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Abstract

We show that every connected affine algebraic supergroup defined
over a field k, with diagonalizable maximal torus and whose tangent
Lie superalgebra is a k–form of a complex simple Lie superalgebra
of classical type is a Chevalley supergroup, as it is defined and con-
structed explicitly in [R. Fioresi, F. Gavarini, Chevalley Supergroups,
Memoirs of the AMS 215 (2012), no. 1014]. 1

1 Introduction

In [7] we have given the supergeometric analogue of the classical Chevalley’s
construction (see [16]), which enabled us to build a supergroup out of data
involving only a complex Lie superalgebra g of classical type and a suitable
complex faithful representation. Such a supergroup is affine connected, with
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associated classical subgroup being reductive k–split (i.e. it admits a diag-
onalizable maximal torus) and with tangent Lie superalgebra isomorphic to
g : thus we obtained an existence result for such supergroups. In particular,
this provided the first unified construction of affine algebraic supergroups
with tangent Lie superalgebras of classical type; in particular, it was also (as
far as we know) the very first explicit construction of algebraic supergroups
corresponding to the simple Lie superalgebras of basic exceptional type.

In this paper we tackle the uniqueness problem, cast in the following
form: “is any such supergroup isomorphic to a supergroup obtained via the
Chevalley’s construction”? Our answer is positive.

We start with an affine algebraic supergroup G , defined over a field k
with associated classical subgroup G0 which is k–split reductive, and with
tangent Lie superalgebra a k–form of a complex Lie superalgebra of classical
type (plus a consistency condition): then we prove that G is given by our
Chevalley supergroup construction. Note that all the conditions we impose
actually are necessary, as they do hold for Chevalley supergroups.

As G0 is k–split reductive, by Chevalley-Demazure theory it can be re-
alized via the Chevalley construction as a closed subgroup of some GL

(
Ṽ
)
,

where Ṽ is a suitable G0–module. Let Ṽ ∗ be the dual G0–module. Since G
is an affine supergroup over a field k , it is linearizable, that is G ⊆ GLm|n
(for suitable m and n), hence we can build the induced (GLm|n)0–module

U := Ind
(GLm|n)0
G0

(
Ṽ ∗) and its dual U∗, which both are naturally (glm|n)0–

modules as well: note also that U∗ contains a G0–submodule isomorphic
to Ṽ . Inducing then for the Lie superalgebras we get the glm|n–module

W := Ind
glm|n
(glm|n)0

(
U∗) = U

(
glm|n

)
⊗U((glm|n)0)

U∗ . Now W is also a GLm|n–

module and (by restriction) a G–module: moreover, it contains the (finite-

dimensional) G–submodule V := U(g)⊗U(g0)Ṽ , where Ṽ is identified with a
G0–submodule of U∗. N.B.: for the sake of simplicity of exposition, we are
hiding here several technicalities, to be specified later on in the main text.

The very construction of V allows us to build the Chevalley supergroup
GV associated with the g–representation V and to view both G and GV as
closed subgroups of the same GL(V ) . The last step is to note that both G
and GV are globally split — as any affine supergroup over a field, by Theorem
4.5 in [14]. Since the ordinary algebraic groups are the same, G0 = (GV )0 , we
have that both supergroups are smooth as well. We conclude then G = GV

by infinitesimal considerations, since they have the same Lie superalgebra.
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In the last section we make some important remarks between the equiv-
alence of categories of certain Super Harish-Chandra pairs and the algebraic
supergroups we have studied in the present work.

Parallel constructions and results, concerning existence (by a Chevalley
like construction) and uniqueness of algebraic supergroups associated with
simple Lie superalgebras of Cartan type are presented in [9].
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2 Chevalley supergroups

In this section we review briefly the construction of Chevalley supergroups
(see [7], [8]) and then we discuss some of their properties. For all details
about the construction we refer to [7]. The new property that we present
here is that every Chevalley supergroup GV , defined as a subgroup of some
GL(V ) , is in fact closed in GL(V ) .

2.1 Definition of Chevalley supergroups

Let g be a complex Lie superalgebra of classical type and h a fixed Cartan
subalgebra of g0 . Then we have the corresponding root system ∆ = ∆0∪∆1 ,
with ∆0 and ∆1 being the sets of even and of odd roots respectively: these
roots are the non-zero eigenvalues of the (adjoint) action of h on g , while the
corresponding eigenspaces, resp. eigenvectors, are called root spaces, resp. root
vectors. For root vectors, we adopt the simplified notation of the cases when
g is not of type A(1, 1), P (3) or Q(n) — cf. [13] — but all what follows holds
for those cases too, and all our results hold for all complex Lie superalgebras
of classical type, but for the cases D(2, 1; a) when a ̸∈ Z .

Like in the classical setting, one can define special elements Hα ∈ h ,
called coroots, associated with the roots α .

A key notion in [7] is that of Chevalley basis of g . This is any C–basis of
g of the form

B =
{
H1 . . . Hℓ

}
∪
{
Xα , α ∈ ∆

}
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such that (cf. [7], Def. 3.3):

• the Hi’s, called the Cartan elements of B , form a C–basis of h (with
some additional properties);

• every Xα is a root vector associated with the root α ;

• the structure coefficients for the Lie superbracket in g with respect to
these basis elements are integers with some special properties.

The very existence of Chevalley bases is proved in [7], sec. 3.

If B is a Chevalley basis of g as above, we set gZ := SpanZ{B}
(
⊆ g

)
for

its Z–span. Moreover, we define an important integral lattice inside U(g) ,
namely the Kostant superalgebra. This is the Z–supersubalgebra UZ(g) of
U(g) generated by the following elements: all divided powers in the even
root vectors of B , all odd root vectors of B , and all binomial coefficients in
the Cartan elements of B (see [7], sec. 4.1).

We associate to UZ(g) the notion of admissible lattice in a g–module:

Definition 2.1. Let g , B =
{
H1 . . . Hℓ

}
∪
{
Xα , α ∈ ∆

}
and UZ(g) be as

above. Let V be a complex finite dimensional g–module. We say that V is
rational if the Hi’s act diagonally on V with integral eigenvalues. We say
that an integral lattice M in V — that is, a free Z–submodule M of V such
that rkZ(M) = dimC(V ) — is admissible if it is UZ(g)–stable.

Given a complex representation V of g as above, there exists always an
admissible lattice M and an integral form gV of g keeping such a lattice
stable (see [7], §5.1). This allows us to shift from the complex field C to any
commutative unital ring k .

Definition 2.2. Let the notation be as above, and assume also that the
representation V is faithful. For any fixed commutative unital ring k , define

gk := k ⊗Z gV , Vk := k ⊗Z M , Uk(g) := k ⊗Z UZ(g)

Then we say that gk , resp. M , is a k–form of g , resp. of Vk.
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Remark 2.3. For any algebraic supergroup G, one can introduce the notion
of superalgebra of distributions Distk(G) , by an obvious extension of the
standard notion in the even setting; see [1], §4, for details. One can easily
see — like in [1], §4 — that Distk(G) = Uk(g) ; in particular, this shows that
Uk(g) is independent of the choice of a specific Chevalley basis in g .

More important (for later use), is the fact that if φ : G′ −→ G′′ is a
morphism between two supergroups, then it induces (functorially) a mor-
phism Dφ : Distk

(
G′) −→ Distk

(
G′′) , which is injective whenever φ is in-

jective. If in addition G′ and G′′ satisfy the assumptions we gave above for
G , so that Uk

(
g′
)
= Distk

(
G′) and Uk

(
g′′
)
= Distk

(
G′′) , we have then

Dφ : Uk

(
g′
)
→ Uk

(
g′′
)
, which is an embedding if G′ is subsupersgroup of G′′.

We need now to recall the notion of commutative superalgebras.
We call k–superalgebra any associative, unital k–algebra A which is Z2–

graded (as a k–algebra): so A bears a Z2–splitting A = A0 ⊕A1 into direct
sum of super-subvector spaces, with AaAb ⊆ Aa+b . We define the parity
|a| ∈ Z2 of any a ∈

(
A0 ∪A1

)
\ {0} by the condition a ∈ A|a| ; the elements

in A0 are called even, those in A1 odd. All k–superalgebras form a category,
whose morphisms are those in the category of k–algebras which preserve the
unit and the Z2–grading.

A k–superalgebra A is said to be commutative iff x y = (−1)|x| |y|y x for
all homogeneous x, y ∈ A and z2 = 0 for all odd z ∈ A1 . We denote by
(salg) — or (salg)k — the category of commutative k–superalgebras.

As a matter of notation, we write (grps) for the category of groups.

Finally, we are ready to give the definition of Chevalley supergroup over
the commutative ring k .

Definition 2.4. Let the notation be as above. We define Chevalley su-
pergroup the supergroup functor GV : (salg)k −→ (grps) defined as:

GV (A) :=
⟨
GV,0(A) , 1 + θβXβ

∣∣∣ β ∈ ∆1, θβ ∈ A1

⟩ (
⊆ GL

(
Vk
)
(A)

)
, for

all A ∈ (salg)k , where GV,0 is the ordinary reductive group scheme associ-
ated via the Chevalley recipe with the GV,0–module Vk (cf. [7], sec. 5). As
usual GL(Vk) denotes the general linear supergroup scheme

Let us fix a total order (with some mild conditions) in ∆1 , and let G<
V,1 be

the functor of points of the superscheme corresponding to ordered products
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of elements of the type 1 + θX ∈ GV (A) where X is a positive root vector.
We have that G<

V,1
∼= A0|N where N = dimC(g1) =

∣∣∆1

∣∣ and A0|N denotes
the purely odd affine superspace (see [7], sec. 5, and [8], sec. 4 for details).

Theorem 2.5. The group product GV,0 × G<
V,1 −→ GV induces an isomor-

phism of superschemes. In particular we have GV
∼= GV,0 × A0|N (with N

as above), so that GV is an affine supergroup scheme (it is representable).

Theorem 2.5 is the main result in [7]: in particular, it states the repre-
sentability of the supergroup functor GV , so that the terminology Chevalley
supergroup is fully justified. Furthermore, for k a field we have Lie(GV ) = gk
as expected. Finally since by the classical theory GV,0 is connected, GV is
connected.

2.2 The Chevalley supergroup G is closed inside GL(Vk)

Let k be a unital commutative ring. All our algebras and modules will now
be over k unless otherwise specified.

We now wish to prove that GV embeds naturally into the general linear
supergroup GL(Vk) as a closed subsuperscheme. Note that, when k is a field,
the affine supergroup GV embeds into some GL(W ) as a closed supergroup
subscheme (see [3], ch. 11); we now want to show that we can always choose
W := Vk , where Vk is the g–supermodule used to construct GV itself.

Let us start with some observations.

Let gl(Vk) be the Lie superalgebra of all the endomorphisms of the free
module Vk : we denote with gl(Vk)0 the set of all the endomorphisms preserv-
ing parity, and with gl(Vk)1 the set of those reversing parity. Its functor of
points gl(Vk) : (salg) −→ (Lie) is Lie algebra valued (hereafter (Lie) denotes
the category of Lie algebras) and it is given by:

gl(Vk)(A) :=
(
A⊗ gl(Vk)

)
0
= A0 ⊗ gl(Vk)0 ⊕ A1 ⊗ gl(Vk)1

Notice that in this equality the symbol gl(Vk) appears with two very different
meanings: on the left hand side it is a Lie algebra valued functor, while on
the right hand side it is just a free module over k. This is a most common
abuse of notation in the literature. Hence gl(Vk)(A) splits into direct sum of

gl(Vk)0(A) = A0 ⊗ gl(Vk)0 , gl(Vk)1(A) = A1 ⊗ gl(Vk)1
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corresponding respectively to the functor of points of the purely even Lie
superalgebra gl(Vk)0 — hence a Lie algebra — and to the functor of points
of the purely odd superspace gl(Vk)1 . Now define the functor GL(Vk)1 :
(salg) −→ (sets) by

GL(Vk)1(A) = I + gl(Vk)1(A) ∀ A ∈ (salg)

where I denotes the identity in GL(Vk)1(A) . One can check immediately
that this is a representable functor corresponding to the affine purely odd
superspace A0|2mn, where m|n is the dimension of Vk . One also sees easily
that GL(Vk)1 is a subfunctor and a subscheme of GL(Vk) . The reader must
be warned that GL(Vk)1 has no natural supergroup structure.

The next proposition clarifies the relation between GL(Vk)1 and GL(Vk) .

Proposition 2.6. Let the notation be as above. Then the multiplication
map GL(Vk)0 × GL(Vk)1 −−→ GL(Vk) induces an isomorphism of super-
schemes, where GL(Vk)0 denotes as usual the closed superscheme of GL(Vk)
corresponding to the ordinary underlying affine group. In particular, both
GL(Vk)0 and GL(Vk)1 are closed supersubschemes of GL(Vk) .

Proof. Given A ∈ (salg) , let us consider an A–point of GL(Vk) , say(
a β
γ d

)
∈ GL(Vk)(A)

Then a , d ∈ GL(Vk)0 are invertible matrices and this immediately allows us
to build the inverse morphism of the map GL(Vk)0 × GL(Vk)1 −→ GL(Vk)
given by restriction of the multiplication, namely

GL(Vk)
∼=

↪−−−−� GL(Vk)0 ×GL(Vk)1(
a | β
γ | d

)
7→

((
a | 0
0 | d

)
,
(

Im | a−1β
d−1γ | In

))
where m|n is the dimension of Vk and Is is the identity matrix of size s .
The statement about GL(Vk)0 and GL(Vk)1 being closed is clear.

Theorem 2.7. Let GV be the Chevalley supergroup associated with the com-
plex Lie superalgebra g and to a complex representation V of g . Then GV is
a closed supergroup subscheme in the general linear supergroup scheme GL(Vk).
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Proof. By the very definition of Chevalley supergroup and by Theorem 2.5
we have that

GV
∼= GV,0 ×G<

V,1 ⊆ GL(Vk) ∼= GL(Vk)0 ×GL(Vk)1

By the classical theory we have that GV,0 is a closed subgroup (scheme) of
GL(Vk)0 , thus it is enough to show that G<

V,1 is closed too — as a super-
subscheme of GL(Vk) .

Let us look closely at the embedding of G<
V,1 inside GL(Vk) . By Theorem

2.5 we have an isomorphism Ψ : A0|N −→ G<
V,1 given by

ΨA : A0|N(A)−→ G<
V,1(A) , (ϑ1, . . . , ϑN) 7→

∏N
i=1 xγi(ϑi)

where the product in right-hand side is ordered w.r.t. some total order on
∆1 for which ∆+

1 follows ∆−
1 , or viceversa. In particular, the point 0 in A0|N

corresponds to the identity I in G<
V,1 ; thus the tangent superspace to G<

V,1

at I corresponds to the tangent superspace to A0|N at 0 , naturally identified
with A0|N again.

Given A ∈ (salg) , we have for g =
∏N

i=1 xγi(ϑi) ∈ G<
V,1(A) :

g =
∏N

i=1 xγi(ϑi) = I +
∑N

i=1 ϑiXγi +O(2) ∈ gl
(
Vk(A)

)
(⋆)

where O(2) is some element in gl
(
Vk(A)

)
= A0 ⊗k gl(Vk)0 + A1 ⊗k gl(Vk)1

whose (non-zero) coefficients in A0 and A1 actually belong to J 2
A , the ideal

of A generated by A 2
1 := A1 · A1 .

Consider now the closed subscheme H in GL(Vk)1 whose functor of points
is defined as

H(A) := I +
∑

i ϑiXγi

We have an invertible natural transformation ϕ

ϕA : G<
V,1(A) −→ H(A)

(
⊆ GL(Vk)(A)

)
∏N

i=1 xγi(ϑi) 7→ I +
∑

i ϑiXγi

which maps G<
V,1 isomorphically onto the closed subscheme H in GL(Vk)1 ,

whence G<
V,1 is a closed subsuperscheme of GL(Vk)1 .
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3 Uniqueness Theorem

Hereafter, we assume k to be a field, with char(k) ̸= 2 , 3 .

In this section we prove the main result of our paper, which we summarize
as follows. Let G be a connected affine algebraic supergroup, whose tangent
Lie superalgebra gk is a k–form of a complex Lie superalgebra of classical
type (see Def. 2.2); we assume also that its even subgroup G0 is reductive
and k–split, i.e. it admits a diagonalizable maximal torus. We assume further
that (gk)0, the even part of gk is an ingredient in the recipe that allows us
to realize the ordinary group G0 as a Chevalley group.

We then show that such a G is isomorphic to a Chevalley supergroup GV

as we constructed in [7] according to the recipe described in the previous
section.

We start with a result relative to the chosen admissible representation V
of the complex Lie superalgebra g , inducing the embedding of GV in GL(Vk) .

3.1 Linearizing G

LetG be a connected affine algebraic supergroup over k and let gk := Lie (G)
be the tangent Lie superalgebra of G .

We assume gk to be a k–form of a complex Lie superalgebra g , that is
gk = k ⊗ gZ (cf. Definition 2.2), where here gZ is any integral lattice inside
the complex Lie superalgebra g . Moreover, we assume the complex Lie su-
peralgebra g to be simple of classical type (in the sense of Kac’s terminology,
see [13]). It follows that the even part g0 of g is a reductive Lie algebra.

Let G0 be the ordinary subgroup underlying G : its tangent Lie algebra
is Lie(G0) = Lie(G)0 = (gk)0 . We assume that G0 is reductive and k–split,
i.e. it admits a diagonalizable maximal torus.

By the classical theory then G0 can be realized via the classical Chevalley
construction (see for example [12], part II, 1.1). In short, there exists a

complex g0 –module Ṽ which is faithful, rational, finite-dimensional, so that
G0 is isomorphic to the affine group-scheme (over Z) associated with g0 and Ṽ
by the classical Chevalley’s construction (see also Demazure [4]), using some

admissible lattice M̃ in Ṽ . Here such words as rational and admissible refer
to the choice of any Chevalley basis B′

0 (in the classical sense) of the reductive
Lie algebra g0 . It follows also that the tangent Lie algebra Lie(G0) = (gk)0
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has the form (gk)0 = k ⊗Z (g0)Ṽ where (g0)Ṽ is the stabilizer of M̃ in

Ṽ : in turn, this (g0)Ṽ depends only on the lattice of weights of the g0-

representation Ṽ and not on M̃ or on the choice of a Chevalley basis of g0
(see [16] for more details on this classical construction).

We furthermore require a consistency condition between gZ and G0 , as
follows. As the complex Lie algebra g is simple of classical type, we can fix
inside it a Chevalley basis, as in Sec. 2.1, call it B. Then we assume that

— (a) B ∩ g0 = B′
0 ,

— (b) gZ ∩ g0 = (g0)Ṽ , gZ ∩ g1 = SpanZ
(
B ∩ g1

)
.

By [3], ch. 11, we have that G ⊆ GLk
m|n for suitable m and n and

consequently gk ⊆ gl km|n , where we denote with GLk
m|n and gl km|n the general

linear supergroup and the general linear superalgebra defined over k , that
is GLk

m|n = GL(km|n) and gl km|n = Lie(GLk
m|n) , where k

m|n is the free k–
supermodule of dimension m|n (see [3], ch. 1, for details).

Our goal now is to pass from the G0–module Ṽk = k⊗Z Ṽ to a G–module
Vk which is obtained as an “induced representation” from G0 to G (both Ṽk
and Vk are k–modules). This will be achieved by another “linearization step”,
and an “induced representation construction” from

(
GLk

m|n
)
0
to GLk

m|n .

Remark 3.1. The results in this section can be easily generalized to the case
of k a unital commutative ring, provided we assume G to be linearizable.
Notice that this is granted when k is a field (see [3], ch. 11, and [5], ch. 2, for
the ordinary setting). One can check that this is also granted for k a PID
and O(G) a free k–module.

We start with a general result on algebraic supergroups, that will be
instrumental to our goal.

Proposition 3.2. Let G be an affine algebraic supergroup with G ⊆ GL(Vk) ,
for Vk a super vector space. Then we have the following decomposition:

G = G0 ×G1 ⊆ GL(Vk)0 ×GL(Vk)1

where G1 is the subscheme defined by G1(A) := G(A) ∩GL(Vk)1 .

Proof. Since G ⊆ GL(Vk) , we have that every g ∈ G(A) decomposes in
GL(Vk)0 × GL(Vk)1 uniquely as g = g0 g1 , with g0 ∈ GL(Vk)0(A) and
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g1 ∈ GL(Vk)1(A) (see 2.6). As g0 = πA ◦ g , where πA : A −→ A
/
JA , (as

usual JA denotes the ideal generated by A1 in A), we have that g0 factors via
O(G)

/
JO(G) and consequently g0 ∈ G0(A) , from which g1 = g−1

0 g ∈ G(A) .
Therefore we have the result.

Definition 3.3. With notation as above, let Ṽ ∗
k be the G0–module dual to

Ṽk . We define Ũk as

Ũk := Ind
(GLk

m|n)0
G0

(
Ṽ ∗
k

)
i.e. Ũk is the

(
GLk

m|n
)
0
–module induced from the G0–module Ṽ ∗

k .

Let Ũ ∗
k be the (GLk

m|n)0–module dual to Ũk ; note that, as Ind
(GLk

m|n)0
G0

(
Ṽ ∗
k

)
maps onto Ṽ ∗

k , we have that Ṽk ∼= Ṽ ∗∗
k embeds into Ũ ∗

k , i.e. the latter con-

tains as a G0–submodule an isomorphic copy of Ṽk .

As Ũ ∗
k is a

(
GLk

m|n
)
0
–module, it is also a module for the algebra of distri-

butions on
(
GLk

m|n
)
0
, which identifies with Uk

((
glm|n

)
0

)
:= k⊗ZUZ

((
glm|n

)
0

)
,

the classical Kostant algebra of Lie
((
GLk

m|n
)
0

)
=

(
gl km|n

)
0
(cf., for instance,

[11], § I.7). So Ũ ∗
k is a Uk

((
glm|n

)
0

)
–module, and we can perform on it the

induction from Uk

((
glm|n

)
0

)
to Uk

(
glm|n

)
: this yields next relevant object:

Definition 3.4.

Wk := Ind
Uk(glm|n)

Uk((glm|n)0)

(
Ũ ∗
k

)
= Uk

(
glm|n

)
⊗Uk((glm|n)0)

Ũ ∗
k

Proposition 3.5. Let the notation be as above. Then Wk has a natural
structure of GLk

m|n–module and of G–module.

Proof. Clearly, if Wk is a GLk
m|n–module then it is a G–module as well, since

G is a closed subsupergroup of GLk
m|n . Let now ρ be the representation

map of gl km|n into End(Wk) and σ the representation map of (GLk
m|n)0 into

Aut(Wk) . To give Wk a GLk
m|n–module structure, in view of Proposition 2.6

we need to extend σ by specifying the images of all the elements I + θX in
(GLk

m|n)1(A) , of course in a way compatible with respect to the images of

the elements in (GLk
m|n)0 . Let us define

σ(I + θX).w = w + θρ(X)w ∀ w ∈ Wk

11



We leave to the reader the check that this definition is compatible with the
one on (GLk

m|n)0 . This is essentially a consequence of the fact that dσ0 = ρ0 ,
where σ0 and ρ0 are the even parts of the representations σ and ρ .

From another point of view, note that our definition of σ(I + θX) is
exactly the one giving the unique action of GLk

m|n onWk , induced by restric-

tion of the action of GLk
m|n , extending to the action of gl km|n (here we just

need to recall that GLk
m|n is naturally embedded into gl km|n ). In particular,

an action of GLk
m|n on Wk with such properties exists, it is unique and it is

given exactly by the formula above.

Now comes the main result of this subsection.

Theorem 3.6. Let the notation be as above.

(a) The subspace

Vk := Uk(g)⊗U((gk)0) Ṽk ⊆ Wk

is a rational faithful finite dimensional G–module, and G embeds into GL(Vk)
as a closed subsupergroup.

(b) There exists a Chevalley supergroup GV such that GV ⊆ GL(Vk)
and Lie(GV ) = gk . In other words, both G and the Chevalley supergroup
GV embed into the same general linear supergroup GL(Vk) and have the same
Lie superalgebra. Moreover G0 = (GV )0 .

Proof. First of all, note that by Remark 2.3 we have that Uk(g) ⊆ Uk

(
glm|n

)
,

hence Vk is a well-defined subspace of Wk : then by construction, it is also
clear that the former is a G–submodule of the latter.

Since Ṽk is rational and faithful as a G0–module, Vk in turn is rational
and faithful as a G–module. This happens because G acts on Wk leaving
Vk invariant. This is a straightforward application of Proposition 3.2. In
particular, G embeds as a closed subsupergroup inside GL(Vk) .

Now let M̃ be an admissible lattice — in the complex g0–module Ṽ —
used to construct G0 via a Chevalley construction. Then we see at once
that M := UZ(g)⊗UZ(g0)

M̃ is an admissible lattice for the (rational, faithful)

complex g–module V := UC(g) ⊗UC(g0) Ṽ , which is also finite dimensional
because UC(g) is free of finite rank as a UC(g0)–module (cf. [7], sec. 4).

Altogether, the above means that we can use V and its lattice M to con-
struct a Chevalley supergroup GV over k , realized as a closed subsupergroup
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of GL(Vk) . As the faithful action of g0 onto Ṽ yields an embedding of GV,0

into GL
(
Vk) , the restriction to g0 of the (faithful) action of g onto V yields

an embedding of GV,0 into GL
(
Vk) . By construction — including the fact

that Vk = Uk(g) ⊗U((gk)0) Ṽk =
∧
(gk)1⊗k Ṽk as a g0–module is just Ṽ ⊕r

k

for r := rankU((gk)0)(Uk(g)) — the g0–action on V is just an r–fold diago-

nalization of the g0–action on Ṽ : as a consequence, the embedded copy of
GV,0 inside Vk is just an r–fold diagonalized copy of the group obtained from

the g0–action on Ṽ via the Chevalley construction. Hence GV,0 = G0 inside
GL(Vk) .

3.2 G as a Chevalley supergroup

We want to show that G and GV are isomorphic. Since we shall make use of
the fact that their Lie superalgebras are isomorphic, we need to make some
observations on the differentials.

Lemma 3.7. Let f ∈ O
(
GL(Vk)

)
and let X ∈ gl1(Vk)(A) , A ∈ (salg) with

as usual gl(Vk) = Lie(GL(Vk)) . Then

f(1 + θX) = f(1) + (df)1θX ∀ θ ∈ A1

Proof. Clearly it is enough to check this for a monomial f = xi1j1 · · ·xirjr ,
where xij denotes an even or odd generator of O

(
GL(Vk)

)
. Notice that the

case of f = xij is true: xij(1+θX) = xij(1)+xij(θX) = xij(1)+(dxij)1θX.
The general case reads

(xi1j1 . . . xirjr)(1 + θX) = xi1j1(1 + θX) · · · xirjr(1 + θX) =

= xi1j1(1) · · ·xirjr(1) + xi1j1(θX)xi2j2(1) · · ·xirjr(1)+
+xi1j1(1)xi2j2(θX) · · ·xirjr(1) + xi1j1(1) · · ·xir−1jr−1(1)xirjr(θX) =

= 1 + d(xi1j1 · · ·xirjr)1(θX)

which gives what we wanted.

Lemma 3.8. Let the notation be as above. Then GV ⊆ G , in other words
GV (A) ⊆ G(A) for all A ∈ (salg) .
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Proof. As GV is a closed subscheme of GL(Vk) (by Theorem 2.7), an element
z ∈ GV (A) ⊆ GL(Vk)(A) corresponds to a morphism z : O(GL(Vk)) −→ A
factoring through IGV

, the ideal defining GV in O(GL(Vk)) , that is z :
O(GL(Vk))

/
IGV

= O(GV ) −→ A (by an abuse of notation we use the same
letter). Hence to prove that z ∈ G(A) we need to show that z factors also
via the ideal IG of O(G) , which is also closed in GL(Vk) (see Theorem 3.6).

If z ∈ (GV,0)(A) ⊆ GL(Vk)0(A) , then there is nothing to prove, since
G0 = GV,0 , so we assume z ∈ G<

V,1(A) (refer to 2.5 for the notation). It is
not restrictive to assume z = 1 + θX for a suitable X ∈ g1 and θ ∈ A1 ,
since such z’s together with GV,0 generate GV (A) as an abstract group. Now
let f ∈ IG : we need to prove that

z(f) = (1 + θX)(f) = f(1 + θX) = 0

By the previous lemma we have

f(1 + θX) = f(1) + (df)1θX

Certainly f(1) = 0 because the identity is a topological point belonging to
both G and GV . Moreover, (df)1X = 0 because of Proposition 10.6.15 in
[3], since X is in the tangent space at the identity to both supergroups G
and GV .

Lemma 3.9. Let X and Y two smooth superschemes (cf. [6]) globally split
and such that:
1. X ⊆ Y , |X| = |Y | ;
2. TxX = TxY for all x ∈ |X| .
Then X = Y .

Proof. We have a morphism of superschemes given by the inclusion X ↪→ Y .
In order to prove this is an isomorphism it is enough to verify this on the
stalks of the structure sheaves. The inclusion induces a surjective morphism
on the sheaves, hence we have OY,y � OX,x . Since both X and Y are

globally split and smooth, taking completions we have that OX,x ⊆ ÔX,x and

OY,y ⊆ ÔY,y ; moreover, we can write the following commutative diagram:

OY,x −� OX,x

↓ ↓
ÔY,x −→ ÔX,x
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The arrow ÔY,x −→ ÔX,x is an isomorphism, since both X and Y are
smooth and they have the same tangent space. Hence we have that also the
arrow OY,x −� OX,x is an isomorphism.

We are eventually ready for our main result:

Theorem 3.10. Let G be an affine algebraic supergroup scheme over the
field k , with G0 being k–split, whose Lie superalgebra g is a k–form of a
complex Lie superalgebra of classical type. Then there exists a Chevalley
supergroup GV such that GV

∼= G .

Proof. Both G and GV described in the previous propositions embed into
the same GL(Vk) and decompose inside the latter as G = G0 × G1 and
GV = GV,0 ×GV,1 , with G0 = GV,0 .

By the previous analysis, we are now left with the following situation:
GV ⊆ G ⊆ GL(Vk) , G0 = GV,0 and T1GV = T1G . Actually this happens for
all points, not just the identity, so that TxGV = TxG for all x ∈ |G| = |GV |
(notation of ch. 10, sec. 4, in [3]). Then by the lemma 3.9 we have the result,
since both G and GV are globally split (cf. [14]) and smooth (since GV,0 = G0

is smooth).

Observation 3.11. We want to remark that Theorem 3.10 can be applied
in a different setting, that can be useful for the applications. Assume G to
be a smooth affine algebraic supergroup scheme over a field k : then G is a
closed subsupergroup scheme in some GL(Vk) — see [3], ch. 11. Assume now
that V is a suitable representation of a complex Lie superalgebra g , such
that we can construct the Chevalley supergroup GV according to the recipe
described in sec. 2. In [8] we have shown that such recipe can be suitably
generalized to include Lie superalgebras not of classical type, for instance
the Heisenberg superalgebra. Assume furtherly that G0 = GV,0 and that
Lie(G) = Lie(GV ) , in other words G and GV have the same underlying
classical group scheme and have the same Lie superalgebra. Then, one can
show easily following the arguments in Theorem 3.10 that G ∼= GV , that is,
our smooth affine algebraic supergroup G can be realized via the Chevalley
supergroup construction.
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3.3 Chevalley Supergroups and Super Harish-Chandra
pairs

In super Lie theory there is an equivalence of categories between the category
of Lie supergroups and the category of Super Harish-Chandra pairs (SHCP),
that is the category consisting of pairs (G0, g), where G0 is an ordinary real or
complex Lie group and g is a real or complex Lie superalgebra with Lie(G0) =
g0 and there is an action of G0 on g corresponding to the adjoint action when
restricted to g0. Morphisms of SHCP’s are defined in a natural way and
one can show a bijective functorial correspondence between the objects and
the morphisms of the given two categories, hence realizing the equivalence of
categories mentioned above (a full account of the theory is found for example
in [3], where the origins of this theory are carefully discussed and references
are given).

A natural question is whether it is possible to extend the theory of SHCP’s
to the category of algebraic supergroups.

When the algebraic supergroups are over fields of characteristic zero, the
problem has been already treated and solved in [2]: this applies differential
techniques, which cannot be employed instead for arbitrary characteristic.

Instead, more general results are obtained in [15], using a different ap-
proach, rather closer to the standard one in use for studying algebraic groups
in positive characteristic. Roughly, one considers a dual version of SHCP
where the first item of the pair is no longer a (classical) algebraic group but
a “hyperalgebra” instead. Indeed (still very roughly speaking) if one starts
with an algebraic supergroup G , then in the corresponding SHCP in the
sense of [15] the even subgroup G0 is replaced by the (classical) distribution
algebra of G0 , the “correct” tool for studying G0 in infinitesimal terms.

In the special case of Chevalley supergroups, we can directly prove a
certain equivalence of categories based on the theory developed so far here
and in [7]. As any Chevalley supergroup is built by means of a “distribution
superalgebra” (namely the Kostant Z–form) this result is fully consistent
with those in [15].

Definition 3.12. Let k be an arbitrary field such that char(k) ̸= 2, 3 . We
say that (G0, g) is Chevalley Super Harish-Chandra Pair (CSHCP), if

(1) G0 is an ordinary Chevalley group over k ;
(2) g is a Lie superalgebra of classical type, with g0 = Lie(G0) ;
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(3) there is a well defined action, called the adjoint action (with a slight
abuse of notation) of G0 on g , reducing to the adjoint action on g0 .

A morphism (ρ0, ψ) : (G0, g) −→ (H0, h) of CSHCPs consists of a mor-
phism ρ0 : G0 −→ H0 of algebraic groups and a morphism ψ : g −→ h
intertwining the adjoint action of G0 and H0.

We shall denote the category of CSHCP with (CSHCP).

Proposition 3.13. There is a unique Chevalley supergroup associated to a
given CSHCP.

Proof. Given a CSHCP the recipe given in [7] allows us to produce a Cheval-
ley supergroup associated with it. Section 5.4 in [7] proves uniqueness.

We now define (chesgrps) to be the category of algebraic supergroups
satisfying the hypothesis carefully detailed at the beginning of section 3. It
is very clear that given G ∈ (chesgrps) there is a unique CSHCP associated
with it. Next theorem establishes an equivalence of categories.

Theorem 3.14. There exists an equivalence of categories between (CSHCP)
and (chesgrps)

Proof. The bijective correspondence on the objects is clear, as it is for the
morphisms.

A Chevalley basis

In this appendix we quickly recall the definition of Chevalley basis (see [7]
for more details).

Assume g to be a Lie superalgebra of classical type different from A(1, 1),
P (3), Q(n) and D(2, 1; a), a /∈ Z. We prefer to leave out these cases to
simplify our definitions, for a complete treatment see [7].

Let us fix a Cartan subalgebra h of g : its adjoint action gives the root
space decomposition of g

g = h ⊕
⊕

α∈∆gα
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where ∆ = ∆0 ∪∆1 is the root system, with

∆0 :=
{
α ∈ h∗ \ {0}

∣∣ gα ∩ g0 ̸= {0}
}

= { even roots of g }.

∆1 :=
{
α ∈ h∗

∣∣ gα ∩ g1 ̸= {0}
}

= { odd roots of g }.

If we fix a simple root system (see [13] for its definition) the root system
splits into positive and negative roots, exactly as in the ordinary setting:

∆ = ∆+
⨿

∆− , ∆0 = ∆+
0

⨿
∆−

0 , ∆1 = ∆+
1

⨿
∆−

1 .

If g is neither of type P (n) nor Q(n) , there is an even non-degenerate,
invariant bilinear form on g , whose restriction to h is in turn an invariant
bilinear form on h . On the other hand, if g is of type P (n) or Q(n) , then
such a form on h exists because g0 is simple (of type An), though it does not
come by restricting an invariant form on the whole g .

If
(
x, y

)
denotes such form, we can identify h∗ with h, via H ′

α 7→
(
H ′

α,
)
.

We can then transfer
(
,
)
to h∗ in the natural way:

(
α, β

)
=

(
H ′

α, H
′
β

)
. Define

Hα := 2 H′
α(

H′
α,H

′
α

) when the denominator is non zero. When
(
H ′

α, H
′
α

)
= 0

such renormalization can be found in detail in [10]. We call Hα the coroot
associated with α .

Definition A.1. We define a Chevalley basis of a Lie superalgebra g as above
any homogeneous basis

B =
{
H1 . . . Hl, Xα, α ∈ ∆

}
of g as complex vector space, with the following requirements:

(a)
{
H1, . . . , Hℓ

}
is a basis of the complex vector space h . Moreover

hZ := SpanZ
{
H1, . . . , Hℓ

}
= SpanZ

{
Hα

∣∣α∈∆}

(b)
[
Hi , Hj

]
= 0 ,

[
Hi , Xα

]
= α(Hi)Xα , ∀ i, j∈{1, . . . , ℓ } , α∈∆ ;

(c)
[
Xα , X−α

]
= σαHα ∀ α ∈ ∆ ∩ (−∆)

with Hα suitably defined exactly as in the ordinary setting, and σα := −1
if α ∈ ∆−

1 , σα := 1 otherwise;

(d)
[
Xα , Xβ

]
= cα,β Xα+β ∀ α, β ∈ ∆ : α ̸= −β , with cα,β ∈ Z .

More precisely,

18



• If (α, α) ̸= 0 , or (β, β) ̸= 0 , then cα,β = ±(r+1) or (only if g = P (n) )
cα,β = ±(r + 2) , where r is the length of the α–string through β .

• If (α, α) = 0 = (β, β) , then cα,β = β(Hα) .

Notice that this definition clearly extends to direct sums of finitely many
of the g’s under the above hypotheses.

Definition A.2. If B is a Chevalley basis of a Lie superalgebra g as above,
we set

gZ := spanZ{B}
(
⊆ g

)
and we call it the Chevalley superalgebra of g.

Observe that gZ is a Lie superalgebra over Z inside g .
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