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Abstract

We show that every connected affine algebraic supergroup defined
over a field k, with diagonalizable maximal torus and whose tangent
Lie superalgebra is a k—form of a complex simple Lie superalgebra
of classical type is a Chevalley supergroup, as it is defined and con-
structed explicitly in [R. Fioresi, F. Gavarini, Chevalley Supergroups,
Memoirs of the AMS 215 (2012), no. 1014]. *

1 Introduction

In [7] we have given the supergeometric analogue of the classical Chevalley’s
construction (see [16]), which enabled us to build a supergroup out of data
involving only a complex Lie superalgebra g of classical type and a suitable
complex faithful representation. Such a supergroup is affine connected, with
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associated classical subgroup being reductive k—split (i.e. it admits a diag-
onalizable maximal torus) and with tangent Lie superalgebra isomorphic to
g: thus we obtained an existence result for such supergroups. In particular,
this provided the first unified construction of affine algebraic supergroups
with tangent Lie superalgebras of classical type; in particular, it was also (as
far as we know) the very first explicit construction of algebraic supergroups
corresponding to the simple Lie superalgebras of basic exceptional type.

In this paper we tackle the uniqueness problem, cast in the following
form: “is any such supergroup isomorphic to a supergroup obtained via the
Chevalley’s construction”? Our answer is positive.

We start with an affine algebraic supergroup G, defined over a field k
with associated classical subgroup Gy which is k-split reductive, and with
tangent Lie superalgebra a k—form of a complex Lie superalgebra of classical
type (plus a consistency condition): then we prove that G is given by our
Chevalley supergroup construction. Note that all the conditions we impose
actually are necessary, as they do hold for Chevalley supergroups.

As Gy is k-split reductive, by Chevalley-Demazure theory it can be re-
alized via the Chevalley construction as a closed subgroup of some GL (V) ,
where V is a suitable Goy—module. Let V* be the dual Goy—module. Since G
is an affine supergroup over a field %, it is linearizable, that is G C GLy,,
(for suitable m and n), hence we can build the induced (GLy,), module

U = [ndé(jL’"'")o (‘7*) and its dual U*, which both are naturally (gl,,,,),~
modules as well: note also that U* contains a Gg—submodule isomorphic

to V. Inducing then for the Lie superalgebras we get the gl,,,~module
e 8lnn x) % .
W .= Ind(g[m‘n)O(U ) = U(g[m|n) ®U((glm|n)o) U*. Now W is also a GL,n—

module and (by restriction) a G-module: moreover, it contains the (finite-
dimensional) G—submodule V :=U(g) ®u(go)‘77 where V is identified with a
Go—submodule of U*. N.B.: for the sake of simplicity of exposition, we are
hiding here several technicalities, to be specified later on in the main text.

The very construction of V' allows us to build the Chevalley supergroup
Gy associated with the g—representation V' and to view both G and Gy as
closed subgroups of the same GL(V). The last step is to note that both G
and Gy are globally split — as any affine supergroup over a field, by Theorem
4.51n [14]. Since the ordinary algebraic groups are the same, Gy = (Gvy), , we
have that both supergroups are smooth as well. We conclude then G = Gy,
by infinitesimal considerations, since they have the same Lie superalgebra.



In the last section we make some important remarks between the equiv-
alence of categories of certain Super Harish-Chandra pairs and the algebraic
supergroups we have studied in the present work.

Parallel constructions and results, concerning existence (by a Chevalley
like construction) and uniqueness of algebraic supergroups associated with
simple Lie superalgebras of Cartan type are presented in [9)].
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2 Chevalley supergroups

In this section we review briefly the construction of Chevalley supergroups
(see [7], [8]) and then we discuss some of their properties. For all details
about the construction we refer to [7]. The new property that we present
here is that every Chevalley supergroup Gy , defined as a subgroup of some
GL(V), is in fact closed in GL(V).

2.1 Definition of Chevalley supergroups

Let g be a complex Lie superalgebra of classical type and h a fixed Cartan
subalgebra of gy . Then we have the corresponding root system A = AgUAq,
with Ag and A; being the sets of even and of odd roots respectively: these
roots are the non-zero eigenvalues of the (adjoint) action of h on g, while the
corresponding eigenspaces, resp. eigenvectors, are called root spaces, resp. root
vectors. For root vectors, we adopt the simplified notation of the cases when
g is not of type A(1,1), P(3) or Q(n) — cf. [13] — but all what follows holds
for those cases too, and all our results hold for all complex Lie superalgebras
of classical type, but for the cases D(2,1;a) when a & Z.

Like in the classical setting, one can define special elements H, € b,
called coroots, associated with the roots a.

A key notion in [7] is that of Chevalley basis of g. This is any C—basis of

g of the form
B ={H .. H}U{X,,aeA}
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such that (cf. [7], Def. 3.3):

e the H;’s, called the Cartan elements of B, form a C-basis of h (with
some additional properties);

e cvery X, is a root vector associated with the root o ;

e the structure coefficients for the Lie superbracket in g with respect to
these basis elements are integers with some special properties.

The very existence of Chevalley bases is proved in [7], sec. 3.

If B is a Chevalley basis of g as above, we set gz := Span,{B} (C g) for
its Z—span. Moreover, we define an important integral lattice inside U(g),
namely the Kostant superalgebra. This is the Z-supersubalgebra Uz(g) of
U(g) generated by the following elements: all divided powers in the even
root vectors of B, all odd root vectors of B, and all binomial coefficients in
the Cartan elements of B (see [7], sec. 4.1).

We associate to Uz(g) the notion of admissible lattice in a g—module:

Definition 2.1. Let g, B = {H1 . Hg} U {Xa Lo € A} and Uz(g) be as
above. Let V be a complex finite dimensional g—module. We say that V' is
rational if the H;’s act diagonally on V' with integral eigenvalues. We say
that an integral lattice M in V' — that is, a free Z-submodule M of V such
that rkz(M) = dimc(V) — is admissible if it is Uz (g)—stable.

Given a complex representation V' of g as above, there exists always an
admissible lattice M and an integral form gy of g keeping such a lattice
stable (see [7], §5.1). This allows us to shift from the complex field C to any
commutative unital ring £ .

Definition 2.2. Let the notation be as above, and assume also that the
representation V' is faithful. For any fixed commutative unital ring &, define

[sPES k X7z av , Vk: =k Xz M ) uk(g) =k Xz UZ(Q)
Then we say that g, , resp. M, is a k—form of g, resp. of V.



Remark 2.3. For any algebraic supergroup GG, one can introduce the notion
of superalgebra of distributions Dist,(G), by an obvious extension of the
standard notion in the even setting; see [1], §4, for details. One can easily
see — like in [1], §4 — that Dist,(G) = Ux(g) ; in particular, this shows that
Uk (g) is independent of the choice of a specific Chevalley basis in g.

More important (for later use), is the fact that if ¢ : G' — G” is a
morphism between two supergroups, then it induces (functorially) a mor-
phism D, : Disty (G’ ) — Disty, (G” ) , which is injective whenever ¢ is in-
jective. If in addition G" and G” satisfy the assumptions we gave above for
G, so that L[k(g’) = Distk(G’) and L{k(g”) = Distk(G”), we have then
D, : U (g’) — Uy, (g”) , which is an embedding if G’ is subsupersgroup of G”.

We need now to recall the notion of commutative superalgebras.

We call k-superalgebra any associative, unital k—-algebra A which is Zy—
graded (as a k—algebra): so A bears a Zy—splitting A = Ay @ A; into direct
sum of super-subvector spaces, with A, A, C A,.,. We define the parity
la| € Zy of any a € (49U A1) \ {0} by the condition a € Ay ; the elements
in Ay are called even, those in Ay odd. All k—superalgebras form a category,
whose morphisms are those in the category of k—algebras which preserve the
unit and the Z,—grading.

A k-superalgebra A is said to be commutative iff xy = (=1)*I¥y 2z for
all homogeneous z, y € A and 22 =0 for all odd z € A;. We denote by
(salg) — or (salg), — the category of commutative k-superalgebras.

As a matter of notation, we write (grps) for the category of groups.

Finally, we are ready to give the definition of Chevalley supergroup over
the commutative ring k .

Definition 2.4. Let the notation be as above. We define Chevalley su-
pergroup the supergroup functor Gy : (salg), — (grps) defined as:
Gy(A) = <GV,O(A), 1+05X5 | BeA, 05¢€ A1> (g GL(vk)(A)) , for
all A € (salg), , where Gy, is the ordinary reductive group scheme associ-

ated via the Chevalley recipe with the Gy o-module Vj, (cf. [7], sec. 5). As
usual GL(V}) denotes the general linear supergroup scheme

Let us fix a total order (with some mild conditions) in A; , and let G, be
the functor of points of the superscheme corresponding to ordered products



of elements of the type 1+ 60X € Gy (A) where X is a positive root vector.
We have that Gy, = AW where N = dimc(g1) = |A1| and A% denotes
the purely odd affine superspace (see [7], sec. 5, and [8], sec. 4 for details).

Theorem 2.5. The group product Gy X G"<,71 — Gy induces an isomor-

phism of superschemes. In particular we have Gy = Gy X AN (with N
as above), so that Gy is an affine supergroup scheme (it is representable).

Theorem 2.5 is the main result in [7]: in particular, it states the repre-
sentability of the supergroup functor Gy , so that the terminology Chevalley
supergroup is fully justified. Furthermore, for £ a field we have Lie(Gy) = gx
as expected. Finally since by the classical theory Gy is connected, Gy is
connected.

2.2 The Chevalley supergroup G is closed inside GL(V})

Let k£ be a unital commutative ring. All our algebras and modules will now
be over k unless otherwise specified.

We now wish to prove that Gy embeds naturally into the general linear
supergroup GL(V}) as a closed subsuperscheme. Note that, when k is a field,
the affine supergroup Gy embeds into some GL(W) as a closed supergroup
subscheme (see [3], ch. 11); we now want to show that we can always choose
W := V., where V} is the g—supermodule used to construct Gy itself.

Let us start with some observations.

Let gl(Vk) be the Lie superalgebra of all the endomorphisms of the free
module V; : we denote with gl(V},)o the set of all the endomorphisms preserv-
ing parity, and with gl(V}); the set of those reversing parity. Its functor of
points gl(Vj) : (salg) — (Lie) is Lie algebra valued (hereafter (Lie) denotes
the category of Lie algebras) and it is given by:

Notice that in this equality the symbol gl(V}) appears with two very different
meanings: on the left hand side it is a Lie algebra valued functor, while on
the right hand side it is just a free module over k. This is a most common
abuse of notation in the literature. Hence gl(Vy)(A) splits into direct sum of

gl(Vi)o(A) = Ao @ gl(Vi)o gl(Vi)i1(A) = Ay @ gl(Vi



corresponding respectively to the functor of points of the purely even Lie
superalgebra gl(V}y)o — hence a Lie algebra — and to the functor of points
of the purely odd superspace gl(Vy);. Now define the functor GL(V); :
(salg) —> (sets) by

GL(Vi)1(A) = T+ gl(Vi)1(A) vV A € (salg)

where I denotes the identity in GL(V%)1(A). One can check immediately
that this is a representable functor corresponding to the affine purely odd
superspace A?™ where m|n is the dimension of V}. One also sees easily
that GL(V%); is a subfunctor and a subscheme of GL(V}). The reader must
be warned that GL(V}); has no natural supergroup structure.

The next proposition clarifies the relation between GL(V}); and GL(Vj) .

Proposition 2.6. Let the notation be as above. Then the multiplication
map GL(Vi)o x GL(Vi)1 —— GL(Vk) induces an isomorphism of super-
schemes, where GL(V})o denotes as usual the closed superscheme of GL(V})
corresponding to the ordinary underlying affine group. In particular, both
GL(Vi)o and GL(Vy); are closed supersubschemes of GL(Vy) .

Proof. Given A € (salg), let us consider an A—point of GL(V%), say

(4 5) et

Then a, d € GL(V}) are invertible matrices and this immediately allows us
to build the inverse morphism of the map GL(Vy)o x GL(V)1 — GL(V)
given by restriction of the multiplication, namely

GL(Vi) ——» GL(V}), x GL(V4),

alp al0 Ly | a~1p
) - ((M)’ (et ))
where m|n is the dimension of Vj, and [ is the identity matrix of size s.
The statement about GL(V})o and GL(V}); being closed is clear. O

Theorem 2.7. Let Gy be the Chevalley supergroup associated with the com-
plex Lie superalgebra g and to a complex representation V of g. Then Gy is
a closed supergroup subscheme in the general linear supergroup scheme GL(V}).
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Proof. By the very definition of Chevalley supergroup and by Theorem 2.5
we have that

GV = GV70 X G‘</,1 g GL(Vk) = GL(W)O X GL(V}C)l

By the classical theory we have that Gy, is a closed subgroup (scheme) of
GL(Vi)o, thus it is enough to show that G, is closed too — as a super-
subscheme of GL(V}) .

Let us look closely at the embedding of G, inside GL(V;). By Theorem
2.5 we have an isomorphism ¥ : AN — Gy, given by

Uy AW(A)— G (4) |, (Dn.0x) =TT 2, (9))

where the product in right-hand side is ordered w.r.t. some total order on

A, for which A follows A] , or viceversa. In particular, the point 0 in A°Y
corresponds to the identity I in G‘</71; thus the tangent superspace to G‘<,71
at I corresponds to the tangent superspace to AN at 0, naturally identified
with A’V again.

Given A € (salg), we have for g =[], -, (9;) € Gy1(A)

g =I5 2 W) = T+ 550X, +0@2) € gl(Vi(4)) (%)

where O(2) is some element in g[(Vk(A)) = Ay @1 gl(Vi)o + A1 @k gl(Vi)1
whose (non-zero) coefficients in Ay and A; actually belong to J3 , the ideal
of A generated by A2 := A, - A;.

Consider now the closed subscheme H in GL(V}); whose functor of points
is defined as

H(A) =1+ ZiﬁiX%

We have an invertible natural transformation ¢

oa: GR(A) —  HA) (S GLOAA)

Hi]\il Ty, (05) = T+ 30X,

which maps G‘</,1 isomorphically onto the closed subscheme H in GL(V)1,
whence Gv;, is a closed subsuperscheme of GL(V}): . O



3 Uniqueness Theorem

Hereafter, we assume k to be a field, with char(k) # 2,3.

In this section we prove the main result of our paper, which we summarize
as follows. Let GG be a connected affine algebraic supergroup, whose tangent
Lie superalgebra g; is a k—form of a complex Lie superalgebra of classical
type (see Def. 2.2); we assume also that its even subgroup Gy is reductive
and k—split, i.e. it admits a diagonalizable maximal torus. We assume further
that (gx)o, the even part of g is an ingredient in the recipe that allows us
to realize the ordinary group G as a Chevalley group.

We then show that such a G is isomorphic to a Chevalley supergroup Gy
as we constructed in [7] according to the recipe described in the previous
section.

We start with a result relative to the chosen admissible representation V'
of the complex Lie superalgebra g, inducing the embedding of Gy in GL(V%) .

3.1 Linearizing G

Let GG be a connected affine algebraic supergroup over k and let g := Lie (G)
be the tangent Lie superalgebra of G .

We assume g; to be a k—form of a complex Lie superalgebra g, that is
gr = k@ g% (cf. Definition 2.2), where here gZ is any integral lattice inside
the complex Lie superalgebra g. Moreover, we assume the complex Lie su-
peralgebra g to be simple of classical type (in the sense of Kac’s terminology,
see [13]). It follows that the even part g of g is a reductive Lie algebra.

Let Gy be the ordinary subgroup underlying G : its tangent Lie algebra
is Lie(Go) = Lie(G), = (gk),- We assume that G| is reductive and k—split,
i.e. it admits a diagonalizable maximal torus.

By the classical theory then Gy can be realized via the classical Chevalley
construction (see for example [12], part II, 1.1). In short, there exists a
complex go—module V which is faithful, rational, finite-dimensional, so that
Gy is isomorphic to the affine group-scheme (over Z) associated with gy and V'
by the classical Chevalley’s construction (see also Demazure [4]), using some
admissible lattice M in V. Here such words as rational and admissible refer
to the choice of any Chevalley basis By, (in the classical sense) of the reductive
Lie algebra go. It follows also that the tangent Lie algebra Lie(Go) = (gx),
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has the form (gr), = k ®z (g0);7 where (go); is the stabilizer of M in
V: in turn, this (go); depends only on the lattice of weights of the go-

representation V' and not on M or on the choice of a Chevalley basis of gg
(see [16] for more details on this classical construction).

We furthermore require a consistency condition between g% and G, as
follows. As the complex Lie algebra g is simple of classical type, we can fix
inside it a Chevalley basis, as in Sec. 2.1, call it B. Then we assume that

T ((Z) BN Jgo = B(,) )

—(b) ¢"Ngo = (g0)y » §"Ng1 = Spang(BNg) -

By [3], ch. 11, we have that G C GL]:nm for suitable m and n and

consequently g C g[fn‘n , where we denote with GLfn‘n and Q[I:nm the general
linear supergroup and the general linear superalgebra defined over k, that
is GLfn|n = GL(k™") and g['jﬂn = Lie(GLfnm), where k™" is the free k—
supermodule of dimension m|n (see [3], ch. 1, for details).

Our goal now is to pass from the Gy—module Vk =k®y V toa G-module
Vi which is obtained as an “induced representation” from Gy to G (both Vj
and Vj, are k—modules). This will be achieved by another “linearization step”,

and an “induced representation construction” from (GLﬁl‘n) , to GLfn‘n.

Remark 3.1. The results in this section can be easily generalized to the case
of k a unital commutative ring, provided we assume G to be linearizable.
Notice that this is granted when k is a field (see [3], ch. 11, and [5], ch. 2, for
the ordinary setting). One can check that this is also granted for k£ a PID
and O(G) a free k—module.

We start with a general result on algebraic supergroups, that will be
instrumental to our goal.

Proposition 3.2. Let G be an affine algebraic supergroup with G C GL(Vy)
for Vi a super vector space. Then we have the following decomposition:

G = GO X Gl - GL(Vk)O X GL(Vk)l
where G is the subscheme defined by G1(A) := G(A) N GL(Vg)1 -

Proof. Since G C GL(Vy), we have that every g € G(A) decomposes in
GL(Vk)o x GL(Vk)1 uniquely as g = gog1, with go € GL(Vk)o(A) and
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g1 € GL(Vy)1(A) (see 2.6). As gy = mao0g, where m4 : A — A/J4, (as
usual J4 denotes the ideal generated by A; in A), we have that go factors via

G)/Joe) and consequently gy € Go(A), from which ¢; = g;'g € G(A).
Therefore we have the result. O

Definition 3.3. With notation as above, let \N/k* be the Gy—module dual to
V.. We define Uy, as

~ GL* ~
Oy == Indg ™" (V)
i.e. Uy is the (GLm|n) —module induced from the Gy-module Vk* .

k ~
Let U;* be the (GLE ), module dual to Uy ; note that, as [nd St (V)

maps onto Vk , we have that V, Vk** embeds into Uk , i.e. the latter con-

mln

tains as a Gp—submodule an isomorphic copy of Vk .

As Uk is a (GLm|n) —module, it is also a module for the algebra of distri-
butions on (GLm‘n)O , which identifies with U ((g[m‘n) ) = k®zlUy ((g[m‘n)o),
the classical Kostant algebra of Lie((GLfn‘n) ) (g[m|n) (cf., for instance,
[11], § L7). So U is a L{k((g[m|n)0 )-module, and we can perform on it the
induction from u’f((g[mln)o> to Uy, (g[m|n) : this yields next relevant object:

Definition 3.4.

L Uy, (g[m\n — -
Wi = Indy i (0F) = Un(8lmin) @y o) U

Proposition 3.5. Let the notation be as above. Then W, has a natural
structure of GLmemodule and of G-module.

Proof. Clearly, if Wy is a GL]’C ,~module then it is a G-module as well, since

G is a closed subsupergroup of GL* Let now p be the representation

map of g[m|n into End(W},) and o the representation map of (GL* ) into
Aut(Wy) . To give Wy, a Gme —module structure, in view of Proposition 2.6
we need to extend o by specifying the images of all the elements [ + 60X in

(GLm|n) (A), of course in a way compatible with respect to the images of
the elements in (GL Let us define

min)o -

o(I+0X)w = w+0p(X)w vV owe W
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We leave to the reader the check that this definition is compatible with the

one on (GLfnm)o . This is essentially a consequence of the fact that doy = po ,

where oy and py are the even parts of the representations o and p.
From another point of view, note that our definition of o(I + 6X) is

exactly the one giving the unique action of GLEWL on Wy, induced by restric-
k
mln

). In particular,

tion of the action of GL* ~ extending to the action of gl (here we just

mln
k

mln

need to recall that GL';LM is naturally embedded into gl
an action of GL% on Wy with such properties exists, it is unique and it is

given exactly by the formula above. O]

Now comes the main result of this subsection.

Theorem 3.6. Let the notation be as above.
(a) The subspace

Vi = Ur(8) Qu((ar)o) Ve C Wy

is a rational faithful finite dimensional G-module, and G embeds into GL(V})
as a closed subsupergroup.

(b) There exists a Chevalley supergroup Gy such that Gy C GL(V%)
and Lie(Gy) = g . In other words, both G and the Chevalley supergroup
Gv embed into the same general linear supergroup GL(V}) and have the same
Lie superalgebra. Moreover Gy = (Gy ) -

Proof. First of all, note that by Remark 2.3 we have that Uy (g) C Uy (g[m|n) :
hence V} is a well-defined subspace of W} : then by construction, it is also
clear that the former is a G—submodule of the latter.

Since V}, is rational and faithful as a Gy—module, V} in turn is rational
and faithful as a G-module. This happens because G acts on W}, leaving
Vi invariant. This is a straightforward application of Proposition 3.2. In
particular, G embeds as a closed subsupergroup inside GL(V}).

Now let M be an admissible lattice — in the complex go—module Vo
used to construct Gy via a Chevalley construction. Then we see at once

that M = Uz(g) ®, (gO)M is an admissible lattice for the (rational, faithful)

complex g—module V := Uc(g) ®uc(go)\~/, which is also finite dimensional

because Uc(g) is free of finite rank as a Uc(go)—module (cf. [7], sec. 4).
Altogether, the above means that we can use V' and its lattice M to con-

struct a Chevalley supergroup Gy over k , realized as a closed subsupergroup
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of GL(V4) . As the faithful action of gy onto V yields an embedding of Gvo
into GL(V4), the restriction to go of the (faithful) action of g onto V' yields
an embedding of Gy, into GL(Vk). By construction — including the fact

that Vi = Ue(8) Qu(eno) Ve = A0r), @k Vi as a go-module is just V,%"
for r = ranky(g,),) Ur(g)) — the go—action on V is just an r—fold diago-
nalization of the go—action on V': as a consequence, the embedded copy of
Gy inside V}, is just an r—fold diagonalized copy of the group obtained from

the go—action on V' via the Chevalley construction. Hence Gy = Gy inside
GL(Vj) . H

3.2 (G as a Chevalley supergroup

We want to show that G and Gy, are isomorphic. Since we shall make use of
the fact that their Lie superalgebras are isomorphic, we need to make some
observations on the differentials.

Lemma 3.7. Let f € O(GL(V,)) and let X € gly(Vi,)(A), A € (salg) with
as usual gl(Vy) = Lie(GL(Vy)). Then

FL+0X) = F(1) + (df)10X Ve A

Proof. Clearly it is enough to check this for a monomial f = x;;, -+ ;5. ,
where z;; denotes an even or odd generator of O(GL(Vk)) . Notice that the
case of f = x;; istrue: z;;(14+0X) = x;;(1)+2;;(0X) = w;5(1)+(dz;;)10X.
The general case reads

(@iyjy i) (1 +0X) = 2,1 +60X)---2;;,(14+60X) =
= iy (1) @i, (1) + @iy (0X) 2355, (1) - i, (1) +
+ iy (V) @igp (0X) - @i, (1) + @iy (1) -+ iy, (D5, (0X) =
= l4+d(ziy, @5 )1(0X)

which gives what we wanted. [

Lemma 3.8. Let the notation be as above. Then Gy C G, in other words
Gy(A) C G(A) for all A € (salg).
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Proof. As Gy is a closed subscheme of GL(V)) (by Theorem 2.7), an element
z € Gy(A) € GL(Vy)(A) corresponds to a morphism z : O(GL(V)) — A
factoring through I, , the ideal defining Gy in O(GL(V%)), that is z :
O(GL(Vk))/Ig, = O(Gy) — A (by an abuse of notation we use the same
letter). Hence to prove that z € G(A) we need to show that z factors also
via the ideal I of O(G), which is also closed in GL(V}) (see Theorem 3.6).

If 2z € (Gvp)(A) € GL(Vi)o(A), then there is nothing to prove, since
Go = Gy, so we assume z € Gy (A) (vefer to 2.5 for the notation). It is
not restrictive to assume z = 1+ 60X for a suitable X € g; and 0 € A,
since such 2’s together with Gy generate G (A) as an abstract group. Now
let f € Is: we need to prove that

2(f) = (1+6X)(f) = FO+0X) = 0
By the previous lemma we have
fA+0X) = f(1) + (df 10X

Certainly f(1) = 0 because the identity is a topological point belonging to
both G and Gy . Moreover, (df); X = 0 because of Proposition 10.6.15 in
3], since X is in the tangent space at the identity to both supergroups G
and Gy . ]

Lemma 3.9. Let X and Y two smooth superschemes (cf. [6]) globally split
and such that:

1. XCVY, | X|=|Y];

2. T,X =T,Y forall v €|X].

Then X =Y .

Proof. We have a morphism of superschemes given by the inclusion X — Y.
In order to prove this is an isomorphism it is enough to verify this on the
stalks of the structure sheaves. The inclusion induces a surjective morphism
on the sheaves, hence we have Oy, — Ox, . Since both X and Y are
globally split and smooth, taking completions we have that Ox , C 5; and
Oy, C 6—3/\31 ; moreover, we can write the following commutative diagram:



The arrow (6}/\55 — Ox, is an isomorphism, since both X and Y are
smooth and they have the same tangent space. Hence we have that also the
arrow Oy, — Ox_, is an isomorphism. O

We are eventually ready for our main result:

Theorem 3.10. Let G be an affine algebraic supergroup scheme over the
field k, with Gy being k—split, whose Lie superalgebra g is a k—form of a
complex Lie superalgebra of classical type. Then there exists a Chevalley
supergroup Gy such that Gy = G .

Proof. Both G and Gy described in the previous propositions embed into
the same GL(V}) and decompose inside the latter as G = Gy x G; and
Gv = GV70 X GV71 , with G() = GV70 .

By the previous analysis, we are now left with the following situation:
Gv C G CGL(Vy), Gy =Gy and T'Gy = T1G . Actually this happens for
all points, not just the identity, so that T,Gy = TG for all x € |G| = |Gy
(notation of ch. 10, sec. 4, in [3]). Then by the lemma 3.9 we have the result,
since both G and Gy are globally split (cf. [14]) and smooth (since Gy,y = Gy
is smooth). O

Observation 3.11. We want to remark that Theorem 3.10 can be applied
in a different setting, that can be useful for the applications. Assume G to
be a smooth affine algebraic supergroup scheme over a field £: then G is a
closed subsupergroup scheme in some GL(V)) — see [3], ch. 11. Assume now
that V is a suitable representation of a complex Lie superalgebra g, such
that we can construct the Chevalley supergroup Gy according to the recipe
described in sec. 2. In [8] we have shown that such recipe can be suitably
generalized to include Lie superalgebras not of classical type, for instance
the Heisenberg superalgebra. Assume furtherly that Gy = Gy, and that
Lie(G) = Lie(Gy), in other words G and Gy have the same underlying
classical group scheme and have the same Lie superalgebra. Then, one can
show easily following the arguments in Theorem 3.10 that G = Gy, that is,
our smooth affine algebraic supergroup G can be realized via the Chevalley
supergroup construction.
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3.3 Chevalley Supergroups and Super Harish-Chandra
pairs

In super Lie theory there is an equivalence of categories between the category
of Lie supergroups and the category of Super Harish-Chandra pairs (SHCP),
that is the category consisting of pairs (Gy, g), where Gy is an ordinary real or
complex Lie group and g is a real or complex Lie superalgebra with Lie(Gg) =
go and there is an action of GGy on g corresponding to the adjoint action when
restricted to gg. Morphisms of SHCP’s are defined in a natural way and
one can show a bijective functorial correspondence between the objects and
the morphisms of the given two categories, hence realizing the equivalence of
categories mentioned above (a full account of the theory is found for example
in [3], where the origins of this theory are carefully discussed and references
are given).

A natural question is whether it is possible to extend the theory of SHCP’s
to the category of algebraic supergroups.

When the algebraic supergroups are over fields of characteristic zero, the
problem has been already treated and solved in [2]: this applies differential
techniques, which cannot be employed instead for arbitrary characteristic.

Instead, more general results are obtained in [15], using a different ap-
proach, rather closer to the standard one in use for studying algebraic groups
in positive characteristic. Roughly, one considers a dual version of SHCP
where the first item of the pair is no longer a (classical) algebraic group but
a “hyperalgebra” instead. Indeed (still very roughly speaking) if one starts
with an algebraic supergroup G, then in the corresponding SHCP in the
sense of [15] the even subgroup Gj is replaced by the (classical) distribution
algebra of G, the “correct” tool for studying Gy in infinitesimal terms.

In the special case of Chevalley supergroups, we can directly prove a
certain equivalence of categories based on the theory developed so far here
and in [7]. As any Chevalley supergroup is built by means of a “distribution
superalgebra” (namely the Kostant Z—form) this result is fully consistent
with those in [15].

Definition 3.12. Let k be an arbitrary field such that char(k) # 2,3. We
say that (Go, g) is Chevalley Super Harish-Chandra Pair (CSHCP), if

(1) Gy is an ordinary Chevalley group over k ;

(2) g is a Lie superalgebra of classical type, with go = Lie(Gy) ;
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(8) there is a well defined action, called the adjoint action (with a slight
abuse of notation) of Gy on g, reducing to the adjoint action on g .

A morphism (po, V) : (Go,8) — (Ho, b) of CSHCPs consists of a mor-
phism pg : Gy — Hj of algebraic groups and a morphism ¢ : g — b
intertwining the adjoint action of Gy and Hj,.

We shall denote the category of CSHCP with (CSHCP).

Proposition 3.13. There is a unique Chevalley supergroup associated to a
giwen CSHCP.

Proof. Given a CSHCP the recipe given in [7] allows us to produce a Cheval-
ley supergroup associated with it. Section 5.4 in [7] proves uniqueness. [

We now define (chesgrps) to be the category of algebraic supergroups
satisfying the hypothesis carefully detailed at the beginning of section 3. It
is very clear that given G € (chesgrps) there is a unique CSHCP associated
with it. Next theorem establishes an equivalence of categories.

Theorem 3.14. There exists an equivalence of categories between (CSHCP)
and (chesgrps)

Proof. The bijective correspondence on the objects is clear, as it is for the
morphisms. [

A Chevalley basis

In this appendix we quickly recall the definition of Chevalley basis (see [7]
for more details).

Assume g to be a Lie superalgebra of classical type different from A(1, 1),
P(3), Q(n) and D(2,1;a), a ¢ Z. We prefer to leave out these cases to
simplify our definitions, for a complete treatment see [7].

Let us fix a Cartan subalgebra h of g: its adjoint action gives the root
space decomposition of g

g = h D @aEAga
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where A = AgU A; is the root system, with
Ao = {aebh*\{0}|gango#{0}} = {even roots of g }.

Ay i={aebh |gang #{0}} = {odd roots of g }.

If we fix a simple root system (see [13] for its definition) the root system
splits into positive and negative roots, exactly as in the ordinary setting:

A=ATT[A .,  Ao=AJT[A; , A =A][A] .

If g is neither of type P(n) nor Q(n), there is an even non-degenerate,
invariant bilinear form on g, whose restriction to b is in turn an invariant
bilinear form on . On the other hand, if g is of type P(n) or Q(n), then
such a form on h exists because gy is simple (of type A,,), though it does not
come by restricting an invariant form on the whole g.

If (m, y) denotes such form, we can identify h* with b, via H! — (H;, )
We can then transfer (,) to b* in the natural way: (a, @) = (H('X, Hfg) . Define

H, =2 (qu‘/;{/) when the denominator is non zero. When (HJ, H.) = 0
such renormalization can be found in detail in [10]. We call H, the coroot
associated with «.

Definition A.1. We define a Chewvalley basis of a Lie superalgebra g as above
any homogeneous basis

B = {H,...H, X,, a€A}
of g as complex vector space, with the following requirements:

(a) {Hl, e ,Hg} is a basis of the complex vector space h. Moreover
by = SpanZ{Hl,...,Hg} = SpanZ{Ha|a€A}
(b) [Hi Hj] =0, [H;,Xo]=a(H)X., Vije{l,....0}, a€A;

() [Xo, X_o] =0aHoa ¥V aceAN(-A4)

with H, suitably defined exactly as in the ordinary setting, and o, := —1
if « € A7, 0,:=1 otherwise;

(d) [Xa,XB] = Cop Xatpg Va,feEAN:a# -3, with copeZ.
More precisely,
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o If (,a) #0,0r (B,0) #0, then chp3 = £(r+1) or (onlyif g = P(n))
Cap = E£(r +2), where r is the length of the a—string through 5.

o If (,a) =0=(5,0), then c,p3 = B(H,)-

Notice that this definition clearly extends to direct sums of finitely many
of the g’s under the above hypotheses.

Definition A.2. If B is a Chevalley basis of a Lie superalgebra g as above,
we set

gz = spang{B} (Cg)
and we call it the Chewvalley superalgebra of g.

Observe that gz is a Lie superalgebra over Z inside g.
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