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Abstract

L T present a construction of connected affine algebraic supergroups Gy associated with
simple Lie superalgebras g of Cartan type and with g—modules V. Conversely, I prove that
every connected affine algebraic supergroup whose tangent Lie superalgebra is of Cartan type
is necessarily isomorphic to one of the supergroups Gy that I introduced. In particular, the
supergroup associated in this way with g = W (n) and its standard representation is described.
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1 Introduction

A real milestone in classical Lie theory is the celebrated classification theorem for complex
finite dimensional simple Lie algebras. A similar key result is the classification of all complex
finite dimensional simple Lie superalgebras (cf. [14]); in particular, this ensures that these objects
form two disjoint families: those of classical type, and those of Cartan type. The “classical” ones
are strict super-analogue of simple, f.d. complex Lie algebras; the “Cartan” ones instead are a
super-analogue of complex Lie algebras of Cartan type, which are simple but infinite dimensional.

As in the standard Lie context, one can base upon this classification result to tackle the classifi-
cation problem of existence, construction and uniqueness of simple Lie supergroups, or even simple
algebraic supergroups. A super-analogue of Lie’s Third Theorem solves it for Lie supergroups: but
the question remains for construction and for the whole algebraic point of view.

In the standard context, a constructive procedure providing all (f.d., connected) simple algebraic
groups was provided by Chevalley, over fields; one starts with a (complex) f.d. simple Lie algebra g,
a faithful g—-module V, and eventually realizes a group of requested type as a subgroup of GL(V).
In particular, this yields all connected algebraic groups whose tangent Lie algebra is a (f.d.) simple
one; this method (and result) also extends to the framework of reductive Z-group schemes. By
analogy, one might try to adapt Chevalley’s method to the f.d. simple Lie superalgebras of classical
type, so to provide connected algebraic supergroup-schemes (over Z) which “integrate” any such
Lie superalgebra. This is done in [9] — see also [8] and [11]. In this paper instead I implement
Chevalley’s idea to simple Lie superalgebras of Cartan type, with full success: the main result is an
existence result, via a constructive procedure, for connected, algebraic supergroup-schemes (over
any ring, e.g. Z) whose tangent Lie superalgebra be simple of Cartan type. As a second result, I
prove also a uniqueness theorem for algebraic supergroups of the above mentioned type.

Hereafter I shortly sketch how the present work is organized.

The initial datum is a f.d. simple Lie superalgebra of Cartan type, say g. Basing upon a
detailed description of the root spaces (with respect to a fixed Cartan subalgebra), I introduce the

key notion of Chevalley basis. Then I prove two basic results: the existence of Chevalley bases,
and a PBW-like theorem for the “Kostant Z—form” of the universal enveloping superalgebra of g.
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Next I take a faithful g—module V', and I show that there exists a lattice M in V fixed by the
Kostant superalgebra and also by a certain integral form gy of g. I define a functor Gy from
the category (salg), of commutative k-superalgebras to the category (groups) of groups as follows:
for A € (salg), , Ilet Gy (A) be the subgroup of GL(A ®z M) generated by “homogeneous one-
parameter subgroups” associated with the root vectors and with the toral elements in a Chevalley
basis. Then I pick the sheafification Gy (in the sense of category theory) of the functor Gy .

Using commutation relations among generators, I find a factorization of Gy into direct product
of representable (algebraic) superschemes: thus Gy itself is representable, hence it is an “affine
(algebraic) supergroup”. Some extra work shows how Gy depends on V, that it is independent of
the choice of M and that its tangent Lie superalgebra is gy . So the construction of Gy yields an
existence theorem of a supergroup having gy as tangent Lie superalgebra. Right after, I prove the
converse, i.e. a uniqueness theorem showing that any such supergroup is isomorphic to some Gy .

Finally, I illustrate the example of Gy for g of type W(n) and V its defining representation —
i.e. the Grassmann algebra in n odd indeterminates, W (n) being the algebra of its superderivations.
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2 Preliminaries

We introduce hereafter some preliminaries of supergeometry (main references are [4], [15], [18]).

2.1 Superalgebras, superspaces, supergroups

Let k be a unital, commutative ring. We call k—superalgebra any associative, unital k—algebra
A which is Zo—graded, where Zs is the two-element group Zs := {(), i} : thus A = Ag @ A; and
Ag Ay € Az.5 - The k-submodule Aj and its elements are called even, Ay and its elements odd.
By p(x) (€ Z2) we denote the parity of any homogeneous element = € Ay (,) . All k-superalgebras
form a category, whose morphisms are those in the category of algebras preserving the unit and the
Za—grading. For any n € N we call A" the Ag-—span in A of all products ¥; - -9, with 9J; € A3

for all 7, and A%n) the unital subalgebra of A generated by A{". A superalgebra A is commutative

iff zy = (—1)P@PWyz for all homogeneous z,y € A and 22 =0 for all odd z € A; . We denote
by (salg), the category of commutative k-superalgebras, dropping the subscript k if unnecessary.

Definition 2.1. A superspace S = (|S| ,OS) is a topological space |S| with a sheaf of commutative
superalgebras Og such that the stalk Og, is a local superalgebra for all = € |S|. A morphism
¢: S — T of superspaces consists of a pair ¢ = (\¢|, qb*) , where ¢ :|S| — |T| is a morphism
of topological spaces and ¢* : Or — ¢.0Og is a sheaf morphism such that ¢} (mw(w)) C m,
where m4|;) and m, are the maximal ideals in the stalks Or 4») and Os., and ¢} is the
morphism induced by ¢* on the stalk. Here as usual ¢,Og is the direct image (on |T|) of Og(V).

Given a superspace S = (|S],0g), let Og 5 and Og 1 be the sheaves on |S| defined as follows:
Os0o(U) :=0s(U)g, Og1(U) :=0Og(U)y for each open subset U in [S|. Then Ogj is a sheaf of
ordinary commutative algebras, while Og 1 is a sheaf of Ogg-modules.

Definition 2.2. A superscheme is a superspace S := (|S],0g) such that (|S],Og4) is an
ordinary scheme and Ogjy is a quasi-coherent sheaf of Ogg-modules. A morphism of super-
schemes is one of the underlying superspaces. The (super)dimension of S is by definition the pair
dim (|S]) | rk(Os 1) where rk(Og ) is the rank of the quasi-coherent sheaf of Ogg—modules Og 1 .

Definition 2.3. Let A € (salg), and let 04, be the structural sheaf of the ordinary scheme
Spec (Ag) = (Spec(Ag),0a,) , where Spec(Ag) denotes the prime spectrum of Ag . Now A is an
Ag—module, so we have a sheaf O 4 of O 4,—modules over Spec (Ap) with stalk A, , the p-localization
of the Ag-—module A, at any p € Spec(Ap). We set Spec(A) := (Spec (4p), (9,4) : by definition,



this is a superscheme. We call affine any superscheme which is isomorphic to Spec(A) for some
A € (salg), ; any affine supercheme is algebraic if its representing superalgebra is finitely generated.

Clearly any superscheme is locally isomorphic to an affine superscheme.

Example 2.4. We call affine superspace the superscheme Ai‘q := Spec (k[z1, ..., zp)@k[& ... &)

(p,q € N), also denoted kPl4 : here k(& ... &,] is the exterior algebra generated by ¢ anticommuting
indeterminates, and k[z1,...,z,] the polynomial algebra in p commuting indeterminates.

¢
Definition 2.5. Let X be a superscheme. Its functor of points is the functor hx : (salg), —
(sets) defined on objects by hx(A) := Hom(Spec(A),X) and on arrows by hx(f)(¢) :=
¢ o Spec(f) . When hx is actually a functor from (salg), to (groups), the category of groups, we
say that X is a supergroup-scheme. If X is affine, this is equivalent to the fact that O(X) — the
superalgebra of global sections of the structure sheaf on X — is a (commutative) Hopf superalgebra.
More in general, we shall call supergroup functor any functor G : (salg), — (groups) .

Any representable supergroup functor is the same as an affine supergroup: indeed, the former
corresponds to the functor of points of the latter. See [3], Ch. 3-5, for more details.

In the present work we consider only affine supergroups, described via their functor of points:
we introduce them as supergroup functors, and then show that they are representable and algebraic.

Examples 2.6.

(a) Let V be a free k-supermodule. For any commutative k—superalgebra A we define
V(A) == (A®x V)s = Ag @k V5 ® A1 ®k Vi . When V is finite dimensional, this is a representable
functor (from (salg), to k-super-vector spaces). Hence V can be seen as an affine superscheme.

(b) GL(V) as an affine algebraic supergroup. Let V be a free k-supermodule of finite (su-
per-)rank plg. For any superalgebra A, let GL(V)(A) := GL(V(A)) be the set of isomorphisms
V(A) — V(A) preserving the Zo—grading. If we fix a homogeneous basis for V, we see that
V 2 kPl9 ; in other words, Vg = k? and V; = k9. In this case, we also denote GL(V) with GLyp)q -
Now, GL,|4(A) is the group of invertible matrices of size (p + ¢) with diagonal block entries in
Ap and off-diagonal block entries in A7 . It is known that the functor GL(V) is representable, so
GL(V) is indeed an affine supergroup, and also algebraic; see (e.g.), [18], Ch. 3, for further details.

Note that every element GL (V(A)) extends to a (degree-preserving, A-linear) automorphism
of Vy := A®V ; viceversa, any automorphism of V4 restricts to an element of GL (V(A)) . So
GL(V (A)) identifies with GL(V24) , the group of (A-linear) automorphisms of V4 . We call GL(V4)
the obvious functor from (salg), to (groups) given on objects by A — GL(V4)(A) := GL(V4). ¢

2.2 Lie superalgebras

The notion of Lie superalgebra over a field is well known, at least for characteristic neither 2 nor
3. To take into account all cases, we consider the following modified formulation: it is a “correct”
notion of Lie superalgebras given by the standard notion enriched with an additional “2-mapping”,
a close analogue to the p—-mapping in a p-restricted Lie algebra over a field of characteristic p > 0.

Definition 2.7. (cf. [1], [7]) Let A € (salg), . We call Lie A-superalgebra any A-supermodule

g = g5 @ g7 endowed with a (Lie super)bracket | , |:gxg — g, (z,y) — [r,y], and a

2-operation ( )<2> 191 — g5, 2+ 22, such that (for all x,y € ggUgi, w € g5, 2,21, 22 € §7):
(a) [, ] is A-superbilinear (in the obvious sense) , [w,w] = 0, [2[z,2]] = 0 ;
®) eyl + (D) Pya] = 0 (anti-symmetry);

(¢) (1P ly, 2]+ (—)POPO Ly [2,2]] + (-)PPPO 2 [2,y]] = 0 (Jacobi identity) ;
(d)  ()? is A-quadratic, ie. (agz)® = a22®@ | (aqw)® =0 for ag€ Ay, a7 € A; ;
) (at+2)® =2+ [o1,20) + 257, [2?,2] = [2,[24]]

All Lie A-superalgebras form a category, whose morphisms are the A-superlinear (in the obvi-
ous sense), graded maps preserving the bracket and the 2—operation.



A Lie superalgebra is said to be simple if it has no non-trivial homogenenous ideal. Simple
Lie superalgebras of finite dimension over algebraically closed fields of characteristic zero were
classified by V. Kac (cf. [14]), to whom we shall refer for the standard terminology and notions.

Examples 2.8. (a) Let A= Ay ® A; be any associative k—superalgebra. There is a canonical
structure of Lie superalgebra on A given by [z,y] = zy — (fl)p(r)p(y)yx for all homogeneous
z,y € AgUA; and 2-operation 2 := 22 = 22 (the associative square in A) for all odd z € Aj .

(b) Let V. =V;® V; be a free k-supermodule, and consider End(V), the endomorphisms of
V as an ordinary k-module. This is again a free super k-module, End(V) = End(V); ® End(V)1,
where End(V')g are the morphisms which preserve the parity, while End(V'); are the morphisms
which reverse the parity. By the recipe in (a), End(V) is a Lie k—superalgebra with [A, B] :=
AB — (—1)”(‘4)”(3)3147 Ct? .= (2, forall A,B,C € End(V) homogeneous, with C' odd.

The standard example is for V' of finite rank, say V := kPI9 = kP @ k?, with V; := k? and
Vi :=k?: in this case we also write End(kP?):= End(V) or gl,)q == End(V) . Choosing a basis
for V' of homogeneous elements (writing first the even ones), we identify End(V'); with the set of
all diagonal block matrices, and End(V'); with the set of all off-diagonal block matrices. &

2.9. Lie superalgebras and Lie algebra valued functors. Let us fix k and (salg), as in
section 2.1, and let (mod), and (Lie), be the category of k-modules and of Lie k-algebras. Any
k-supermodule m yields a well-defined functor My, : (salg), — (mod), , given on objects by
Mu(4) = (A® m)() = Ag®mg ® A; @mg, for all A€ (salg), . If in addition m = g is a Lie
k—superalgebra, then A® g is a Lie A—superalgebra, its Lie bracket being defined via sign rules by
[a® X, d®X'] = (—1)‘X| T ga' @ [X, X'] , and similarly for the 2-operation: then Lg(A) is its
even part, so it is a Lie algebra. Thus we have a Lie algebra valued functor L : (salg), — (Lie),
(see [3], §11.2, for details). We shall call quasi-representable any functor L : (salg), — (Lie),
for which there exists a Lie k-superalgebra g such that £ = Lg: indeed, any such functor is even
representable as soon as the k-module g is free of finite rank, since Ly is then represented by the
commutative k-superalgebra S(g*) € (salg), . In particular, when V is a free super k-module
we have the Lie superalgebra g := End(V') and the functor Lgnq(vy; then GL(V) — cf. Example
2.6(b) — is a subfunctor of Lguqv)y — as a set-valued functor.

This “functorial presentation” of Lie superalgebras can be adapted to representations too: if
g is a Lie k—superalgebra and V a g-module, the representation map ¢ : g — End(V) clearly
induces a natural transformation of functors L4 — Lgnq(v) -

2.3 Lie superalgebras of Cartan type

In the following, K is an algebraically closed field of characteristic zero.

By definition, a Lie superalgebra g over K is of Cartan type if it is finite dimensional, simple,
with the odd part g7 which is not semisimple as a module over the even part gg. Actually, Cartan
type Lie superalgebras split into four countable families, denoted W(n), S(n), S(n) and H(n)
with n>2, n>3, n >4 (with n being even) and n > 4 respectively.

We shall now describe in short all these types. For further details, see [14], §3.

Given n € Nj, denote by A(n) = K[y, ...,&,] the free commutative superalgebra over K
with n odd generators &1, ..., &, ; this is (isomorphic to) the Grassmann algebra of rank n, and is
naturally Z-graded, with deg(&;) = 1. A K-basis of A(n) is the set By, = {£%]e € {0,1}" },
where £%:= 5{\2(1)/\ 592(2)/\ A ff(l) . 55(2) €8 (hereafter we shall drop the A’s).

For later use, for every e € {0,1}" we define |e| :=>_;_, e(k) .

2.10. Definition of W(n). For any n € N with n > 2, let W(n) := Derg(A(n)) denote the
set of K—(super)derivations of A(n). This is a Lie subsuperalgebra of Endg (A(n)) : explicitly, one
has

Wn) = { LR 0,

where each 9; is the unique superderivation such that 9;(¢;) = d, ;. This Lie superalgebra W (n)
is naturally Z—graded, with deg(9;) = —1, deg(&;) = +1; in detail,

Pi(¢) € A(m) Vi=1,...n}



Pi(¢) € A(n)..,, w} (2.1)

so W(n), # {0} iff —1<z<n—1.Thus,if W(n), = @ W(n), forall [z] €Zn41 (the
¢ =z mod (n+1)
group of integers modulo n+l1 ) the Z—grading above yields the Z,,1—grading W(n) = @ W(n) (4] -
[Z]EZW,+1
The Z-grading yields a Z-filtration (W(n) 2) ce D VV(n)ZZi1 ) W(n)ZZ D) W(n)ZZJrl D...

W) =@ W), , W), ={TLPEa

ZEZL

of W(n) as a Lie superalgebra, where W (n), _ 1= @>.W(n), forall z € Z; the associated graded
Lie superalgebra then is graded-isomorphic to W (n) itself. Also, this Z—grading is consistent with
the Zy-grading of W (n), i.e. the Zy—grading is given by W(n) = W(n); ® W(n); with

W(n)g = @ W), ., Wh):= & Wh),
2€27 2€(2Z+1)

In particular, one also has the following three facts:

(a) for each z € Z, the set By (n),, = {£°0; |§€{0,1}", i=1,...,n;lel=2+1} isa

K-basis of W(n), ; for each Z € Zy the set Bw(,),z == U Bwn);- is a K-basis of W(n); ;
(zmod2)=7%
the set By (n) = U Bw (n);- is a— Z-homogeneous and Zs—homogeneous — K-basis of W(n).
ZEZL

(b) W(n), is a Lie subalgebra of the even part W (n); of W(n), isomorphic to gl(n), via
& 0j — e, ; (= the elementary (n X n)-matrix bearing 1 in position (7, j) and zero elsewhere);

(¢) W(n)_, , as a module for W (n), = gl(n), is the dual of the standard module of gl(n) .

2.11. The Lie structure in W(n). Our W(n) := Derg(W(n)) is a Lie subsuperalgebra of
Endg (A(n)), whose Lie bracket in the latter is the “supercommutator” (cf. Example 2.8(b))).
Thus we first consider the composition product of two basis elements in W (n). Calculations give

¢e d; 0 5@ oy = (_1)Ibl ég éé ;0 + (_1)#{5 | s<j,b(s)=1} (SQ(j),lég ébfgj O (2.2)

where e; € {0,1}" is given by e (k) := d;x, and b—e; is the obvious element in the set {0,1}" .

Therefore the defining formula [éﬁ 9, §Q 8@] = £* 050 ég Op — (fl)deg(ﬁg 9;) deg(§" 9e) ég Dyo £* 0;
(taken from Example 2.8(a)) along with (2.2) yields, taking into account that 0, 9; = —9; O ,

(€90, 0] = 2858 €7 0 £ dy0yn €€ 9, (2.3)

for all a,b € {0,1}", j,£ = 1,...n. In particular — reordering the various factors & — this
shows that [éﬁ 05, §Q 8@} has coefficients in {—1,0,1} with respect to the basis Byy () -

When 0y(jy,1 =1 = 0q(s),1, i-e. in the case b(j) = 1 = a(f), formula (2.3) looks more precise:
{ﬁg 0;, & 3@} = (-)Ngreee i (&0, — &0;) . Ya.bra(l) =1=b()) (2.4)

Note also that (2.4) takes a special form in the following three cases:

— if j=1, then [gﬁaj,géae] -0 ; (2.5)
§

— it j#L aG)=1, then [0, 80 = )V ga (2.6)

~ if j#4, b() =1, then [gﬁaj,géag} _ (cp)Ntlemeigte e n (2.7)

Finally, for the 2—operation the defining formula (from Example 2.8(b)) along with (2.2) gives

(0, = (20,)° = 0 Voa:|a|e2N (2.8)



2.12. Definition of S(n). We retain notations of Definition 2.10 above, in particular A(n) and
W (n) := Derg (A(n)), for n€N, , are defined as therein; in addition, we assume now n >3 .

Define the divergence operator div: W (n) := Derg (A(n)) — A(n) by div(X1, Pi(£) 9;) :=
S 9;(Pi(€)) for o7, Pi(€) 0; € W(n) . Then set

S(n) = {D =31 Pi(£) 0, € W(n) ‘ div(D) = 0} ( = Ker (div))
This is a Z—graded Lie subsuperalgebra of W (n) — with Z—grading induced from W (n): so
Sin) = @ Sn). . Sh), = W(n).NSn) (2.9)

z€EZL
— cf. (2.1) — where S(n), # {0} if and only if —1 < 2z < n—2 — see below for more
details. Like for W(n), this Z-grading yields also a Z,—grading S(n) = €@S(n),; with
[z]€Z,
S(n), :ZCZZ%O(;S'T(LTL)C for all [z] € Z,, (the group of integers modulo n). Again, the Z-grading
yields a Zfiltration, which coincides with the one induced by W (n), whose associated graded Lie
superalgebra is graded-isomorphic to S(n) itself. Moreover, the Z-grading of S(n) is consistent
with the Zo—grading, in the obvious sense (like for W(n) ).
The construction and the results for W(n) — cf. Definition 2.10 — give:

(a) a basis of the K—vector space S(n) is given by
e . e 1<j<j'<n, e(j) =0 =e(i’)
BS(n) = {§7 0; Q(Z) = 0} U {5 (5] aj - fj’ 83'/) 6(j”) =1 Vj<j’<j

In the following we call “of first type” the elements of this basis of the form £=0;, and “of second

type” those of the form £ (Ej 0; — & Gj/) ; more in general, we call “(elements) of second type”
also all those of the form £ (fj 0; — &k 8k) , for any j<k with e(j) =0=¢e(k) .

Again, this basis is homogeneous (for both the Z-grading and the Z—grading), i.e. Bg,) =
U.cz Bsmy;= and  Bgsmy = Uzeg, Bsn);z Wwhere Bg(y),. = Bgm) N S(n),, respectively
Bsny;z := Bsm) N S(n), is a basis of S(n),, respectively of S(n) , for every z € Z, Z € Zs.

(b) S(n), is a Lie subalgebra of the even part S(n); of S(n), isomorphic to sl(n), via
& 0 — ¢;; (notation of Definition 2.10) for ¢ # j, and (ﬁk Op — & 6@) — (e;mk — eg,g) for k £ ¢;

(¢c) S(n)_,,as a module for S(n), = sl(n), is the dual of the standard module of sl(n) .

2.13. The Lie structure in S(n). We need formulas for the Lie bracket of elements in Bgy) .
First we look at pairs of basis elements of the first type (cf. §2.12, so a(j) =0, b(¢) =0). For
their bracket, formulas (2.2-7) give (with the right-hand side which in third case might be zero)

+ 267 0 if a(f) =0, b(j) =1
[0, e0,] = { FEE0 if a() =1, b(j) =0
e L (60, -€;0;) i a(0) =1,0(j) =1
0 if a(f)=0,b(j)=0

Now we consider the Lie bracket of a basis element of first type and one of second type (see
§2.12, thus e(f) = 0). Then {gﬁ 00, € (&0 — & ak)} - ((—1)N — (=N ) et el g, | by
formulas (2.2-7), for some N’, N” € N; a detailed (yet elementary) analysis of signs shows that

(o0, ¢ (G0 - 6o = 0

Third, we look at pairs of elements both of the second type: formulas (2.2-7) eventually give

{ﬁl (51' 81' — &k ak) ) §g (52 O — & 3t) } =
= (b(5) = b(k)) €22 (€00 — & D) — (alt) — a(t)) E2€" (& 05 — & D)

We must stress two facts. First, §Q§Q (&8¢ — & 0;) and §Q§Q (& 0; — & k) are both either zero
or elements of Bg,) of the second type; second, (b(j) — b(k)), (a(f) —a(t)) € {-1,0, +1}.



Last, the 2-operation: (2.2) and (z1+ z2)<2> = zf) + [21,22] + z§2> (cf. Definition 2.7 (e)) give

€0)" =0, (¢@a-&0)" =0, VYa,b:lae2N, |fe@N+1) (210)

2.14. Definition of g(n) . We retain notations of Definitions 2.10 and 2.12 above. In addition,
we assume now that n is even and n > 4 . Define

S(n) == {DeWm) | (L+& &) div(D) + D(€-+&) =0

In order to describe S(n), write D € W(n) as D := >."-". D, with D, € W(n),. The

z=—1
defining equation of S(n) takes place in the graded superalgebra A(n) = @7_,A(n),: when we
single out the different homogeneous summands the left-hand side of this equation reads

(1+& &) div(D) + D(&1---&) = div(Do) + -+ + div(Dp—s) +
+ (div(Dn—1) + D_1(&1--€n)) + (Do(ér--- &) + &1 - - &n div(Dy))

(each div(D,) is homogeneous of degree z, in particular div(D_;) = 0). Thus the defining
equation (1+4&;---&,) div(D) +D(& &) = 0 of S(n) is equivalent to the system

div(D,) = 0 (eAn),) V 0<z<n=-2
®:% div(Dy_y) +D_y(& &) = 0 (eAn), )
Do(&r &) +& - & diviDo) =0 (€A(n),)

The solution of the system ® is immediate: D, € Ker (div) W (n), = S(n),, for 0<z<n-2,
for the first n—1 equations, while the last one has solution Dy € Ker (div) \W(n), = S(n),,
hence it is redundant. For the last but one, let us write D,,_1 := Z?Zlcj &1---6,0; and D_q =

Z?Zldj 0; : then these yield solutions of that equation if and only if ¢;+d; =0 forall j=1,...,n,
in other words if and only if D_y + D,,_1 = Z;-l:lcj (51 R 1) 0; . The outcome is that

g(n)[z] = S(n), V 0<z2<n-2

§ o 5 . , ~ 2.11
( ) [Z]%azn ( )[Z] S(Tl)[n—l] = SpanK((& e gn - 1) 6j)j:1,...,n ( )

which is a splitting of S (n) as a Z,—graded Lie superalgebra — see below for more details. Moreover,
the natural Zfiltration of W (n) induces a similar filtration on S(n): the associated graded Lie
superalgebra then is graded-isomorphic to S(n) . Finally, the Z,—grading of S (n) is consistent with
the Zy—grading, again in the obvious sense (like for W(n) and S(n) ).

Remark: to have a uniform notation we shall also write g(n)z := S(n) (o] forall —1<z<n-2
and §(n)z ;= {0} forall z€ Z\{—1,...,n—2}. Then S(n)= @zezg(”)z as a vector space.
The results we found for W(n) — cf. Definition 2.10 — and S(n) — cf. Definition 2.12 — give:

(a) a basis of the K-vector space S(n) is given by the union of the set UZ;; Bsny;. with
the set {(51 o En—1) aj}jzl .3 in detail, it is

By, = {géai

ﬁiﬂtﬂi*@@—@@ﬂFiﬁif*fﬁﬁﬁV?U{@r~&—n@}

1<j<n

Again, this basis is homogeneous (for both the Z,—grading and the Z,—grading), i.e. B§(n) =
Upjez., By, and Bg,) = Uzez, Bg(,y,z where Bz, ;= Bg,) N S(n)y, , respectively
Bgy.z = Bgny N S(n)z , is a basis of S(n),,; , respectively of S(n)- , for every [z] € Z;,, Z € Z>.

z]
(b) §(n)[o] is a Lie subalgebra of the even part g(n)(—) of S(n); as it coincides with S(n)y, it
is (again) isomorphic to sl(n), see §2.12;

(c) §(n)[_1] , as a module for §(n)0 = sl(n), is the dual of the standard module of sl(n).



2.15. The Lie structure in S(n). To describe the Lie (super)structure of S(n) we can use
explicit formulas for the Lie bracket and the 2—operation of elements in Bg(n) . Part of this basis

is a subset of the basis Bg(,) of S(n) in §2.12, thus for these elements we refer to formulas therein.
We look now at the remaining cases. The first case is

(@ =)o (&= = (D& & 6o+ (DG G 60 =

() GG (606 0) Vi<
= 92006 &0 Vi=j
(_1)“”_151"'Ej"'fi"'fn(fjaj—&ai) Vi>j

The second case splits in turn into several subcases. Namely, the first two subcases are

[(51...§n_1)aj,§gai} - {(;i&_jaj i 28:(1) for |e| > 1 with e(i)=0,
[(61"'§n—1)6j,€kaz} = 0p (& & —1)0; for |le|=1 with k#i.

The third subcase is
(G &=1)0 . & (o —aar) | =
B R (6n O — &1 Ok) + (—1)le*! (60 — 0j1) £20; if e(j)=1
(_l)lng(aj,h —6;k) £50; if e(j) =0

where e(h) =0 =e(k), |e|] >0 (with & = h+1 if we want the second element to belong to Bg(,)
— yet the formula above holds in general for any h and k). The fourth, last subcase is

{(51 by —1) 05, (€nOn — & 3k)} = (i — i) (&1 & —1)0;
Finally, for the 2—operation we have that (2.2) and the identity in Definition 2.7(e) give

(68 -1)0,)% = (=1) & &€ 0; Viji=1,...,n. (212

2.16. Definition of H(n). We retain again notations of Definition 2.10 above, with n >4 .

Let w:= (w”)f;l:
in A(n): this defines canonically a symplectic form in A(n) which we still denote by w, namely
w =Y wijdgiodg; — cf. [14], §3.3. For any such form and any D :=Y"1" | Pi(§) 9; € W (n)
the form Dw is naturally defined, and we set

be a symmetric, non-singular square matrix of order n with entries

Hw) = {DeW(n)‘DQ:O}

This is a Lie subsuperalgebra of W (n). We define a special Lie subsuperalgebra of H (w), namely

H(w) = [H(w), H(w)]

All Lie superalgebras H (w), for different forms w, are isomorphic with each other; the same
holds for the various H(w). Thus we can fix a specific form of the matrix w: we choose it to be

0 1 Or><7‘ Irxr 0r><1
= ( IT ()T ) ifn=2r, w = Iisr Opxr Opx1 ifn=2r+1 (2.13)
' " ler 01><r 1

€

(where I, is the identity matrix of order r, and so on), so that the corresponding form is

-

g:

(d€iod&yyi+dEryiodSs) if n=2r, w= 3 (d&odE yi+d&yi0dé;) +démodEy, if n=2r+1.
i=1

i=1

For this specific choice of form w , we use hereafter the notation H(n):= H(w), H(n) = H(w) .



The natural Zfiltration on W (n) induces a Zfiltration on H(w) and H(w), for any w. Even
more, on H(n) and H(n) the Z-grading on W (n) induces Z-gradings as well. Then the graded Lie
superalgebra associated with H(w) , for any w, is isomorphic to H(n) as a graded Lie superalgebra.
Several properties of these graded Lie superalgebras are recorded in [14], §3. Here we just recall

H(n) = EBZH(ﬂ)Z » H(n), =W(n),NH(n),  Hn)= EBZH(H)Z , H(n), =W(n), N H(n)
__R€ z€ -
where H(n), # {0} iff —1 <z <n-2, H(n), # {0} iff -1 <z <n-3. Moreover H(n), =
H(n), for =1 <z<n-3 and dim(H(n),_,) =1: in particular, H(n) = H(n)® H(n),_, .
Like for W (n) and S(n), this Z-grading yields also gradings by cyclic groups, namely H(n) =
@ﬁ(n)[z] and H(n) = @ H(n), with H(n) n = @ f[(n)C for all [z] € Z,, and
z]€Z, [2]€Z -1 ¢(=zmod n
H(n)y, = @® H(n), forall [2] €Z, 1 (the integers modulo n—1). Again, in both cases
¢(=zmod (n—1)
the Z—grading yields a Zfiltration, coinciding with the one induced by W(n), whose associated
graded Lie superalgebra is isomorphic to H(n) and H(n) respectively. Finally (as for W, S and S')

the Z-grading is consistent with the Zy-grading both in H(n) and in H(n), in the obvious sense.

To describe H (n), H(n) and their graded summands, we exploit a different realization of them.

For any given closed differential form w as above, consider on V,, := Span(&,...,{n) the
bilinear form corresponding to w, and take on the vector space A(n) the structure of Clifford
algebra associated to V,, with such a form. Then the supercommutator on A(n) reads

{f.9} = D" SL @iy 01 05(9) (2.14)
(we use braces instead of square brackets for psychological reasons) where w = (w”)le T =

w1 is the inverse of the matrix w. If we consider on A(n) its natural associative product and the
Lie superbracket in (2.14), it is a (supercommutative) Poisson superalgebra, which we denote by
P,(n). By the analog to Poincaré’s lemma, there exists a Lie superalgebra epimorphism

¢: Py(n) — H(w), fr>Dy=3"_ &i;0(f)0 (2.15)
which shifts the Z—grading by —2, i.e. ¢(P£(n)z) = f[(g)%z for all z (so the induced Zs-gra-

ding is preserved) and has kernel the K—span of 1; so P, (n) / K-1p, () = H(w) via an isomorphism
induced by ¢ . Moreover, the restriction of ¢ to { f € P,,(n) = A(n)|e(f) =0}, where ¢(f) is the
constant term in f (thought of as a skew-polynomial in the &;’s), is a bijection: thus we have

H(w) = {Ds|e(f)=0}  and [Dy, Dy] = Dyisy (2.16)

The outcome is that we can describe H(w) via the isomorphism of it with Pg(n)/K~ Lp, (), for

which we can compute the Lie superbracket using (2.14). We do it now for the canonical w.

Let w be the canonical matrix chosen as in (2.13). Then we write P(n) := P,(n) for the

corresponding Poisson superalgebra. In this case (2.14) and (2.15) take the simpler form

{9} = (P (S0 (00 0rrsl9) + 005 (1) 0:(9)) + dneianisn) Daria (F) Daria(9)) (2.17)
f = Df = 22:1 (85(f) ar-‘rs + ar-i-s(.f) 6&) + 6n€(2 N+1) 82r+1(f) 82T+1 (2'18)
where 0peang1) =1 if nis odd (written as n=2r +1) and d,e2ny1) := 0 otherwise.

For each z € Z the set Bp(y),. = {§§ ‘ e€{0,1}", |e| = z} is a K-basis of P(n),, and

3

for each Z € Zy the set Bp),z := U Bpm);. is a K-basis of P(n); . It follows that
(zmod2)=7%
Bpmy = U Bpn);- is a K-basis (Z-homogeneous and Zy-homogeneous) of P(n). Applying ¢,
2€L

we get bases for H(n), H(n) and their graded summands. Focusing on H(n), we find:
(a) a basis of the K—vector space H(n) is given by

Brn) = {Dég gE{O,l}",O<|§|<n}




This basis is homogeneous (for the Z-grading and the Zo-grading), i.e. Brm) = U.cz Brm); -
and Bp(n) = Uzez, BH(n);z Where By, .:= Bum)NH(n), isabasisof H(n), and B,z =
By N H(n); is a basis of H(n);, forevery z€Z and Z € Z, .

z

(b) H(n), is a Lie subalgebra of the even part H(n); of H(n), isomorphic to so(n), the
latter being considered with respect to the canonical form w; an isomorphism is given by

z

Dever = EkOrpn —EnOrgr M Chyrth — Chrtk V 1<h<k<r

Deyervw = &k Orin —En Ok > Crykrin — €hk V 1<h<r,1<k<r

De, nerir = &akOn —&an Ok > Crgkh — Crgnk V 1<h<k<r
Degorir = Sorp10r1t — & O2rp1 > €201 1746 — €120 41 V 1<t<r, n=2r+1
De, eorin = Eo2rt1 08 — §rgt O2p1 > C2rg1 it — €120 41 V 1<t<r, n=2r+1

(with notation as in Definition 2.10), the last two formulas being in use only for odd n =2r+1.
(¢) H(n)_,, as amodule for H(n),= so(n), is the dual of the standard module of so(n) .

2.17. The Lie structure in H(n). We describe now the Lie (super)structure of H(n) in terms

of its basis By (). We make use of the isomorphism P(n)/K- 15, = H(n) along with formulas

(2.16-17) and the fact that H(n) = H(n) @livl(n)nf2 with H(n)n72 =K-Dg¢,¢,...e, - In short, we
have to compute the brackets { &%, &2} in P(n) for all a,b € {0,1}" such that 0 < |a,[b] <n .
By (2.17) we have

{e=. e} = (-—1ﬂ“'<:§;(6z(£) Orss(€2) + 0r 44 (62) 0,(69)) + Bucaren) Do (€ )Ebr+1(§b)>

With a detailed (yet elementary) analysis, one finds only two possibilities. The first one is
Is:a(s)=1=br+s),a(r+s)=1=5b(s) = {ég, ég} =0 (2.19)

On the other hand, the second possibility is either

Bs:als)=1=0b(r+s),alr+s)=1=b(s) TR B wtter e,
(a(27+1), b(2r+1)) # (1,1) } = {é xS } = k;mg (2.20)

for some n € {+1,0,—1}, or (only possible if n is odd, written as n =2r+1)

Bs:oa(s)=1=0b(r+s), alr+s)=1=>b(s) u wtb-2eq s
(a(2r+1), b(2r+1)) = (171)} = {§7,§Q} = Nor41§" o (2.21)

for some 72,41 € {+1,0,—1}. For later use, we also record the following fact

als) =alr+s), b(s) = Urs) Vs .
2r+1) = 0 = b(2r+1)) } = {g,gé}:o (2.22)

also proved by straightforward inspection. Similar results, still proved by direct analysis, are
{e {e2 e} =0 Y be{01)" : la>3 (2.23)
{§2r+1 , §2r+1} = -1, {ﬁg ) §Q} =0 Vac {07 1}n \ {Q27-+1} (224)

All the formulas above yield also the Lie brackets among elements of By (), via the identity
{Dég , Dgg] = Diea ¢v) — see formula (2.16). Similarly, from these formulas and from the identity

in Definition 2.7(e), taking also (2.24) into account, we get for the 2—operation the formulas

Dea® =0 Y ac{0,1}" (2.25)
@ From now on, g will be a Lie superalgebra of Cartan type: W(n), S(n), S(n) or H(n). @
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2.18. Cartan subalgebras, roots, root spaces. Let g be a Lie superalgebra of Cartan type.
We call Cartan subalgebras of g the Cartan subalgebras of the reductive Lie algebra go, which
is gl(n), sl(n) or so(n) respectively if g is W(n), S(n) or S(n), or H(n). We fix one of them
(the “standard” one), namely b := Spany ({ & Ok Y1<k<n) for case W(n), b = Spany ({(& Ok —
Ert1 Okt1) }1§k§n_1) for cases S(n) and S(n), and § := SpanK({(fk Ok — &tk Orike) }1§k§r) for
case H(n) , with r := [n/2] . In all cases, the spanning set we considered in b is actually a K-basis.

Now consider the element & := 7" | &0; € W(n),: weset h:=bh, §y:=go, §:=¢g wheng
is of type W or S, and h:=h+KE, gy :=go + KE, g:= g+ KE when g is of type S or H. In
this way & € g iff g is Z—graded, with [£,X] =2X for X € g, (cf. [14], §1.2.12 and §4.1.2).

The Cartan subalgebra h acts by adjoint action on g, and g itself is an h-submodule. Thus we
have a decomposition of g into weight spaces for the h—action, namely (cf. [16], §4)

9= @Boch 90 go:={weg|lhw]=ah)w, Yheh}

called root (space) decomposition of g, where go,—o = h. The terminology for such a context is
standard: A := { a € E*\{O} } o 7 {O}} is the root system of g, its elements are called roots, we
have root spaces (each g, for a # 0), root vectors, etc. For every root « one has either g, C gg or
go C g7 accordingly, we call a even or odd; we set Az := {a eA ’ ga C gg} for z € {6, T} .

We call a root « essential if —a € A, and nonessential if —a ¢ A.

Finally, the multiplicity of a root «, by definition, is the non-negative integer u(a) := dim (gq) ;
then we call the root « respectively thin or thick if p(a) =1 or p(a) >1.

We denote by @ the Z-lattice Q := Z.A spanned by A inside H* . The root space decomposition
is a Q-grading of g (as a Lie superalgebra). This Q-grading is compatible with the Z-grading
g =D.c;0. (only as vector space for g of type S: cf. the Remark in §2.14), in the following sense:
one has h C go and for each root a also g C ghya) for a unique integer ht(a) € Z , so that

go = @ ga@hv 9. = @ Ja (VZEZ\{O})
a: ht(a)=0 a:ht(a)=z
The unique integer ht(a) € Z thus associated with every root « is called the height of or. As
another consequence, we can also partition the set of roots according to the height, namely, A =

[Lez A with A :={a€A|ht(a) =2} ;then Ag=]], .oy A. and A7 = .cozin A- -
Weset Agr == Ag\Ag, Agr:=A1\A_; and A := {(a, ) T;‘Agu(a) : we denote 7: A —» A
the map & = (o, k) > o, and Az = 7 1(Az) for 2€{0,1,0", 1"} U{-1,0,1,...,n}.
We conclude introducing (or recalling) the notion of coroot adfssociated with a classical root.

When g is of type W, S or H, the Lie algebra g, is reductive, of the form g, = g;° ® K&
where g§° is its semisimple part (actually simple) and K& is its radical (actually the centre);
similarly b splits as b = h,, ® KE with b, := b N g5°: explicitly, b, is the (standard) Cartan
subalgebra of g;° = sl, — if g is of type W(n) or S(n) — or of gg = s0,, — if g is of type H(n).

When g is of type S (n) the situation is simpler: the Lie algebra g, = go is (semi)simple,
isomorphic to sl,, . In order to unify notation, we write then g5° := g, = go and b, :=h =h:
explicitly, b,, = b is the (standard) Cartan subalgebra of g, = go = sl,, .

As in any semisimple Lie algebra, the Killing form induce a K-linear isomorphism (HSS)*i» B,
denoted by v — t, . When g is of type S(n) we use this isomorphism to define (as usual: cf. [13])
the coroot H, € b,, = b associated with any classical root a € A, (C (Ess)* = E*) .

When g is of type W, S or H instead, note that every linear functional ¢ on bh,, uniquely
extends to a linear functional on h such that ¢(£) = 0: this yields an embedding of (Ess)* into
E* , 0 every root (in classical sense) of the simple Lie algebra g;° identifies with an element of E*
Conversely, let 6 €~ be the unique K-linear functional on § = b,, ® K& such that §(€) = 1
and 6(h,,) = {0}: coupled with the embedding (Ess)* < B, this yields = (Hss)* e K.
Now, using this last description of E* and the isomorphism (Ess)*i» b, induced by the Killing
form, we extend the latter to an isomorphism E* — b, (’y =ty , £ 5) : via this, we define
again the coroot H, € b, ; b associated with every classical root o € Ag (C (Ess)* ; E*) .
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We describe now in detail all these objects; we distinguish cases W, S, S and H (cf. [16]).

Case g=W(n): Let g:=W(n). Then gy = gl, , and we fix the Cartan subalgebra h = b

as above. Let {e1,e9,...,e,} be the standard basis of h*: then the root system of g is given by
A= {e+te,—¢g | 1<in<iz<---<ix<n, j=1,...,n}\ {0}

From this description, one sees at once that every root o € A can be written as £+ the sum of
“simple roots” chosen in a “simple root system”, just like for simple Lie superalgebras of basic type.
For instance, one can take as “simple root system” the set I1:= {e1 —ea3, ..., €n1 —€n, En },
which is even “distinguished” (i.e., it contains only one odd root, in this case €, ).

If a = 21521 gi,—¢ej with j & {i1,... 45}, then Ja—3k_ e, —c, has K-basis the singleton
{&, - &,0;}, so that p(a) = 1; if instead o = Zﬁzl €, then g, s _ = has K-basis
{& &, &0 e {1,...,n}\{i1,...,in}},s0 p(e) =n—h. Thus the thick roots are those of
{ ZZ=1 g, | h < n—1} and the thin ones those of { Zle ei—¢cj | i & {iv, .. ie}} U { Z;:ll g}

Now for any o = ¢;,+---+¢&;,—¢; € A, its height is easy to read off: it is given by ht(a) = k—1.

If a root « is even essential, then g, ,g9_, C go , the multiplicity of both o and —« is 1 and
0o, 0—a together generate a Lie subalgebra isomorphic to s(2) inside go . The set of even essential
i#]
1,7=1,...,n;

If instead « is odd essential, then either g, C g-1, pla) =1, p(-a) =n-1, or
00 C g1, p(—a) =1, pla) =n—1. In the first case, a € {—sj}1<j<n is thin while

e {Ej}1§j<n

and {§j & Oy ‘_1 <tl<n,L#j } respectively (see above). In the second case the converse holds.

roots is {Ei—Ej} , the corresponding root spaces being g, ¢; :SpanK({& 8j}) =K¢;0; .

is thick, and for each j the root spaces go——.; and g_,—.; have K-basis {8]-}

Finally the nonessential roots « are all those such that ht(a) > 1 together with all those of
the form a =¢;,+¢;,—¢; (hence ht(a) =1) with j # 1,4 . &

Case g=S(n): Let g:= S(n). Now gy = sl,,, we fix the Cartan subalgebra h and set
h:=hDKE as above. Clearly the root system of g:= S(n) is a subset of that of W(n), namely

A= e+ He,—¢g | 1<ii<iz<---<ir<n, k<n, j=1,...,n}\ {0}

in short, the roots of S(n) are those of W(n) whose height is less than n—1. In particular, the
characterization of the height of a root of S(n) is exactly the same as for W(n).

By construction, root spaces of S(n) or W(n) enjoy the relation S(n), = W(n),()S(n). The
explicit description given for case W implies that S(n), = W(n), when « is thin for W(n), so
that it is thin for S(n) as well (the multiplicity being 1 in both cases). Instead, if a root « is of the
form a = 22:1 €;,, with h <n—1 (so it is thick for W (n) ), then the space S(n), has K-basis
{€ (&0 —€410541) |1 <j<n—1,i(j) =0=1i(j+1) } with {:=¢,---&,;s0ain S(n) has
multiplicity u(a) =n—h—1, hence « is thick for S(n) if h <n—2, and it is thinif h=n—-2.

Finally, it is clear that roots of S(n) have a certain degree (for the Zs—grading or the Z—grading),
and they are essential or non-essential, exactly as they have or they are for W(n). &

Case g=5(n): Let g:=S(n). Like for S(n), we have gy 2 sl,, and we fix §:=h with b
as above. By the analysis in §§2.14, 2.15, we see that the root system of §(n) is

A= {e+ - Fe,—g |1<ii<iz<---<ix<n, k<n, j=1,...,n}\ {0}

like for S(n), but now e +---+¢, =0 in E*: h*. Also, for root spaces we have the following.
For every root a of S(n) having non-negative height we have S(n) o = S(n),, . Instead, for the
roots of height —1 (which are —e;1, ..., —e, ) we have §(n)_5j = Spang (&1 -+ & — 1) 8;) for
all j=1,...,n, with {(&---& —1)0;} being a K-basis of any such root space.
It is worth stressing that the roots of the form —e; are the only o € A such that 2a € A.
Indeed, 2(—¢j) =(e1+---+ & +---+e,)—¢; € A (forall j=1,...,n), using the identity
g1+ -+¢&, =0 (in h*); instead, direct analysis shows that 2a ¢ A for all a & {—¢;},_, .
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Finally, we can say that the roots of S (n) have a certain degree (for the Zo—grading or the
Z,—grading), they are essential or non-essential, much like we did for W(n) and S(n). O
Case g=H(n): Let g:= H(n). Now gg & so0,,, we fix the Cartan subalgebra b as above,
and then b:=h+KE 2 h . To describe the root system and the root spaces in this case, we point

out the explicit form of the action of £ on the basis vectors of g:= H(n) considered in §2.16. Let
Do be any one of these elements, with a € {0,1}", with 0 < |a| <n. The formulas in §2.11 give

[5,1)54 = (Ja| - 2) Dea Vae{0,1}":0<la<n  (2.26)

As before, we write n = 2r or n = 2r + 1, withe r := [n/ﬂ . Let now {e1,...,&,} be the
standard basis in the weight space of gy = s0,,: adding § we get a basis of 6* . The root system is

A= {Fe,tte+mb|[1<iy<---<ip<r, k-2 <m<n-2, m>-1,m—k €2Z} if n=2r
A= {te,+ e, +mé|1<iy<---<ip<r, k—2<m<n-2, m>-1} if n=2r+1

As to root spaces, consider any root o = +¢; +---+¢;, +md writtenas o = 22:1 dje;j+md
with d; € {+1,0,—1} for all j. Then the formulas in §2.17 along with (2.26) lead to find that for
every root o = Z;:1 dje; +md the root space Ga=Y7_,d;;4ms has K-basis the set

{ Des

The height of « = Fe;, £+ e +md is ht(a) = m; in particular, if Dee € g, then

a€{0,1}" : |a|-2=m, a(j) —alr+j) =d; Vj}

la| = ht(a) 4+ 2 ; the parity of « is the same as m, and its multiplicity is p(a) = ([(mfk)/z]) ,
where [(m — k)/2] is the integral part of (m —k)/2.

Finally, note that the roots @ =m ¢ are the only ones whose double might be a root too. <

2.19. Finiteness properties of roots and root vector action. As we saw in §2.18, the root
space decomposition yields a )—grading of g. As a consequence, each root vector acts nilpotently.
Actually, we can make this result more precise. We begin with some easy properties of roots:

Lemma 2.20. Let a,8 € A. Then (ta+8) €A forall t > 2. Moreover, if 2a €A or 3a €A,
then g=H(n), a € {m(5|m€Z}, or (only for the first case) g = S(n), a € {—¢;}

1=1,...,n; *
Here now are the finiteness properties of the root vector action we need:

Proposition 2.21. The following hold:
(a) Let a€A, a#—¢; if g=S(n) or a#(2N+1)8 if g=H(2r+1) . Then [ga,84] = {0} .
(b) Let a € Ay, To € §o- Then ad(z,)® =0; if a € Ay, then ad(z,)%2=0.

Proof. (a) If gisof type W, S or g, then direct inspection shows 2a €A for o € A, with a # —¢;
in type S. If instead g is of type H(n)then 2 € A whenever « € Z 6 (as direct inspection shows).
Then in all these cases one has [ga,8a] € g2o = {0} . Finally, assume g is of type H(n) and
o €Z6,say a =kd. The root space g, has K-basis the set { Dea | a(s) = a(r+s) V1<s<r},

and by formulas (2.19-21) we may have [Dég , Dgg] = Dy¢a ¢y #0 onlyifnisodd (=2r+1).

(b) First of all, assume « € Ag (\ AO) , and consider any other root § € A. By Lemma 2.20
one has 3a € A and 3a+ 3 ¢ A: this easily implies ad(z4)3 =0 .

Now let g be of type W, S or S . Direct inspection shows that, given o € Ay and S € A, one
has 2a + 3 € A only if a € Ag. Then one can argue as above for the action of ad(z,)? onto b
and onto root spaces gg , and eventually prove the second part of the claim for types W, S and S.

Let now g be of type H, say g = H(n) . From §2.18 we know that the root vector z, is a
linear combination of root vectors of the form Dea, say zo =), ¢ Deer for some ¢;, € K.

First assume « ¢ Z¢6 . Then 2o ¢ A, by Lemma 2.20, thus gon = {0} and for any pair of

summands in the expansion of z, we have {Dggk/ , Dggk//} € {ga , ga} C goo = {0} .
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Now let o € ZJ, say o« =m . Then m is even because a € Ag; but |a;| = ht(a)+2 =m+2
for each a;, occurring in the expansion of z,,, so in particular |a,| is (independent of k and) even,
thus in the end a; has the property that a,(s) = a,(¢+s) for all 1 < s < /¢. Now (2.22) applies,
yielding {gﬁk' , §9k”} =0 and so in the end {Dgak/ , Dglk//} = Dyears earny = Do =0

In any case, we found that all summands in the expansion of x, do commute with each other.
It follows that ad(zq)? =3, ¢ atd(ng;c )2 ; so it is enough to prove the claim for z, = Dega .

Again, 7, = Dgo implies |a| = ht(a)+2: as a € Ag\Ag implies ht(a) > 2, this yields |a] > 4.
Then (2.23) gives ad(¢%)” (¢%) = {¢=,{¢*,€"}} =0 for be {0,1}"+ thus ad(Des)(gs) = {0}
for all B € A . Similarly ad(Dgg)2(h) = [Dgg, [Dgg,h}] = —a(h) I:D&'Q,DEQ:I =0 forany he€b,
as De¢a € gg : thus ad(Dgg)z(b) = {0} too. Then arguing as above we get ad(Dgg)2 =0. O

2.22. Triangular decompositions, Borel subalgebras and special sub-objects. Since
char(K) = 0, we can identify hereafter the fundamental subfield of K with Q.

Let hg = Q ®z {H € f)|a(H) €eZ, N ac¢e A} ; one sees easily that hg is an integral
Q-form of i, and «a(h) € Q for all h € hg. We call h € hg regular if a(h) #0 for all a € A.
Any regular h € b defines a partition A = ATJ[A~ where AT := {a € A|a(h) >0} and
A7 = {a €A | a(h) <0 } : the roots in AT are said to be positive, those in A~ negative. All this
defines a triangular decomposition g = g* @ h ® g~ with g+ = D.ca+ 0a, as well as Borel
subalgebras b* := h@g* . From now on, we fix a specific Borel subalgebra of gg , denoted bg , and
we restrict ourselves to consider those Borel subalgebras of g containing bg. Among these, when

g g(n) there is a maximal one, b := bg @ ( ® gi> , and a minimal one, by, :=by®Dg_1 .
>0

For later use, we introduce notation (consistent with §2.18) Agr:= Ag\Ag, Air:i=A;\A_q,
A=A NAT AT = A, N (AFXNy) where A, € {A, A, Ag, A1, Agr, Agr ).

Starting from the root decomposition of §2.18, we can introduce special “sub-objects” of g:

Definition 2.23. Basing on the root decomposition in §2.18, we have g5 = h @ (@aeA(—) ga) ,

91 = D ea 8y and go = S (EBaer 9a>~ Then set g5+ := @aen,, 905 011 = Dyea, 07>
and gy = B,>¢ 0, forall t > —1. Note then that g_+ = g5Pgi+ and ggr = g5+ gi+ ; note also

that (gﬁ)ﬁ = ggNgsr = ® 2>t gz, forall > —1. For g% S(n) consider also g_1.0:=g_1®gg -
2€27

Remark 2.24. Note that gg, g5+ and gg are Lie subalgebras of g, while g5+ is a Lie ideal of
g5, and we have a Lie algebra splitting g = go X gg+ (semidirect product of Lie algebras), with
go reductive and gg+ nilpotent. Similarly, (gﬁ)() is a Lie subalgebra of gg, for all ¢ > —1; when

q>0p, (gtﬂ)ﬁ is a Lie ideal of (ng)ﬁ . On the other hand, g_;+ and gg+ are Lie supersubalgebras
of g, with g_;+ D gor. Moreover, gy+ is a nilpotent Lie superalgebra, and a Lie ideal of g_;+:

then g_;+ = go X gor (semidirect product); similarly, for g % §(n) we have g_10=9g-1 % go -

2.4 Basics on g—modules
Later on we shall work with g—modules and g—modules, so we specify now a few definitions.

Definition 2.25. Let b, resp. b, be a fixed Cartan subalgebra of g, resp. of g, as in §2.18.

(a) Any g-module V is said to be a weight module if V = @,cy- Vo where we set V) :=
{v eV ’ hw=MAh)v, Vheh } for all A € h*. In this case, every V) is called a weight space of
V, and every A € h* such that V) # {0} is called a weight of V.

Let now V be a weight module (for g), and set Supp (V) := {\A € b* | V) # {0}} :

(b) for every X\ € h* we call multiplicity of \ the dimension multy () := dim(VA) ;

(c) we call V integrable if all root vectors of g act locally nilpotently on it;
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(d) if a splitting of roots into positive and negative ones has been fixed as in §2.22, we call
highest weight of V any X\ € Supp(V) such that g,.Vy = {0}, ie. A+ a & Supp(V), for all
a € AT ; then we call highest weight vector (of weight \) any vy € Vi \ {0}.

We adopt similar definitions and terminology when g and b replace g and b respectively.

Also, notice that any g—module bears a structure of g—-module too, with £ acting semisimply:
moreover, if the g-module is in fact a weight module, then its structure of g—module can also be
chosen so that it is still a weight module for g as well (all this is standard, see e.g. [12] or [16]).

Remarks 2.26.

(a) by standard theory of reductive Lie algebras, every finite dimensional g-module on which
the element & acts semisimply is automatically a weight module;

(b) if V= @Aeh*V,\ is any weight module, then x,.V) C Vi1, for every root vector x4 € gq
of g (o € A), by elementary calculations; it follows that every finite dimensional g-module —
which is a weight module by (a) — is automatically integrable;

(c) g itself is an integrable weight g—module for the adjoint representation: the set of weights is
AU{0}, and weight spaces are the root spaces and b ; similarly (up to details) for g as a g—module.

(d) if V =@D,cp-Vr is any integrable (weight) module, then for each root vector z, € ga

(a € A) the formal infinite sum exp(zo) := Y. 2% /n! gives a well-defined operator in GL(V).
neN

3 Integral structures

In this section we introduce the first, fundamental results we shall build upon to construct our
“Chevalley type” supergroups associated with g. We keep notation and terminology as before.

3.1 Chevalley bases and Chevalley superalgebras

In this subsection we extend a classical result: the notion of “Chevalley basis” for (semi)simple
Lie agebras. A similar notion was introduced in [9] for simple Lie superalgebras of classical type,
and used to construct affine algebraic supergroups. We now do the same for the Cartan type case.

Definition 3.1. We call r := rk(g) the rank of g: by definition, it is the rank of the reductive
Lie algebra go, so rk(W(n)) =n, rk(S(n)) =rk(S(n)) =n—1 and rk(H(n)) = [n/2] .

We call Chevalley basis of g any K-basis B = {H},_, ]I (]_[aeA {ka}k:lw’”(a);) =
{Hi}¢:1 . 11 {X&'}&eﬁ of g which is homogeneous (for the cyclic grading of g, cf. subsec. 2.3)
and enjoying the following properties (with notation of §2.18 for coroots):

(o) {Hy,...,H,} is a K-basis of h, such that B(Hy),...,8(H,) € Z for all B € A and
H, by = SpanZ(Hl,...,HT) for all a € Ag; in particular, [Hlv,Hj] =0 forall 1 <4,j5<r;

(b) {ka}k:lw’”(a); is a K-basis of g, , for all a€ A ; thus [Hl ,Xa,k] =a(H;) Xoxr Vi, k;

(C) [Xa,k;Xa,k]:O VO&GA@, ke{lavu(a)}’

(d) [Xoé,l ) X—a,l] = Ha V ac AO s
(Xy1, X k] = £H, ) VyeA 1, k=1,...,u(—v), for some embeddings
oy {1, cee ,u(—’y)} — {1, e ,r} such that {:I: HU'Y(k)}’YGAfl hmlp() = {:N:Hl7 R :I:Hr} ;

(e) [Xa7k,X57h]:0 Va,BEA:a+B€(AU{O});

(f) [Xa,kv X@jh] = fz(olé+ﬁ) Ci’]?(t) XOH‘BJ V a,ﬂ c A o+ ﬂ c A y
for some cﬁ’,':(t) €{0,+1,4£2} such that

a7
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(f.1) if a,B € Ay then cfll(l) = +(p+1) where p € N is such that § —pa € A and
B—(p+1)a g A (note that in this case p(a) = pu(f) = ula+p) =1),

(f2) if («,B) € (A-1 x A)U (A x A_y), then there is one and only one index t’ such
that cb () =+1, clp(t)=0 ¥ ¢ #t,

(f.3) if a=p (hence 2« € A} this occurs only for g = §(n)7 a=—¢,or g=H(2r+1),
a =md with m odd), there is at most one ¢’ such that c(f,? (t’) %0, and then cf,? (t’) =42 ;

(9) if aeAg and 2a+ 5 € A, there exists a unique t' € {1,..., u(2a+ B)} such that
[Xots[Xa1,Xan]] =+2Xoa480 ;

(h) for all y€Aj, we have (with notation as in (f.3.) above)

Xf,)c =0 ifall c,j,’,f(t)’s are zero, and Xf,)c = 2_10,77’: (') X240 otherwise.

If B is any Chevalley basis of g, we set g% := Z-span of B, and we call it Chevalley superalgebra.

Remarks 3.2.

(a) The above definition extends to the Lie superalgebra g the notion of Chevalley basis for
(semi)simple Lie algebras: in particular, if B is a Chevalley basis of g then BN gy is a Chevalley
basis — in a standard sense, extended to reductive Lie algebras in case W — of gq.

In the present formulation, the conditions we give are clearly redundant, and may be simplified.

(b) By its very definition, the Chevalley superalgebra g” is a Lie superalgebra over Z .

(c) When g is not of type W, so that g G @, if B is any Chevalley basis for g we can as well
consider B := B[[{Hs}: this plays the role of a “Chevalley basis” for g, and we can develop all
the theory which follows hereafter with g and b replacing g and b respectively.

(d) For notational convenience, in the following I shall also use the notation X, ; := 0 when
k € N4 and 7 belongs to @ (the Z—span of A) but n ¢ A .

We prove the existence of Chevalley bases of g by providing explicit examples, as follows:

Examples 3.3. Explicit examples of Chevalley bases.
(a) Case W(n), first ezample: Let g:=W(n), and take the subset

Bl = BW(”) = {Hi}i:l, n;H(HOLGA{Xaak}kzl,...,,u(a);)

ey

considered in §2.10, but now written in different notation, namely
H; == & 0; forall i=1,...,r(=n),
Xap = &, ---&,0;  for every root of the form a=¢;,+---+¢e;,—¢; (j&{ir,...,is}),
KXok = & &, &, 05 for every root of the form o =¢;,+--+¢;,, where j; is the
k—th index in {1,...,11} \ {il,...,is}, for k=1,...,u(a).
By the results in §2.11 and §2.18 one checks by direct analysis that B’ is a Chevalley basis.

Indeed, this specific Chevalley basis has even stronger properties than the prescribed ones.
Namely, the ch(t) occurring in part (f) of Definition 3.1 satisfy, besides (f.1) and (f.2), the

following (stronger) properties: c’g’é(t) € {O , :I:l} , and there exist at most two indices t; and
to such that cﬁ:Z(tl) = =+1, cﬁ:Z(tQ) =41, and cg:Z(t’) =0 forall ¢' ¢ {t1,t2} .

e}

(b) Case S(n): Let g:=S(n), and take the subset

B = BS(”) = {Hi}izl,...,nfl;u (HQEA{XO‘J“}kzl,..‘,u(a);)

considered in §2.12, but now written with another notation, namely

Hi = fiﬁi—§i+18i+1 fOI' all i:l,...,r(: n—l),
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Xag = &, &, 05 for every root of the form a=¢;,+---+¢e;,—¢;, j &€ {ir,...,is},
Xag = & &, (8,05, — &juir0j,,a)  for every root of the form o =e;,+--- +¢&;, , where
{1s- - du@ydu@1 ) = {1, onp\ {i1,.. . is} with j1 < < jua) < Ju(a)+1 -
Here again, direct analysis based on §2.13 and §2.18 shows that B is a Chevalley basis of S(n) .

(¢c) Case S(n): Let g:=S(n), and take the subset

B = Bg,, = {Hi}i:1 ..... n—1; I (HaGA{Xa7k}k:1 ..... ,u(oz);)
introduced in §2.14 and now written with a different notation, namely
H; == &0; —&410i11 forall i=1,...,r (=n-1),
Xoa:= &, ---&,0; foreachroot of the form a=e¢;+---+¢e;,—¢;, 7 € {i1,...,is}, s>0,
Xa = (fl R 1) 0 for every root of the foorm a=—¢; (j=1,...,n),

Xag =& &, (8,05 — €juir0jry)  for every Toot of the form  « =¢;,+---+¢;,, where
{15 duter duey+r } = {1\ Jin, o ie} with g1 < <Uga) < dutay+1 -

Again, direct analysis (via §2.15 §2.18) shows that this B is indeed a Chevalley basis of g(n) .
(d) Case W(n) , second example: Let again g := W(n). For any i € {1,...,n} and any
ja € {1,...,u(a)} for {& € A:ht(a) >1} — p(a) being the multiplicity in W (n) — consider
B" = B [ {& 0} T {Xaju = oy €a. §u0j. | € A ht(e) > 1}

where we wrote o = g4, +---+¢,, for every root a with ht(a) > 1 (so that the string (ai,...,as)
depends on « itself). Yet another direct check shows that B” is a Chevalley basis of W(n) .

(e) Case H(n): Let g:= H(n), and Bp() = {Dég

ge{o,l}”,0<\g|<n}. Set

H;i = —Dg¢,¢,.. = &0i — &qi Orpi forall ¢=1,...,r (: [n/2]) ;
then for any root a =¢g;,+---+¢&;, —¢ej,— - —¢&;,+md set s:= [(m—p—q)/2] and pick the
root vector (with ¢ as in §2.16)
Xoge 1= £ Dg; ti) €y rrsy €rErn Erpirrprs if (m—p—q) is even,
KXok = £V2 Deictiy €y €t €y Eey Erpay brie, €2rin if (m—p—q) is odd,

for every choice of t1,...,ts € {1,...,7}\ ({il, ceprU{d, - ,jq}) with ¢; < --- <ts, where
ke {l,...,u(a)} is used to order the possible choices of ordered subset of indices {t1,...,ts}.

N.B.: the root vectors of second type have to be considered only when n itself is odd.

Now, using the formulas and results in §2.17 and §2.18, one checks that the set of all H;’s and
all X, 1’s defined above (for suitable choice of signs) is indeed a Chevalley basis of H(n) . &

3.2 The Kostant superalgebra

For any K-algebra A, given m € N and y € A we define the m—th binomial coefficient (g@)
and the m—th divided power y(™ by (") = w , ym = ym/m! .

m m

We start with a (standard) classical result, concerning Z-valued polynomials:

Lemma 3.4. (¢f. [13], §26.1) Let K[g} =K[y1,...,y¢] be the K-algebra of polynomials in y; ,
ey Y, and IntZ(K[g]) = {fe K[g] |f(zl,...,zt) EL V21,2 GZ} . Then IntZ(K[g])
s a Z—subalgebra of K[g] , free as a Z—(sub)module, with basis {H:Zl (fh) | Ni,...,Nt € N} .
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Let U(g) be the universal enveloping superalgebra of g. We recall that this can be realized
as the quotient of the tensor superalgebra T(g) by the two-sided homogeneous ideal generated by

{x®y* ()PP @ —[z,y], 2@ 2 — 2@ ’ z,y€goUgr, z € gi}

Fix a Chevalley basis B = {Hi}i=1 i {Xa’k}];;k'“’“(a); = {Hi}iz1 Lk {Xa}&eﬁ of
g as in Definition 3.1, and let bz be the free Z—module with basis {Hl7 . ,HT}. For h € by, we
denote by h(Hy,..., H,) the expression of h as a function of the H;’s. From Lemma 3.4 we have:

Corollary 3.5. Hy := {heU(h) | h(zl, .. .,zr) €L, Vz1,...,2 € Z} is a free Z—submodule
of U(h), with basis By = {H;l (nli) ‘ml, e, My, € N}. Moreover, it coincides with the

Z-subalgebra of U(g) generated by all the elements (H;z> with H € by, z€Z, meN.,

We are now ready to define the Kostant superalgebra. Like in [9], we mimic the classical
construction, but making a suitable distinction between the roles of even and odd root vectors.

Definition 3.6. We call Kostant superalgebra of U(g) the unital Z-subsuperalgebra K7(g) of
U(g) generated by all elements ('Z;) , (m) , X5 for meN, 1<i<r, a€ 55 , 7 E ﬁi .

«x

Remarks 3.7. (a) The classical notion — suitably adapted to the reductive Lie algebra gl,, when
g = W(n) — defines the Kostant’s Z—form of U(gg), call it Kz(go), as the unital Z-subalgebra of

U(go) generated by the elements xm (i) with @ € Ag and m € N. Then Kz(g) 2 Kz(go) -

o bl

(b) As a matter of notation, we shall always read Xém) =0mo if @& A, for any m € N.
We shall use the following result, proved by induction (cf. also [13], §26.2, for part (a)):

Lemma 3.8. Let | be a Lie K-algebra, and £,m € N, { Am := min({,m).
(a) Let E,Fe€l, H:=[E,F]|e€l, and assume that [H E]|=+2FE, [H,F|=—-2F. Then
B plm) = 50m pln=s) (H*mf“%) E(¢=9) inside U(1) .

(b) Let A,Bel, C:=[A,B]€l, and assume also that [A,C] =0, [B,C]=0. Then
AL Bim) - — sirm pm=q) o(a) f(¢=q) inside U(L) .

q=

(¢) Let L, M el, N:=[L,M], 2T :=[L,N] € [. Assume also that [M,N]=[L,T]=0
(then [M,T]=[N,T]=0 as well). Then

LM = e = s 7O N@) L2 inside U(1) .
(d) Let X,Y €1, and assume that [X,Y ] =0. Then
(X +7)™ = ¥ xmowy ) =y oy x () inside U(l) .

3.3 Commutation rules and Kostant’s PBW theorem

In the classical setup, a description of Kz(go) comes from a “PBW-like” theorem: namely,
Kz(go) is a free Z—module with Z-basis the set of ordered monomials (w. r. to any total order) whose
factors are divided powers in the Xg (a € Eo) or binomial coefficients in the H; (i =1,...,n).

We shall prove a similar result for g, our Lie superalgebra of Cartan type. Like for (semi)simple
Lie algebras — and also for simple Lie superalgebras of classical type, cf. [9], §4 — this follows
from a direct analysis of commutation rules among the generators of Kz(g). To this end, we list
hereafter all such rules, and also some slightly more general relations. We split the list into two
sections: (1) relations involving only even generators; (2) relations involving also odd generators.

The relevant feature is that all coefficients in these relations are in 7Z.
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(1) Even generators only (that is (’Z;) ’s and Xém)’s only, @ € Ag):

(’j)(’ﬂ) - (ﬁ)(i) Vije{l,....,rt, ¥ émeN (3.1)
XM f(H) = f(H—mn(@)(H) XS vV aels, Heh, meN, f(T) eK[T] (3.2)

xO xm — (f jnm) x Vaelg, V&meN (3.3)
x$ X0 = xiM x Y V & Bel; : n(@)+n(8) ¢(AU{0}), VY meN  (3.4)
Am
Xgﬁ) X(fi’l - Z_:O X(fa ;) (H —ms—€+2s> X(gni s) (3'5)
VYV aclAy, VImeN, with ¢Am:=min(¢,m)
LAm p(atp)
4 m m— , t {—
xx = S (T e o) x ) X 5)
q= > at=q

VacAg, ey :at+pfeA, 20+ & A, a+28¢ A, ¥V I{meN

4 m m—s #ath) , 0—2p—
X x5 = ZX( ’zepxéi+ﬁt,( ST (el @) X5 ) X5 3

> qr=q t=1

VaeAg, BEAF\ Ay at+8,2a+8 €A, V I{meN

X xi = x{W X + Lht Va,f €0, V 6meN (3.8)

where cff(t) and X,y ¢ are as in Definition 3.1(f), while ¢ = £1 and the index ¢’ are such
that [Xo“l, [Xa,l, Xg.n H = €2 Xoa4p,¢ asin Definition 3.1(g), and Lh.t. (= “lower height terms”)
stands for a Z-linear combinations of monomials in the X%q)’s and in the (Ii) ’s whose “height”
— i.e., the sum of all “exponents” ¢ occurring in such a monomial — is less than ¢+ m.

Proof. Relations (3.1), (3.2), (3.3) and (3.5) hold by definitions, along with Lemma 3.8(a).

If &',E € A and W(&)—i—w(g) g (A U {0}) , then we get [X(;, XE] =0 by Definition 3.1(e),
so X5 and X5 commute with each other: this implies (3.4).

Relations (3.6) follow as an application of Lemma 3.8(b) to [:=g, A:= X, and B := Xg,,
taking Definition 3.1(f) into account. Indeed, in this case Definition 3.1(f) gives

C i (A3 = [Xox Xpn] = TG 200 Xuro

Moreover, the assumptions (2a+p8),(a+28) € A imply [A,C] =0 = [B,C] . Thus we can

apply Lemma 3.8(b) to expand AW Bim) — X(Z) é h) ; also, in the expansion we find we can still
(@)

expand each divided power C(®) = (Zfz(o{JrB cg,’k (t) Xoqts, t) via the formula in Lemma 3.8(d),

which applies as {Cf,’:(t/) Xots, v s ci’,}:(t") Xa+ﬁ,t//:| =0 for all ¢,¢", by Proposition 2.21(a).

Relations (3.7) follow as an application of Lemma 3.8(c). Indeed, in the present case we can
apply Lemma 3.8(c) to l:=g5, L:=Xa1, M :=Xg},, so that

N = [L,M] = [Xo1,Xpp] = S0P 200 Xavs . T = 27 [L,N] = € Xaasp

(@)
Then in the formula of Lemma 3.8 (c) we still have to expand N ( Z”(aJrﬁ) (t) Xots, t)

using Lemma 3.8(d), which again applies — all summands commute with each other — by the
same arguments as above. In particular, [M,N] =0 and [L,T] =0 because of Proposition 2.21.

Finally, relations (3.8) — concerning roots of go — are well-known by the classical theory. [
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(2) Odd and even generators (also involving the X5, 7 € Aq):
X5 f(H) = f(H-—n(7)(H) X5 V7€, heb, f(T) K]  (39)

X% =0 ifall c;’:(t) are zero, X% = 10%1@ (t') X2y, otherwise (3.10)
(with notation as in Definition 3.1(f.3.))

XXy = X X501 + Haa,(k) VyeA_ (3.11)
with  H, ) = [Xml , X,%k} € bz as in Definition 3.1(d)

X5 X5 = — X5 X5 VA, 5D - n(F)+7n(7) €A, VEEN (3.12)

Xog Xgn = —Xgn Xon + 0 6 Xype Y9, mEA; - aty €A, VLEN (3.13)

x¥ x5 = x5 x10) Vael;, e : n(@)+r(7) ¢A, VEeN  (3.14)

Xif% X, = XWX% i (Eu(a-‘r'y) 'yh(t) Xﬁﬂ) nggn (3.15)
VaelAy,ve€A7 : atveA,2a+v¢A, V IeN

XX = X0 x4 ( w2t (t) Xaﬂ,t) XUV 4 e Xoagw X7 (3.16)

VaeAy, veEA]: a+vy,2a+vy€e A, VI, meN

where c"’k ), ¢r(t), Xointr Xatyt, € ==+1 and the index ' (namely, the one such that

[Xml, [Xa717X7,1 ]] = €2 Xgn+~,/ ) are given again as in Definition 3.1(f-g).

Proof. Almost all of these relations are proved much like those among even generators only.

A first exception is (3.10), which holds by Definition 3.1(h), taking into account that in the
universal enveloping superalgebra one has X2 = X(? for every X € g7 . Another exception is
(3.11), which is just another way of rewriting what is expressed in Definition 3.1(d).

As to the rest, relations (3.9), (3.12), (3.14) directly follow from definitions. Finally, relations
(3.13), (3.15), (3.16) are proved, like relations (3.6) and (3.7), via induction like for Lemma 3.8. [

Here now is our (super-version of) Kostant’s theorem for K7(g):

Theorem 3.9. The Kostant superalgebra Kyz(g) is a free Z—module. More precisely, for any given
total order =< of the set A]] {1, e 7n} a Z-basis of Kz(g) is the set B of ordered “PBW-like

monomials”, i.e. all products (without repetitions) of factors of type Xg&), (H‘) and X5 — with

ng

a € E() , 1€ {L...,n} , Y E ﬁj , and {5, n; € N — taken in the right order with respect to =< .

Proof. Let us call “monomial” any product of several X (¢) , several (HS:Z) — with z; €Z — and
several X*y . For any such monomial, say M , we consider the following three numbers:

— its “height” ht(M), i.e. the sum of all /5 and mz in M ;

— its “factor number” fac(M), defined to be the total number of factors (namely Xg&),
(F77) or X2'7) within M itself

— its “inversion number” inv(M), which is the sum of all inversions of the order < among
the indices of factors in M when read from left to right.

We can now act upon any such M with any of the following operations:

- (1) we move all factors (H'_Z’) to the leftmost position, by repeated use of (3.2) and (3.9):

this produces a new monomial M’ multiplied on the left by several (new) factors (Hisfzi> ;
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—(2) whenever two consecutive factors X ga) and X ga) occur in M , we replace their product
in M with an integral coefficient times a single factor, using (3.3); and similarly, we replace any
pair of consecutive factors X;nW X;nW by the single factor X;na—H% ;

—(8) we replace any power X;;nﬁ of an odd root vector with 0 or Xy, , for ¥ = (v, k),
whenever m. ;>1, applying (3.10);

—(4) whenever two factors within M occur side by side in the wrong order w. r. to <, i.e. we
have any one of the following situations

M = ..o xl U M = .. xUs) xmi L.
a B ’ a ¥

— o xma xWs) — X ML
M = Xﬁ X5 , M = Xva Xﬁ

with o & B, azZ7v, nzaand vz 7 respectively, we can use all relations (3.4-8) and (3.11-16)
to re-write this product of two distinguished factors, so that all of M expands into a Z-linear
combination of new monomials. In some cases one has to read these relations the other way round:
for instance, one can use (3.7) to re-write ng}l) X(Ef% as ng) X(Sf} =

By definition, Kz(g) is Z-spanned by all (unordered) monomials in the Xg&), the (i) and
the X:;na_ Let M be any one of these monomials: it is PBW-like, i.e. in B, if and only if no one of
steps (2) to (4) may be applied; but if not, we now see what is the effect of applying such steps.

i Zi

monomial such that At(M') = ht(M) , fac(M’') < fac(M) , inv(M') < inv(M), and the
strict inequality in the middle holds if and only if H # 1, i.e. step (1) is non-trivial. Actually, this

Applying step (1) gives M = H M’ where H is some product of (H ) , and M’ is a new

is clear at once when one realizes that M’ is nothing but “M with all factors (Hisfzi) removed.”

Then we apply any one of steps (2), (3) or (4) to M'.

Step (2), if non-trivial, yields M’ = 2 MY, for some z € Z and some monomial M" such that
(M) = ht(M’), fac(M") S fac(M’) . Instead, step (3), still if non-trivial, gives M’ = 0.

Finally, step (4) gives M’ = MY +3%", 2z, M, , where z;, € Z (for all k) and M and the M,
are monomials such that ht(My) S ht(My) V &k, ht(MY) = ht(M’), ino(M") S inv(M') .

In short, through either step (2), or (3), or (4), we achieve an expansion
M =3, 2y HM;, 2, €Z Vh (3.17)

(the sum in right-hand side possibly being void, hence equal to zero) where — unless the step is
trivial, for then we get all equalities — we have

(ht(M}) 5 Bt (M) v (Fac(M}) 5 fac(M)) v (ino(M) 5 ino(M)) (3.18)

Now we repeat, applying step (1) and then step (2) or (3) or (4) to every monomial M) in
(3.17). Then we iterate, until we get only monomials whose inversion number is zero: by (3.18),
this is possible indeed, and it is achieved after finitely many iterations. The outcome reads

M =S 5 M) GEL V) (3.19)

where mv(./\/l;' ) = 0 for every index j, i.e. all monomials M}’ are ordered and without repe-
titions, that is they belong to B. Now each 7—[3’ belongs to Hy (notation of Corollary 3.5), just
by construction. Then Corollary 3.5 ensures that each H;’ expand into a Z-linear combination of

ordered monomials in the (IZ’) Therefore (3.19) yields
M =3 2 HOML 2, €7 Vs (3.20)
where every H/ is an ordered monomial, without repetitions, in the (g), while for each index s
we have M[ = M/ for some j — those in (3.19).
Using again relations (3.2) and (3.9), we can switch positions among the factors (fi) in H

and the factors in M2 (for each s), so to get a new monomial M¢ which is ordered, without
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repetitions, but might have factors of type (H;;z'i> with z; € Z\ {0} — so that M? ¢ B. But

then (H;'n_zi) € Hy , hence again by Corollary 3.5 that factor expands into a Z-linear combination

of ordered monomials, without repetitions, in the (i’) Plugging every such expansion inside each

monomial M/ instead of each factor (Hm_z> — i=1,...,r — we eventually find
M:Zqzq./\/l;, 2 €L Yq
where now every ./\/l; is a PBW-like monomial, i.e. M; € B for every q.

As Ky(g), by definition, is spanned over Z by all monomials in the Xga), the (fl> and the

Xém, our analysis yields Kz(g) C Spany;(B). On the other hand, by definition Span;(B) in turn
is contained in K7(g). Therefore Kz(g) = Spany(B), i.e. B spans Kyz(g) over Z.

At last, the PBW theorem for Lie superalgebras over fields ensures that B is a K—basis for U(g) ,
as B:={Hy,....H,}[[{Xs|a €A} isaK-basis of g (cf. [18]). So B is linearly independent
over K, hence over Z. Therefore B is a Z-basis for Kz(g), and the latter is a free Z-module. [

3.10. Kostant superalgebras for special sub-objects. We can consider Z-integral forms for
the sub-objects, as follows. First fix a Chevalley basis B and g” as in Definition 3.1. Second, for
a€A, qg>—1,weset By:=BNga, g5 :=Spany(Bs), g% := Spanz(]_[ht(a):q B,), and

g% = hZ S (@(XEA() g?Z)z) 5 g% = @’yéAi g% 5 g% = hZ S (@aEAo gé)

Q%T = @aeAang ) Q%T = @»YEAITG«Z, ) thT = ®q>tg§ (t > —1) ) 9%1,0 =02,P gy
(the last only for g % S(n); notation of §2.22) with bz := Spang(Hi,..., H,), cf. Definition 3.1(a).

Definition 3.11. We define Ky, (g,lr) as the unital Z-subsuperalgebra of U(g) generated by
(H’i> , Xa(m) and X5 forall me N, 1<i<r, &63(), v € Ei? . In a similar way, we define

the unital Z-subsuperalgebras Kz (g5), Kz(90), Kz(g01), Kz(gr) — t>0 — and Kz(g-1,0)
— for g % S(n) — as the ones generated by the binomial coefficients, divided powers of even root
vectors, and odd root vectors involved in the very definition of g5, g0, g5+, 9;+ and g_10 -

Also, we denote A g% , resp. by A g%T , the (unital) exterior Z—algebra over g%, resp. over Q%T .

All these objects are related by the following consequence of Theorem 3.9 (in particular, the
first isomorphism is an integral version of the factorization U(g) = U(go) ®x A g7, see [18)]),
whose proof follows from the arguments used for Theorem 3.9, or as a direct consequence of it:

Corollary 3.12. There exist isomorphisms of Z-modules
Kz(8) = Kz(g5) @z Aot » Kz(o-11) = Kz(go) @z Aot > Kz(go) = Kz(gor) @z Aot
and of Z-superalgebras KZ(gg) =~ KZ(go) ®z Kz(gm) , Kz (9—1,0) = Kz(gg) ®z N, .

Remark 3.13. Following a classical pattern, one defines the superalgebra of distributions Dist (QG)
on any supergroup G, by an obvious extension of the standard notion in the even setting; see [2],
84, for details. If G is any one of the algebraic supergroups (over k) that we are going to construct,
then Lie(G) =g — with some more precisions: see subsection 4.6 later on. Then one can check
— like in [2], §4 — that Dist(G) = k ®z Kz(g) =: Kk(g) . An entirely similar remark occurs
when the supergroup G is one of the “Chevalley supergroups” introduced in [9].

Any morphism ¢ : G’ — G” between two supergroups induces (functorially) a morphism D, :
Dist (G’ ) — Dist (G' ! ) , which is injective whenever ¢ is injective. If in addition the supergroups
G’ and G” are of the type mentioned above, then Dist(G') = Ki(g') and Dist (G") = Ki(g"),
so that D, : Kk(g’) — Ky (g”) , which is an embedding if G’ is a subsupergroup of G”.
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3.4 Admissible lattices for g—modules

The tools of our construction of algebraic supergroups are the Lie superalgebra g together with
an integrable g—module. As we need an integral version of g — and even more, of U(g), namely
the Kostant superalgebra — we also need a suitable integral form of any integrable g—module.

Let a Chevalley basis B and Kostant algebra K7(g) be given, as before. If V' a K—vector space
we call a subset M CV a Z—form of V if (as usual) M = Span,(B) for some K-basis B of V.

Definition 3.14. Let V be a g—module. We retain terminology and notation of Definition 2.25.

(a) We call V rational if bz := Spany (H, ..., H,) acts diagonally on V with eigenvalues in Z ;
in other words, V=€, -V, is a weight g-module and (H;) € Z for all i and all p € Supp(V') .

(b) Any Z-lattice M of V is said to be admissible if it is a Kz(g)-stable Z—form of V.

Note that — by the last remark in Definition 2.25 — the g—action on any rational g—module V'
can be extended to a g—action so that £ acts diagonally (=semisimply) on V with eigenvalues in Z ;

in short, V itself is also a rational g-module, with h-weight space decomposition V = Gaueﬁ* V..

The first property of admissible lattices is natural (its proof being classical, cf. [17], §2, Cor. 1):

Proposition 3.15. Let V be a weight g-module. Then any admissible lattice M of V' is the direct
sum of its h—weight components, i.e. M = @/\Ew (M N V>\) , and similarly for h—weights.

Next property instead is an existence result, under mild conditions:

Proposition 3.16. Let V be a finite dimensional, completely reducible g—module. Then V is a
weight module. If it is also rational, then there exists an admissible lattice M of it.

Proof. First of all, by Remark 2.26 V' is a weight module. Now assume it is also rational. Then by
the complete reducibility assumption we can reduce to assume V irreducible. In that case, like for
[16], Theorem 3.1, we find that V is cyclic, i.e. it can be generated by a single vector, and the latter
can be taken to be a highest weight vector (cf. Definition 2.25). Letting v be such a highest weight
vector, set M := Kz(g).v : then one can repeat the classical proof — like in [17], §2, Corollary 1
— and eventually show that such an M is indeed an admissible lattice of V' as required. O

We can also describe the stabilizer of an admissible lattice:

Proposition 3.17. Let V be a faithful, rational, finite dimensional g—module, M an admissible
lattice of V', and gy = {Xeg ’ XM C M} its stabilizer. Then, letting by = {H €h | w(H) €
7,V € A} , where A is the set of weights of V, we have gy = by P <@a€5 ZXa) .

In particular, gy is a lattice in g, independent of the choice of the admissible lattice M .

Proof. The classical proof in [17], §2, Corollary 2, applies again, with some additional arguments
to manage odd root spaces. Indeed, the same arguments as in [loc. cit.] prove that gy =

by P (@aeﬁ (gv N ]KX;;)) : then one still has to prove that gyNK Xz = Z X5 forall @ € A.

The arguments in [loc. cit.] show that gyNK Xz is a cyclic Z-submodule of gy which may be

Z-spanned by some —- Xz with ng € N (for & € A). What is left to prove is that ng =1.
For every a € Ao the same arguments as in [loc. cit.] still yield ng = 1.

For every a € Ay, by Definition 3.1(f.2) we can find B € A such that a+ 8 € Ag, with

o= 77(&), B8 = W(ﬁ), and [Xa,XE] = +X(a48,¢) for some t' {1,...,u(a—|—ﬁ)}. This
yields + - Xayp,1) = [%X Xa,Xg} € [gv,gz} C [ov,gv] C gv because g” C gy and gy is
a Lie subsuperalgebra of g. Therefore n—{X(a+ﬁ’t/) € gv N KX (aq8,¢1) = ZX(aqp,11) because

X(ats,t1) € Ko — and thanks to the previous step — which eventually forces ng = 1.

Finally, consider a € &z with 2> 1, and let « := ﬂ'(&) € A, . Then, by direct analysis, we see
that there exists v € A_; such that (a++) € A,_1; therefore, for 7 := (y,1) we have again by
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Definition 3.1(f.2) that [X;; ,Xﬂ = & X(a+4~,v) - Just like before, this yields j:n—l~ Xty t) =
[niaXa,Xq] € [gv,gz} C [gv,gv] C gy hence n—ng(a+7,t/) € gv N KX (a4q,+). Since a

has height |a| = z and [a+7|=2-1, by induction on z we assume gy N K X (a4, 1) = ZX (a4, ¢/ :
the basis of induction is z = 0 which corresponds to roots in Ag, that we already disposed of.

Therefore n—I&X(a_H’t/) € Z X(at~,t)» sothat ng=1. O

4 Algebraic supergroups Gy of Cartan type

Classically, Chevalley groups are defined as follows. Fix a finite dimensional semisimple Lie
algebra g over an algebraically closed field K of characteristic zero, a Chevalley basis of g and the
associated Kostant form Kz(g) of U(g). Then any simple finite dimensional g-module V' contains
a Z-lattice M, which is K7(g)-stable, so Kz(g) acts on M . Using this action and its extensions
by scalars to any field k, one defines one-parameter subgroups z(t), for all roots o and ¢ € k,
within GL(Vk), Vk := M ®k: the Chevalley group (associated with g and V') is the subgroup of
GL(Vk) generated by the x,(t). If one has to extend this construction to that of a genuine Z-group
scheme, then slight variations are in order, e.g. one has to “add by hand” a maximal torus.

This construction has been adapted to simple Lie superalgebras g of classical type in [9], [11].
We do now the same for all simple Lie superalgebras g of Cartan type.

4.1 One-parameter supersubgroups

The supergroups we look for will be realized as subgroup-functors of some linear supergroup
functors GL(V), generated by suitable subgroup functors: these are super-analogues of one-
parameter subgroups in the classical theory, thus we call them “one-parameter supersubgroups”.
Like in the classical setup, they will be of two types: multiplicative and additive: the latter ones
then will split into two more types, according to the type (even or odd) of the roots involved.

We retain the notation of sections 2 and 3. In particular, V is a fixed faithful, rational, finite
dimensional weight g-module with an admissible lattice M in it (e.g., if V' is completely reducible).

Fix a commutative unital Z-algebra k, and set gyx := k®z gv, Vk == k®z M, Uk(g) =
k ®z Kz(g) . Then gyk acts faithfully on Vi, which yields a Lie superalgebra monomorphism
gvx— End(Vk) and a superalgebra morphism Uy (g) — End(Vk) . Now, for every A € (salg),
deﬁne gA = A@]}gguk (: A@ng) s VA = A@]k M]k (: A®ZM) and UA(g) = A®]k U]k(g) (Z
ARz Kz(g)) . Then g4 acts faithfully on V4, which yields morphisms g4 — End(V4) and
Ua(g) — End(V4) . Moreover (as sketched in §2.9) all these constructions are functorial in A.

The splitting V = @,ep-V,, of the g-module V into h-weight spaces yields, for any A €
(salg)y , a similar splitting Vi(A) = @3- Vi.(A) — using notation as in Examples 2.6(a). Now
fix any element H € by := Spany(H,...,H,) — see Definition 3.1(a): then pu(H) € Z for any
w € Supp(V), as V is rational. Let U(Ag) the group of invertible elements in Ag: we set

hg(uw)w = uHy V veVu(A), pe Supp(V), ueU(Ag)
which defines an operator uf := hy(u) € GL(Vi(A)) for all u € U(Ap).
+oo
Note that the formal identity u= > (u—1)" (ﬁ ) , whose right-hand side becomes a finite
m=0

sum if acting on a single weight space V,,(4) , shows that the operator uff = hy(u) is one of those
I T

given by the Ux(g)—action on V. Note also that H = . z;H; (z; € Z) yields hg(u) := [] hu,(u)™ .
i=1 i=1

Definition 4.1. For any H € bz, we define the supergroup functor hy — also referred to as a

“multiplicative one-parameter supersubgroup” — from (salg), to (groups) as given on objects by

hi(A) = {u :=hy(u) | u€U(A)} and given on morphisms in the obvious way.
We also write h; := hy, for i=1,...,r,and h,:=hg, for a € A.
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Let a € ﬁ@, B € Ei , and let X5z and X5 be associated root vectors in B. Both X5 and XB
act as nilpotent operators on V', thus on M and Vj ; the same holds for

t Xz, 19XE € EHd(W{(A)) Vte Ay, deA; . (4.1)

. 2
Since (ﬁXB) = —192X§ =0, we have Y™/m! € (Kz(g))(A) forany m € N, Y € {t X5, ﬂXB}
as in (4.1); moreover, Ym/m! acts as zero for m > 0, by nilpotency, so exp(Y):= ;o:oo Ym/m! €

GL(Vi(A)) is well defined. Tn particular, exp (¢ X5) := > %, (ﬂxﬁ,k)m/ ml =14 9X;5.

Definition 4.2. Let a € &g, B € 31, and let Xz and XE be as above; then set xzz(t) :=
exp(tXa) =1+tX3 —|—t2Xa(2) + ..., forall t € Ay, and 135(19) = exp(ﬁXE) =1+ 19XE , for
all J € Aj. We define the supergroup functors zz and x5 from (salg), to (groups) setting them

on objects as 25(A) = {za(t)|t € A5} , r5(A) = {xg(ﬁ) |9 € A;} forall A€ (salg), —
the definition on morphisms then should be clear.

In order to unify the notation, we shall denote by z5(t), for 7 € ﬁ, any one of the two
possibilities above, so that t € Ag U Az . Finally, for later convenience we shall also formally write
xg(t) :=1 when 7(¢ ) belongs to the Z-span of A but 7(¢) & A .

As in the Lie supergroup setting (see subsection 2.3 in [9]), one can easily prove the following:

Proposition 4.3. The following hold:

(a) Every supergroup functor hy is representable, so it is an affine supergroup, of (super)-
dimension 1’0. Indeed, hy(A) = Hom(k[z,z_l],A) , for A € (salg), , with A(zﬂ) = 2tl@*l.

(b) The supergroup functors xz and T5 are representable, so they are affine supergroups,
respectively of (super)dimension 1|O and 0‘1. Indeed, for every A € (salg), one has xg(A) =
Hom(k[z], A) with A(z) = x®1+1®x and z5(A) = Hom(k[¢], A) with A(§) = £R1+1®¢ .

(Remark: in both cases, A denotes the comultiplication in the Hopf superalgebra under exam,)

4.2 Construction of supergroups Gy of Cartan type

We now define our supergroups of Cartan type as suitable subgroup functors — from (salg),
to (groups) — of GL(Vk). Further details about the formalism of (Grothendieck) topologies in
categories and sheafification of functors can be found in [9], Appendix, and in references therein.

Once and for all, we let g and V as above, and we fix also a partition A = AT][JA™ of the
roots into positive and negative ones as in §2.22.
Definition 4.4. We call Cartan (type) supergroup functor, associated with g and V', the functor
Gy : (salg), — (groups) defined as follows. Let A,B € Ob((salg)k) , @€ Hom(salg)k(A,B) : then

— the object Gy (A) is the subgroup of GL(Vi(A)) generated by the subgroups hp(A) and

va(A), with Hebs, €l ie. Gy(4) = (hn(4), 2a(d), = (h(4), 2a(4)) . :

Gv(¢)
— the morphism Gy/(A) 5 Gv(B) is the restriction of GL(Vi(A)) — GL(Vik(B)), the morphism
induced by ¢ by functoriality of GL(Vi) (which maps the generators of Gy(A) to those of Gy(B)).

For later use, we need to consider several other supergroup functors:

Definition 4.5. Let Gy be as above. We define the full subfunctors Ty, Gy, Goi, G, G% , Ggr,
Ggﬂ and G* of Gy — still from (salg), to (groups) — as given on objects, for all A € (salg), , by

Ty(A) == (hy(A) |Hebz) = (hi(A) |i=1,...,r)
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Gor(A) = <xa(A) ]aeAm> . GE(A) = <xa(A) ’aGVA‘(j%‘>
GE(A) = <xa(A)]ae£i> — (GE(4),GE(A))

By definition Ty, Gy, Gg, Gp, G(—ﬁ Gy, G(—TT, G*, Gy are subgroup functors of the functor
GL(Vk), with obvious mutual inclusions. As GL(Vk) is a sheaf (in the sense of category the-
ory, cf. [9], Appendix), these subfunctors are presheaves. This implies that we can take their

sheafification — with respect to the Zariski topology in (salg), — so next definition makes sense:

Definition 4.6. Consider on (salg), the Zariski topology, with respect to which (salg), itself is a
site. We call Cartan (type) supergroup, associated with g and V', the sheafification Gy of Gy (with
respect to the Zariski topology). In particular, Gy: (salg),— (groups) is a sheaf functor such that
Gy (A)=Gv(A) when A€ (salg), is local — i.e., it has a unique maximal homogeneous ideal.
Similarly, by Ty, G, G(jf, Gy, G%ET, Gj, th and G* we shall denote the sheafification

respectively of Ty, Gy, Gg, Gy, GgET, Gy, G% and G*.

Remarks 4.7.

(a) The functors Gy will eventually prove to be the “affine algebraic supergroups of Car-
tan type” which are our main object of interest. Later on, we shall prove that they are indeed

representable, so they are affine supergroups, and algebraic, with gy as tangent Lie superalgebra.
(b) By definition, the functors Ty, G, Gg, Gp, G%, Gst, G%T and their sheafifications are

all supergroup functors which factor through (alg) = (alg), , the category of commutative, unital

k-algebras: thus they pertain to the domain of “classical” (i.e. “non super”) algebraic geometry.

(c) We shall see later (cf. Remak 4.25) that the functor Gy can also be defined by saying that
Gy (A), for A € (salg), , is the subgroup of GL(Vx)(A) generated by Go(A) and the one-parameter

subgroups z5(A) with a € A \ EO . A similar remark holds true for some of the subgroups of Gy .

(d) By definition Gy and Gy — and all their supersubgroups considered above — are super-
subgroups of GL(V'). As the latter identifies with GL(V,) — cf. Examples 2.6(b) — we can also
think of Gy and Gy (and their supersubgroups) as supersubgroups of GL(V,).

In all our analysis hereafter, the key tool will be given by the commutation relations among
the generators of our supergroups: these are detailed in the next lemma. As a matter of notation,
when I" is any group and g,h € I' we denote by (g,h) :== ghg ' h™! their commutator in I".

Lemma 4.8. Let A € (salg), be fized.

(a) Let o, € A with a+8#0; set Ay g :=AN (N+a+N+B) . Then, for all 0 < i < p(a),
0<j7<uB),and vy Ayg, 0<t<u(y), there exist cﬁ? € Z such that

(Tak(P), Tan(q)) = +l_ﬁ[ A 2y () pra) (4.2)
=rat+sBEA,
T ozegun”

for any p,q € AgUA; (notation as in Definition 4.2), where the factors in right-hand side commu-
te with one another. In particular (notation of Definition 3.1) we have the following special cases:

(a.1) assume a+ B¢ (AU{0}), and p,q € AgU A1 (with suitable parity): then
(za,k(P), zp,1(q) = 1
(a.2) assume a+B €A, a g€ Ny, S & Ay, and p,q € AgU A7 (with suitable parity): then
(zak(®), zan@) = T warp (0P P9 et () pa)

where all factors in the right-hand product do commute with each other;
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(a.3) assume a+B €A, a €Ny, &€ Ay, and p,q € AgU A7 (with suitable parity): then

(Zak(P), 26,0(Q)) = Z2ass,v(£P°q)- é‘i‘{*ﬁ)xa+@7t(i Cf,’;?(t) pq)

(for an index t' given as in part (g) of Definition 3.1 if 2a+B € A, and x2044,¢ (£p%*q):=1 if
2a+8 ¢ A ) where all factors on the right-hand side commute with each other.

(a.4) assume «,f € Ay, and p,q € Ag : then

(2an(p), 2p.1(q)) = LIA Taipa(cli(D)pa) € Go(A)
=ra+sBEA,
" ocienin”

(b) Let yeA_q,let 0<j<u(—y)=n—1, andlet 9,n € A;. Then
(2y1 (D), 2y () = (1FInH, () = hu, ,(1F91) € Go(A)

(c) Let o€ A, 0<i<p(a), Hebhz, ucU(A;), uedsUA; (with suitable parity). Then
hir(0) Tai (W) hg(u) ™" = 20, (W u) € GyaA)
where p(a) :=3 € Zy, by definition, if and only if o € Az .

Proof. (a) The proof follows from a direct analysis, through formal computations, just like in the
classical case of Chevalley groups, which is treated in [17], §3, Lemma 15. We shall carry it on by
looking at the general case, and later specializing to the special ones.

First of all, fix notation X :=p X, 1, Y :=qXp) . Recall that any (additive) one-parameter
supersubgroup can be expressed by a formal exponential: so x4 (p) := ;Ojo(pka)m/m! =
X7 /rl = exp(X) , and zg4(q) == 3.5 X°/s! = exp(Y) . Now, formal calculation gives

400 +oo s
(Tae(P),zp.1n(q)) = Ad(z4,k(P)) (Z Ys/s!> agn(@) = ) (Ad(xa,k(p))(Y)) /S! cwpn(a) =
s=0 s=0
= 22 (Ad(exp(X) (1) /5! - @) = L2 (e (ad(X))(V)) /st wp(a)

where in the last step we used the (formal) identity Adoexp = expoad . Now, moving on we get
exp (ad(X))(Y) = 3720 ad(X) (V) /rl = Y+ [X,Y] +[X,[X,Y]] /2 (4.3)
because ad(X)" =0 for all r > 2 by Proposition 2.21(b).
As a consequence, if a+ 8 ¢ (AU{0}) we have [X,Y] € gays(A) = {0}, hence (4.3) reads
exp (ad(X))(Y) =Y . Then the above analysis proves (a.1), since it yields

(e (@), zon(@) = LI5V*/sl - wan(@) ™ = wan(@) wpnla)” = 1

Now assume o+ 5 € A but o, &€ Ag . Then [X, [X,Y]] = 0 by Proposition 2.21(b) if
o € Ay, and by p? =0 if a € Ag; thus (4.3) reads exp (ad(X))(Y) =Y + [X,Y] . Similarly
[Y, (X, Y]] =0, so the summands Y and [X,Y] commute with each other: thus our analysis gives

(Tak(P), zan(q) = 2.5 (Y+[X,Y])S/s! cwpn(@)t = exp (Y +[X,Y]) zpn(a)” =
= exp(Y) -exp ([X,Y]) - zpn(a) " = exp ([X,Y]) - exp(Y) 2pn(q)”" = exp ([X,Y])

n(a+p)
since zg,,(q) =exp(Y) . Now [X,Y]=[pXar,aXss| = (—1)P®P@ 5~ pqcf,’,?(t) Xotp,t
=1

by Definition 3.1(f), and the summands in the last term all commute with each other. Indeed, in
all cases except for g = g(n), a+f=-g,or g=H2r+1), a+ 8 € (2N+1)4, this holds
because Proposition 2.21(a) give [Xa+57tf , Xa+[37t//] € [ga+5,ga+3] = {0} . In the remaining
cases instead, the root a + (8 is odd, hence either o or f is odd as well, thus p € A7 or q € Az :
therefore [quoH_g’t/ , qua+57t//] =0 just because (p q)2 = +p?q? = 0. The outcome is
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(zar(P) s Ton(@) = exp (1X,Y]) = exp (1) PV pq- 1T 20 (1) Xavp,e) =
= [T (a+B) exp <(71)p(p)p(q) pq- Cﬁﬁ(t) Xa+5,t) _ Hf:(olﬁrﬂ)xmrﬁ’t((71)p(p)p(q) pa- cg,?(t))
with all factors in the last product which commute among themselves. This proves (a.2).

Finally, assume that o+ 8 € A and « € Ap, 8 & Ag (N.B.: the case o € Ay, B € Ag is
symmetric, hence we drop it). Just like before, we find [Y, Y, X H = 0; therefore [Y, X, Y]] =
+[Y,[Y,X]] = 0, then also [Y,[X,[X,Y]]] = £[[V,X],[V.X]] + [X,[V,[V.X]]] =0 —
by the super-Leibnitz’ rule, and taking into account the identity [[Y, X],Y, X]] = 0 inside
g(A) = g5 ®k Ag D g7 ®k A7, which is a Lie algebra — and finally (again by super-Leibnitz’ rule)
[[X, Y], [X,[X,Y]]] = £[[X, [X,[X,Y]]].Y] + [X, [V, [X,[X,Y]]]] = +[0,Y]£[X,0] =0 by
Proposition 2.21(a), for the first summand, and by [Y, [X, [X,Y]]] =0 just proved, for the second.
This means that the three summands in right-hand side of (4.3) do commute with each other; thus

(xa,k(p) ) xﬁ,h(q)) = €Xp (Y + [Xv Y] + [Xv [Xv Y]]/2) . xﬁ,h(q)71 =
- exp([X, X, Y]]/2>-exp([X,Y])'exp(Y)-x57h(q)_l - exp([X, X, Y]}/Q)-exp([X, Y))

because x55(q) = exp(Y) . As before, [X,Y] = (=1)P®P @ pq. ngﬂﬂ cf,?(t) Xotp,t with
the summands in the last sum which commute with each other; similarly, we expand [X X Y]] as
[X,[X,Y]] = [pXan,[PXar,aVps] = (—1)PPEEP@OI 5261 x 01X, 1, Ysul] . Now, if
o & Ay Proposition 2.21(b) gives [ X, [Xaxk, Ysr]] =0, hence [X,[X,Y]] = 0. If instead
a € Ay, then (k=1 and) either [X, [X, Y]] = p?q [Xayl, [Xa1, YBJH = +p?q2Xoaip, v OF
[X,[X,Y]] = 0, by Definition 3.1(g) — for some ¢’ as therein. Note also that [X,[X,Y]] com-
mutes with each summand in the expansion [X,Y] = (—1)PPP(@) Zfiaﬁm pPq- c(f,?(t) Xotp,t;
indeed, this occurs because |[[X,[X,Y]],Xa18,¢] € 93a+28(A) , and direct (straightforward)
inspection shows that 3a+208 ¢ A (having a+ 5 € A and « € Ay, by assumption). So we find

(a1 (P), zon(@) = exp ([X,[X,Y]]/2) -exp ([X,Y]) =

) n(atp) 8.h ) n(atp) 8.h
= exp (£p”* a4 X2a+5,1/) tlilleXp (Pacyy' () Xayp,t) = Taatp v(EP* Q) [1zats,(£c,1 (t)Pa)

(with x2a+5,t/(:|:p2q) =1 if 2a+8 ¢ A) with all factors pairwise commuting, so (a.3) is proved.
The very last case to consider is (a.4), which is a classical result: see [17], §3, Lemma 15.
(b) The same arguments used for (a) give also (z,1(9), x—4,;(n)) = 1—In[Xy1, X ;] .

Then Definition 3.1(d) gives [X%1 ,X_%j] = +H,_(;) - Plugging this into the previous formula,
and noting that (9n)" =0 for all n > 1, we get exactly (b).

(¢c) Let v, € M, = (M N Vu) be any weight vector in the admissible lattice M of V' used to

define Gy . We show now that hp(u) x4, (u) hH(u)f1 and xa,i(ua(H) u) acts on the same way
on v, : taking p and v, arbitrarily, this is enough to prove claim (¢). Direct computation gives

(hir(u) 2a,i(w) hi (u )_1)(%) = w by (u) (520 ad(u X 0)" (v,) /nl) =
= o ) S L b (u) (ad(u X )" (v)) = u—u<H>Z+oo 1)) g X ) (0) =
— o~ HH) g u(H) Z:ﬁ% %ad(ua(H)uXa,i)n(vﬂ) = exp(ad(u® (H)UXa,i))('Up,) — xa,i(u“(H)U)(v,L)

which is exactly what we needed. O

4.3 The even part G; of Gy

Our definition of the supergroup Gy does not imply (at first sight) that Gy be representable.
In order to prove that, we need to know how the “even part” Gg of Gy looks like.
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Proposition 4.9. The functor G is representable, hence — as it factors through (alg), — it is an
affine group-scheme; moreover, it is also algebraic. More precisely, we have natural isomorphisms
Gy = Chy, where Chy : (alg), — (groups) is the standard (affine, algebraic) group functor
associated with go and with the go—module V' by the classical Chevalley-Demazure construction.

Proof. This is just a consequence of the very definitions. Indeed, in terms of category theory (cf. for
instance [19]), the category (alg) = (alg), is a site and both the functors G and Chy are sheaves.

Moreover, by construction there exist natural transformations Gy — Gg, Go i> Chy , and Gg
coincides with Chy via 3 on local algebras, that is 3(Go(R)) = Chy(R) for any R € Ob(alg)
which is local (this follows from §3.5.3 in [6] and Corollaire 5.7.6 in [5]). As Gg by definition is the
sheafification of Gg , the universal property characterizing the sheafification yields Gy = Chy . O

As a second step, we have the following result for some (classical) subgroup functors of Gg:

Proposition 4.10. Fizx any total order < in ﬁm . Then we have:
(a) Gg+(A) = H&elm x5(A) for all A € (salg), , the product being ordered according to < ;

(b)) Gsg+<Gg and Ggr< Gy, where < stands for “normal subgroup functor”;

(¢) Gi=Go -Ggr =Gsr-Go and Gg= Go-Ggr = Ggr - Gg . In particular, Gg is a
closed subgroup of GL(V), hence it is in turn (on its own) an affine algebraic group.

(d) the group functors Gg+ and Gg+ are both unipotent.

Proof. (a) The formulas for commutators in Lemma 4.8 imply that any (unordered) product of
several factors x5(t5) with & € Ag+ can be reordered. In fact, whenever we have a couple of
consecutive unordered factors, say zz,(ta,) Za,(tas) , We can re-write their product as

xal(tal) Ia2(ta2) = (‘Ta1(ta1) ) Iaz(t(w)) : $a2(ta2) x&1(t041)
Then formula (4.2) for (2z,(ts,), Ta,(tas)) tells us that the commutator is either 1, or a product
of several 25(tz) such that ht(w(a)) = ht(w(a1)), ht(x(a)) = ht(x(az)) (cf. §2.18). Therefore,
we can iterate this process in order to commute all unordered pairs of factors, up to (possibly)
introducing new factors. However, the above shows that these new factors, if any, will be attached
to roots with greater height: as the height is bounded from above, we shall end up with trivial new

factors, i.e. after finitely many steps all pairs can be reordered without introducing new factors.
As a consequence, the multiplication map X .z R 25(A) —— Gy (A) — the product on left-
0

hand side being ordered — yields a surjection onto Gg+(A), realized as Gg1(A) = [[5.x R x5(A) .
0
(b) Again Lemma 4.8 gives that H&EE—T x5(A) is normalized by Gy ; then by (a), we deduce
0
that Gg+ < G, whence Ggr+ < Gg follows too.

(¢) This follows easily by construction, namely from Gy < G, Gy < G and G =
<G0, G()¢> , along with (b). By classical theory of algebraic groups, as Go and Gg+ are closed
subgroups of GL(V') and Gg normalizes Gg+ one argues that the last part of claim (¢) holds too.

(d) This follows from the classical theory of affine group-schemes, because we have embeddings
G+ < Gg+ < GL(V), and the tangent Lie algebra of Gg+ , i.e. Lie (Ggr) = gg+ , isnilpotent. [J

The same (type of) arguments proves also the following:

Proposition 4.11. Fiz any total order = in Kgﬂ . Then we have:

(a) G(—TT (A) = Haeng z5(A) for all A € (salg), , the product being ordered according to < ;

(b)) GFHAGE and GT, AGT .
(c) G¥=Gy-Gi, and GF =Gj- G, .

(d) the group functors G(—TT and G(—i are both unipotent.

Proposition 4.10 and Proposition 4.11 can also be improved as follows:
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Proposition 4.12. The group product yields group-functor isomorphisms
Gy = GoxGgr, Gy 2 GyxGy,  and Gy = Gox Ggr, GF = Gg x G, .

Proof. The right-hand side pair of isomorphisms clearly follows from the left-hand side one. As for
the latter, we have to prove that Gg(A4) = Go(A) x Gg+(A) and Gg(A) ~ GE(A) x Ggﬂ(A) for
every A € (salg), , and also to show that these isomorphisms are functorial in A: this second part
will be trivial, so we cope just with the first one. Actually, we prove Gg(A) = Go(A) x Gg(A)
only, for the proof of G%(A) ~ GE(A) x G%T(A) is quite the same.

For any A € (salg), , we know by Proposition 4.10 that Go(A) < Gg(A), Gg+(A4) < Go(A4)
and Gg(A) = Go(A) - Gg+(A) . Thus we are only left to prove Go(A) () Ggi(A) = {eGV} .

Let A € (salg), , and let g € Go(A) () Gg+(A): then g = go € Go(A) and g = gy € G5+(A),
in particular go = g4. Now let V be the g-module we use to define Gy, Gy, etc., splitting as
V =,V, into direct sum of weight spaces. All root vectors of g map weight spaces into weight
spaces, namely X5.V,, C V4, if X5 € g, (for each root 7 and every weight ;). This implies that,
for all weights o and v, € V,(4), He€ bz, a € A and a:= w(&) , one has (notation of §2.18)

hu(A).v, € Agv, CVu(A), r5(A). v, € v, + (@neN+VM+"0¢(A)) (4.4)

Now, by definition, Go(A) is generated by all the hg(A) and all the z5(A) with & € Ag;
similarly, G5+ (A) is generated by all the 25(A) with & € Ag+ . This together with (4.4) implies

go -V € @geN&,V;ﬁﬁ(A) ) gr-Vu € Vpt (GBWGNZM\{O}V;L—M(A)) (4.5)

for any weight ¢ and any v, € V,, where Nﬁo and Nﬁm are the N—span of Eo and of Km
respectively. Definitions give also NAgN NAg; = {0} : therefore, from (4.5) and gy = g+ we infer
that go.v, = v, = gy.v, . Since p and v, € V,(A) were arbitrarily chosen, and since Gy (A)
acts faithfully on V(A), we eventually conclude that gy = €oy =91 - O

Like in the classical case of Chevalley groups, one has also the following auxiliary result:

Lemma 4.13. Let S C A and S := {w(&) ‘a € g} (cf. §2.18). Assume that S is closed,
re. a,B €S and a+ B € A imply that o+ 8 € S; assume also that « € S implies —a € S,
let Gg = <a?a
indexed by the elements in S, and let Gg be the sheafification of Gg.

For any total order in g’, the group product yields scheme isomorphisms X ;.5 za = Gg ,
X zes ¥a = Gg, where the direct products on the left-hand side are ordered ones.

a € §> be the full subfunctor of Gy generated by the one-parameter subgroups

In particular, one has Gg = Gg = AT s superschemes, where sz = ‘ S N Ag

Proof. Each one-parameter supersubgroup xg is a representable supergroup, so (as a superscheme)
it is a sheaf. Any direct product of sheaves is itself a sheaf, so the left-hand side isomorphisms
in the claim, once proved, implies that Gg is already a sheaf, so it coincides with Gg. Also,
the superscheme z7 is isomorphic to AMO or A% according to whether w(ﬁ) is even or odd
(cf. Proposition 4.3(b)), so X ;.5 5 = A%/ is clear. So we are left to prove the claim for Gg.
Our task is to show that, for any A € (salg), , the product map X ;.zza(A) — Gg(A)
in Gg is a bijection: i.e., every g € Gg admits a unique factorization as an ordered product
9 = [lze5 ra(tz) for some tz € AgU Ag . This result can be found via the classical argument —
cf. [17], §3, pp. 24-25 — which now works again using Lemma 4.8 as the basic ingredient. O

A direct application of the previous lemma is the following (5 € { Em , ﬁgt , E(jf , ZS—LT , A* })
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Proposition 4.14. Fix any total order in Em ,in E(—T ,in E? ,in AZ . in A% . Then the group

ot~
product yields scheme isomorphisms

_ _ _ S N =V o = e~~~
XaeAGTl’a - GOT = G’OT 9 XaeA(:]t Ty — G() = G() , X&GA(:)ESCO‘ — GO = GO
_ >~ >~ R A A==V e =
gedx ra = Gor = Gy Xaeas®a = G = G

where the direct product on the left is always ordered according to the fized total order. In particular

+
Gor = Gyr = ANorl0 g =2 GF = ANMI0 | GF = GF = AN
+ +
GE = GE = ANl Gt =~ GT = ANTIO

as superschemes, where Ng+:= |£@¢| , N()i:: |£§| , No:= |£0| , NSET:: |£(’j)[¢ , N*.= |Zi| .

4.4 The functors Gy as affine algebraic supergroups

In this subsection we shall show that the supergroup functors Gy defined in subsection 4.2 are
(the functors of points of) affine supergroups, and also algebraic. We need some more definitions:

Definition 4.15. For any A € (salg), , we define the subsets of G(A)
Gi(A) == {1} 25.0) } L GEA) = {1 s 0) |

meN, 7 €A1, 9 €A meN, 7, €AT ,9;€A;

Let N1 := ’ﬁii‘ and N := ’51‘ = Ny + N_, and fix total orders =< in ﬁii and 51: we set
N _ _ ~

G%:’<(A) = {Hz:irlx%(ﬁl) ‘ ga! ; é’YN:t € A%:v 1917“'7191\7:& € Ai}

Gi(4) = {ITyo5,00) | i 2+ 230 €Ay, h,., 0y € Ay |

We use also similar notations to denote the sheafifications G, Gii and G;':’< .
Using once more Lemma 4.8, we obtain the following factorization result for the functor Gy :

Proposition 4.16. Let A € (salg), . There exist set-theoretic factorizations

Gv(4) = Go(4) Gi(4) = G1(A) Ga(4) . GF(4) = G5(4) GF(4) = GT(4) GF(A)
Proof. The proof for Gy (A) works for G*(A) too, so we stick to the former.

It is enough to prove either one of the equalities, say the first one. Also, it is enough to show that
G5(A) G1(A) is closed by multiplication: thus we must show that g5g1 - gf 97 € Gp(A) Gi(A)
for all g5,95 € Gp(A) and g1, 97 € G1(A) . By the very definitions, we need only to prove that

(1 +191X‘B“1) cee (1 —|—15‘mX,§m) xa(t) , (1 +191X51) (1 +19mXEm) hﬁ(u) c G()(A) Gi(A)

for all m € N, 51,...,Bm € 31, a € 5(), neA, 9,....,9, € A7, t € Ay and u € U(A@).
But this follows by an easy induction on m, via the formulas in Lemma 4.8. O

Carrying further on our analysis, we shall improve the above result by replacing the factor Gj
with a factor Gi< . As intermediate step, this requires the following technical result:

Lemma 4.17. Let A € (salg), . Then — with notation of subsection 2.1 — we have

Gi(A) C Go(AP)GF(A) |, Gi(A) C GF(A)G(AY)
GE(A) € GE(AP)GP=(4) ,  GEA) C GT7(A)GE(4P)
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Proof. We deal with the first identity, the other being similar. Indeed, we prove the stronger result
(Gi(4), Go(4?)) € Go(AP) G5 (4) (4.6)

where <G1(A) , G5 (A%Q))> is the subgroup generated by G7(A) and G (A%Q)).

Any element of <G1(A), Gp (A§2))> is a product ¢ = g1 ¢g2---gx in which each factor g; is
either of type hy, (u;), or zg,(t;), or z5,(0;), with n; € A, o; € &g, i € 81 and u; € U(A?)) ,
t; € A2, ¥; € Ay. Such a product belongs to Gy (A%z)) G5 (A) if and only if all factors indexed by
the n; € A and by the «; € Ag are on the left of those indexed by the 3, € A1, and moreover the
latter occur in the order prescribed by <. In this case, we say that the factors of g are ordered.

We shall now re-write g as a product of ordered factors, by repeatedly commuting the original
factors, as well as new factors which come in along this process.

As we have only a finite number of odd coefficients in the expression for g, we can assume
without loss of generality that Az is finitely generated as an Ag—module. If 7 is the cardinality

of any (finite) set of (odd) generators of A;, this implies A{" = {0} and Ai(m) =0 when m >m.

Let us consider two consecutive factors g¢; g;11 in g. If they are already ordered, we are done.
Otherwise, there are four possibilities:

— (1) gi =x5,(%:), git1 = hy,(u;). In this case we rewrite
9i 9iv1 = 5,(0i) hay, (wi) = I, (ui) 25, ()
with 0] € A" if ¥; € A{"", thanks to Lemma 4.8 (c). In particular we replace a pair of unordered
factors with a new pair of ordered factors. Even more, this shows that any factor of type h,,(u;)

can be flushed to the left of our product so to give a new product of the same nature, but with all
factors of type hy, (u;) on the left-hand side.

—(2) gi=w5,(05), giv1 = a,,,(tix1). In this case we rewrite

9igir1 = gir19:9;  with gl = (g7 " gis1 ") = (25,(—9) , Tay, (—tiv1))
so we replace a pair of (consecutive) unordered factors with a pair of ordered /factors followgd by
another, new factor g;. However, letting my, mo € N1 be such that ¥; € A;’:_ , tiv1 € A{" by
Lemma 4.8 this g; is a product of new factors of type xz,(V}) with ¥ € A;™7, m; >m/ +m”.
—(3) gi=x5,(05), gis1 = 25,,,(Viz1). In this case we rewrite

9i9i1 = gir19i9, with gl = (g7 " giv1 ") = (25,(=95) , a5, (—Vi41))
so we replace a pair of unordered factors with a pair of ordered ones, followed by a new factor g

which, again by Lemma 4.8, is a product of new factors of type xz,(t}) or hy,(u}) with t; € Aimj7

uf € U(Ai(m")) , where m; >m/ +m” for m’,m"” € N, such that 9, € A{”,, Yiy1 € Aim”.

—(4) 9i=25), gi+1 =25(i41) . In this case we rewrite

91 9i+1 = 25, (0i) 25, (Vig1) = 253(9) 25(9i11) = 25(9i+0is1) = g
so we replace a pair of unordered factors with a single factor. In addition, each pair g;—1 g} and
g5 gito respects or violates the ordering according to what the old pair g;—1 g; and giy1,¢git2 did.

Now we iterate this process: whenever we have any unordered pair of consecutive factors in
the product we are working with, we perform any one of steps (1) through (4) explained above.
At each step, we substitute an unordered pair with a single factor (step (4)), which does not form
any more unordered pairs than the ones we had before, or with an ordered pair (steps (1)-(3)),
possibly introducing new additional factors. However, any new factor is either of type zz(t), with

t e A", or of type z5(1), with ¥ € A{™, or of type h,(u), with u € U(Ai(m)) : in all cases, the
values of m are (overall) strictly increasing after each iteration of this procedure. As A" = {0}
for m > 0, after finitely many steps such new factors are trivial, i.e. eventually all unordered
(consecutive) factors will commute with each other and will be re-ordered without introducing any

new factors. Thus the process stops after finitely many steps, proving (4.6). O

A direct consequence of Proposition 4.16 and Lemma 4.17 is the following “factorization result”:
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Proposition 4.18. For every A € (salg), we have
Gv(4) = Go(A)GT(4) . Gv(4) = GT(4)Go(A)

We aim to show that the above decompositions are essentially unique. We need another lemmas:

Lemma 4.19. Let A, B€ (salg), , B a subsuperalgebra of A. Then Gv(B) is a subgroup of Gyv(A) .

Proof. By definition Gy is a subgroup of GL(V), so elements in Gy (A) are realized as matrices
with entries in A, and similarly for B replacing A. Then it is clear that any matrix in Gy (B) is in
Gy (A), and two such matrices are equal in Gy (B) if and only if they are equal in Gy (A) too. O

For the proof of the main result we need the following intermediate step:

Lemma 4.20. Let A € (salg), , and g+, f+ € Gii’<(A). If g-g+=f_fr, then gi=fi .

Proof. To begin with, we write the element g_ as an ordered product g_ = Hizv:] (1 + 94 X5 d) ,
for some ¥, € Aj, where the v4 € ﬁ{ are all the negative odd roots, ordered as in Definition
4.15; also, hereafter Ny = ‘Aiﬂ . Expanding the product on the right-hand side we get

2

g— = E 0<k<N_ (—1)( )ﬂdl ~--19de

Vi
1<dj<---<dy<N_

X

Yay,

Similarly, f_ = Hévz’l (14 m X5,) , for some 1y € A1, and then we have the expansion —
-1 h+1
Don (14 mX5) " = Iy (1= mX5) = 5 osnew (=D gy oy, X5, o X5,

N_>by>>bp>1

Now let V = ®,V,, be the splitting of V into a direct sum of weight spaces. Then X5.V, C
Vign if X5 € g, (for each root n and every weight y): this and the previous expansions yield
(f:l g-).v, € @D, ena- Vi forall weights pand v, € V,,(A), with NAT being the N-span of

A7 . In a similar way — with parallel notation — we find also (fy g;').v, € D+ enat Vit -

Now, the assumption g_ g, = f_ f4 implies f~'g_ = f4 9;1 . Since NAT N NA{r = {0}, by
the previous analysis the only weight space in which both ( o1 g,) v, and ( I+ ggl) .V, may

have a non-trivial weight component is V,,(A) itself. In particular, letting ((f:l g,) 'v")u+"f* be
the weight component of (f='g_).v, inside V,,, - (A), we have ((f='g-) .v#)#_wf =0 for
any v~ € NAT \ {0} . We shall now describe these components, and deduce that g_ = f_ .
From now on we use short-hand notation Ny o= Moy Mo s X:& = X%l "'X%h , and Qd =
Vg, -+ - Va, , Xﬁ = X%l "'X%k , for all ordered strings b := (b1 > > bh) and d := (d1 >
e >dk) . By |b| :=h and |d| := k we denote the length of b and d respectively. Now, we have
_ N_ h+1 k
oo = Y=o 2 = (-p(3)+G) n, X5, 04 X5,

N_ h+1 k hk
= Yo Sy (DO g, X x
by the above expansions of f ' and g_. For every v~ € NA7T , this last formula yields

((F719-) )y = Chemo Leimn. = (—1)(h;1)+(§)+hkﬂgﬁ45151%

m(Fp) + (V) =~

where 7(7) == ZEI 7(%,) and 7(Ja) := leizll 7(Y4,) — notation of §2.18. In particular, for

a root v~ :=1, € A7 we can single out the only two summands in the last formula indexed by
a pair of strings whose lengths are one and zero: then the whole formula reads
1 N_
((f— g*) . Uﬂ)lt‘f"ﬁ; = ZpZI (7‘91? - np) XWP 'vﬂ +
7(3p) = vq (4 7)
N_ h+1 k .
+ Shice Nwenaee (DCTET g X XL,
Eﬁz’ziiﬁ?:éi (W) + ©(Fq) = Vg B

33



For every 7~ € A7 , we call n-height of  the highest number |y~ | such that v~ itself is the sum
of exactly || negative roots. Looking at (4.7), we see that all roots 7 (7, ) or 7 (a4, ) involved in the
L m()] =
|7, | - Now fix any v, € A7 such that [y, | = 1: then our last remark implies that (4.7) reduces

to ((f_ _) );Hrv = Zév:‘l (ﬂpfnp)X:,p.vu ; thus from ((f__lg_).vu)lHM_ =0 we

strings b or d occurring in the last, double sum necessarily satisfy |7T(%i)

7(p) =g
eventually get sz’l (9p—mp) X5, vy = 0 . As g acts faithfully on V', hence g4 does the same
m(Ap) = vq
on Vy , we get Z;])\; (9p—mnp) X5, = 0 inside g4 . Since the X5, are part of a (Chevalley) basis
T(Ap) = vq

of g, we conclude that ¥, = 1, forall pe {1,...,N_} such that w(7,) has n-height 1.
We shall now extend this result to all root vectors X5 , by induction on the n-height of = (%‘ ) .

Take in general any v, € A7 with |y,| > 1: as induction hypothesis, we assume that for all

Vo € E{ such that |7(%y)| S |7, | we have ¥, = n, . Consider the last, double sum in (4.7):
any “monomial” in the root vectors occurring there is of the form
X5 X5, = X5, ~~X§;h X5, X5, (4.8)
with by > --- > b, and dy < --- < di . Moreover, by construction we can assume also that
b; # d; for all 7 and j: indeed, if b; = d; in some b’ and d’, then the inductive assumption gives
h+1 k

Mo; = "9(17'7 hence ﬂb/ﬁd’ =0 and so (71)( H )+( )+hk77 ﬁd’ 3 X’Yd/ Vp = 0.
Now, the monomial in (4.8) will occur a second time in the same sum as follows. A first case is
when by, > d; : then X X =X- X forbd: (b17.. bh,dl) and d : (dg,.. dk);

—'y ’ —’Y ’
this includes also the case h = O The second case is by, < dj : then K% X% = XW l~ » for

b= (b1 yeee ,bh—1) and d' := (bh,dl,... 7dk) this makes sense for £ =0 as well.
In both cases, the new strings b’ and d’ enjoy the property |b | = |b| +1 and |d/| = |d| F1l.

Now, whenever we consider any such pair of monomials Xz X5 and X5 X3, X= 5, oOccur-
ring in the last (double) sum in (4.7) and such that X~ X~ = X5, X5, , by induction we
have nbﬂ d = NyY Uy . Even more, a direct check shows that for the signs involved one has

() (EIE Ly (I g where h=[b], k=1|d|, B = ||, K =|d| . Thus
the two (identical!) monomials X 7 X 7 and X S X S in that sum cancel out each other.
The outcome is that the last, double sum in (4.7) is actually zero: thus (4.7) itself reduces to
((f='g-) V) e = ZII,V:] (9p—mp) X5, v, : and, as before, one deduces 9, = 7, for all p.
w(3p) = 1q

Thus the above induction argument yields ¥, =mn, forall p=1,...,N_ , hence g_ = f_ .

An entirely similar analysis shows that g, = fy , whence the claim is proved. O

At last, we are ready for our main result:

Theorem 4.21. For any A € (salg), , the group product yields a bijection
Go(A) x GTS(A) x G (A) — Gy(A)

and all the similar bijections obtained by permuting the factors Gii’<(A) and/or switching the
factor G5(A) to the right.
Proof. We shall prove the first mentioned bijection.

In general, Proposition 4.18 gives G (A) = G5(A) G5 (A), so the product map from G(A) x
G5 (A) to Gy (A)isonto. But in particular, we can choose an ordering on Aj such that A7 < A%‘ ,
hence G=(A) = G7"<(A) GT"=(A), so we are done for surjectivity.

To prove that the product map is injective amounts to showing that for any ¢ € Gy (4)
the factorization g = g5g— g+ with g5 € G5(A), g+ € G%K(A), is unique. In other words, if

9=959- 9+=[of-f+ with g5, f5€ G5(A), g+, f+ € G%E’<(A) , we must prove g5 = f5, 9+ = f+ .
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By definition of Gg(A4), both g5 and f; are products of finitely many factors of type zz(tg)
and h;(s;) for some tz € Ag, s; € U(Ag) — with a € Ag, i =1,...,r. Moreover, there exist
product expansions g4 = Hfivil (1495 Xzx ). fr = Hfivil (L+n7 X~i) like in the proof of
Lemma 4.20. We call B the superalgebra of A generated by all the tz, the s;, the ﬁi and the
77 : this is finitely generated (as a superalgebra), and Bj is finitely generated as a Bj— module

By Lemma 4.19, Gy (B) is a subgroup into Gy (A) ; therefore the identity ggg— g+ = f5 /- f+
holds inside Gy (B) as well. Thus we can switch from A to B, i.e. we can assume from scratch
that A = B. In particular A is finitely generated, so A is finitely generated as an Ag—module.

Consider in A the ideal Aj, the submodules A™ (cf. section 2.1) and the ideal (A") of A
generated by A" (meN): as A™ is homogeneous, we have A/(AJ") € (salg), . Moreover, as Aj
is finitely generated (over Ag), we have A™ = {0} = (A™) for m>>0. So it is enough to prove

go = f5 mod (A]"), g+ = f+ mod (A" VY meN (4.9)

hereafter, for any A’ € (salg), , any I ideal of A’ with 7 : A’ —» A’/I the canonical projection,
by =y mod I we mean that z and y in Gy (A’) have the same image in Gy (A’/I) via Gy (7).

We prove (4.9) by induction, the case m = 0 being clear, as there is no odd part.

Let (4.9) be true for even m. In particular7 g+ = f+ mod (Aim) : then the proof of Lemma
4.20 applied to Gy (A/A™) gives 19d = nd mod (A™) for all d, hence (19? —n;lt) € (Am)nA; C
(A’IWH) for all d, by an obvious parity argument. Thus g+ = f+ mod (A’{LH) too, hence from
959— 9+ = fo f— [+ we get g5 = f5 mod (A’{LH) as well, that is (4.9) holds for m—+1.

Let now (4.9) hold for odd m. Then g5 = fs mod (A™); but g, f5 € Go(A) = Gp(Ap)
by definition, hence g5 = fz mod (A{”) N Ag. Therefore gz = f; mod (A%"H) because, by an
obvious parity argument again, one has (A™)NAg; C (A%”H) . Thus from g59— g+ = f5 f— f+ we
get also g_ gy = f_ f+ mod (A7"'). Then Lemma 4.20 again — now applied to G(A4 /A7)
— eventually gives g+ = f+ mod (A?"'H) , so that (4.9) holds for m+1 too. O

The “overall consequence” of the last result is the following, straightforward corollary:

Corollary 4.22.
(a) The group product yields functor isomorphisms
Gox GO < xGP< =Gy Gy x G < x G =5 Gy

as well as those obtained by permuting the (—)-factor and the (4)-factor and/or moving the ((_))—
factor to the right. All these induce similar functor isomorphisms with the left-hand side obtained

by permuting the factors above, like G¥’< X Gy XG;’< = Gy, G{’< X Gg XG;“< =, Gy, ete.

(b) The group product yields functor isomorphisms
Gy x Gy =2 GY, GExGI =2 Gy, GP xGi— Gy, G xGj — Gj

(¢) Let < be a total order on ﬁi such that &7 = &Jr or £+ = &f . Then the group product
yields isomorphisms G X G HGV , G X G HGV , G x Gg HGV , G x Gj = Gy .

Yet another crucial step we can move on now is the following:

Proposition 4.23. The functors G—i < : (salg), — (sets) are representable: namely, they are the

functor of points of the superscheme AO‘ * where Ny := |A | In particular they are sheaves,

hence Gi < Gi <. Similarly, for any total order in Al such that A =< A+ or A+ =< A
have G1< = G1< = AO|N as super-schemes, with N := |A1 | =Ny +N_.

Proof. Clearly, there exists a natural transformation W+ : AEZINi — G—i’< given on objects by

UEA) AN A) — GET(A) (O, = [T 25 (90)
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Now given gijE = vail x5,(9;) € Gii’<(A), hijE = Hl 5 25,07 € Gii’<(A), assume that

g% = h%, hence hii (gi ) =1. Then we get (19/17""1%\&) = (19’1’,...,193(,i) just as showed in
the proof of Lemma 4.20. This means that ¥+ is an isomorphism of functors, which proves the
first part of the claim. The last part of the claim then follows like for Corollary 4.22(c). O

Finally, we prove that the supergroup functors Gy are affine algebraic:

Theorem 4.24. Every functor Gy is an affine algebraic supergroup.

Proof. First, G;’< and G;“< are affine, and algebraic, by Proposition 4.23; moreover, by Propo-
sition 4.10(¢c), or by Proposition 4.12, Gy is affine algebraic as well. Now Corollary 4.22 gives
Gy = Gy x Gy < x G;"< as superschemes. As any direct product of affine algebraic super-
schemes is affine algebraic too (see [3], Ch. 10), we can eventually conclude the same for Gy . O

Remark 4.25. Theorem 4.24 and Proposition 4.23 together show that Gy = Gg X Gi_’<>< G;r’<
as superschemes. As Gii’< = Gii’< is generated by the one-parameter supersubgroups zz (5 €

ﬁii) , we conclude that Gy can also be described as Gy (A) = <G5 YU {as(A }~6£ > for all
A € (salg), . Even more, as Gg = Go x Gg+ by Proposition 4.12 and Gg+ = X

Proposition 4.14, we have also Gy (A4) = <G0(A) U{za(4

ach . ra by

) &65\&) , for all A€ (salg), .
We finish with an additional, non-obvious remark: under mild assumptions, the supergroup
Gy , which by construction is a supersubgroup of GL(V), is indeed a closed one:

Proposition 4.26. Assume that g1 as a k-submodule of gl(V); is a direct summand with a k—free
complement. Then Gy is a closed supersubgroup of GL(V). In particular, this is always true if
k is a field.

Proof. By construction we have that G < GL(V). Consider the factorization Gy = Gg x GT
in Corollary 4.22(c): by construction, Gg is just a classical algebraic group(-scheme), embedded
into GL(V') as a closed subgroup, therefore it is enough to show that Gi< is closed too.

Recall that GL(V) can be realized as an open supersubscheme of End(V') = Mat,,,, (k) , where
m|n is the (super)rank of V'; so it is enough to prove that G is closed in Mat,,, (k) ; recall also

O(End(V)) = O(Maty,,(k)) = k{{x [ eyt n;}

6,50 7"97 6,50 51,5 S5 5=1,....m;

Using Proposition 4.23, we identify Au(le ~ Gi< so that the point 0 in AEZ‘N corresponds to the
identity I in Gi< . Then the tangent superspace to Gi< at I corresponds to the tangent superspace

to AE'N at 0, naturally identified with AE‘N again. By the assumption on gj, we can complete

the k-basis {X;1 ey X:,N} of g7 to a ]kfbasis of gl(V);: this in turn correspond to a “change
of odd variables” in O(End(V)), from {51 s> }:; 11 ;' to some new set of odd variables,
say {21, ceey é\gmn}, such that < Fn o §k> = 5h7k . Lettmg J be the embedding map of Gi<

into End(V), the tangent map d,J (of J at I) is expressed by a 2-by-2 block matrix whose

only non-trivial block (in the right-bottom corner) is (g—gt)h i N
: =1,...,N;

any g = [IX, z5,(9;) € G (A) expands as g = HN1x7 W) = T+ 3N 0 X5, +0©2),
where O(2) stands for some element in gl(V (A4)) = A @k gl(V)g+ A7 @k gl(V)1 whose (non-zero)

Now, given A € (salg), ,

coefficients in Ay and Az actually belong to A% (cf. Subsec. 2.1). This implies that 21,% = 0p, SO
that the only non-trivial block in the matrix of d,J is the identity matrix of size N . Thanks to
this last remark, we can adapt the Inverse Function Theorem and its corollaries (see [3], §§5.1-2)
to the present context: the outcome is that there exists “a change of variables”

r,s=1,...,n; ~ r,s=1,..., n; -~ g
{x;’J ’ x;‘/’S}i,j:L'n; '_) {:C Y x” }i7j:17"'»m; ’ {gt }t:1 .., N; ~ {gt }t:1 ., N;
such that the morphism of superalgebras J* : O(End(V)) — O (Gf) corresponding to J is

given by mapping x”- B Oigs Ty b O, a — 9 for t < N, & — 0 for ¢t > N. In turn,

G =1Im(J) is the zero locus Ker(J*), hence it is a closed supersubscheme of End(V). O
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4.5 The dependence on V

The construction of the supergroups Gy, was made via the Lie superalgebra g and the g—module
V. So we have to clarify how supergroups attached to different g—modules are related among them.
Moreover, the construction involves the choice of an admissible Z-lattice M in V : nevertheless,
we shall presently show that the outcome, i.e. Gy itself, is actually independent of that choice.

4.27. The weight lattice of Gy . Let L, be the lattice of all “integral weights” of gy (in
short, “the weight lattice of go”), using standard terminology, cf. for instance [13]: in particular,
these are weights with respect to the Cartan subalgebra h of g. Also, we let L, be the lattice
spanned by all the h—roots of g (in short, “the root lattice”): here by “h—-roots” we mean the
eigenvalues in g of the adjoint action of b (again), not of b ; these h-roots are just the restrictions
(as linear functionals) from  to b of the roots of g considered in §2.18 (which might be called
“h-roots”). Actually, nothing changes in all cases but H(n): for the latter, an explicit description
of the h-roots follows from considering the description of the h-roots and reading it modulo §.
From §2.18 we see that the root lattice L, is spanned by the weights €1, ..., €, of the
defining representation of the reductive Lie algebra go. On the other hand, the weight lattice
L., is spanned by the so-called fundamental dominant weights wy , ..., w,. Now, looking at the
relationship between the €; and the w; one sees that the quotient module L, / L, is
— trivial, when g is of type W, S or §,
— isomorphic to Zg , when g is of type H(2r + 1),
— isomorphic to Zs ® Zs, when g is of type H(2r);
therefore, in all cases L,, is just “slightly bigger” than L, .
Now let Gy be a supergroup constructed as in section 4, associated with the Lie superalgebra g
of Cartan type and with a faithful, rational, finite dimensional g—module V' with admissible lattice
M . Now Corollary 4.22, Proposition 4.23, Proposition 4.12 and Proposition 4.14 altogether give

Gy = Ggx GT = GoxGgr x GT = G x AMNotl0 5 A%V =~ GOXAN6T|N

(with notations used there), i.e. Gy = Gg x ANGT}N . By Proposition 4.9, Gg = Chy is a
classical, split reductive algebraic group. By classical theory we know that Gy = Chy depends
only on the lattice of go—weights (= g-weights) of V': we denote this weight lattice by Ly .

Now, for the lattice Ly associated with the supergroup Gy we have clearly L, C Ly C Ly, .
By the remarks above about L., / L, , we have that Ly is always “very close” to L, or L, : in

particular, we always have equalities L, = Ly = L,, when g is of type W, S or S (i.e., not H).

Let now Gy and GY,, be two Cartan supergroups obtained from g via different g-modules V and
V’. We let z5(t), z%(t), and hy(u), Ry (u), be the points of the one-parameter supersubgroups

[0

in Gy and G, associated with & € A, t € AgUA1, and Hebyz, ue U(A()) — cf. subsection 4.1.

Lemma 4.28. Let ¢ : Gy — G, be a morphism of the supergroups mentioned above. Assume
that ¢ (Go(A)) = G{(A) and ¢a(za(t)) = z5(t) forall A€ (salg), , t € AgUAT, @ € A\A.
Then Ker(¢) C Z(Go), where Z(Gy) is the center of Gy .

Proof. First, note that A \ 50 = E@T U 5{ U &%‘ , and fix a total order =< on this set such that
ﬁm = Zi_ = K{ Then take g € Gy (A) with g € Ker (¢A). By Corollary 4.22, Proposition
4.23, Proposition 4.12, Proposition 4.14 and Proposition 4.9, there is a unique factorization of g

9 = 90 pea,, 25(t5) - Il5-ca-v3- (05-) - Tlsrcar 2yt (05+) (4.10)

(all products being ordered with respect to <) for some go € Go(A), t5 € Ag and J5- € A7. A
similar factorization also holds for ¢(g) in GY, (A). All this along with ¢a(g) = eq/ ,(a) , With

¢a(9) = ¢al90) [gea,, 0a(25(t5) - [l5-ca- balr5-(95-)) - [ls+car dalws+ (95+))
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and with the unicity of the factorization of ¢4(g) implies, by the assumption ¢4 (z5(t)) = z5(t),
that all factors in the product on right-hand side here above are trivial. In turn, all factors but gg on

right-hand side of (4.10) are trivial too; therefore g = go € Go(A) () Ker(¢a) = Ker ((bA’Gg(A)) .

By assumption ¢A|Go : Go — G{ is an epimorphism, with Gy and G{, being connected
split reductive algebraic groups over Z having tangent Lie algebra g (by Proposition 4.9), so

d¢ : Go — G{ is an isomorphism. By classical theory this forces Ker (¢A|GO) C Z(Gy) . O

Using this last result, we can now show that the relation between supergroups Gy associated
with different g-modules V is the same as in the classical setting. The result reads as follows:

Proposition 4.29. Let Gy and G, be two affine supergroups constructed using two g-modules V
and V' as in subsection 3.4. If Ly D Ly, then there exists a unique morphism ¢ : Gy — G,
such that Ker(¢) C Z(Go) and ¢a(zz(t)) = a4(t) for every A € (salg),, t € AgU A1,
aeA \ Ay . Moreover, ¢ is an isomorphism if and only if Ly = Ly .

Proof. By classical theory, if Ly O Ly there exists a well-defined epimorphism ¢g : Gg —» G :
in particular, we can (and we do) choose it so that d¢y = idg, (recall that Lie(Go) = gg =
Lie(Go) by Proposition 4.9). As a consequence, we have that ¢g acts on one-parameter (additive
and multiplicative) subgroups of Gg as ¢o(z5(t)) = z5(t) and ¢o(hy(u)) = hy(u).

Now we extend ¢ to a morphism ¢ : Gy — G, asfollows. Fix A € (salg), and a total order
in A\Ay ; use the unique factorization in Gy (A) — like in the proof of Lemma 4.28 — to factor g as
in (4.10). Then define ¢4(g) == Po(go) .HEEA(’)T xlg(tﬁ) 'HW*GZ; 2% (V5-) 'HWEA? a% (U5+) -

This gives a well-defined map ¢4 : Gy (A) — G4, (A4) , which by construction is functorial in
A: thus we have a natural transformation ¢ — a morphism of superschemes — from Gy to GY,, .

Moreover, this ¢ is also a morphism of supergroups. In fact, if A € (salg), is local then ¢4 is
a group morphism: indeed, Gy (A) = Gy (A) and G, (4) = G}, (A4), and we have ¢a(gh) =
®a(g) pa(h) because all the relations used to commute elements in Gy (A) or in G,/ (A) so to write
a given element in “normal form” as in (4.10) actually do not depend on the chosen representation.
Finally, by Proposition A.12 in [9], we have that ¢ is uniquely determined by its effect on local
superalgebras, on which we saw it is a morphism: thus we conclude that ¢ is globally a morphism.

By construction ¢ is also onto. Thus all assumptions of Lemma 4.28 hold, and we can conclude
that Ker(¢) C Z(Go) and ¢4 (z5(t)) = 2%4(t) . Finally, again by construction ¢ is an isomor-
phism if and only if ¢ is an isomorphism itself: but this in turn holds if and only if Ly = Ly.. O

As a direct consequence, we have the following “independence result”:

Corollary 4.30. Every supergroup Gy constructed so far is independent, up to isomorphism, of
the choice (which is needed in the very construction) of an admissible lattice M of V.

Proof. Let M and M’ be two admissible lattices of V', and set V' := V. Construct Gy and Gy
using respectively M and M’ : then we have Ly = Ly, so Proposition 4.29 gives Gy = Gy . O

4.6 Lie’s Third Theorem for the supergroups Gy

Let Gy be an (affine) supergroup over the ring k, built out of the Lie superalgebra g (of Cartan
type) over K and of the g-module V as in subsection 4.2. In subsection 4.1 we have introduced
the Lie superalgebra gy := k ®z gy over k starting from the Z-lattice gy . We now show that
the algebraic supergroup Gy has gy as its tangent Lie superalgebra.

We start recalling how to associate a Lie superalgebra with a supergroup scheme ([3], §§11.2-5).

4.31. The Lie superalgebra of a supergroup scheme. For a given A € (salg), let Afe] :=
A[x]/(xQ) be the superalgebra of dual numbers, in which € := = mod (w2) is taken to be even.

Then Ale] = A® Ae, and there are natural morphisms i: A — Ale], a N a,and p: Ale] — A,
(a + a’e) P a, such that poi=idy . Given a supergroup k—functor G : (salg), — (groups),
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denote the morphism associated with p: Ale] — A by G(p)a : G(A(e)) — G(A) . This gives a
unique Lie algebra valued functor Lie(G) : (salg), — (Lie), given on objects by Lie(G)(A) =
Ker(G(p)a) . For the Lie structure, one first defines the adjoint action Ad: G — GL(Lie(G))
of G on Lie(G) as Ad(g)(z) := G(i)(g) -« - (G(i)(g))f1 for all g € G(A), = € Lie(G)(A). Then
one defines the adjoint morphism ad := Lie(Ad) : Lie(G) — Lie(GL(Lie(G))) := End(Lie(Q)),
and finally sets [z,y] := ad(z)(y) for all z,y € Lie(G)(A). Further details are in [3], §§11.3-5;
note that the authors there assume k to be a field, yet this is not required for the present context.
When G is (the functor of points of) a supergroup k—scheme and k is a field, the functor Lie(G)
is quasi-representable (cf. §2.9): indeed, it can be identified with (the functor of points of) the
tangent superspace at the identity of G, denoted T.(G). In turn, T.(G) bears a structure of Lie
k—superalgebra, as usual (cf. [3], §11.4.); moreover, we point out that it bears also a canonical 2—
operation, which can be given using the (standard) identification of T, (G) with the k—superalgebra
of left-invariant superderivations (into itself) of O(G), the Hopf k—superalgebra representing G .
We shall presently see that for Cartan k—supergroups Gy this is the case also if k is not a field:
we shall then denote by Lie(G) both the above functor and the associated k—-supermodule. Note
that this is also the case for the k—supergroup Lie(GLm|n) : indeed, it is well known that, whatever
k is, the functor Lie(GL,,,) is quasi-representable, and identifies with the Lie k-superalgebra
gl 5 @s the latter is free (as a k-module) of finite rank, Lie(GL,,,) is in fact representable too.

Eventually, we are now ready for the main result of this subsection.

Theorem 4.32. Let Gy be the affine supergroup of Cartan type built upon g and the g—module
V' (cf. section 4.2). Then Lie(Gy) is quasi-representable, and actually representable, namely
Lie(Gv) = Ly, as functors from (salg), to (Lie),, .

Proof. The result follows from sheer computations: as everything takes place inside GL(V'), one
can argue like in the standard example of Lie(GL,,),) — which can be found, e.g., in [3], §11.3.

First, from the decomposition Gy = Gg x G= = Gg x (X %’eﬁixi) — see Corollary 4.22 and
Proposition 4.23 — we find at once that

Lie(Gv)(A) = Lie(G())(A()) X (Xﬁeﬁi(l—’_GAi Xq)) =
= Lie(Gg)(A4p) X (1+€E;‘/«651A1X§) = Lie(Gg)(4p) X (1+€Ai QK gi)

Second, by the results in subsection 4.3 and by the classical theory of Chevalley groups we
know that Lie(Gg) is quasi-representable (and actually representable), with Lie(Gg) = L4;),,,

where (g5)yy = k @z (85)y and (gg)y = {X €g| X.M C M} = by @ (@aezﬁ ZXa) much
like in Proposition 3.17 and in subsection 4.1. From this and the previous remark, it follows that

Lie(Gv)(4) = Ligy),,(A0) x (1+eA1 @ug1) = Ag @k (80) v + A1 @k 01 = Ligy), @0 (4)

so that Lie(Gy) = Ly~ — as claimed — because (gg)y), ® 91 = gvk - In particular, as gy is
free of finite rank it follows that Lie(Gy ) is representable too. O

4.7 Special supersubgroups of Gy

In subsections 4.2 and 4.3 we considered the (super)subgroups Gg and Gg of Gy . We introduce
now some other remarkable supersubgroups, associated with special Lie supersubalgebras of g.

Definition 4.33. Fix a splitting Ay = ﬁar Hﬁg of the classical root system Ag = Ag (of go)
into positive and negative roots. For all A€ (salg), and t>—1, define the subgroups of Gy (A)

Gon(A) = (h(A), aa(A) | He bz, G e[l Be ), (Goin)glA) = G (AN Go(4)
Gir(4) = (aa(4) |G €L, AL ) (Gi)5(A) = G (A)NGo(A)
G_1(A) = <xq(A)heﬁ_1> . Goio(A) = <hH(A),xa(A)‘Hebz,&eﬁ_l]_[ﬁo>
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G- (A) = <x;(A),hH(A),xa(A)‘%eﬁ_l,HehZ,&eﬁg>
G (A) = <hH(A),m5(A)7:cB(A)‘Hebz,&eﬁg,geﬁzv,z>0>

(the last three rows only for g % S(n)). Let Gy, (Gﬁ)6 LG_1,G_10,G L, Gihax + (salg), —
(groups) , for ¢>—1, be the corresponding full subgroup functors of Gy , and Gy, (GtT)ﬁ — for
tZ—l — Gfl, G*1’07 G and G+

min max

the sheafification functors of the each of the above.

Lemma 4.13 and Lemma 4.8 yield the following properties of these special supersubgroups:

Proposition 4.34. The following hold:
(a) GtT =~ X&EHZM& T3 = GtT y (Gﬂ)a = X&EHZ>tzzﬁ£6 Ty &~ (GtT)(—) fOT‘ all t >—1 ;

() Gpr =Gpr Ggr =Gy (Gpr)— = (Gpr) < (GqT)f = (GqT)() , forall —1<q<p;

0 0 — 0
(¢c) G_10=G_1xGy, G_190=G_1xGg; G_11=GoxGgr, G_11 =GoXGor ;
(d) Giin = G_1><1 C;(Oi ’ Gflin = G_1><1 Gét ) and GI:Ea,X = GOi X GOT ’ Giax = (;Oi X G()T

where GBE and Goi are given as in Definition 4.5 and Definition 4.6 with respect to the splitting
Ao = Al 1Ay fized in Definition 4.33.

(e) the supergroup functors Gy , (Gﬁ)() — for t> -1 — and — for g% S(n) — G_1,
G_ 10, G, and GE

in - are all representable, hence they are affine (algebraic) supergroups.

Finally, the “Lie’s Third Theorem” holds for these supersubgroups too, by the same arguments:

Theorem 4.35. For every affine supergroup Gy, (Gﬁ)(J (t>-1), G_1, G_1p9, G=E. and

min
GZ__ as above the corresponding tangent Lie algebra functor Lie(—) is representable, namely

Lie(GtT) = EB%T , Lie((GtT)(—)) = ‘C(Q%T), Vi>0
0

Lie(G_11) = Lg_,p),, »  Lie((Gi)g) = Lig_pr)

Lie(G_l) = 'CBZA y Lie(G_LQ) = E(E—l,o)vyk

Lie(Grhy) = Ly ,  Lie(GE

=L, +
min) Vi max) (bimasx) v

V,k; 0

as functors from (salg) to (Lie), , where (9_11)yy = (8v)X 8% , (8-11)y.,0 = (@)ox (0% ); -

+ + .
(g—lyo)v’k = g%l X (gV)O ’ (br:i:lin)\/,]k = g%l A (gV)O and (blzi:lax)v,k = (gV)O X Q%T ’ with

(gv)g = bv @ (@aer g%) and (gv)gE =hy ® (@aeA% gé) — notation of Definition 2.23 and
Definition 3.11.

4.8 The uniqueness theorem

In this subsection we shall prove that every connected affine algebraic k—supergroup whose
tangent Lie superalgebra is of Cartan type and whose classical subgroup (see below) is k—split, is
necessarily isomorphic to one of the supergroups Gy we constructed. So, up to isomorphism the
supergroups Gy are the unique ones of the above mentioned type. We begin with a definition:

Definition 4.36. Let G is an (affine) supergroup, H := O(G) the Hopf k—superalgebra represen-
ting it, and H := H/ (H12 ® Hy) = H()/Hi2 , which is a (classical) commutative Hopf algebra.

The affine group-scheme G, represented by H = O(G) — so that O(Ge,) = O(G) —
is called the classical supersubgroup(-scheme) associated with G . By construction, G, coincides,
as a group functor, with the restriction of G to the category of commutative (unital, associative)
k—algebras.

The quotient map « : H:= O(G) —» O(Gev) = H yields an embedding j : Gey— G, so
that G, actually identifies with a closed (super)subgroup of G.
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Again by construction one has that every (closed) supersubgroup K of G which is classical
is actually a (closed) subgroup of G, . Moreover, the functor Lie(Geu) is the restriction of
Lie(G) to the category of (classical) commutative algebras: furthermore, when the latter is quasi-
representable, say Lie(G) = Ly, then the former is quasi-representable too, with Lie(Ge,) = Ly, -

Remark 4.37. Let G := Gy be as in Definition 4.6 . Then (Gv)ev =~ Gg and (G‘i,) ~GE .

ev 0

4.38. Supergroups with tangent Lie superalgebra of Cartan type. Let G be a connected
affine algebraic supergroup, defined over k. We assume that the functor Lie (G) associated with G
(cf. § 4.31) is quasi-representable, with Lie (G) = Egvlk where gy i := k®zgy: in particular, g is
a simple Lie superalgebra of Cartan type, we fix in g a Chevalley basis, V' is a rational g-module
with an admissible lattice, etc. In short, we might say that “G has tangent Lie superalgebra
which is simple of Cartan type”. In particular, this means that gy is free as a k-module, with
ki (gv k) = dimxk(g) , and it is a Lie k-superalgebra, whose Zy-grading gvx = (gv/k)5 ® (8v/k)1
is given by (gvk), =k ®z (gv1); (for a = 0,1) where g = gy @ g1 is the Zy-grading of g. To
simplify notation we shall drop all superscripts “V’ k”, writing just g, g and g7 , tacitly assuming
that all these objects are k—forms (specified above) of the initial objects defined over K.

According to Definition 4.36, the supergroup G has a “classical” subgroup G,, such that
Lie(Gey) = gg - The assumptions also imply that G, is a connected affine algebraic (classical)
group-scheme, defined over k. Now gg = go ® gg+ (cf. Definition 2.23), with gy reductive and
gg+ nilpotent: by the classical theory, from Lie(Gev) = gp we deduce that G, = G x Gi, for
some connected algebraic groups G{ and G{; such that Lie(Gg) = go and Lie(GE—)T) >~ g5r. In
particular, G{, is reductive and G%T is unipotent. In addition, we assume that G is k—split, by
which we mean — by definition — that the classical reductive group Gy, is k—split.

In this subsection we show that G is (isomorphic to) a “Cartan supergroup” Gy associated
with g and with some g—module V' as in section 4.

For our arguments to apply, we need yet another technical requirement, namely we assume that
G is linearizable, i.e. it is embeddable into some GLy,,, as a closed supersubgroup (this is true
when G 2 Gy, hence it is a necessary condition). Note that this is automatically true when the
ground ring k is a field, or k is a PID — e.g.,, k = Z — and O(G) is free as a k-module.

4.39. Linearizing G . By classification theory of split reductive groups, G{, can be realized via the
classical Chevalley construction: namely, there is a faithful, rational, finite dimensional go -module
V', with an admissible lattice M , such that G is isomorphic to the affine group-scheme associated
with go and with 1% by the classical Chevalley’s construction. Similarly, by classification theory of
unipotent algebraic groups, Gf, is isomorphic to the group Gg+ in Definition 4.6. Overall, we get
Gey = G{ X Ggr . Actually, one has even more: G, = G{, X Ggr can be realized at one strike
by means of a (slight extension of the) classical Chevalley’s construction, based upon a faithful,
rational, finite dimensional g5 —module V with an admissible lattice M . Then the dual gg —module
V* is also faithful, rational, finite dimensional with M* as an admissible lattice.

By assumption G is linearizable, so it identifies with a closed supersubgroup of some GLy |, -
Then G, identifies with a closed subgroup of (GLn‘m) , the classical subgroup of GLy |, -

ev

Pick the (GLn|m)w7module U= Indgjf"‘m”’(‘/}*) — thought of as a functor from (salg),
to (k-mod) — induced (by the classical theory of representations of algebraic groups) from the

G.,~module V*. Let U* be the (GLpjm),,—module dual to Tj'; as Indéi?"'m)"”“ (17*) maps onto 17*,

we have that V = V** embeds into 17*, i.e. U contains a Ge,~submodule isomorphic to V.
Now, as Lie((GLnjm),,) = (8%m)5 » the (GLyjm ), -module U* is also a (g[n‘m)éfmodule. As

ev 0"’

(g[n‘m)() is a Lie (super)subalgebra of gl,,, , we can perform on U* the induction from (g[n|m)()

to gl : this yields a gl,|,,,~-module W := I”d(itz::)ﬁ(ﬁ*) , described by
— Olajm  (TFy 77+
W= Ind" ") (U") = Ul(ghyjm) v (et U
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Now W is a GL,,|,,~module too: indeed, one simply has to restrict the action of ﬁg[nhn to GLy,
(thought of as a subfunctor of ﬁg[n\m)' Yet we need to describe the GL,|,,,~action on W explicitly.
It is known that GL,,, “splits” into a direct product — as a superscheme — of the subgroup
(GLn‘m)w and the totally odd supersubscheme (GLn\m)odd =1+ (g[n‘m)i , where I := 1,1, is
the identity (block) matrix of size (n4+m) x (n+m): the splitting is given by the matrix product,

namely GLyjn(A4) = (GLyjm), (A) X (GLyjm) ,(A) via the unique factorization ( alp ) =

ev odd(

vld
I, -1
( g || 2 > . ( e || aImﬂ ) for each block matrix < 3 || 5 ) € GLy ) (A), with A € (salg), .
Every gey € (GLyjm)  (A) acts on any decomposable tensor y®7u € U(g[n|m) Dy (gl )7)[7* =
ev n|m)o

W via gy (y ® ﬂ) = Ad(gev)(y) ® Gev -ut , where on left-hand side we take the natural GL,,,—~
action on U(g[n‘m) induced from the adjoint action on gl,|,,, . Moreover, every goq = I + g €
(GL”\m)odd(A) acts on any y ® U as above by goaq.(y®0) = (I+¢).(y®u) = (y+9'y) @.
As G is (embedded as) a closed supersubgroup of GLy)y, , the GL,,,~module W is also a
G-module. Moreover, by Remark 3.13, both for G and for GL,,|,,, — which is a “Chevalley super-
group” in the sense of [9] — the Kostant superalgebra (with scalars extended to k) identifies with
the superalgebra of distributions: then Remark 3.13 tells also that Uk(g) embeds into Uy (g[m|n) .

Then we can consider inside the G—module W the subspace V := Uk(g) ®Uk(g—)‘7 : also, it is clear
0

(thanks to the explicit description of the G—action) that this V' is a G-submodule of W .
Tracking through the whole construction, as V' is rational and faithful as a G¢,~—module we see

that V' in turn is rational and faithful as a G-module. Thus G embeds as a closed supersubgroup

inside GL(V), and G, as a closed subgroup of G. Also, as M is an admissible lattice in the

gg—module V', we see that M := Ki(g) ® ke (50) M is admissible in the g—module V' (hereafter, we

k\Y0

write Kg(t) := k ®z Kz(t), and “admissible lattice” has the obvious meaning when passing from

Z—modules to k-modules). Finally, as V' is finite dimensional, and K(g) is (free) of finite rank as

a Ki(gg)-module (see Corollary 3.12) we argue that V is finite dimensional too.

By construction — including the fact that V = U(g) ®U(%)‘A/ = /\gi®‘7 as a gg—module is
just VO for r:= ranky 4, (U(g)) = 24im(91)  the gg-action on V is just a diagonalization (r
times) of the gp—action on V:asa consequence, the embedded copy of (Gv)w inside GL(V) is

a (r times) diagonalized copy of the group obtained in GL(V) from the g5 action on V via the
Chevalley construction. By assumption this group is Gey, thus (Gv),, = Ge, inside GL(V).

4.40. Splitting G . Recall that GL(V') splits as GL(V) = GL(V )y xGL(V); , with GL(V);(A) :=
I+gl(V)1(A1) (cf. §4.39). Then denote by 75 and w7 the projection maps of GL(V') onto GL(V);
and GL(V); . Note that GL(V)g = 75(GL(V)) coincides with (GL(V)), = GL(V)|(alg) :
k
Look at G embedded inside GL(V') : then 75(G) is the restriction G’(alg) , hence m5(G) = Gy,
k

(by Definition 4.36), so m15(G) < G. Given g € G(A), for A € (salg), , it factors as g = g5 - 91
with g5 := m5(9) € GL(V)5, g1 :=71(g) € GL(V); . Then g5 € Gey(A4) < G(A) and 71(g) =:
g1 = g5 tg € G(A) , so m1(g) € G(A) too; it follows that 71(G) C G (as a supersubscheme) too.
The outcome is that the factorization GL(V) = GL(V )5 x GL(V); = 75(GL(V)) x 71 (GL(V))
of GL(V) induces the factorization G = m5(G) X 711(G) = Gey X 717(G) of G as well.

4.41. Construction of a supergroup Gy and comparison with G. The G-module V
constructed in §4.39 is obviously also a representation of the Lie superalgebra Lie(G) = g. More
precisely, V = U(g) ®u(g,)V implies V = [ndé‘[_J (V) . In addition, we saw that: (a) V has finite
dimension, (b) V is rational, (c) V contains M := Ky(g) ®x, (g5) M as an admissible lattice.

Therefore, using V' and M we can construct the affine algebraic supergroup Gy , as in section
4, which is embeddded inside GL(V) as a closed (cf. Proposition 4.26) connected supersubgroup.

By the analysis above, we can embed both G and Gy as closed supersubgroups of GL(V):
thus we identify G and Gy with their images in GL(V'), and their tangent Lie superalgebras with
the corresponding images in gl(V). We can now prove the main result of this subsection:
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Theorem 4.42. Let G and Gy be as above. Then G = Gy .

Proof. By the analysis in §4.40, the splitting GL(V) = GL(V)y x GL(V);, with GL(V){(A) :=
I+ gl(V)1(Az), and the embedding of G in GL(V) provide a splitting G = Gey X Gogq , With
Gy = m5(G) and Gygq := m1(G) . Similarly, the same fact with Gy replacing G yields Gy =
(GV)eUX (Gv)odd , with (Gv)ev: m5(Gyv) = Gj and (Gv)odd =T (Gv) — see Remark 4.37.
All these splittings are superscheme isomorphisms given by the group product map. So as G =

Gy Gogg and Gy = (GV)CU.(GV)Odd, it is enough to prove G, = (Gv)ev and Gygq = (Gv)odd .

First, the identity Ge, = (Gv)ev follows from §4.39. Indeed, therein we last pointed out that
(the copy of) G, inside GL(V') can be realized through the classical Chevalley’s construction via
the gg—module V and the lattice M ; but this is exactly the same outcome as first performing the

construction of the supergroup Gy and then taking its classical subgroup (Gv)w, so we are done.

Second, definitions yield Goqq = I+T), (Godd) as a supersubscheme of GL(V'); , where T, (Godd)
is the tangent superspace to Gygq at I ; similarly (GV)odd =1+T, ((GV)odd) . But by construction

we have also T, (Godd) =g1 =1, ((GV) hence G,gq = (GV)od O

odd)’ d’

5 The standard case

In this section we look somewhat in detail the example of the supergroup G, associated with
g := W(n) and with the “standard” g-module V := A(n) — i.e., the defining representation of
g := W(n). Our analysis then can be easily adapted to the case g:= S(n) and V := A(n) again.
More in general, as each Cartan type Lie superalgebra is naturally embedded in W(n), from the
present analysis one can also deduce (with some extra work) a similar analysis for the other cases.

5.1 The affine algebraic supergroup Gy,

From now on, we retain the notation of subsection 2.3, and we let g := W (n) = Derg(A(n))
and V := A(n). Fix the K-bases By, = {£%] e €{0,1}" } in A(n) and By, :={£%9; | a €
{0,1}", i = 1,...,n} in W(n) — see subsections 2.3, 2.10 and 3.3. Recall that By (,) is a
Chevalley basis of g := W(n): the root vectors X5 (& € &) are the &* 0; with a # ¢;, while

S =i
the “toral type” elements H; are just the remaining elements &; 0; of By () (i =1,...,n).
By definition, g acts on V := A(n) by (super)derivations. Explicitly, the action of any basis
element in By (,) onto any basis element in Bj(,) reads

€0:(8) = Hhrp €T (5.1)

This simple formula has deep consequences. The first is that the W (n)-module A(n) is rational,
as the H; act diagonally with integral eigenvalues. A second consequence is that

(e20)°=0 Vate, (40)°=¢6a Vi=1,...n (5.2)

note that £% = & ). The left-hand part of (5.2) implies that all divided powers X of even
( S &

root vectors (@& € 5) with m > 1 act as zero on A(n). From this and from (5.1) it follows at
once that the Z-span of By, call it M, is an admissible lattice of A .

As another consequence, we can describe the one-parameter supersubgroups xz and h; asso-
ciated with root vectors Xz = £%0; (g;égi) and “toral” elements H; = & 0;. For x5 one has

z5(u) = exp (uXz) = oo (uXa)m/m! =14+uXzg = 14+u&*0;, forany A € (salg),

m=0
and u € Ay, where p(a) is the parity of 7(a&) . Matching this with (5.1), the action of x5 (u)
on basis elements of A(n)(A) := Ag ®z Mg + A7 ®z M7 reads (for t € Ap))

zg(u)

tE8 —— 25()(tE9) = tE54+ul?9;(tE€%) = t& L6 utftes



Similarly, for h; we find t£* —— h; (u)(tgg) = y0re® t&e forall t € Ay .

In particular, this yields the following “point-set description” of Gy, :

Proposition 5.1. Let Gy, be the supergroup associated with g := W (n) and the W (n ) —module

A(n) as in Section 4, and let us fix total orders in Z()T and in &i such that Ay E%‘ or
E%‘ = 51_ . Then for any A € (salg), the group G (A) is given by

GA(n)(A) = GLn(A()) X (X&EE(’)T(l—"_AG Xa)) X (><;?e£i(1—|—141 Xﬁ))

(the products indexed by KGT or by &1 being ordered according to the fized orders), as well as by
all set-theoretic factorizations that one gets by permuting the three factors above with one another.

Proof. As we noticed in §4.27, G, (,) factors into G,y = Go X Ggr ¥ G , and in addition
G< 1~ ><’Y€£i 5(4), Ggr = XaeAmma(A) and Gg = Chy(,). The latter is the standard
(aufﬁne7 algebraic) group functor associated by the classical Chevalley construction with go ~ g[
and with the gl,,~module A(n): but the very construction clearly gives Gg = Chy,) = GL,
Finally, taking into account the additional remark that zz(A) = (14 Ag X5) for & € Agr and
z5(A) = (14+ A7 X5) for 7 € A7 — by the above analysis — we end up with the claim. O

Remark 5.2. The factorization of Ga(,)(A) in the above Proposition is a special instance of the
general result in §4.27. But the present case is much easier to handle, as commutation relations
among one-parameter supersubgroups (as in Lemma 4.8) look simpler: e.g., for &, 8 € Agr [[ Az
one has (z5(p), :I:g(q)) =(1+pXs,1 —|—ng) =1+pq[Xs ’XE] where (cf. Examples 3.3(a))
the bracket [Xa , X /ﬂ is either zero, or a root vector, or a sum (with signs) of two such vectors.

5.2 Gy, as a supergroup of automorphisms

In the present subsection we prove that the supergroup functor Gp(,) actually is a group
functor of automorphisms, namely the group functor of superalgebra automorphisms canonically
associated with the k—superalgebra A(n). We begin with a (general) definition.

Definition 5.3. Let 2 € (salg), be any k-superalgebra which, as a k-module, is free of finite
rank. We define the supergroup functor Aut (Ql) : (salg), — (groups) as the full subfunctor of
the group functor GL(2ls) — cf. 2.6(b) — whose value on objects is Aut(2)(A) := Aut(salg)A(QlA)
— the group of all A-linear superalgebra automorphisms of 24 := A®, A — for all A € (salg), .

5.4. The group functor Aut (A(n)) . Given the k—superalgebra 20 = A(n), we are interested
into Aut(A(n)) : our ultimate goal is to show that G(,) = Aut(A(n)) . Note that

Aut(A(n))(A) = Aut(salg)A(A(n)A) = Aut(salg)A(A[fl, ) vV A€ (salg), (5.3)
because A(n), = A®k A(n) = A@pk[&1,...,&] = A6, ..., 8] - Now, given A € (salg), , any
¢ € Aut(salg), ( ST ,{n]) is uniquely determined by the images of the §; : these are of the form

P(&) = Kj+ Di1Cij&i + 2 jest Ke &5 + Y jes1 e E° Vi=1,...,n (5.4)

\E is even el | is odd

with the only constraints that each ¢(&;) be again odd, which means kj, ke ;j € A1, ¢ j,¢cej € Ap
and that ¢ itself be invertible. By the nilpotency of the & , it is clear that ¢ is invertible if and

only if the square matrix of the ¢; ;’s is invertible, i.e. Cy := (cw)f 11 o S GL,(A45) . Note also

that (5.4) means that ¢ € Aut(salg)A(A(n) ) Autsarg), ( ST ,§n]) can be written as

n

¢ = Z 05 + chufza + ZZ lel>1 l'iegf 0; + ZE le|>1 06735 0j (5.5)
J

— i=1j=1 |e| is even le| is odd

Thus every ¢ € Aut(salg)A(A(n)A) is uniquely associated with a string of coefficients: the &; , the
Ke,j , the ¢; j and the c. ; as above. Therefore, the overall conclusion is the following:
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Proposition 5.5. The group functor Aut (A(n)) is representable — hence it is an (affine) su-

pergroup scheme — and isomorphic, as a superscheme, to A°™ x GL,, x Al Am‘yo X AO||A1T| .
We are now ready for the main result of this subsection:

Theorem 5.6. Gj(,) = Aut (A(n)) , that is Gy coincides with the group functor Aut (A(n)) .

Proof. By construction, we must prove that Gy,)(4) = Aut (A(n))(A) = Aut(salg)A(A(n)A)
with A(n) = A@A(n) = Alé1,...,&], A€ (salg), . We begin by Gp(n)(A) € Aut(sg) (A(n),) -
By Remarks 4.7(d), Gan)(A) is a subgroup of GL(V4): we must only prove that its elements
are superalgebra automorphisms. As G (,) is the sheafification of G)z(y,), and Aut is a sheaf, it
is enough to prove that Gan)(4) C Aut(salg)A(A(n)A) . Now, the group Gan)(A) is generated
by such elements as a5(t) := exp (t Xa), 25(0) = exp (¥ X3), hi(u) := u''; both X5 and
X are superderivations of A(n), hence they also define (uniquely) A-linear superderivations of
A(n), := A®x A(n) . But then both ¢ X5 and ¥ X5 are A-linear derivations of A(n), into itself:
taking their exponentials we get (A-linear) automorphisms of A(n),, so that z5(t), z5(J) €
Aut(salg)A(A(n)A) . A similar argument proves h;(u) € Aut(salg)A(A(n)A) , hence we are done.

Now we prove that the above inclusion is an identity. We begin with an aside observation: by
the explicit description of automorphisms in (5.5), one sees that for each A € (salg), the subsets

(A) == {p € Aut(A(n))(A) |ke,; =0=ce; Ve, j}
(A) == {pcAut(A(n))(A) |r; =0=1c;; Vi, j}

Aut (A(n))go

Aut (A(n))m

are subgroups of Aut(A(n))(A), which altogether generate Aut(A(n))(A) . This defines two
supersubgroups Aut (A(n))<0 and Aut (A(n))OT which jointly generate Aut(A(n)) .

The first supersubgroup Aut (A(n)) <0
of all affine-linear transformations of the (totally odd) affine superspace A% Tt contains the
subgroup G’ (A) generated by all the elements (1+909;) =x_.(J), (1+t&0;) = x-,—,(t) and
hi(u) of Gamy(A) —for ¥ € Ay, t € Ag, u€ U(4p), i,j=1,...,n. All these G(A) define a
supergroup functor, whose sheafification G/go clearly coincides with Aut (A(n)) <0

The second supersubgroup Aut (A(n)) o+ contains the subgroup Gi(A) gene}ated by the ele-
ments (1+t£0;) = xq, (t) —for t € AgUA7, i,j =1,...,n, where a,; is the unique element
of A associated with e and j. We shall now show that G{:(A) coincides with Aut (A(n))OT : by
the previous analysis, this will be enough to prove that Aut (A(n)) = Gy . Consider the subsets

is isomorphic to the algebraic group Aff,, = G}"xGL,,

Aut(A(n))_,(A) = {¢ € Aut(A(n))(4) ’ Kj=0=1¢j, kej =0=ce; Vi, j, Ve <t}

>t(

for all t =2,...,n; then easy computations, basing upon (5.5) and upon the formula
(L466°0;) (LHt7€20) = 1+ /€20, + 66800 £ by ¥/ 6" 652750

show that these subsets form a strictly decreasing sequence of normal subgroups Aut (A(n))
which ends with the trivial subgroup. It is immediate to see that Aut(A(n)),, /Aut (A(n))
is generated by the cosets (14 t£<0;) mod Aut (A(n))>2(
easily for all ¢ (by iteration) that Awut (A(n))m/Aut (A(n))
(1+t£%0;) mod Aut(A(n))

or >’
~2(4)
A) with |e|] =2 . Similarly, one sees
_.(A) is generated by the cosets

_1(A) with 2< |e|<¢. For t=n this yields the expected result. [

5.3 Special supersubgroups of G,

We finish this section with an explicit description of the special supersubgroups of G (,) that
we considered along the way — cf. §4.3 and §4.7 — namely (for all ¢ > —1)

min max

G, Gy, G.g, Gi, Gy, Gp, (Gu);., Gp G,
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Such a description follows from Propositions 4.10, 4.11, 4.12, 4.14 and 4.34; using the identification
GA(n) = Aut(A(n)) in Theorem 5.6 and by (5.5), all those results yield easily the following:

Proposition 5.7. For every A € (salg), , we have:
(a) G_1(A) ={¢c Aut(A(n))(A)|cij = kej=ce; =0Ve,ij} = G, paalA) ,  so that
G_;| G;Z’dd , where Gg,oqq s defined on objects by A Gg,od4(A) := A7 (as additive group);
(b) Go(A) = {¢ € Aut(A(n))(A) |r; = keyj = Cej =0 Ve, j} = GLy(A) , so that

Gy = GL,, , where GL,, is the classical general linear affine group extended to superalgebras via

(salg), > A GL,(A) := GL,(45) ;

(¢) G_10(A) = {¢ € Aut(A(n))(A) ‘ ej=Cej=0Ve,j}= Aut(A(n))<0(A) . so that
G_10=G_1xGg = Gafffdd X GL,, =: Aff, , the latter being the (classical) algebraic group of
all affine-linear transformations of the totally odd affine superspace A°I" ;

(d) Ggr(A) ={¢ € Aut(A(n))(A)|rj =cij =ke; =0Ve,i,j}, sothat Gg = An]:mlo
as affine superschemes, where Ngr := |£@T| =Y .0 |£z N £5| ;

(e) G§(A) ={¢ € Aut(A(n))(A)|kj =ke; =0 Ve,j}t . sothat Gg= Gox Gg =
GL,, x Aﬂivmlo as affine superschemes;

(f) Gu(A)={¢¢€ Aut(A(r}))(jfl) |Kj =cij =Fej=cej =0Vij Ve:le <t+1} for
all t > —1, therefore Gu = AH?ST‘NtlT as affine superschemes, where NfT =D e |£z N £;| ;i
particular, Gyi(A) = { ¢ € Aut(A(n))(A) | kj=¢;=0VYij}, hence Ggr = AQ‘F‘N& ;

Nt N~
(9) G_1i(A) = {6 € Aut(A(n))(A) |5, =0 ¥j} . 50 G_i1 = Gox Gor = GL, x A, 0"
as affine superschemes;

(h) (GtT)G(A) = {d) c Aut(A(n))(A) ‘ Rj = Cij = Re,j = Cel j = 0 Vi,j,g, VQ/ : |Q/| S t+1}
Ntlo
for all t> —1, therefore (Gﬂ)() = A ! as (totally even) affine superschemes; in particular,

"
(GOT)(](A) ={pcAut(A(n))(A)|r; =cij =ke; =0Vi,je}, hence Gor = AH]:()T‘O ;

(i) (G—lT)@(A) ={pcAut(A(n))(A)|rj =ke; =0Vije}, thus G_jr = Gox Gor =
N+
GL, x Ay ot 1 as (totally even) affine superschemes;
() let Ay = ﬁar]_[ﬁa be the splitting of the root system Ao = Ao of go = gl,, given by

ﬁg = {Ei—ej‘l <i<j<n} and ﬁa = {Ei_fj’1 <j<i<n}, and define G, and
G accordingly as in Definition 4.33. Then we have

G .. (4) = {(beAut(A(n))(A) ’ Cij = FKej =Cej =0V i,j,g:i<j} ~ G_;xB~
Giux(A) = {pcAut(A(n))(A) |kj=ci; =0Vij:i>j} = BTxGp

max

where B* is the Borel subgroup of Go = GL,, of all invertible upper/lower triangular matrices.
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