a unique structure of Gg—module which is compatible
with the g-action and coincides with the original Go—action on k®g(4e)V = V' given from scratch.
Indeed, we can describe explicitly this Gg—action, as follows. First, by construction we have

Indg(V) = U(9) ®ugo)V = Asr@xV

— because U(g) = Ag1®xU(go) as a k-module, by the PBW theorem for Lie superalgebras, see
(4.7) — with the go—action given by z.(y ® v) = ad(z)(y) ® v +y ® (z.v) for x € go, ¥y € N1,
v € V', where by ad we denote the unique go—action on A g1 by algebra derivations induced by
the adjoint go—action on g1 . Second, this action clearly integrates to a (unique) Go—action given
by go.(y ®v) := Ad(go)(y) ® (go.v) for go € Go, y € ANg1, v € V, where we write Ad for the
unique Go—action on A g1 by algebra automorphisms induced by the adjoint Go—action on gy .

The key point is that the above Gp—action and the built-in g-action on Indg(V) are actually
compatible, in the sense that they make Indg (V') into a (Go , g)-module, i.e. a module for the super
Harish-Chandra pair P := (Go,g) . Since ¥4((Go,g)) = G, by §4.4.2 we have that Indg (V) bears
a unique structure of G-module which correspond to the previous P-action — i.e., it yields (by
restriction and “differentiation”) the previously found Go—action and g—action.

Therefore, we define as IndGGO(V) the space Indg (V') endowed with this G-action: one easily
check that this construction is functorial in V' and has the universal property which makes it into
the adjoint of “restriction” (from G-modules to Go—modules), so it has all rights to be called
“induction” functor (from Go-modules to G-modules).

In addition, if the original Gp—module V' is faithful then the induced G-module Inng(V) is
faithful too: in particular, this means that if Gg is linearizable, then G is linearizable too; more
precisely, from a linearization of Go one can construct (via induction) a linearization of G as well.

4.4.6. Further generalizations. Our construction of a quasi-inverse ¥, to the functor ®, is
flexible enough to apply to other contexts. Hereafter we briefly discuss some possibilities.

The non-affine case. We may deal with a more general notion of sHCp, modifying Definition
4.1.2 in one aspect: instead of taking as G any affine group-scheme over k, we drop the “affine”
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assumption, and allow G4 to be any group-scheme over k. Correspondingly, we consider also k—
supergroup-schemes which are not necessarily “affine”, i.e. they are not necessarily representable
(as supergroup k—functors) but still they are obtained by globally pasting together suitable affine k—
superschemes (see [6], Ch. 11, §11.1, for a detailed definition). In this more general setup, there still
exists a natural functor ® from the category of all (non necessarily affine) k—supergroup-schemes
to the category of “super Harish-Chandra pairs” in the present, new sense.

The whole discussion in the present section can then be repeated: in particular, we can construct
a functor ¥ from sHCP’s to supergroup-schemes, which takes values in the (full sub)category of
those supergroup-schemes which are “globally strongly split”, in the sense of Definition 3.2.6. The
final outcome then will be that the restriction of ® to the latter (sub)category and the functor ¥ are
quasi-inverse to each other: therefore, the category of globally strongly split supergroup-schemes
(over k, say) is equivalent to the category of sSHCp’s (over k). In a nutshell, Theorem 4.3.14 extends
to this more general (non-affine) framework.

Warning: there is just one specific step in the whole procedure, namely Proposition 4.3.13,
where (in the proof) I concretely made use of the fact that a given supergroup G under exam was
affine, hence the classical subgroup Gg = G4 in its associated sHCp is affine too. At this point one
must definitely adopt some different argument to get the analogous result in the non-affine case.

Dropping finiteness assumptions. Still keeping the assumption that Lie(G) = Ly is repre-
sentable and gy is k—free, one can drop the finiteness assumption on rki(gy). In this case, our
construction of G, still makes sense, yielding a supergroup which is automatically fine but is “gs-

split” only in a modified sense: indeed, we have now G, = G X mdAﬂ(i'd* where mdAuzld’ is some
ind-affine, totally odd superspace, and d_ is now a possibly infinite cardinal number. As to function

algebras, we have O(G,) = O(G4) @k (')(mdAgdf) where (’)(mdAﬂzld*> is no longer (a priori) a
Grassmann algebra. Our main result — Theorem 4.3.14 — about the equivalence between sHCp’s
and fine supergroups which are “split” (in a suitable sense) must then be modified accordingly.

On the other hand, Theorem 3.1.10 is proved by Masuoka (see [18], Theorem 4.5) making no
special finiteness assumption on commutative Hopf superalgebras: in our language, this means
that when k is a field (with char(k) # 2) every affine k—supergroup G is gs-split in the sense of
Definition 3.2.6, with no modifications whatsoever! This ought to mean that one should be able to
“read” our construction of G, so as to achieve the same object mdA]i'd_ , but now presented in such
indAH2|d—

a way that one recognizes it as being a true affine (totally odd) superspace, with (’)( ) now

being recognized as a Grassmann algebra. This clarification clearly needs a finer analysis, which
goes beyond the goals of the present paper.

Finally, in this “non-finite” setup one can deal with non-affine supergroups: the remarks in the
above paragraph (for the non-affine case) apply again, so one ends up with the same conclusions.

The real smooth and complex analytic cases. In the differential setup one studies real Lie su-
pergroups; similarly, in the analytic framework one deals with complex Lie supergroups. In both
cases, as it is customary to do, we assume that the super-dimension is finite.

In both cases, one can adopt a functorial language, which is strictly close to the one used in
the algebro-geometric setup (as we did in the present paper). With such a choice of language —
and of technical tools to work with — one can then also reproduce the construction presented in
this paper, in particular that of the functor ¥, . The outcome then will be that ®, and ¥, will be
equivalences, quasi-inverse to each other, between the category of (real or complex) Lie supergroups
and the category of (real or complex) sHCp’s. Note that here we do not need any “globally strongly
split” assumption, since such a property always holds true for real or complex Lie supergroups (see
[6], Proposition 7.4.9, and [21] respectively).
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