
Forum Mathematicum 26 (2014), no. 5, 1473–1564 — DOI: 10.1515/forum-2011-0144

The original publication is available at www.degruyter.com

ALGEBRAIC SUPERGROUPS

OF CARTAN TYPE

F. Gavarini

Dipartimento di Matematica, Università di Roma “Tor Vergata”
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Abstract

1 I present a construction of connected affine algebraic supergroups GV associated with
simple Lie superalgebras g of Cartan type and with g–modules V . Conversely, I prove that
every connected affine algebraic supergroup whose tangent Lie superalgebra is of Cartan type
is necessarily isomorphic to one of the supergroups GV that I introduced. In particular, the
supergroup associated in this way with g = W (n) and its standard representation is described.

Dedicated to Pierre Cartier,

with great admiration, on the occasion of his 80th birthday.

1 Introduction

A real milestone in classical Lie theory is the celebrated classification theorem for complex
finite dimensional simple Lie algebras. A similar key result is the classification of all complex
finite dimensional simple Lie superalgebras (cf. [14]); in particular, this ensures that these objects
form two disjoint families: those of classical type, and those of Cartan type. The “classical” ones
are strict super-analogue of simple, f.d. complex Lie algebras; the “Cartan” ones instead are a
super-analogue of complex Lie algebras of Cartan type, which are simple but infinite dimensional.

As in the standard Lie context, one can base upon this classification result to tackle the classifi-
cation problem of existence, construction and uniqueness of simple Lie supergroups, or even simple
algebraic supergroups. A super-analogue of Lie’s Third Theorem solves it for Lie supergroups: but
the question remains for construction and for the whole algebraic point of view.

In the standard context, a constructive procedure providing all (f.d., connected) simple algebraic
groups was provided by Chevalley, over fields; one starts with a (complex) f.d. simple Lie algebra g ,
a faithful g–module V , and eventually realizes a group of requested type as a subgroup of GL(V ) .
In particular, this yields all connected algebraic groups whose tangent Lie algebra is a (f.d.) simple
one; this method (and result) also extends to the framework of reductive Z–group schemes. By
analogy, one might try to adapt Chevalley’s method to the f.d. simple Lie superalgebras of classical
type, so to provide connected algebraic supergroup-schemes (over Z) which “integrate” any such
Lie superalgebra. This is done in [9] — see also [8] and [11]. In this paper instead I implement
Chevalley’s idea to simple Lie superalgebras of Cartan type, with full success: the main result is an
existence result, via a constructive procedure, for connected, algebraic supergroup-schemes (over
any ring, e.g. Z) whose tangent Lie superalgebra be simple of Cartan type. As a second result, I
prove also a uniqueness theorem for algebraic supergroups of the above mentioned type.

Hereafter I shortly sketch how the present work is organized.

The initial datum is a f.d. simple Lie superalgebra of Cartan type, say g . Basing upon a
detailed description of the root spaces (with respect to a fixed Cartan subalgebra), I introduce the
key notion of Chevalley basis. Then I prove two basic results: the existence of Chevalley bases,
and a PBW-like theorem for the “Kostant Z–form” of the universal enveloping superalgebra of g .
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Next I take a faithful g–module V , and I show that there exists a lattice M in V fixed by the
Kostant superalgebra and also by a certain integral form gV of g . I define a functor GV from
the category (salg)k of commutative k–superalgebras to the category (groups) of groups as follows:
for A ∈ (salg)k , I let GV (A) be the subgroup of GL

(
A ⊗ZM

)
generated by “homogeneous one-

parameter subgroups” associated with the root vectors and with the toral elements in a Chevalley
basis. Then I pick the sheafification GV (in the sense of category theory) of the functor GV .

Using commutation relations among generators, I find a factorization of GV into direct product
of representable (algebraic) superschemes: thus GV itself is representable, hence it is an “affine
(algebraic) supergroup”. Some extra work shows how GV depends on V , that it is independent of
the choice of M and that its tangent Lie superalgebra is gV . So the construction of GV yields an
existence theorem of a supergroup having gV as tangent Lie superalgebra. Right after, I prove the
converse, i.e. a uniqueness theorem showing that any such supergroup is isomorphic to some GV .

Finally, I illustrate the example of GV for g of type W (n) and V its defining representation —
i.e. the Grassmann algebra in n odd indeterminates, W (n) being the algebra of its superderivations.
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2 Preliminaries

We introduce hereafter some preliminaries of supergeometry (main references are [4], [15], [18]).

2.1 Superalgebras, superspaces, supergroups

Let k be a unital, commutative ring. We call k–superalgebra any associative, unital k–algebra
A which is Z2–graded, where Z2 is the two-element group Z2 :=

{
0̄, 1̄
}
: thus A = A0̄ ⊕ A1̄ and

Aa Ab ⊆ Aa+b . The k–submodule A0̄ and its elements are called even, A1̄ and its elements odd .
By p(x) (∈ Z2) we denote the parity of any homogeneous element x ∈ Ap(x) . All k–superalgebras
form a category, whose morphisms are those in the category of algebras preserving the unit and the
Z2–grading. For any n ∈ N we call An

1̄ the A0̄ –span in A of all products ϑ1 · · ·ϑn with ϑi ∈ A1̄

for all i , and A
(n)

1̄
the unital subalgebra of A generated by An

1̄ . A superalgebra A is commutative

iff xy = (−1)p(x)p(y)yx for all homogeneous x, y ∈ A and z2 = 0 for all odd z ∈ A1̄ . We denote
by (salg)k the category of commutative k–superalgebras, dropping the subscript k if unnecessary.

Definition 2.1. A superspace S =
(
|S| ,OS

)
is a topological space |S| with a sheaf of commutative

superalgebras OS such that the stalk OS,x is a local superalgebra for all x ∈ |S| . A morphism
ϕ : S −→ T of superspaces consists of a pair ϕ =

(
|ϕ|, ϕ∗) , where ϕ : |S| −→ |T | is a morphism

of topological spaces and ϕ∗ : OT −→ ϕ∗OS is a sheaf morphism such that ϕ∗
x

(
m|ϕ|(x)

)
⊆ mx

where m|ϕ|(x) and mx are the maximal ideals in the stalks OT, |ϕ|(x) and OS,x , and ϕ∗
x is the

morphism induced by ϕ∗ on the stalk. Here as usual ϕ∗OS is the direct image (on |T |) of OS(V ) .

Given a superspace S =
(
|S| ,OS

)
, let OS,0̄ and OS,1̄ be the sheaves on |S| defined as follows:

OS,0̄(U) := OS(U)0̄ , OS,1̄(U) := OS(U)1̄ for each open subset U in |S| . Then OS,0̄ is a sheaf of
ordinary commutative algebras, while OS,1̄ is a sheaf of OS,0̄ –modules.

Definition 2.2. A superscheme is a superspace S :=
(
|S| ,OS

)
such that

(
|S| ,OS,0̄

)
is an

ordinary scheme and OS,1̄ is a quasi-coherent sheaf of OS,0̄ –modules. A morphism of super-
schemes is one of the underlying superspaces. The (super)dimension of S is by definition the pair
dim (|S|)

∣∣ rk (OS,1̄) where rk (OS,1̄) is the rank of the quasi-coherent sheaf of OS,0̄ –modules OS,1̄ .

Definition 2.3. Let A ∈ (salg)k and let OA0̄
be the structural sheaf of the ordinary scheme

Spec (A0̄) =
(
Spec (A0̄) ,OA0̄

)
, where Spec (A0̄) denotes the prime spectrum of A0̄ . Now A is an

A0̄–module, so we have a sheafOA ofOA0̄
–modules over Spec (A0̄) with stalk Ap , the p–localization

of the A0̄ –module A , at any p ∈ Spec (A0̄) . We set Spec (A) :=
(
Spec (A0̄) ,OA

)
: by definition,
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this is a superscheme. We call affine any superscheme which is isomorphic to Spec (A) for some
A ∈ (salg)k ; any affine supercheme is algebraic if its representing superalgebra is finitely generated.

Clearly any superscheme is locally isomorphic to an affine superscheme.

Example 2.4. We call affine superspace the superscheme Ap|q
k := Spec

(
k[x1, . . . , xp]⊗kk[ξ1 . . . ξq]

)
( p, q ∈ N ), also denoted kp|q : here k[ξ1 . . . ξq] is the exterior algebra generated by q anticommuting
indeterminates, and k[x1, . . . , xp] the polynomial algebra in p commuting indeterminates. ♢

Definition 2.5. Let X be a superscheme. Its functor of points is the functor hX : (salg)k −→
(sets) defined on objects by hX(A) := Hom

(
Spec (A) , X

)
and on arrows by hX(f)(ϕ) :=

ϕ ◦ Spec (f) . When hX is actually a functor from (salg)k to (groups), the category of groups, we
say that X is a supergroup-scheme. If X is affine, this is equivalent to the fact that O(X) — the
superalgebra of global sections of the structure sheaf onX — is a (commutative) Hopf superalgebra.
More in general, we shall call supergroup functor any functor G : (salg)k −→ (groups) .

Any representable supergroup functor is the same as an affine supergroup: indeed, the former
corresponds to the functor of points of the latter. See [3], Ch. 3–5, for more details.

In the present work we consider only affine supergroups, described via their functor of points:
we introduce them as supergroup functors, and then show that they are representable and algebraic.

Examples 2.6.

(a) Let V be a free k–supermodule. For any commutative k–superalgebra A we define
V (A) := (A⊗k V )0̄ = A0̄ ⊗k V0̄ ⊕A1̄ ⊗k V1̄ . When V is finite dimensional, this is a representable
functor (from (salg)k to k–super-vector spaces). Hence V can be seen as an affine superscheme.

(b) GL(V ) as an affine algebraic supergroup. Let V be a free k–supermodule of finite (su-
per-)rank p|q . For any superalgebra A , let GL(V )(A) := GL

(
V (A)

)
be the set of isomorphisms

V (A) −→ V (A) preserving the Z2–grading. If we fix a homogeneous basis for V , we see that
V ∼= kp|q ; in other words, V0̄

∼= kp and V1̄
∼= kq . In this case, we also denote GL(V ) with GLp|q .

Now, GLp|q(A) is the group of invertible matrices of size (p + q) with diagonal block entries in
A0̄ and off-diagonal block entries in A1̄ . It is known that the functor GL(V ) is representable, so
GL(V ) is indeed an affine supergroup, and also algebraic; see (e.g.), [18], Ch. 3, for further details.

Note that every element GL
(
V (A)

)
extends to a (degree-preserving, A–linear) automorphism

of VA := A ⊗kV ; viceversa, any automorphism of VA restricts to an element of GL
(
V (A)

)
. So

GL
(
V (A)

)
identifies with GL

(
VA

)
, the group of (A–linear) automorphisms of VA . We call GL(V•)

the obvious functor from (salg)k to (groups) given on objects by A 7→ GL(V•)(A) := GL(VA) . ♢

2.2 Lie superalgebras

The notion of Lie superalgebra over a field is well known, at least for characteristic neither 2 nor
3. To take into account all cases, we consider the following modified formulation: it is a “correct”
notion of Lie superalgebras given by the standard notion enriched with an additional “2–mapping”,
a close analogue to the p–mapping in a p–restricted Lie algebra over a field of characteristic p > 0 .

Definition 2.7. (cf. [1], [7]) Let A ∈ (salg)k . We call Lie A–superalgebra any A–supermodule
g = g0̄ ⊕ g1̄ endowed with a (Lie super)bracket [ , ] : g × g −→ g , (x, y) 7→ [x, y] , and a

2–operation ( )
⟨2⟩

: g1̄ −→ g0̄ , z 7→ z⟨2⟩ , such that (for all x, y ∈ g0̄∪g1̄ , w ∈ g0̄ , z, z1, z2 ∈ g1̄):

(a) [ , ] is A–superbilinear (in the obvious sense) , [w,w] = 0 ,
[
z[z, z]

]
= 0 ;

(b) [x, y] + (−1)
p(x) p(y)

[y, x] = 0 (anti-symmetry) ;

(c) (−1)p(x)p(z)[x, [y, z]]+(−1)p(y)p(x)[y, [z, x]] + (−1)p(z)p(y)[z, [x, y]] = 0 (Jacobi identity) ;

(d) ( )
⟨2⟩

is A–quadratic, i.e. (a0̄ z)
⟨2⟩

= a2 z⟨2⟩ , (a1̄ w)
⟨2⟩

= 0 for a0̄ ∈ A0̄ , a1̄ ∈ A1̄ ;

(e) (z1+ z2)
⟨2⟩

= z
⟨2⟩
1 + [z1, z2] + z

⟨2⟩
2 ,

[
z⟨2⟩, x

]
=
[
z , [z, x]

]
.

All Lie A–superalgebras form a category, whose morphisms are the A–superlinear (in the obvi-
ous sense), graded maps preserving the bracket and the 2–operation.

3



A Lie superalgebra is said to be simple if it has no non-trivial homogenenous ideal. Simple
Lie superalgebras of finite dimension over algebraically closed fields of characteristic zero were
classified by V. Kac (cf. [14]), to whom we shall refer for the standard terminology and notions.

Examples 2.8. (a) Let A = A0̄ ⊕A1̄ be any associative k–superalgebra. There is a canonical

structure of Lie superalgebra on A given by [x, y] := x y − (−1)
p(x)p(y)

y x for all homogeneous
x, y ∈ A0̄∪A1̄ and 2–operation z⟨2⟩ := z2 = z z (the associative square in A) for all odd z ∈ A1̄ .

(b) Let V = V0̄ ⊕ V1̄ be a free k–supermodule, and consider End(V ) , the endomorphisms of
V as an ordinary k–module. This is again a free super k–module, End(V ) = End(V )0̄⊕End(V )1̄ ,
where End(V )0̄ are the morphisms which preserve the parity, while End(V )1̄ are the morphisms
which reverse the parity. By the recipe in (a), End(V ) is a Lie k–superalgebra with [A,B] :=

AB − (−1)
p(A)p(B)

BA , C⟨2⟩ := C2 , for all A,B,C ∈ End(V ) homogeneous, with C odd.
The standard example is for V of finite rank, say V := kp|q = kp ⊕ kq , with V0̄ := kp and

V1̄ := kq : in this case we also write End
(
kp|q

)
:= End(V ) or glp|q := End(V ) . Choosing a basis

for V of homogeneous elements (writing first the even ones), we identify End(V )0̄ with the set of
all diagonal block matrices, and End(V )1̄ with the set of all off-diagonal block matrices. ♢

2.9. Lie superalgebras and Lie algebra valued functors. Let us fix k and (salg)k as in
section 2.1, and let (mod)k and (Lie)k be the category of k–modules and of Lie k–algebras. Any
k–supermodule m yields a well-defined functor Mm : (salg)k −→ (mod)k , given on objects by
Mm(A) :=

(
A⊗m

)
0̄
= A0̄ ⊗m0̄ ⊕ A1̄ ⊗m1̄ , for all A ∈ (salg)k . If in addition m = g is a Lie

k–superalgebra, then A⊗g is a Lie A–superalgebra, its Lie bracket being defined via sign rules by[
a⊗X , a′⊗X ′ ] := (−1)

|X| |a′|
a a′⊗

[
X,X ′] , and similarly for the 2–operation: then Lg(A) is its

even part, so it is a Lie algebra. Thus we have a Lie algebra valued functor Lg : (salg)k −→ (Lie)k
(see [3], §11.2, for details). We shall call quasi-representable any functor L : (salg)k −→ (Lie)k
for which there exists a Lie k–superalgebra g such that L = Lg : indeed, any such functor is even
representable as soon as the k–module g is free of finite rank, since Lg is then represented by the
commutative k–superalgebra S(g∗) ∈ (salg)k . In particular, when V is a free super k–module
we have the Lie superalgebra g := End(V ) and the functor LEnd(V ) ; then GL(V ) — cf. Example
2.6(b) — is a subfunctor of LEnd(V ) — as a set-valued functor.

This “functorial presentation” of Lie superalgebras can be adapted to representations too: if
g is a Lie k–superalgebra and V a g–module, the representation map ϕ : g −→ End(V ) clearly
induces a natural transformation of functors Lg −→ LEnd(V ) .

2.3 Lie superalgebras of Cartan type

In the following, K is an algebraically closed field of characteristic zero.
By definition, a Lie superalgebra g over K is of Cartan type if it is finite dimensional, simple,

with the odd part g1̄ which is not semisimple as a module over the even part g0̄ . Actually, Cartan
type Lie superalgebras split into four countable families, denoted W (n) , S(n) , S̃(n) and H(n)
with n ≥ 2 , n ≥ 3 , n ≥ 4 (with n being even) and n ≥ 4 respectively.

We shall now describe in short all these types. For further details, see [14], §3.
Given n ∈ N+ , denote by Λ(n) = K[ξ1, . . . , ξn] the free commutative superalgebra over K

with n odd generators ξ1, . . . , ξn ; this is (isomorphic to) the Grassmann algebra of rank n , and is
naturally Z–graded, with deg(ξi) = 1 . A K–basis of Λ(n) is the set BΛ(n) :=

{
ξe
∣∣ e ∈ {0, 1}n

}
,

where ξe := ξ
∧e(1)
1 ∧ ξ

∧e(2)
2 ∧ · · · ∧ ξ

∧e(n)
n = ξ

e(1)
1 · ξe(2)2 · · · ξe(n)n (hereafter we shall drop the ∧’s).

For later use, for every e ∈ {0, 1}n we define |e| :=
∑n

k=1 e(k) .

2.10. Definition of W (n) . For any n ∈ N+ with n ≥ 2 , let W (n) := DerK
(
Λ(n)

)
denote the

set of K–(super)derivations of Λ(n) . This is a Lie subsuperalgebra of EndK
(
Λ(n)

)
: explicitly, one

has

W (n) =
{∑n

i=1Pi

(
ξ
)
∂i

∣∣∣ Pi

(
ξ
)
∈ Λ(n) ∀ i = 1, . . . , n

}
where each ∂i is the unique superderivation such that ∂i(ξj) = δi,j . This Lie superalgebra W (n)
is naturally Z–graded, with deg(∂i) = −1 , deg(ξi) = +1 ; in detail,
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W (n) =
⊕
z∈Z

W (n)z , W (n)z =
{∑n

i=1Pi

(
ξ
)
∂i

∣∣∣ Pi

(
ξ
)
∈ Λ(n)z+1 ∀ i

}
(2.1)

so W (n)z ̸= {0} iff −1 ≤ z ≤ n−1 . Thus, if W (n)[z] :=
⊕

ζ ≡ z mod (n+1)

W (n)ζ for all [z] ∈ Zn+1 (the

group of integers modulo n+1 ) the Z–grading above yields the Zn+1–grading W (n) =
⊕

[z]∈Zn+1

W (n)[z] .

The Z–grading yields a Z–filtration
(
W (n) ⊇

)
· · · ⊇ W (n)≥z−1 ⊇ W (n)≥z ⊇ W (n)≥z+1 ⊇ · · ·

of W (n) as a Lie superalgebra, where W (n)≥z := ⊕k≥zW (n)k for all z ∈ Z ; the associated graded

Lie superalgebra then is graded-isomorphic to W (n) itself. Also, this Z–grading is consistent with
the Z2–grading of W (n) , i.e. the Z2–grading is given by W (n) = W (n)0̄ ⊕W (n)1̄ with

W (n)0̄ :=
⊕

z∈2Z
W (n)z , W (n)1̄ :=

⊕
z∈(2Z+1)

W (n)z

In particular, one also has the following three facts:

(a) for each z ∈ Z , the set BW (n) ; z :=
{
ξe ∂i

∣∣ e ∈ {0, 1}n, i = 1, . . . , n ; |e| = z + 1
}

is a
K–basis of W (n)z ; for each z ∈ Z2 the set BW (n) ; z :=

∪
(z mod 2)= z

BW (n) ; z is a K–basis of W (n)z ;

the set BW (n) :=
∪
z∈Z

BW (n) ; z is a — Z–homogeneous and Z2–homogeneous — K–basis of W (n) .

(b) W (n)0 is a Lie subalgebra of the even part W (n)0̄ of W (n) , isomorphic to gl(n) , via
ξi ∂j 7→ ei,j (= the elementary (n× n)–matrix bearing 1 in position (i, j) and zero elsewhere);

(c) W (n)−1 , as a module for W (n)0
∼= gl(n) , is the dual of the standard module of gl(n) .

2.11. The Lie structure in W (n) . Our W (n) := DerK
(
W (n)

)
is a Lie subsuperalgebra of

EndK
(
Λ(n)

)
, whose Lie bracket in the latter is the “supercommutator” (cf. Example 2.8(b))).

Thus we first consider the composition product of two basis elements in W (n) . Calculations give

ξa ∂j ◦ ξb ∂ℓ = (−1)
|b|

ξa ξb ∂j ∂ℓ + (−1)
#{s | s<j , b(s)=1}

δb(j),1 ξ
a ξb−e j ∂ℓ (2.2)

where e j ∈ {0, 1}n is given by e j(k) := δj,k , and b− e j is the obvious element in the set {0, 1}n .
Therefore the defining formula

[
ξa ∂j , ξ

b ∂ℓ

]
= ξa ∂j◦ ξb ∂ℓ −(−1)

deg(ξa ∂j) deg(ξ
b ∂ℓ) ξb ∂ℓ◦ ξa ∂j

(taken from Example 2.8(a)) along with (2.2) yields, taking into account that ∂ℓ ∂j = −∂j ∂ℓ ,[
ξa ∂j , ξ

b ∂ℓ

]
= ± δb(j),1 ξ

a ξb−e j ∂ℓ ± δa(ℓ ),1 ξ
b ξa−e ℓ ∂j (2.3)

for all a , b ∈ {0, 1}n , j, ℓ = 1, . . . n . In particular — reordering the various factors ξk — this

shows that
[
ξa ∂j , ξ

b ∂ℓ

]
has coefficients in {−1, 0, 1} with respect to the basis BW (n) .

When δb(j),1 = 1 = δa(ℓ ),1 , i.e. in the case b(j) = 1 = a(ℓ) , formula (2.3) looks more precise:[
ξa ∂j , ξ

b ∂ℓ

]
= (−1)

N
ξa−e ℓ ξb−e j

(
ξℓ ∂ℓ − ξj ∂j

)
, ∀ a , b : a(ℓ) = 1 = b(j) (2.4)

Note also that (2.4) takes a special form in the following three cases:

— if j = ℓ , then
[
ξa ∂j , ξ

b ∂ℓ

]
= 0 ; (2.5)

— if j ̸= ℓ , a(j) = 1 , then
[
ξa ∂j , ξ

b ∂ℓ

]
= (−1)

N
ξa−e ℓ ξb−e j ξℓ ∂ℓ ; (2.6)

— if j ̸= ℓ , b(ℓ) = 1 , then
[
ξa ∂j , ξ

b ∂ℓ

]
= (−1)

N+1
ξa−e ℓ ξb−e j ξj ∂j . (2.7)

Finally, for the 2–operation the defining formula (from Example 2.8(b)) along with (2.2) gives(
ξa ∂j

)⟨2⟩
=
(
ξa ∂j

)2
= 0 ∀ a :

∣∣a∣∣ ∈ 2N (2.8)
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2.12. Definition of S(n) . We retain notations of Definition 2.10 above, in particular Λ(n) and
W (n) := DerK

(
Λ(n)

)
, for n∈N+ , are defined as therein; in addition, we assume now n ≥ 3 .

Define the divergence operator div : W (n) := DerK
(
Λ(n)

)
−→ Λ(n) by div

(∑n
i=1 Pi

(
ξ
)
∂i
)
:=∑n

i=1 ∂i
(
Pi

(
ξ
))

for
∑n

i=1 Pi

(
ξ
)
∂i ∈ W (n) . Then set

S(n) :=
{
D :=

∑n
i=1Pi

(
ξ
)
∂i ∈ W (n)

∣∣∣ div(D) = 0
} (

= Ker
(
div
))

This is a Z–graded Lie subsuperalgebra of W (n) — with Z–grading induced from W (n) : so

S(n) =
⊕
z∈Z

S(n)z , S(n)z = W (n)z
∩

S(n) (2.9)

— cf. (2.1) — where S(n)z ̸= {0} if and only if −1 ≤ z ≤ n− 2 — see below for more
details. Like for W (n) , this Z–grading yields also a Zn–grading S(n) =

⊕
[z]∈Zn

S(n)[z] with

S(n)[z] :=
⊕

ζ ≡ z mod n

S(n)ζ for all [z] ∈ Zn (the group of integers modulo n ). Again, the Z–grading

yields a Z–filtration, which coincides with the one induced by W (n) , whose associated graded Lie
superalgebra is graded-isomorphic to S(n) itself. Moreover, the Z–grading of S(n) is consistent
with the Z2–grading, in the obvious sense (like for W (n) ).

The construction and the results for W (n) — cf. Definition 2.10 — give:

(a) a basis of the K–vector space S(n) is given by

BS(n) :=
{
ξe ∂i

∣∣∣ e(i) = 0
} ∪ {

ξe
(
ξj ∂j − ξj′ ∂j′

) ∣∣∣∣ 1≤j<j′≤n , e(j) = 0 = e(j′)

e(j′′) = 1 ∀ j < j′′ < j′

}
In the following we call “of first type” the elements of this basis of the form ξe ∂i , and “of second

type” those of the form ξe
(
ξj ∂j − ξj′ ∂j′

)
; more in general, we call “(elements) of second type”

also all those of the form ξe
(
ξj ∂j − ξk ∂k

)
, for any j<k with e(j) = 0 = e(k) .

Again, this basis is homogeneous (for both the Z–grading and the Z2–grading), i.e. BS(n) =∪
z∈Z BS(n) ; z and BS(n) =

∪
z∈Z2

BS(n) ; z where BS(n) ; z := BS(n) ∩ S(n)z , respectively
BS(n) ; z := BS(n) ∩ S(n)z , is a basis of S(n)z , respectively of S(n)z , for every z ∈ Z , z ∈ Z2 .

(b) S(n)0 is a Lie subalgebra of the even part S(n)0̄ of S(n) , isomorphic to sl(n) , via
ξi ∂j 7→ ei,j (notation of Definition 2.10) for i ̸= j , and

(
ξk ∂k − ξℓ ∂ℓ

)
7→
(
ek,k − eℓ,ℓ

)
for k ̸= ℓ ;

(c) S(n)−1 , as a module for S(n)0
∼= sl(n) , is the dual of the standard module of sl(n) .

2.13. The Lie structure in S(n) . We need formulas for the Lie bracket of elements in BS(n) .
First we look at pairs of basis elements of the first type (cf. §2.12, so a(j) = 0 , b(ℓ) = 0 ). For

their bracket, formulas (2.2–7) give (with the right-hand side which in third case might be zero)

[
ξa ∂j , ξ

b ∂ℓ

]
=


± ξa ξb−e j ∂ℓ if a(ℓ) = 0 , b(j) = 1

± ξb ξa−e ℓ ∂j if a(ℓ) = 1 , b(j) = 0

± ξa−eℓ ξb−e j
(
ξℓ ∂ℓ − ξj ∂j

)
if a(ℓ) = 1 , b(j) = 1

0 if a(ℓ) = 0 , b(j) = 0

Now we consider the Lie bracket of a basis element of first type and one of second type (see

§2.12, thus e(ℓ) = 0 ). Then
[
ξe ∂ℓ , ξ

e′
(
ξj ∂j − ξk ∂k

) ]
=
(
(−1)

N ′
− (−1)

N ′′)
ξe

′−eℓ ξe ∂ℓ , by

formulas (2.2–7), for some N ′, N ′′ ∈ N ; a detailed (yet elementary) analysis of signs shows that[
ξe ∂ℓ , ξ

e′
(
ξj ∂j − ξk ∂k

) ]
= 0

Third, we look at pairs of elements both of the second type: formulas (2.2–7) eventually give[
ξa
(
ξj ∂j − ξk ∂k

)
, ξb

(
ξℓ ∂ℓ − ξt ∂t

) ]
=

=
(
b(j)− b(k)

)
ξa ξb

(
ξℓ ∂ℓ − ξt ∂t

)
−
(
a(ℓ)− a(t)

)
ξa ξb

(
ξj ∂j − ξk ∂k

)
We must stress two facts. First, ξa ξb

(
ξℓ ∂ℓ − ξt ∂t

)
and ξa ξb

(
ξj ∂j − ξk ∂k

)
are both either zero

or elements of BS(n) of the second type; second,
(
b(j)− b(k)

)
,
(
a(ℓ)− a(t)

)
∈
{
−1 , 0 , +1

}
.
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Last, the 2–operation: (2.2) and (z1+ z2)
⟨2⟩

= z
⟨2⟩
1 + [z1, z2] + z

⟨2⟩
2 (cf. Definition 2.7(e)) give(

ξa ∂j
)⟨2⟩

= 0 ,
(
ξb
(
ξℓ ∂ℓ − ξt ∂t

))⟨2⟩
= 0 , ∀ a , b :

∣∣a∣∣ ∈ 2N ,
∣∣b∣∣ ∈ (2N+ 1) (2.10)

2.14. Definition of S̃(n) . We retain notations of Definitions 2.10 and 2.12 above. In addition,
we assume now that n is even and n ≥ 4 . Define

S̃(n) :=
{
D ∈ W (n)

∣∣∣ (1 + ξ1 · · · ξn
)
div
(
D
)
+D

(
ξ1 · · · ξn

)
= 0

}
In order to describe S̃(n) , write D ∈ W (n) as D :=

∑n−1
z=−1Dz with Dz ∈ W (n)z . The

defining equation of S̃(n) takes place in the graded superalgebra Λ(n) =
⊕n

z=0Λ(n)z : when we
single out the different homogeneous summands the left-hand side of this equation reads(
1 + ξ1 · · · ξn

)
div
(
D
)
+ D

(
ξ1 · · · ξn

)
= div(D0) + · · · + div(Dn−2) +

+
(
div(Dn−1) +D−1(ξ1 · · · ξn)

)
+
(
D0(ξ1 · · · ξn) + ξ1 · · · ξn div(D0)

)
(each div(Dz) is homogeneous of degree z , in particular div(D−1) = 0 ). Thus the defining

equation
(
1 + ξ1 · · · ξn

)
div
(
D
)
+D

(
ξ1 · · · ξn

)
= 0 of S̃(n) is equivalent to the system

~ :


div(Dz) = 0

(
∈ Λ(n)z

)
∀ 0 ≤ z ≤ n−2

div(Dn−1) +D−1(ξ1 · · · ξn) = 0
(
∈ Λ(n)n−1

)
D0(ξ1 · · · ξn) + ξ1 · · · ξn div(D0) = 0

(
∈ Λ(n)n

)
The solution of the system ~ is immediate: Dz ∈ Ker

(
div
)∩

W (n)z = S(n)z , for 0≤z≤n−2 ,

for the first n−1 equations, while the last one has solution D0 ∈ Ker
(
div
)∩

W (n)0 = S(n)0 ,
hence it is redundant. For the last but one, let us write Dn−1 :=

∑n
j=1cj ξ1 · · · ξn ∂j and D−1 :=∑n

j=1dj ∂j : then these yield solutions of that equation if and only if cj+dj = 0 for all j = 1, . . . , n ,

in other words if and only if D−1 +Dn−1 =
∑n

j=1cj
(
ξ1 · · · ξn − 1

)
∂j . The outcome is that

S̃(n) =
⊕

[z]∈Zn

S̃(n)[z] ,
S̃(n)[z] := S(n)z ∀ 0 ≤ z ≤ n− 2

S̃(n)[n−1] := SpanK
(
(ξ1 · · · ξn − 1) ∂j

)
j=1,...,n

(2.11)

which is a splitting of S̃(n) as a Zn–graded Lie superalgebra — see below for more details. Moreover,

the natural Z–filtration of W (n) induces a similar filtration on S̃(n) : the associated graded Lie

superalgebra then is graded-isomorphic to S(n) . Finally, the Zn–grading of S̃(n) is consistent with
the Z2–grading, again in the obvious sense (like for W (n) and S(n) ).

Remark: to have a uniform notation we shall also write S̃(n)z := S̃(n)[z] for all −1 ≤ z ≤ n− 2

and S̃(n)z := {0} for all z ∈ Z \ {−1, . . . , n− 2} . Then S̃(n) =
⊕

z∈ZS̃(n)z as a vector space.

The results we found for W (n) — cf. Definition 2.10 — and S(n) — cf. Definition 2.12 — give:

(a) a basis of the K–vector space S̃(n) is given by the union of the set
∪n−2

z=0 BS(n) ; z with

the set
{
(ξ1 · · · ξn−1) ∂j

}
j=1,...,n

; in detail, it is

BS̃(n) :=
{
ξe ∂i

∣∣∣ e(i)=0

|e|>0

}∪{
ξe
(
ξj∂j − ξj′∂j′

)∣∣∣ 1≤j<j′≤n−1 , e(j)=0=e(j′)
e(j′′)=1 ∀ j<j′′<j′

}∪{(
ξ1 · · · ξn−1

)
∂j

}
1≤j≤n

Again, this basis is homogeneous (for both the Zn–grading and the Z2–grading), i.e. BS̃(n) =∪
[z]∈Zn

BS̃(n) ;[z] and BS̃(n) =
∪

z∈Z2
BS̃(n) ; z where BS̃(n) ;[z] := BS̃(n) ∩ S̃(n)[z] , respectively

BS̃(n) ; z := BS̃(n) ∩ S̃(n)z , is a basis of S̃(n)[z] , respectively of S̃(n)z , for every [z] ∈ Zn , z ∈ Z2 .

(b) S̃(n)[0] is a Lie subalgebra of the even part S̃(n)0̄ of S̃(n) ; as it coincides with S(n)0 , it

is (again) isomorphic to sl(n) , see §2.12;

(c) S̃(n)[−1] , as a module for S̃(n)0
∼= sl(n) , is the dual of the standard module of sl(n) .
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2.15. The Lie structure in S̃(n) . To describe the Lie (super)structure of S̃(n) we can use
explicit formulas for the Lie bracket and the 2–operation of elements in BS̃(n) . Part of this basis

is a subset of the basis BS(n) of S(n) in §2.12, thus for these elements we refer to formulas therein.
We look now at the remaining cases. The first case is[(

ξ1 · · · ξn − 1
)
∂i ,

(
ξ1 · · · ξn − 1

)
∂j

]
= (−1)

j
ξ1 · · · ξ̂j · · · ξn ∂i + (−1)

i
ξ1 · · · ξ̂i · · · ξn ∂j =

=


(−1)

i+j−1
ξ1 · · · ξ̂i · · · ξ̂j · · · ξn

(
ξi ∂i − ξj ∂j

)
∀ i < j

2 (−1)
j
ξ1 · · · ξ̂j · · · ξn ∂j ∀ i = j

(−1)
i+j−1

ξ1 · · · ξ̂j · · · ξ̂i · · · ξn
(
ξj ∂j − ξi ∂i

)
∀ i > j

The second case splits in turn into several subcases. Namely, the first two subcases are[(
ξ1 · · · ξn − 1

)
∂j , ξ

e ∂i

]
=

{
± ξe−e j ∂j if e(j) = 1

0 if e(j) = 0
for |e| > 1 with e(i) = 0 ,[(

ξ1 · · · ξn − 1
)
∂j , ξk ∂i

]
= δj,k

(
ξ1 · · · ξn − 1

)
∂i for |e| = 1 with k ̸= i .

The third subcase is[(
ξ1 · · · ξn − 1

)
∂j , ξ

e
(
ξh ∂h − ξk ∂k

) ]
=

=

{
±ξe−e j

(
ξh ∂h − ξk ∂k

)
+ (−1)

|e|+1(
δj,h − δj,k

)
ξe ∂j if e(j) = 1

(−1)
|e|+1(

δj,h − δj,k
)
ξe ∂j if e(j) = 0

where e(h) = 0 = e(k) , |e| > 0 (with k = h+1 if we want the second element to belong to BS(n)

— yet the formula above holds in general for any h and k ). The fourth, last subcase is[(
ξ1 · · · ξn − 1

)
∂j ,

(
ξh ∂h − ξk ∂k

) ]
=
(
δj,h − δj,k

) (
ξ1 · · · ξn − 1

)
∂j

Finally, for the 2–operation we have that (2.2) and the identity in Definition 2.7(e) give((
ξ1 · · · ξn − 1

)
∂j
)⟨2⟩

= (−1)
j
ξ1 · · · ξ̂j · · · ξn ∂j ∀ j = 1, . . . , n . (2.12)

2.16. Definition of H(n) . We retain again notations of Definition 2.10 above, with n ≥ 4 .

Let ω :=
(
ωi,j

)j=1,...,n;

i=1,...,n;
be a symmetric, non-singular square matrix of order n with entries

in Λ(n) : this defines canonically a symplectic form in Λ(n) which we still denote by ω , namely
ω :=

∑n
i,j=1 ωi,j dξi◦dξj — cf. [14], §3.3. For any such form and any D :=

∑n
i=1 Pi

(
ξ
)
∂i ∈ W (n)

the form Dω is naturally defined, and we set

H̃(ω) :=
{
D ∈ W (n)

∣∣∣ Dω = 0
}

This is a Lie subsuperalgebra of W (n) . We define a special Lie subsuperalgebra of H̃(ω) , namely

H(ω) :=
[
H̃(ω) , H̃(ω)

]
All Lie superalgebras H̃(ω) , for different forms ω , are isomorphic with each other; the same

holds for the various H(ω) . Thus we can fix a specific form of the matrix ω : we choose it to be

ω :=

(
0r Ir
Ir 0r

)
if n = 2 r , ω :=

 0r×r Ir×r 0r×1

Ir×r 0r×r 0r×1

01×r 01×r 1

 if n = 2 r + 1 (2.13)

(where Ir×r is the identity matrix of order r , and so on), so that the corresponding form is

ω =
r∑

i=1

(
dξi◦dξr+i+dξr+i◦dξi

)
if n=2r , ω =

r∑
i=1

(
dξi◦dξr+i+dξr+i◦dξi

)
+dξn◦dξn if n=2r+1 .

For this specific choice of form ω , we use hereafter the notation H̃(n) := H̃(ω) , H(n) := H(ω) .
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The natural Z–filtration on W (n) induces a Z–filtration on H̃(ω) and H(ω) , for any ω . Even

more, on H̃(n) and H(n) the Z–grading on W (n) induces Z–gradings as well. Then the graded Lie

superalgebra associated with H̃(ω) , for any ω , is isomorphic to H(n) as a graded Lie superalgebra.
Several properties of these graded Lie superalgebras are recorded in [14], §3. Here we just recall

H̃(n) =
⊕
z∈Z

H̃(n)z , H̃(n)z = W (n)z
∩
H̃(n) , H(n) =

⊕
z∈Z

H(n)z , H(n)z = W (n)z
∩
H(n)

where H̃(n)z ̸= {0} iff −1 ≤ z ≤ n−2 , H(n)z ̸= {0} iff −1 ≤ z ≤ n−3 . Moreover H̃(n)z =

H(n)z for −1 ≤ z ≤ n−3 and dim
(
H̃(n)n−2

)
= 1 : in particular, H̃(n) = H(n)⊕ H̃(n)n−2 .

Like for W (n) and S(n) , this Z–grading yields also gradings by cyclic groups, namely H̃(n) =⊕
[z]∈Zñ

H(n)[z] and H(n) =
⊕

[z]∈Zn−1

H(n)[z] with H̃(n)[z] :=
⊕

ζ ≡ z mod ñ

H(n)ζ for all [z] ∈ Zn and

H(n)[z] :=
⊕

ζ ≡ z mod (n−1)

H(n)ζ for all [z] ∈ Zn−1 (the integers modulo n−1 ). Again, in both cases

the Z–grading yields a Z–filtration, coinciding with the one induced by W (n) , whose associated

graded Lie superalgebra is isomorphic to H(n) and H̃(n) respectively. Finally (as for W , S̃ and S )

the Z–grading is consistent with the Z2–grading both in H̃(n) and in H(n) , in the obvious sense.

To describe H̃(n) , H(n) and their graded summands, we exploit a different realization of them.

For any given closed differential form ω as above, consider on Vn := Span
(
ξ1, . . . , ξn

)
the

bilinear form corresponding to ω , and take on the vector space Λ(n) the structure of Clifford
algebra associated to Vn with such a form. Then the supercommutator on Λ(n) reads

{f, g} := (−1)
p(f)∑n

i,j=1 ω̇i,j ∂i(f) ∂j(g) (2.14)

(we use braces instead of square brackets for psychological reasons) where ω̇ =
(
ω̇i,j

)j=1,...,n;

i=1,...,n;
=

ω−1 is the inverse of the matrix ω . If we consider on Λ(n) its natural associative product and the
Lie superbracket in (2.14), it is a (supercommutative) Poisson superalgebra, which we denote by
Pω(n) . By the analog to Poincaré’s lemma, there exists a Lie superalgebra epimorphism

ϕ : Pω(n) −→ H̃(ω) , f 7→ Df :=
∑n

i,j=1 ω̇i,j ∂i(f) ∂j (2.15)

which shifts the Z–grading by −2 , i.e. ϕ
(
Pω(n)z

)
= H̃(ω)z−2 for all z (so the induced Z2–gra-

ding is preserved) and has kernel the K–span of 1 ; so Pω(n)
/
K·1Pω(n)

∼= H̃(ω) via an isomorphism

induced by ϕ . Moreover, the restriction of ϕ to
{
f ∈ Pω(n) = Λ(n)

∣∣ ϵ(f) = 0
}
, where ϵ(f) is the

constant term in f (thought of as a skew-polynomial in the ξi’s), is a bijection: thus we have

H̃(ω) =
{
Df

∣∣ ϵ(f) = 0
}

and
[
Df , Dg

]
= D{f,g} (2.16)

The outcome is that we can describe H̃(ω) via the isomorphism of it with Pω(n)
/
K · 1Pω(n) , for

which we can compute the Lie superbracket using (2.14). We do it now for the canonical ω .

Let ω be the canonical matrix chosen as in (2.13). Then we write P (n) := Pω(n) for the
corresponding Poisson superalgebra. In this case (2.14) and (2.15) take the simpler form

{f, g} := (−1)
p(f)
(∑r

s=1

(
∂s(f) ∂r+s(g) + ∂r+s(f) ∂s(g)

)
+ δn∈(2N+1) ∂2r+1(f) ∂2r+1(g)

)
(2.17)

f 7→ Df :=
∑r

s=1

(
∂s(f) ∂r+s + ∂r+s(f) ∂s

)
+ δn∈(2N+1) ∂2r+1(f) ∂2r+1 (2.18)

where δn∈(2N+1) := 1 if n is odd (written as n = 2 r + 1 ) and δn∈(2N+1) := 0 otherwise.

For each z ∈ Z the set BP (n) ; z :=
{
ξe
∣∣ e∈ {0, 1}n, |e| = z

}
is a K–basis of P (n)z , and

for each z ∈ Z2 the set BP (n) ; z :=
∪

(z mod 2)= z

BP (n) ; z is a K–basis of P (n)z . It follows that

BP (n) :=
∪
z∈Z

BP (n) ; z is a K–basis (Z–homogeneous and Z2–homogeneous) of P (n) . Applying ϕ ,

we get bases for H̃(n) , H(n) and their graded summands. Focusing on H(n) , we find:

(a) a basis of the K–vector space H(n) is given by

BH(n) :=
{
Dξe

∣∣∣ e ∈ {0, 1}n, 0 < |e| < n
}
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This basis is homogeneous (for the Z–grading and the Z2–grading), i.e. BH(n) =
∪

z∈Z BH(n) ; z

and BH(n) =
∪

z∈Z2
BH(n) ; z where BH(n) ; z := BH(n)∩H(n)z is a basis ofH(n)z and BH(n) ; z :=

BH(n) ∩H(n)z is a basis of H(n)z , for every z ∈ Z and z ∈ Z2 .

(b) H(n)0 is a Lie subalgebra of the even part H(n)0̄ of H(n) , isomorphic to so(n) , the
latter being considered with respect to the canonical form ω ; an isomorphism is given by

Dξhξk = ξk ∂r+h − ξh ∂r+k 7→ ek,r+h − eh,r+k ∀ 1 ≤ h < k ≤ r

Dξhξr+k
= ξr+k ∂r+h − ξh ∂k 7→ er+k,r+h − eh,k ∀ 1 ≤ h ≤ r , 1 ≤ k ≤ r

Dξr+hξr+k
= ξr+k ∂h − ξr+h ∂k 7→ er+k,h − er+h,k ∀ 1 ≤ h < k ≤ r

Dξtξ2r+1 = ξ2r+1 ∂r+t − ξt ∂2r+1 7→ e2r+1,r+t − et,2r+1 ∀ 1 ≤ t ≤ r , n = 2 r + 1

Dξr+tξ2r+1 = ξ2r+1 ∂t − ξr+t ∂2r+1 7→ e2r+1,r+t − et,2r+1 ∀ 1 ≤ t ≤ r , n = 2 r + 1

(with notation as in Definition 2.10), the last two formulas being in use only for odd n = 2 r + 1 .

(c) H(n)−1 , as a module for H(n)0
∼= so(n) , is the dual of the standard module of so(n) .

2.17. The Lie structure in H(n) . We describe now the Lie (super)structure of H(n) in terms

of its basis BH(n) . We make use of the isomorphism P (n)
/
K · 1P (n)

∼= H̃(n) along with formulas

(2.16–17) and the fact that H̃(n) = H(n)⊕ H̃(n)n−2 with H̃(n)n−2 = K ·Dξ1ξ2···ξn . In short, we

have to compute the brackets
{
ξa , ξb

}
in P (n) for all a , b ∈ {0, 1}n such that 0 < |a| , |b| < n .

By (2.17) we have{
ξa , ξb

}
= (−1)

|a|

(
r∑

s=1

(
∂s
(
ξa
)
∂r+s

(
ξb
)
+ ∂r+s

(
ξa
)
∂s
(
ξb
))

+ δn∈(2N+1) ∂2r+1

(
ξa
)
∂2r+1

(
ξb
))

With a detailed (yet elementary) analysis, one finds only two possibilities. The first one is

∃ s : a(s) = 1 = b(r+ s) , a(r+ s) = 1 = b(s) =⇒
{
ξa , ξb

}
= 0 (2.19)

On the other hand, the second possibility is either

@ s : a(s) = 1 = b(r+s) , a(r+s) = 1 = b(s)(
a(2 r+1) , b(2 r+1)

)
̸= (1, 1)

}
=⇒

{
ξa , ξb

}
=

r∑
k=1

ηk ξ
a+b−e k−e r+k (2.20)

for some ηk ∈ {+1, 0,−1} , or (only possible if n is odd, written as n = 2 r + 1 )

@ s : a(s) = 1 = b(r+s) , a(r+s) = 1 = b(s)(
a(2 r+1) , b(2 r+1)

)
= (1, 1)

}
=⇒

{
ξa , ξb

}
= η2r+1 ξ

a+b−2e 2r+1 (2.21)

for some η2r+1 ∈ {+1, 0,−1} . For later use, we also record the following fact

a(s) = a(r+s) , b(s) = b(r+s) ∀ s
a(2 r+1) = 0 = b(2 r+1)

) }
=⇒

{
ξa , ξb

}
= 0 (2.22)

also proved by straightforward inspection. Similar results, still proved by direct analysis, are{
ξa ,

{
ξa , ξb

}}
= 0 ∀ a , b ∈ {0, 1}n : |a| > 3 (2.23){

ξ2r+1 , ξ2r+1

}
= −1 ,

{
ξa , ξa

}
= 0 ∀ a ∈

{
0, 1
}n \

{
e 2r+1

}
(2.24)

All the formulas above yield also the Lie brackets among elements of BH(n) , via the identity[
Dξa , Dξb

]
= D[ξa , ξb] — see formula (2.16). Similarly, from these formulas and from the identity

in Definition 2.7(e), taking also (2.24) into account, we get for the 2–operation the formulas

Dξa
⟨2⟩ = 0 ∀ a ∈ {0, 1}n (2.25)

� From now on, g will be a Lie superalgebra of Cartan type: W (n) , S(n) , S̃(n) or H(n) . �
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2.18. Cartan subalgebras, roots, root spaces. Let g be a Lie superalgebra of Cartan type.
We call Cartan subalgebras of g the Cartan subalgebras of the reductive Lie algebra g0 , which
is gl(n), sl(n) or so(n) respectively if g is W (n) , S(n) or S̃(n) , or H(n) . We fix one of them
(the “standard” one), namely h := SpanK

(
{ ξk ∂k }1≤k≤n

)
for case W (n) , h := SpanK

(
{(ξk ∂k −

ξk+1 ∂k+1) }1≤k≤n−1

)
for cases S(n) and S̃(n) , and h := SpanK

(
{(ξk ∂k − ξr+k ∂r+k) }1≤k≤r

)
for

case H(n) , with r :=
[
n/2

]
. In all cases, the spanning set we considered in h is actually a K–basis.

Now consider the element E :=
∑n

i=1 ξi ∂i ∈ W (n)0 : we set h := h , g0 := g0 , g := g when g

is of type W or S̃, and h := h+K E , g0 := g0 +K E , g := g+K E when g is of type S or H . In
this way E ∈ g iff g is Z–graded, with

[
E , X

]
= z X for X ∈ gz (cf. [14], §1.2.12 and §4.1.2).

The Cartan subalgebra h acts by adjoint action on g , and g itself is an h–submodule. Thus we
have a decomposition of g into weight spaces for the h–action, namely (cf. [16], §4)

g =
⊕

α∈h
∗ gα , gα :=

{
w ∈ g

∣∣ [h,w] = α(h)w , ∀ h ∈ h
}

called root (space) decomposition of g , where gα=0 = h . The terminology for such a context is

standard: ∆ :=
{
α ∈ h

∗ \{0}
∣∣ gα ̸= {0}

}
is the root system of g , its elements are called roots, we

have root spaces (each gα for α ̸= 0 ), root vectors, etc. For every root α one has either gα ⊆ g0̄ or
gα ⊆ g1̄ : accordingly, we call α even or odd ; we set ∆z :=

{
α ∈ ∆

∣∣ gα ⊆ gz
}

for z ∈
{
0 , 1

}
.

We call a root α essential if −α ∈ ∆, and nonessential if −α ̸∈ ∆ .

Finally, the multiplicity of a root α , by definition, is the non-negative integer µ(α) := dim (gα) ;
then we call the root α respectively thin or thick if µ(α) = 1 or µ(α) > 1 .

We denote byQ the Z–lattice Q := Z.∆ spanned by ∆ inside h
∗
. The root space decomposition

is a Q–grading of g (as a Lie superalgebra). This Q–grading is compatible with the Z–grading
g =

⊕
z∈Zgz (only as vector space for g of type S̃ : cf. the Remark in §2.14), in the following sense:

one has h ⊆ g0 and for each root α also gα ⊆ ght(α) for a unique integer ht(α) ∈ Z , so that

g0 =
⊕

α : ht(α)=0

gα
⊕

h , gz =
⊕

α : ht(α)=z

gα
(
∀ z ∈ Z \ {0}

)
The unique integer ht(α) ∈ Z thus associated with every root α is called the height of α . As
another consequence, we can also partition the set of roots according to the height, namely, ∆ =⨿

z∈Z ∆z with ∆z :=
{
α ∈ ∆

∣∣ ht (α) = z
}
; then ∆0 =

⨿
z∈2Z ∆z and ∆1 =

⨿
z∈(2Z+1) ∆z .

We set ∆0̄ ↑ := ∆0̄\∆0 , ∆1̄ ↑ := ∆1̄\∆−1 and ∆̃ :=
{
(α, j)

}α∈∆

1≤j≤µ(α)
; we denote π : ∆̃ −� ∆

the map α̃ = (α, k)
π7→ α , and ∆̃ẑ := π−1

(
∆ẑ

)
for ẑ ∈

{
0̄ , 1̄ , 0̄↑, 1̄↑

}
∪ {−1, 0, 1, . . . , n} .

We conclude introducing (or recalling) the notion of coroot adfssociated with a classical root.

When g is of type W , S or H , the Lie algebra g0 is reductive, of the form g0 = g ss
0 ⊕ K E

where g ss
0 is its semisimple part (actually simple) and K E is its radical (actually the centre);

similarly h splits as h = hss ⊕ K E with hss := h ∩ g ss
0 : explicitly, hss is the (standard) Cartan

subalgebra of g ss
0

∼= sln — if g is of type W (n) or S(n) — or of g0 ∼= son — if g is of type H(n) .

When g is of type S̃(n) the situation is simpler: the Lie algebra g0 = g0 is (semi)simple,
isomorphic to sln . In order to unify notation, we write then g ss

0 := g0 = g0 and hss := h = h :
explicitly, hss = h is the (standard) Cartan subalgebra of g0 = g0 ∼= sln .

As in any semisimple Lie algebra, the Killing form induce a K–linear isomorphism
(
hss
)∗ ∼=
↪−� hss ,

denoted by γ 7→ tγ . When g is of type S̃(n) we use this isomorphism to define (as usual: cf. [13])

the coroot Hα ∈ hss = h associated with any classical root α ∈ ∆0

(
⊂
(
hss
)∗

= h
∗ )

.

When g is of type W , S or H instead, note that every linear functional ϕ on hss uniquely

extends to a linear functional on h such that ϕ(E) = 0 : this yields an embedding of
(
hss
)∗

into

h
∗
, so every root (in classical sense) of the simple Lie algebra g ss

0 identifies with an element of h
∗
.

Conversely, let δ ∈ h
∗

be the unique K–linear functional on h = hss ⊕ K E such that δ(E) = 1

and δ
(
hss
)
= {0} : coupled with the embedding

(
hss
)∗

↪−→ h
∗
, this yields h

∗
=
(
hss
)∗ ⊕ K δ .

Now, using this last description of h
∗
and the isomorphism

(
hss
)∗ ∼=
↪−� hss induced by the Killing

form, we extend the latter to an isomorphism h
∗
↪−� h ,

(
γ 7→ tγ , E 7→ δ

)
: via this, we define

again the coroot Hα ∈ hss $ h associated with every classical root α ∈ ∆0

(
⊂
(
hss
)∗$ h

∗ )
.
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We describe now in detail all these objects; we distinguish cases W , S , S̃ and H (cf. [16]).

Case g = W (n) : Let g := W (n) . Then g0 ∼= gln , and we fix the Cartan subalgebra h = h

as above. Let {ε1, ε2, . . . , εn} be the standard basis of h∗ : then the root system of g is given by

∆ =
{
εi1+ · · ·+ εik− εj

∣∣ 1≤ i1<i2< · · ·<ik≤n , j = 1, . . . , n
}
\ {0}

From this description, one sees at once that every root α ∈ ∆ can be written as ± the sum of
“simple roots” chosen in a “simple root system”, just like for simple Lie superalgebras of basic type.
For instance, one can take as “simple root system” the set Π := { ε1 − ε2 , . . . , εn−1 − εn , εn } ,
which is even “distinguished” (i.e., it contains only one odd root, in this case εn ).

If α =
∑k

s=1 εis − εj with j ̸∈ {i1, . . . , ik} , then gα=
∑k

s=1 εis−εj
has K–basis the singleton{

ξi1 · · · ξik∂j
}
, so that µ(α) = 1 ; if instead α =

∑h
r=1 εir , then gα=

∑h
r=1 εir

has K–basis{
ξi1 · · · ξih ξℓ ∂ℓ

∣∣ ℓ ∈ {1, . . . , n}\{i1, . . . , ih}
}
, so µ(α) = n−h . Thus the thick roots are those of{∑h

s=1 εis
∣∣ h < n−1

}
and the thin ones those of

{∑k
s=1 εis−εj

∣∣ j ̸∈ {i1, . . . , ik}
} ∪ {∑n−1

s=1 εis
}
.

Now for any α = εi1+· · ·+εik−εj ∈ ∆, its height is easy to read off: it is given by ht(α) = k−1 .

If a root α is even essential, then gα , g−α ⊆ g0 , the multiplicity of both α and −α is 1 and
gα , g−α together generate a Lie subalgebra isomorphic to sl(2) inside g0 . The set of even essential

roots is
{
εi−εj

}i ̸=j

i,j=1,...,n;
, the corresponding root spaces being gεi−εj =SpanK

(
{ξi ∂j}

)
=K ξi ∂j .

If instead α is odd essential, then either gα ⊆ g−1 , µ(α) = 1 , µ(−α) = n − 1 , or
g−α ⊆ g−1 , µ(−α) = 1 , µ(α) = n − 1 . In the first case, α ∈

{
−εj

}
1≤j≤n

is thin while

−α ∈
{
εj
}
1≤j≤n

is thick, and for each j the root spaces gα=−εj and g−α=εj have K–basis
{
∂j
}

and
{
ξj ξℓ ∂ℓ

∣∣ 1 ≤ ℓ ≤ n , ℓ ̸= j
}

respectively (see above). In the second case the converse holds.

Finally the nonessential roots α are all those such that ht (α) > 1 together with all those of
the form α = εi1+ εi2− εj (hence ht (α) = 1 ) with j ̸= i1, i2 . ♢

Case g = S(n) : Let g := S(n) . Now g0 ∼= sln , we fix the Cartan subalgebra h and set

h := h⊕K E as above. Clearly the root system of g := S(n) is a subset of that of W (n) , namely

∆ =
{
εi1+ · · ·+ εik− εj

∣∣ 1≤ i1<i2< · · ·<ik≤n , k<n , j=1, . . . , n
}
\ {0}

in short, the roots of S(n) are those of W (n) whose height is less than n−1 . In particular, the
characterization of the height of a root of S(n) is exactly the same as for W (n) .

By construction, root spaces of S(n) or W (n) enjoy the relation S(n)α = W (n)α
∩

S(n) . The
explicit description given for case W implies that S(n)α = W (n)α when α is thin for W (n) , so
that it is thin for S(n) as well (the multiplicity being 1 in both cases). Instead, if a root α is of the

form α =
∑h

s=1 εis , with h < n−1 (so it is thick for W (n) ), then the space S(n)α has K–basis{
ξi
(
ξj ∂j − ξj+1 ∂j+1

) ∣∣ 1 ≤ j ≤ n−1 , i(j) = 0 = i(j+1)
}

with ξi := ξi1 · · · ξih ; so α in S(n) has
multiplicity µ(α) = n−h−1 , hence α is thick for S(n) if h < n−2 , and it is thin if h = n−2 .

Finally, it is clear that roots of S(n) have a certain degree (for the Z2–grading or the Z–grading),
and they are essential or non-essential, exactly as they have or they are for W (n) . ♢

Case g = S̃(n) : Let g := S̃(n) . Like for S(n) , we have g0 ∼= sln and we fix h := h with h

as above. By the analysis in §§2.14, 2.15, we see that the root system of S̃(n) is

∆ =
{
εi1+ · · ·+ εik− εj

∣∣ 1≤ i1<i2< · · ·<ik≤n , k<n , j=1, . . . , n
}
\ {0}

like for S(n) , but now ε1 + · · ·+ εn = 0 in h
∗
= h∗ . Also, for root spaces we have the following.

For every root α of S(n) having non-negative height we have S̃(n)α = S(n)α . Instead, for the

roots of height −1 (which are −ε1 , . . . , −εn ) we have S̃(n)−εj
= SpanK

(
(ξ1 · · · ξn − 1) ∂j

)
for

all j = 1, . . . , n , with
{
(ξ1 · · · ξn − 1) ∂j

}
being a K–basis of any such root space.

It is worth stressing that the roots of the form −εj are the only α ∈ ∆ such that 2α ∈ ∆.
Indeed, 2 (−εj) = ( ε1 + · · · + ε̂j + · · · + εn) − εj ∈ ∆ (for all j = 1, . . . , n ), using the identity
ε1 + · · ·+ εn = 0 (in h∗); instead, direct analysis shows that 2α ̸∈ ∆ for all α ̸∈ {−εj}j=1,...,n; .
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Finally, we can say that the roots of S̃(n) have a certain degree (for the Z2–grading or the
Zn–grading), they are essential or non-essential, much like we did for W (n) and S(n) . ♢

Case g = H(n) : Let g := H(n) . Now g0 ∼= son , we fix the Cartan subalgebra h as above,

and then h := h+K E % h . To describe the root system and the root spaces in this case, we point

out the explicit form of the action of E on the basis vectors of g := H(n) considered in §2.16. Let
Dξa be any one of these elements, with a ∈ {0, 1}n , with 0 < |a| < n . The formulas in §2.11 give[

E , Dξa

]
=
(
|a| − 2

)
Dξa ∀ a ∈ {0, 1}n : 0 < |a| < n (2.26)

As before, we write n = 2 r or n = 2 r + 1 , withe r :=
[
n/2

]
. Let now {ε1, . . . , εr} be the

standard basis in the weight space of g0 = son : adding δ we get a basis of h
∗
. The root system is

∆ =
{
±εi1±· · ·±εik+mδ

∣∣ 1≤ i1< · · ·<ik≤r, k−2 ≤m≤ n−2, m≥−1, m−k ∈ 2Z
}

if n = 2 r

∆ =
{
±εi1±· · ·±εik+mδ

∣∣ 1≤ i1< · · ·<ik≤r , k−2 ≤m≤ n−2 , m≥−1
}

if n = 2 r+1

As to root spaces, consider any root α = ±εi1±· · ·±εik+mδ written as α =
∑r

j=1 dj εj+mδ
with dj ∈ {+1, 0,−1} for all j . Then the formulas in §2.17 along with (2.26) lead to find that for
every root α =

∑r
j=1 dj εj +mδ the root space gα=

∑r
j=1 dj εj+mδ has K–basis the set{

Dξa

∣∣∣ a ∈ {0, 1}n : |a|−2 = m, a(j)− a(r+j) = dj ∀ j
}

The height of α = ±εi1 ± · · · ± εik + mδ is ht(α) = m ; in particular, if Dξa ∈ gα then

|a| = ht(α) + 2 ; the parity of α is the same as m , and its multiplicity is µ(α) =
(

r
[(m−k)/ 2]

)
,

where
[
(m− k)/2

]
is the integral part of (m− k)/2 .

Finally, note that the roots α = mδ are the only ones whose double might be a root too. ♢

2.19. Finiteness properties of roots and root vector action. As we saw in §2.18, the root
space decomposition yields a Q–grading of g . As a consequence, each root vector acts nilpotently.
Actually, we can make this result more precise. We begin with some easy properties of roots:

Lemma 2.20. Let α , β ∈ ∆ . Then (t α+β) ̸∈∆ for all t > 2 . Moreover, if 2α ∈∆ or 3α ∈∆ ,

then g = H(n) , α ∈
{
mδ

∣∣m ∈ Z
}
, or (only for the first case) g = S̃(n) , α ∈ {−εi}i=1,...,n; .

Here now are the finiteness properties of the root vector action we need:

Proposition 2.21. The following hold:

(a) Let α∈∆ , α ̸=−εi if g= S̃(n) or α ̸=(2N+1) δ if g=H(2 r+1) . Then
[
gα , gα

]
= {0} .

(b) Let α ∈ ∆0̄ , xα ∈ gα . Then ad(xα)
3 = 0 ; if α ̸∈ ∆0 , then ad(xα)

2 = 0 .

Proof. (a) If g is of typeW , S or S̃, then direct inspection shows 2α ̸∈∆ for α ∈∆ , with α ̸= −εi
in type S̃ . If instead g is of typeH(n) then 2α ̸∈ ∆ whenever α ̸∈ Z δ (as direct inspection shows).
Then in all these cases one has

[
gα , gα

]
⊆ g2α = {0} . Finally, assume g is of type H(n) and

α ∈ Z δ , say α = k δ . The root space gα has K–basis the set
{
Dξa

∣∣ a(s) = a(r+s) ∀ 1 ≤ s ≤ r
}
,

and by formulas (2.19–21) we may have
[
Dξa , Dξb

]
= D{ ξa , ξb } ̸= 0 only if n is odd

(
= 2 r+1

)
.

(b) First of all, assume α ∈ ∆0̄

(
\∆0

)
, and consider any other root β ∈ ∆. By Lemma 2.20

one has 3α ̸∈ ∆ and 3α+ β ̸∈ ∆: this easily implies ad(xα)
3 = 0 .

Now let g be of type W , S or S̃ . Direct inspection shows that, given α ∈ ∆0̄ and β ∈ ∆, one
has 2α+ β ∈ ∆ only if α ∈ ∆0 . Then one can argue as above for the action of ad(xα)

2 onto h

and onto root spaces gβ , and eventually prove the second part of the claim for types W , S and S̃ .

Let now g be of type H, say g = H(n) . From §2.18 we know that the root vector xα is a
linear combination of root vectors of the form Dξa , say xα =

∑
k ck Dξak for some ck ∈ K .

First assume α ̸∈ Z δ . Then 2α ̸∈ ∆, by Lemma 2.20, thus g2α = {0} and for any pair of

summands in the expansion of xα we have
{
Dξak′ , Dξak′′

}
∈
{
gα , gα

}
⊆ g2α = {0} .
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Now let α ∈ Z δ , say α = mδ . Then m is even because α ∈ ∆0̄ ; but |ak| = ht(α)+2 = m+2
for each ak occurring in the expansion of xα , so in particular |ak| is (independent of k and) even,
thus in the end ak has the property that ak(s) = ak(ℓ+s) for all 1 ≤ s ≤ ℓ . Now (2.22) applies,

yielding
{
ξak′ , ξak′′

}
= 0 and so in the end

{
Dξak′ , Dξak′′

}
= D{ξak′ , ξak′′ } = D0 = 0 .

In any case, we found that all summands in the expansion of xα do commute with each other.

It follows that ad(xα)
2 =

∑
k c

2
k ad

(
Dξak

)2
; so it is enough to prove the claim for xα = Dξa .

Again, xα = Dξa implies |a| = ht(α)+2 : as α ∈ ∆0̄\∆0 implies ht(α) ≥ 2 , this yields |a| ≥ 4 .

Then (2.23) gives ad
(
ξa
)2(

ξb
)
=
{
ξa ,
{
ξa , ξb

}}
= 0 for b ∈ {0, 1}n : thus ad

(
Dξa

)2
(gβ) = {0}

for all β ∈ ∆ . Similarly ad
(
Dξa

)2
(h) =

[
Dξa , [Dξa , h ]

]
= −α(h)

[
Dξa , Dξa

]
= 0 for any h ∈ h ,

as Dξa ∈ g0̄ : thus ad
(
Dξa

)2
(h) = {0} too. Then arguing as above we get ad

(
Dξa

)2
= 0 .

2.22. Triangular decompositions, Borel subalgebras and special sub-objects. Since
char(K) = 0 , we can identify hereafter the fundamental subfield of K with Q .

Let hQ := Q ⊗Z
{
H ∈ h

∣∣α(H) ∈ Z , ∀ α ∈ ∆
}

; one sees easily that hQ is an integral
Q–form of h , and α(h) ∈ Q for all h ∈ hQ . We call h ∈ hQ regular if α(h) ̸= 0 for all α ∈ ∆.
Any regular h ∈ h defines a partition ∆ = ∆+

⨿
∆− where ∆+ :=

{
α ∈ ∆

∣∣α(h) > 0
}

and

∆− :=
{
α ∈ ∆

∣∣α(h) < 0
}
: the roots in ∆+ are said to be positive, those in ∆− negative. All this

defines a triangular decomposition g = g+ ⊕ h ⊕ g− with g± :=
⊕

α∈∆± gα , as well as Borel
subalgebras b± := h⊕g± . From now on, we fix a specific Borel subalgebra of g0 , denoted b0 , and
we restrict ourselves to consider those Borel subalgebras of g containing b0 . Among these, when

g ̸∼= S̃(n) there is a maximal one, bmax := b0 ⊕
( ⊕

i>0
gi

)
, and a minimal one, bmin := b0 ⊕ g−1 .

For later use, we introduce notation (consistent with §2.18) ∆0̄ ↑ := ∆0̄\∆0 , ∆1̄ ↑ := ∆1̄\∆−1 ,

∆±
• := ∆• ∩∆± , ∆̃±

• := ∆̃• ∩
(
∆±

• × N+

)
where ∆• ∈

{
∆ , ∆0 , ∆0̄ , ∆1̄ , ∆0̄ ↑ , ∆1̄ ↑

}
.

Starting from the root decomposition of §2.18, we can introduce special “sub-objects” of g :

Definition 2.23. Basing on the root decomposition in §2.18, we have g0̄ = h ⊕
(⊕

α∈∆0̄
gα

)
,

g1̄ =
⊕

γ∈∆1̄
gγ and g0 = h⊕

(⊕
α∈∆0

gα

)
. Then set g0̄ ↑ :=

⊕
α∈∆

0̄ ↑
gα , g1̄ ↑ :=

⊕
γ∈∆

1̄ ↑
gγ ,

and gt↑ = ⊕z>t gz for all t ≥ −1 . Note then that g−1↑ = g0̄⊕g1̄ ↑ and g0↑ = g0̄ ↑⊕g1̄ ↑ ; note also

that
(
gt↑
)
0̄
= g0̄∩gt↑ = ⊕ z>t

z∈2Z
gz , for all t ≥ −1 . For g ̸∼= S̃(n) consider also g−1,0 := g−1⊕g0̄ .

Remark 2.24. Note that g0 , g0̄ ↑ and g0̄ are Lie subalgebras of g , while g0̄ ↑ is a Lie ideal of
g0̄ , and we have a Lie algebra splitting g0̄ = g0 n g0̄ ↑ (semidirect product of Lie algebras), with
g0 reductive and g0̄ ↑ nilpotent. Similarly,

(
gt↑
)
0̄
is a Lie subalgebra of g0̄ , for all t ≥ −1 ; when

q > p ,
(
gq↑
)
0̄
is a Lie ideal of

(
gp↑
)
0̄
. On the other hand, g−1↑ and g0↑ are Lie supersubalgebras

of g , with g−1↑ ⊇ g0↑ . Moreover, g0↑ is a nilpotent Lie superalgebra, and a Lie ideal of g−1↑ :

then g−1↑ = g0 n g0↑ (semidirect product); similarly, for g ̸∼= S̃(n) we have g−1,0 = g−1 o g0 .

2.4 Basics on g–modules

Later on we shall work with g–modules and g–modules, so we specify now a few definitions.

Definition 2.25. Let h , resp. h , be a fixed Cartan subalgebra of g , resp. of g , as in §2.18.
(a) Any g–module V is said to be a weight module if V =

⊕
λ∈h∗ Vλ where we set Vλ :={

v ∈V
∣∣ h.v = λ(h) v , ∀ h ∈ h

}
for all λ ∈ h∗ . In this case, every Vλ is called a weight space of

V , and every λ ∈ h∗ such that Vλ ̸= {0} is called a weight of V .

Let now V be a weight module (for g), and set Supp (V ) :=
{
λ ∈ h∗

∣∣Vλ ̸= {0}
}
:

(b) for every λ ∈ h∗ we call multiplicity of λ the dimension multV (λ) := dim
(
Vλ

)
;

(c) we call V integrable if all root vectors of g act locally nilpotently on it;
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(d) if a splitting of roots into positive and negative ones has been fixed as in §2.22, we call
highest weight of V any λ ∈ Supp(V ) such that gα.Vλ = {0} , i.e. λ + α ̸∈ Supp(V ) , for all
α ∈ ∆+ ; then we call highest weight vector (of weight λ) any vλ ∈ Vλ \ {0} .

We adopt similar definitions and terminology when g and h replace g and h respectively.

Also, notice that any g–module bears a structure of g–module too, with E acting semisimply:
moreover, if the g–module is in fact a weight module, then its structure of g–module can also be
chosen so that it is still a weight module for g as well (all this is standard, see e.g. [12] or [16]).

Remarks 2.26.

(a) by standard theory of reductive Lie algebras, every finite dimensional g–module on which
the element E acts semisimply is automatically a weight module;

(b) if V =
⊕

λ∈h∗Vλ is any weight module, then xα.Vλ ⊆ Vλ+α for every root vector xα ∈ gα
of g (α ∈ ∆), by elementary calculations; it follows that every finite dimensional g–module —
which is a weight module by (a) — is automatically integrable;

(c) g itself is an integrable weight g–module for the adjoint representation: the set of weights is
∆∪{0} , and weight spaces are the root spaces and h ; similarly (up to details) for g as a g–module.

(d) if V =
⊕

λ∈h∗Vλ is any integrable (weight) module, then for each root vector xα ∈ gα
(α ∈ ∆) the formal infinite sum exp(xα) :=

∑
n∈N

xn
α

/
n! gives a well-defined operator in GL(V ) .

3 Integral structures

In this section we introduce the first, fundamental results we shall build upon to construct our
“Chevalley type” supergroups associated with g . We keep notation and terminology as before.

3.1 Chevalley bases and Chevalley superalgebras

In this subsection we extend a classical result: the notion of “Chevalley basis” for (semi)simple
Lie agebras. A similar notion was introduced in [9] for simple Lie superalgebras of classical type,
and used to construct affine algebraic supergroups. We now do the same for the Cartan type case.

Definition 3.1. We call r := rk (g) the rank of g : by definition, it is the rank of the reductive

Lie algebra g0 , so rk
(
W (n)

)
= n , rk

(
S(n)

)
= rk

(
S̃(n)

)
= n− 1 and rk

(
H(n)

)
=
[
n/2

]
.

We call Chevalley basis of g any K–basis B =
{
Hi

}
i=1,...,r;

⨿ (⨿
α∈∆

{
Xα,k

}
k=1,...,µ(α);

)
={

Hi

}
i=1,...,r;

⨿ {
Xα̃

}
α̃∈∆̃

of g which is homogeneous (for the cyclic grading of g , cf. subsec. 2.3)

and enjoying the following properties (with notation of §2.18 for coroots):

(a)
{
H1, . . . ,Hr

}
is a K–basis of h , such that β(H1), . . . , β(Hr) ∈ Z for all β ∈ ∆ and

Hα ∈ hZ := SpanZ
(
H1, . . . , Hr

)
for all α ∈ ∆0 ; in particular,

[
Hi , Hj

]
= 0 for all 1 ≤ i, j ≤ r ;

(b)
{
Xα,k

}
k=1,...,µ(α);

is a K–basis of gα , for all α∈∆; thus
[
Hi , Xα,k

]
= α(Hi)Xα,k ∀ i , k ;

(c)
[
Xα,k , Xα,k

]
= 0 ∀ α ∈ ∆0̄ , k ∈ {1, . . . , µ(α)} ;

(d)
[
Xα,1 , X−α,1

]
= Hα ∀ α ∈ ∆0 ,[

Xγ,1 , X−γ,k

]
= ±Hσγ(k) ∀ γ ∈ ∆−1 , k = 1, . . . , µ(−γ) , for some embeddings

σγ :
{
1, . . . , µ(−γ)

}
↪−→

{
1, . . . , r

}
such that

{
±Hσγ(k)

}
γ∈∆−1 , k=1,...,µ(−γ)

=
{
±H1, . . . ,±Hr

}
;

(e)
[
Xα,k , Xβ,h

]
= 0 ∀ α, β ∈ ∆ : α+ β ̸∈

(
∆ ∪ {0}

)
;

(f)
[
Xα,k , Xβ,h

]
=
∑µ(α+β)

t=1 c β,h
α,k (t)Xα+β,t ∀ α, β ∈ ∆ : α+ β ∈ ∆ ,

for some c β,h
α,k (t) ∈

{
0 ,±1 ,±2

}
such that
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(f.1) if α , β ∈ ∆0 then c β,1
α,1 (1) = ±(p +1) where p ∈ N is such that β − pα ∈ ∆ and

β − (p+1)α ̸∈ ∆ (note that in this case µ(α) = µ(β) = µ(α+ β) = 1),

(f.2) if (α , β) ∈
(
∆−1 ×∆

)
∪
(
∆ ×∆−1

)
, then there is one and only one index t′ such

that c β,h
α,k

(
t′
)
= ±1 , c β,h

α,k (t) = 0 ∀ t′ ̸= t ,

(f.3) if α = β (hence 2α ∈ ∆; this occurs only for g = S̃(n) , α = −ϵi , or g = H(2 r+1) ,

α = mδ with m odd), there is at most one t′ such that c β,h
α,k

(
t′
)
̸= 0 , and then c β,h

α,k

(
t′
)
= ±2 ;

(g) if α∈∆0 and 2α+ β ∈ ∆ , there exists a unique t′ ∈ {1, . . . , µ(2α+ β)} such that[
Xα,1 ,

[
Xα,1 , Xβ,h

]]
= ± 2X2α+β,t′ ;

(h) for all γ∈∆1̄ , we have (with notation as in (f.3.) above)

X
⟨2⟩
γ,k = 0 if all c γ,k

γ,k (t)’s are zero, and X
⟨2⟩
γ,k = 2−1c γ,k

γ,k

(
t′
)
X2γ,t′ otherwise.

IfB is any Chevalley basis of g , we set gZ := Z–span ofB , and we call it Chevalley superalgebra.

Remarks 3.2.

(a) The above definition extends to the Lie superalgebra g the notion of Chevalley basis for
(semi)simple Lie algebras: in particular, if B is a Chevalley basis of g then B ∩ g0 is a Chevalley
basis — in a standard sense, extended to reductive Lie algebras in case W — of g0 .

In the present formulation, the conditions we give are clearly redundant, and may be simplified.

(b) By its very definition, the Chevalley superalgebra gZ is a Lie superalgebra over Z .

(c) When g is not of type W , so that g $ g , if B is any Chevalley basis for g we can as well
consider B := B

⨿
{Hδ} : this plays the role of a “Chevalley basis” for g , and we can develop all

the theory which follows hereafter with g and h replacing g and h respectively.

(d) For notational convenience, in the following I shall also use the notation Xη,k := 0 when
k ∈ N+ and η belongs to Q (the Z–span of ∆) but η ̸∈ ∆ .

We prove the existence of Chevalley bases of g by providing explicit examples, as follows:

Examples 3.3. Explicit examples of Chevalley bases.

(a) Case W (n) , first example: Let g := W (n) , and take the subset

B′ ≡ BW (n) :=
{
Hi

}
i=1,...,n;

⨿ (⨿
α∈∆

{
Xα,k

}
k=1,...,µ(α);

)
considered in §2.10, but now written in different notation, namely

Hi := ξi ∂i for all i = 1, . . . , r (= n) ,

Xα,1 := ξi1 · · · ξis ∂j for every root of the form α = εi1+ · · ·+ εis− εj ( j ̸∈ {i1, . . . , is} ) ,
Xα,k := ξi1 · · · ξis ξjk∂jk for every root of the form α = εi1+ · · ·+ εis , where jk is the

k–th index in
{
1, . . . , n

}
\
{
i1, . . . , is

}
, for k = 1, . . . , µ(α) .

By the results in §2.11 and §2.18 one checks by direct analysis that B′ is a Chevalley basis.

Indeed, this specific Chevalley basis has even stronger properties than the prescribed ones.
Namely, the cβ,hα,k(t) occurring in part (f) of Definition 3.1 satisfy, besides (f.1) and (f.2), the

following (stronger) properties: cβ,hα,k(t) ∈
{
0 ,±1

}
, and there exist at most two indices t1 and

t2 such that cβ,hα,k(t1) = ±1 , cβ,hα,k(t2) = ±1 , and cβ,hα,k(t
′) = 0 for all t′ ̸∈

{
t1 , t2

}
.

(b) Case S(n) : Let g := S(n) , and take the subset

B ≡ BS(n) :=
{
Hi

}
i=1,...,n−1;

⨿ (⨿
α∈∆

{
Xα,k

}
k=1,...,µ(α);

)
considered in §2.12, but now written with another notation, namely

Hi := ξi ∂i − ξi+1 ∂i+1 for all i = 1, . . . , r (= n−1) ,
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Xα,1 := ξi1 · · · ξis ∂j for every root of the form α = εi1+ · · ·+ εis− εj , j ̸∈ {i1, . . . , is} ,

Xα,k := ξi1 · · · ξis
(
ξjk∂jk− ξjk+1

∂jk+1

)
for every root of the form α = εi1+ · · ·+ εis , where{

j1, . . . , jµ(α), jµ(α)+1

}
:=
{
1, . . . , n

}
\
{
i1, . . . , is

}
with j1 < · · · < jµ(α) < jµ(α)+1 .

Here again, direct analysis based on §2.13 and §2.18 shows that B is a Chevalley basis of S(n) .

(c) Case S̃(n) : Let g := S̃(n) , and take the subset

B ≡ BS̃(n) :=
{
Hi

}
i=1,...,n−1;

⨿ (⨿
α∈∆

{
Xα,k

}
k=1,...,µ(α);

)
introduced in §2.14 and now written with a different notation, namely

Hi := ξi ∂i − ξi+1 ∂i+1 for all i = 1, . . . , r (= n−1) ,

Xα,1 := ξi1 · · · ξis ∂j for each root of the form α = εi1+ · · ·+ εis− εj , j ̸∈ {i1, . . . , is} , s > 0 ,

Xα,1 :=
(
ξ1 · · · ξn − 1

)
∂j for every root of the form α = −εj ( j = 1, . . . , n) ,

Xα,k := ξi1 · · · ξis
(
ξjk∂jk− ξjk+1

∂jk+1

)
for every root of the form α = εi1+ · · ·+ εis , where{

j1, . . . , jµ(α), jµ(α)+1

}
:=
{
1, . . . , n

}
\
{
i1, . . . , is

}
with j1 < · · · < jµ(α) < jµ(α)+1 .

Again, direct analysis (via §2.15 §2.18) shows that this B is indeed a Chevalley basis of S̃(n) .

(d) Case W (n) , second example: Let again g := W (n) . For any i ∈ {1, . . . , n} and any

jα ∈
{
1, . . . , µ(α)

}
for

{
α ∈ ∆ : ht(α) ≥ 1

}
— µ(α) being the multiplicity in W (n) — consider

B′′ := BS(n)

⨿ {
ξi ∂i

} ⨿ {
Xα,jα := ξa1 · · · ξas ξjα∂jα

∣∣α ∈ ∆ : ht(α) > 1
}

where we wrote α = εa1+ · · ·+εas for every root α with ht(α) > 1 (so that the string (a1, . . . , as)
depends on α itself). Yet another direct check shows that B′′ is a Chevalley basis of W (n) .

(e) Case H(n) : Let g := H(n) , and BH(n) :=
{
Dξe

∣∣∣ e ∈ {0, 1}n, 0 < |e| < n
}
. Set

Hi := −Dξi ξr+i = ξi ∂i − ξr+i ∂r+i for all i = 1, . . . , r
(
= [n/2]

)
;

then for any root α = εi1+ · · ·+ εip− εj1− · · · − εjq+mδ set s :=
[
(m− p− q)/2

]
and pick the

root vector (with ϕ as in §2.16)
Xα,k := ±Dξi1 ···ξip ξr+j1 ···ξr+jq ξt1 ···ξts ξr+t1 ···ξr+ts

if (m−p−q) is even,

Xα,k := ±
√
2 Dξi1 ···ξip ξr+j1 ···ξr+jq ξt1 ···ξts ξr+t1 ···ξr+ts ξ2r+1 if (m−p−q) is odd,

for every choice of t1, . . . , ts ∈ {1, . . . , r}\
(
{i1, . . . , ip}∪{j1, . . . , jq}

)
with t1 < · · · < ts , where

k ∈ {1, . . . , µ(α)} is used to order the possible choices of ordered subset of indices {t1, . . . , ts} .
N.B.: the root vectors of second type have to be considered only when n itself is odd.

Now, using the formulas and results in §2.17 and §2.18, one checks that the set of all Hi’s and
all Xα,k’s defined above (for suitable choice of signs) is indeed a Chevalley basis of H(n) . ♢

3.2 The Kostant superalgebra

For any K–algebra A , given m ∈ N and y ∈ A we define the m–th binomial coefficient
(
y
m

)
and the m–th divided power y(m) by

(
y
m

)
:= y (y−1)···(y−m+1)

m! , y(m) := ym
/
m! .

We start with a (standard) classical result, concerning Z–valued polynomials:

Lemma 3.4. (cf. [13], §26.1) Let K
[
y
]
:= K[ y1, . . . , yt] be the K–algebra of polynomials in y1 ,

. . . , yt , and IntZ
(
K
[
y
])

:=
{
f ∈ K

[
y
] ∣∣ f(z1, . . . , zt) ∈ Z ∀ z1, . . . , zt ∈Z

}
. Then IntZ

(
K
[
y
])

is a Z–subalgebra of K
[
y
]
, free as a Z–(sub)module, with basis

{∏t
i=1

(
yi

ni

) ∣∣ n1, . . . , nt ∈ N
}
.
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Let U(g) be the universal enveloping superalgebra of g . We recall that this can be realized
as the quotient of the tensor superalgebra T (g) by the two-sided homogeneous ideal generated by{
x⊗ y − (−1)

p(x)p(y)
y ⊗ x− [x, y] , z ⊗ z − z⟨2⟩

∣∣∣ x, y ∈ g0̄ ∪ g1̄ , z ∈ g1̄

}
.

Fix a Chevalley basis B =
{
Hi

}
i=1,...,r;

⨿{
Xα,k

}k=1,...,µ(α);

α∈∆
=
{
Hi

}
i=1,...,r;

⨿ {
Xα̃

}
α̃∈∆̃

of

g as in Definition 3.1, and let hZ be the free Z–module with basis
{
H1, . . . , Hr

}
. For h ∈ hZ , we

denote by h(H1, . . . , Hr) the expression of h as a function of the Hi’s. From Lemma 3.4 we have:

Corollary 3.5. HZ :=
{
h∈U(h)

∣∣ h(z1, . . . , zr) ∈ Z , ∀ z1, . . . , zr ∈ Z
}

is a free Z–submodule

of U(h) , with basis BU(h) :=
{∏r

i=1

(
Hi

mi

) ∣∣∣m1, . . . ,mn ∈ N
}
. Moreover, it coincides with the

Z–subalgebra of U(g) generated by all the elements
(
H−z
m

)
with H ∈ hZ , z ∈ Z , m ∈ N .

We are now ready to define the Kostant superalgebra. Like in [9], we mimic the classical
construction, but making a suitable distinction between the roles of even and odd root vectors.

Definition 3.6. We call Kostant superalgebra of U(g) the unital Z–subsuperalgebra KZ(g) of

U(g) generated by all elements
(
Hi

m

)
, X

(m)
α̃ , Xγ̃ for m ∈ N , 1 ≤ i ≤ r , α̃ ∈ ∆̃0̄ , γ̃ ∈ ∆̃1̄ .

Remarks 3.7. (a) The classical notion — suitably adapted to the reductive Lie algebra gln when
g = W (n) — defines the Kostant’s Z–form of U(g0) , call it KZ(g0) , as the unital Z–subalgebra of

U(g0) generated by the elements X
(m)
α̃ ,

(
Hi

m

)
with α̃ ∈ ∆̃0 and m ∈ N . Then KZ(g) ⊇ KZ(g0) .

(b) As a matter of notation, we shall always read X
(m)
α̃ := δm,0 if α̃ ̸∈ ∆̃ , for any m ∈ N .

We shall use the following result, proved by induction (cf. also [13], §26.2, for part (a)):

Lemma 3.8. Let l be a Lie K–algebra, and ℓ,m ∈ N , ℓ ∧m := min(ℓ,m) .

(a) Let E ,F ∈ l , H := [E,F ] ∈ l , and assume that [H,E ] = +2E , [H,F ] = −2F . Then

E(ℓ ) F (m) =
∑ℓ∧m

s=0 F (m−s)
(

H−m−ℓ+2 s
s

)
E(ℓ−s) inside U(l) .

(b) Let A ,B ∈ l , C := [A,B ] ∈ l , and assume also that [A,C ] = 0 , [B,C ] = 0 . Then

A(ℓ ) B(m) =
∑ℓ∧m

q=0 B(m−q) C(q) A(ℓ−q) inside U(l) .

(c) Let L ,M ∈ l , N := [L,M ] , 2T := [L,N ] ∈ l . Assume also that [M,N ] = [L, T ] = 0
(then [M,T ] = [N,T ] = 0 as well). Then

L(ℓ ) M (m) =
∑ℓ∧m

s=0 M (m−s)∑
t+q=s T

(t) N (q) L(ℓ−2t−q) inside U(l) .

(d) Let X,Y ∈ l , and assume that [X,Y ] = 0 . Then(
X + Y

)(m)
=
∑m

u=0 X(m−u) Y (u) =
∑m

v=0 Y (m−v) X(v) inside U(l) .

3.3 Commutation rules and Kostant’s PBW theorem

In the classical setup, a description of KZ(g0) comes from a “PBW-like” theorem: namely,
KZ(g0) is a free Z–module with Z–basis the set of ordered monomials (w. r. to any total order) whose

factors are divided powers in the Xα̃

(
α̃ ∈ ∆̃0

)
or binomial coefficients in the Hi ( i = 1, . . . , n ).

We shall prove a similar result for g , our Lie superalgebra of Cartan type. Like for (semi)simple
Lie algebras — and also for simple Lie superalgebras of classical type, cf. [9], §4 — this follows
from a direct analysis of commutation rules among the generators of KZ(g) . To this end, we list
hereafter all such rules, and also some slightly more general relations. We split the list into two
sections: (1) relations involving only even generators; (2) relations involving also odd generators.

The relevant feature is that all coefficients in these relations are in Z .
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(1) Even generators only (that is
(
Hi

m

)
’s and X

(m)
α̃ ’s only, α̃ ∈ ∆̃0̄ ):(

Hi

ℓ

)(
Hj

m

)
=
(

Hj

m

)(
Hi

ℓ

)
∀ i, j ∈ {1, . . . , r} , ∀ ℓ,m ∈ N (3.1)

X
(m)
α̃ f(H) = f

(
H −m π

(
α̃
)
(H)

)
X

(m)
α̃ ∀ α̃ ∈∆̃0̄ , H∈ h , m ∈ N , f(T ) ∈K[T ] (3.2)

X
(ℓ )
α̃ X

(m)
α̃ =

(
ℓ+m
m

)
X

(ℓ+m)
α̃ ∀ α̃ ∈ ∆̃0̄ , ∀ ℓ,m ∈ N (3.3)

X
(ℓ )
α̃ X

(m)

β̃
= X

(m)

β̃
X

(ℓ )
α̃ ∀ α̃, β̃∈∆̃0̄ : π

(
α̃
)
+π
(
β̃
)
̸∈
(
∆∪{0}

)
, ∀ ℓ,m ∈ N (3.4)

X
(m)
α,1 X

(ℓ)
−α,1 =

ℓ∧m∑
s=0

X
(ℓ−s)
−α,1

(
Hα −m− ℓ+2 s

s

)
X

(m−s)
α,1 (3.5)

∀ α ∈ ∆0 , ∀ ℓ,m ∈ N , with ℓ ∧m := min(ℓ,m)

X
(ℓ )
α,k X

(m)
β,h =

ℓ∧m∑
q=0

X
(m−q)
β,h

( ∑∑
qt=q

µ(α+β)∏
t=1

(
c β,h
α,k (t)

)qt
X

(qt)
α+β, t

)
X

(ℓ−q)
α,k (3.6)

∀ α ∈ ∆0̄ , β ∈ ∆0̄ : α+β ∈ ∆ , 2α+β ̸∈ ∆ , α+2β ̸∈ ∆ , ∀ ℓ,m ∈ N

X
(ℓ )
α,1 X

(m)
β,h =

ℓ∧m∑
s=0

X
(m−s)
β,h

∑
p+q=s

ϵpX
(p)
2α+β,t′

( ∑∑
qt=q

µ(α+β)∏
t=1

(
c β,h
α,1 (t)

)qt
X

(qt)
α+β, t

)
X

(ℓ−2p−q)
α,1 (3.7)

∀ α ∈ ∆0 , β ∈ ∆0̄ \∆0 : α+β , 2α+β ∈ ∆ , ∀ ℓ,m ∈ N

X
(ℓ )
α,1 X

(m)
β,1 = X

(m)
β,1 X

(ℓ )
α,1 + l.h.t ∀ α, β ∈ ∆0 , ∀ ℓ,m ∈ N (3.8)

where c β,h
α,1 (t) and Xα+β, t are as in Definition 3.1(f), while ϵ = ±1 and the index t′ are such

that
[
Xα,1,

[
Xα,1, Xβ,h

]]
= ϵ 2X2α+β,t′ as in Definition 3.1(g), and l.h.t. (=“lower height terms”)

stands for a Z–linear combinations of monomials in the X
(q)
η̃ ’s and in the

(
Hi

c

)
’s whose “height”

— i.e., the sum of all “exponents” q occurring in such a monomial — is less than ℓ+m .

Proof. Relations (3.1), (3.2), (3.3) and (3.5) hold by definitions, along with Lemma 3.8(a).

If α̃, β̃ ∈ ∆̃ and π
(
α̃
)
+π
(
β̃
)
̸∈
(
∆ ∪ {0}

)
, then we get

[
Xα̃ , Xβ̃

]
= 0 by Definition 3.1(e),

so Xα̃ and Xβ̃ commute with each other: this implies (3.4).

Relations (3.6) follow as an application of Lemma 3.8(b) to l := g , A := Xα,k and B := Xβ,h ,
taking Definition 3.1(f) into account. Indeed, in this case Definition 3.1(f) gives

C := [A,B] =
[
Xα,k , Xβ,h

]
=
∑µ(α+β)

t=1 c β,h
α,k (t)Xα+β, t

Moreover, the assumptions (2α+β) , (α+2β) ̸∈ ∆ imply [A,C ] = 0 = [B,C ] . Thus we can

apply Lemma 3.8(b) to expand A(ℓ) B(m) = X
(ℓ)
α,k X

(m)
β,h ; also, in the expansion we find we can still

expand each divided power C(q) =
(∑µ(α+β)

t=1 c β,h
α,k (t)Xα+β, t

)(q)
via the formula in Lemma 3.8(d),

which applies as
[
c β,h
α,k (t

′)Xα+β, t′ , c
β,h
α,k (t

′′)Xα+β, t′′

]
= 0 for all t′, t′′ , by Proposition 2.21(a).

Relations (3.7) follow as an application of Lemma 3.8(c). Indeed, in the present case we can
apply Lemma 3.8(c) to l := g0̄ , L := Xα,1 , M := Xβ,h , so that

N := [L,M ] =
[
Xα,1, Xβ,h

]
=
∑µ(α+β)

t=1 c β,h
α,1 (t)Xα+β, t , T := 2−1 [L,N ] = ϵX2α+β,k

Then in the formula of Lemma 3.8(c) we still have to expand N (q) =
(∑µ(α+β)

t=1 c β,h
α,1 (t)Xα+β, t

)(q)
using Lemma 3.8(d), which again applies — all summands commute with each other — by the
same arguments as above. In particular, [M,N ] = 0 and [L, T ] = 0 because of Proposition 2.21.

Finally, relations (3.8) — concerning roots of g0 — are well-known by the classical theory.
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(2) Odd and even generators (also involving the Xγ̃ , γ̃ ∈ ∆̃1̄ ):

Xγ̃ f(H) = f
(
H − π

(
γ̃
)
(H)

)
Xγ̃ ∀ γ̃ ∈ ∆̃1̄ , h ∈ h , f(T ) ∈ K[T ] (3.9)

X 2
γ,k = 0 if all c γ,k

γ,k (t) are zero, X 2
γ,k = 2−1c γ,k

γ,k

(
t′
)
X2γ,t′ otherwise (3.10)

(with notation as in Definition 3.1(f.3.))

Xγ,1 X−γ,k = −X−γ,k Xγ,1 + Hσγ(k) ∀ γ ∈ ∆−1 (3.11)

with Hσγ(k) =
[
Xγ,1 , X−γ,k

]
∈ hZ as in Definition 3.1(d)

Xγ̃ Xη̃ = −Xη̃ Xγ̃ ∀ γ̃ , η̃ ∈ ∆̃1̄ : π
(
γ̃
)
+ π

(
η̃
)
̸∈∆̃ , ∀ ℓ ∈ N (3.12)

Xγ,k Xη,h = −Xη,h Xγ,k +
∑µ(α+γ)

t=1 c η,h
γ,k (t)Xγ+η, t ∀ γ , η ∈ ∆1̄ : α+γ ∈∆ , ∀ ℓ ∈ N (3.13)

X
(ℓ )
α̃ Xγ̃ = Xγ̃ X

(ℓ )
α̃ ∀ α̃ ∈ ∆̃0̄ , γ̃ ∈ ∆̃1̄ : π

(
α̃
)
+ π

(
γ̃
)
̸∈∆̃ , ∀ ℓ ∈ N (3.14)

X
(ℓ )
α,k Xγ,h = Xγ,h X

(ℓ )
α,k +

(∑µ(α+γ)
t=1 c γ,h

α,k (t)Xα+γ, t

)
X

(ℓ−1)
α,k (3.15)

∀ α ∈ ∆0̄ , γ ∈ ∆1̄ : α+ γ ∈ ∆ , 2α+ γ ̸∈ ∆ , ∀ ℓ ∈ N

X
(ℓ )
α,1 Xγ,h = Xγ,h X

(ℓ )
α,1 +

(∑µ(α+γ)
t=1 c γ,h

α,1 (t)Xα+γ, t

)
X

(ℓ−1)
α,1 + ϵX2α+γ,t′ X

(ℓ−2)
α,1 (3.16)

∀ α ∈ ∆0 , γ ∈ ∆1̄ : α+γ , 2α+γ ∈ ∆ , ∀ ℓ ,m ∈ N

where c η,h
γ,k (t) , c γ,h

α,k (t) , Xγ+η, t , Xα+γ, t , ϵ = ±1 and the index t′ (namely, the one such that[
Xα,1,

[
Xα,1, Xγ,1

]]
= ϵ 2X2α+γ,t′ ) are given again as in Definition 3.1(f–g).

Proof. Almost all of these relations are proved much like those among even generators only.
A first exception is (3.10), which holds by Definition 3.1(h), taking into account that in the

universal enveloping superalgebra one has X2 = X⟨2⟩ for every X ∈ g1̄ . Another exception is
(3.11), which is just another way of rewriting what is expressed in Definition 3.1(d).

As to the rest, relations (3.9), (3.12), (3.14) directly follow from definitions. Finally, relations
(3.13), (3.15), (3.16) are proved, like relations (3.6) and (3.7), via induction like for Lemma 3.8.

Here now is our (super-version of) Kostant’s theorem for KZ(g) :

Theorem 3.9. The Kostant superalgebra KZ(g) is a free Z–module. More precisely, for any given

total order ≼ of the set ∆̃
⨿{

1, . . . , n
}

a Z–basis of KZ(g) is the set B of ordered “PBW-like

monomials”, i.e. all products (without repetitions) of factors of type X
(ℓα̃)
α̃ ,

(
Hi

ni

)
and Xγ̃ — with

α̃ ∈ ∆̃0̄ , i ∈
{
1, . . . , n

}
, γ̃ ∈ ∆̃1̄ , and ℓα̃ , ni ∈ N — taken in the right order with respect to ≼ .

Proof. Let us call “monomial” any product of several X
(ℓα̃)
α̃ , several

(
Hi−zi

si

)
— with zi∈Z — and

several X
mγ̃

γ̃ . For any such monomial, say M , we consider the following three numbers:

— its “height” ht(M) , i.e. the sum of all ℓα̃ and mγ̃ in M ;

— its “factor number” fac(M) , defined to be the total number of factors (namely X
(ℓα̃)
α̃ ,(

Hi−zi
ni

)
or X

mγ̃

γ̃ ) within M itself;

— its “inversion number” inv(M) , which is the sum of all inversions of the order ≼ among
the indices of factors in M when read from left to right.

We can now act upon any such M with any of the following operations:

– (1) we move all factors
(
Hi−zi

s

)
to the leftmost position, by repeated use of (3.2) and (3.9):

this produces a new monomial M′ , multiplied on the left by several (new) factors
(
Hi−ži

si

)
;
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– (2) whenever two consecutive factors X
(ℓα̃)
α̃ and X

(ℓ ′
α̃)

α̃ occur in M , we replace their product
in M with an integral coefficient times a single factor, using (3.3); and similarly, we replace any

pair of consecutive factors X
mγ̃

γ̃ X
m′

γ̃

γ̃ by the single factor X
mγ̃+m′

γ̃

γ̃ ;

– (3) we replace any power X
mγ̃

γ̃ of an odd root vector with 0 or ±X2γ,t′ , for γ̃ = (γ, k) ,

whenever mγ,k>1 , applying (3.10);

– (4) whenever two factors within M occur side by side in the wrong order w. r. to ≼ , i.e. we
have any one of the following situations

M = · · · X(ℓα̃)
α̃ X

(ℓ
β̃
)

β̃
· · · , M = · · · X(ℓα̃)

α̃ X
mγ̃

γ̃ · · ·

M = · · · Xmη̃

η̃ X
(ℓα̃)
α̃ · · · , M = · · · X mγ̃

γ̃ X
mη̃

η̃ · · ·

with α̃ � β̃ , α̃ � γ̃ , η̃ � α̃ and γ̃ � η̃ respectively, we can use all relations (3.4–8) and (3.11–16)
to re-write this product of two distinguished factors, so that all of M expands into a Z–linear
combination of new monomials. In some cases one has to read these relations the other way round:

for instance, one can use (3.7) to re-write X
(m)
β,h X

(ℓ )
α,1 as X

(m)
β,h X

(ℓ )
α,1 = · · · .

By definition, KZ(g) is Z–spanned by all (unordered) monomials in the X
(ℓα̃)
α̃ , the

(
Hi

ni

)
and

the X
mγ̃

γ̃ . Let M be any one of these monomials: it is PBW-like, i.e. in B , if and only if no one of

steps (2) to (4) may be applied; but if not, we now see what is the effect of applying such steps.

Applying step (1) gives M = HM′ where H is some product of
(
Hi−ži

si

)
, and M′ is a new

monomial such that ht
(
M′) = ht

(
M
)
, fac

(
M′) ≤ fac

(
M
)
, inv

(
M′) ≤ inv

(
M
)
, and the

strict inequality in the middle holds if and only if H ̸= 1 , i.e. step (1) is non-trivial. Actually, this

is clear at once when one realizes that M′ is nothing but “M with all factors
(
Hi−zi

si

)
removed.”

Then we apply any one of steps (2), (3) or (4) to M′ .

Step (2), if non-trivial, yields M′ = zM∨, for some z ∈ Z and some monomial M∨ such that
ht
(
M∨)= ht

(
M′) , fac

(
M∨) � fac

(
M′) . Instead, step (3), still if non-trivial, gives M′ = 0 .

Finally, step (4) gives M′ = Mg+
∑

k zk Mk , where zk ∈ Z (for all k ) and Mg and the Mk

are monomials such that ht
(
Mk

)
� ht

(
Mk

)
∀ k , ht

(
Mg) = ht

(
M′) , inv

(
Mg) � inv

(
M′) .

In short, through either step (2), or (3), or (4), we achieve an expansion

M′ =
∑

h z′h HM′
h , z′h ∈ Z ∀ h (3.17)

(the sum in right-hand side possibly being void, hence equal to zero) where — unless the step is
trivial, for then we get all equalities — we have(

ht
(
M′

h

)
� ht

(
M′)) ∨ (fac(M′

h

)
� fac

(
M′)) ∨ (inv(M′

h

)
� inv

(
M′)) (3.18)

Now we repeat, applying step (1) and then step (2) or (3) or (4) to every monomial M′
h in

(3.17). Then we iterate, until we get only monomials whose inversion number is zero: by (3.18),
this is possible indeed, and it is achieved after finitely many iterations. The outcome reads

M′ =
∑

j żj H
′′
j M′′

j , żj ∈ Z ∀ j (3.19)

where inv
(
M′′

j

)
= 0 for every index j , i.e. all monomials M′′

j are ordered and without repe-
titions, that is they belong to B . Now each H′′

j belongs to HZ (notation of Corollary 3.5), just
by construction. Then Corollary 3.5 ensures that each H′′

j expand into a Z–linear combination of

ordered monomials in the
(
Hi

ni

)
. Therefore (3.19) yields

M =
∑

s ẑs H∧
s M∧

s , ẑs ∈ Z ∀ s (3.20)

where every H∧
s is an ordered monomial, without repetitions, in the

(
Hi

ni

)
, while for each index s

we have M∧
s = M′′

j for some j — those in (3.19).

Using again relations (3.2) and (3.9), we can switch positions among the factors
(
Hi

ni

)
in H∧

s

and the factors in M∧
s (for each s), so to get a new monomial M◦

s which is ordered, without
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repetitions, but might have factors of type
(
Hi−zi
mi

)
with zi ∈ Z \ {0} — so that M◦

s ̸∈ B . But

then
(
Hi−zi
mi

)
∈ HZ , hence again by Corollary 3.5 that factor expands into a Z–linear combination

of ordered monomials, without repetitions, in the
(
Hi

ℓ

)
. Plugging every such expansion inside each

monomial M∧
s instead of each factor

(
Hi−zi
mi

)
— i = 1, . . . , r — we eventually find

M =
∑

q zq M
!
q , zq ∈ Z ∀ q

where now every M!
q is a PBW-like monomial, i.e. M !

q ∈ B for every q .

As KZ(g) , by definition, is spanned over Z by all monomials in the X
(ℓα̃)
α̃ , the

(
Hi

ni

)
and the

X
mγ̃

γ̃ , our analysis yields KZ(g) ⊆ SpanZ(B) . On the other hand, by definition SpanZ(B) in turn

is contained in KZ(g) . Therefore KZ(g) = SpanZ(B) , i.e. B spans KZ(g) over Z .

At last, the PBW theorem for Lie superalgebras over fields ensures that B is a K–basis for U(g) ,

as B :=
{
H1, . . . ,Hr

}⨿{
Xα̃

∣∣ α̃ ∈ ∆̃
}

is a K–basis of g (cf. [18]). So B is linearly independent
over K , hence over Z . Therefore B is a Z–basis for KZ(g) , and the latter is a free Z–module.

3.10. Kostant superalgebras for special sub-objects. We can consider Z–integral forms for
the sub-objects, as follows. First fix a Chevalley basis B and gZ as in Definition 3.1. Second, for
α ∈ ∆, q ≥ −1 , we set Bα := B ∩ gα , gZα := SpanZ(Bα) , gZq := SpanZ

(⨿
ht (α)=q Bα

)
, and

gZ0̄ := hZ ⊕
(⊕

α∈∆0̄
gZα

)
, gZ1̄ :=

⊕
γ∈∆1̄

gZγ , gZ0 := hZ ⊕
(⊕

α∈∆0
gZα

)
gZ0̄ ↑ :=

⊕
α∈∆

0̄ ↑
gZα , gZ1̄ ↑ :=

⊕
γ∈∆

1̄ ↑
gZγ , gZt↑ :=

⊕
q>t g

Z
q

(
t ≥ −1

)
, gZ−1,0 := gZ−1

⊕
gZ0

(the last only for g ̸∼= S̃(n); notation of §2.22) with hZ := SpanZ
(
H1, . . . , Hr

)
, cf. Definition 3.1(a).

Definition 3.11. We define KZ
(
g−1↑

)
as the unital Z–subsuperalgebra of U(g) generated by(

Hi

m

)
, X

(m)
α̃ and Xγ̃ for all m ∈ N , 1≤ i≤ r , α̃∈ ∆̃0̄ , γ̃ ∈ ∆̃1̄ ↑ . In a similar way, we define

the unital Z–subsuperalgebras KZ
(
g0̄
)
, KZ

(
g0
)
, KZ

(
g0̄ ↑
)
, KZ

(
gt↑
)
— t ≥ 0 — and KZ

(
g−1,0

)
— for g ̸∼= S̃(n) — as the ones generated by the binomial coefficients, divided powers of even root
vectors, and odd root vectors involved in the very definition of g0̄ , g0 , g0̄ ↑ , gt↑ and g−1,0 .

Also, we denote
∧

gZ1̄ , resp. by
∧
gZ1̄ ↑ , the (unital) exterior Z–algebra over gZ1̄ , resp. over g

Z
1̄ ↑ .

All these objects are related by the following consequence of Theorem 3.9 (in particular, the
first isomorphism is an integral version of the factorization U(g) ∼= U(g0) ⊗K

∧
g1̄ , see [18]),

whose proof follows from the arguments used for Theorem 3.9, or as a direct consequence of it:

Corollary 3.12. There exist isomorphisms of Z–modules

KZ(g) ∼= KZ
(
g0̄
)
⊗Z
∧
gZ1̄ , KZ

(
g−1↑

) ∼= KZ
(
g0̄
)
⊗Z
∧

gZ1̄ ↑ , KZ
(
g0↑
) ∼= KZ

(
g0̄ ↑
)
⊗Z
∧
gZ1̄ ↑

and of Z–superalgebras KZ
(
g0̄
) ∼= KZ

(
g0
)
⊗Z KZ

(
g0̄ ↑
)
, KZ

(
g−1,0

) ∼= KZ
(
g0
)
⊗Z
∧

gZ−1 .

Remark 3.13. Following a classical pattern, one defines the superalgebra of distributions Dist (G)
on any supergroup G , by an obvious extension of the standard notion in the even setting; see [2],
§4, for details. If G is any one of the algebraic supergroups (over k) that we are going to construct,
then Lie (G) = g — with some more precisions: see subsection 4.6 later on. Then one can check
— like in [2], §4 — that Dist (G) = k ⊗Z KZ(g) =: Kk(g) . An entirely similar remark occurs
when the supergroup G is one of the “Chevalley supergroups” introduced in [9].

Any morphism φ : G′ −→ G′′ between two supergroups induces (functorially) a morphism Dφ :
Dist

(
G′) −→ Dist

(
G′′) , which is injective whenever φ is injective. If in addition the supergroups

G′ and G′′ are of the type mentioned above, then Dist
(
G′) = Kk(g

′) and Dist
(
G′′) = Kk(g

′′) ,
so that Dφ : Kk(g

′)→ Kk
(
g′′
)
, which is an embedding if G′ is a subsupergroup of G′′.
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3.4 Admissible lattices for g–modules

The tools of our construction of algebraic supergroups are the Lie superalgebra g together with
an integrable g–module. As we need an integral version of g — and even more, of U(g), namely
the Kostant superalgebra — we also need a suitable integral form of any integrable g–module.

Let a Chevalley basis B and Kostant algebra KZ(g) be given, as before. If V a K–vector space
we call a subset M ⊆ V a Z–form of V if (as usual) M= SpanZ(B) for some K–basis B of V .

Definition 3.14. Let V be a g–module. We retain terminology and notation of Definition 2.25.

(a) We call V rational if hZ := SpanZ
(
H1, . . . ,Hr

)
acts diagonally on V with eigenvalues in Z ;

in other words, V =
⊕

µ∈h∗Vµ is a weight g–module and µ(Hi) ∈ Z for all i and all µ ∈ Supp(V ) .

(b) Any Z–lattice M of V is said to be admissible if it is a KZ(g)–stable Z–form of V .

Note that — by the last remark in Definition 2.25 — the g–action on any rational g–module V
can be extended to a g–action so that E acts diagonally (=semisimply) on V with eigenvalues in Z ;
in short, V itself is also a rational g–module, with h–weight space decomposition V =

⊕
ν∈h

∗ Vν .

The first property of admissible lattices is natural (its proof being classical, cf. [17], §2, Cor. 1):

Proposition 3.15. Let V be a weight g–module. Then any admissible lattice M of V is the direct
sum of its h–weight components, i.e. M =

⊕
λ∈h∗

(
M ∩ Vλ

)
, and similarly for h–weights.

Next property instead is an existence result, under mild conditions:

Proposition 3.16. Let V be a finite dimensional, completely reducible g–module. Then V is a
weight module. If it is also rational, then there exists an admissible lattice M of it.

Proof. First of all, by Remark 2.26 V is a weight module. Now assume it is also rational. Then by
the complete reducibility assumption we can reduce to assume V irreducible. In that case, like for
[16], Theorem 3.1, we find that V is cyclic, i.e. it can be generated by a single vector, and the latter
can be taken to be a highest weight vector (cf. Definition 2.25). Letting v be such a highest weight
vector, set M := KZ(g).v : then one can repeat the classical proof — like in [17], §2, Corollary 1
— and eventually show that such an M is indeed an admissible lattice of V as required.

We can also describe the stabilizer of an admissible lattice:

Proposition 3.17. Let V be a faithful, rational, finite dimensional g–module, M an admissible
lattice of V , and gV =

{
X∈g

∣∣X.M ⊆ M
}

its stabilizer. Then, letting hV :=
{
H ∈ h

∣∣ µ(H) ∈
Z , ∀ µ ∈ Λ

}
, where Λ is the set of weights of V , we have gV = hV

⊕(⊕
α̃∈∆̃ ZXα̃

)
.

In particular, gV is a lattice in g , independent of the choice of the admissible lattice M .

Proof. The classical proof in [17], §2, Corollary 2, applies again, with some additional arguments
to manage odd root spaces. Indeed, the same arguments as in [loc. cit.] prove that gV =

hV
⊕(⊕

α̃∈∆̃

(
gV ∩ KXα̃

))
; then one still has to prove that gV ∩KXα̃ = ZXα̃ for all α̃ ∈ ∆̃ .

The arguments in [loc. cit.] show that gV ∩ KXα̃ is a cyclic Z–submodule of gV which may be

Z–spanned by some 1
nα̃

Xα̃ with nα̃ ∈ N+ (for α̃ ∈ ∆̃ ). What is left to prove is that nα̃ = 1 .

For every α̃ ∈ ∆̃0 the same arguments as in [loc. cit.] still yield nα̃ = 1 .

For every α̃ ∈ ∆̃−1 , by Definition 3.1(f.2) we can find β̃ ∈ ∆̃ such that α + β ∈ ∆0 , with

α := π
(
α̃
)
, β := π

(
β̃
)
, and

[
Xα̃ , Xβ̃

]
= ±X(α+β, t′) for some t′ ∈

{
1, . . . , µ(α + β)

}
. This

yields ± 1
nα̃

X(α+β, t′) =
[

1
nα̃

Xα̃ , Xβ̃

]
∈
[
gV , g

Z
]
⊆
[
gV , gV

]
⊆ gV because gZ ⊆ gV and gV is

a Lie subsuperalgebra of g . Therefore 1
nα̃

X(α+β, t′) ∈ gV ∩ KX(α+β, t′) = ZX(α+β, t′) because

X(α+β, t′) ∈ ∆̃0 — and thanks to the previous step — which eventually forces nα̃ = 1 .

Finally, consider α̃ ∈ ∆̃z with z≥ 1 , and let α := π
(
α̃
)
∈ ∆z . Then, by direct analysis, we see

that there exists γ ∈ ∆−1 such that (α+ γ) ∈ ∆z−1 ; therefore, for γ̃ := (γ, 1) we have again by
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Definition 3.1(f.2) that
[
Xα̃ , Xγ̃

]
= ±X(α+γ, t′) . Just like before, this yields ± 1

nα̃
X(α+γ, t′) =[

1
nα̃

Xα̃ , Xγ̃

]
∈
[
gV , g

Z
]

⊆
[
gV , gV

]
⊆ gV hence 1

nα̃
X(α+γ, t′) ∈ gV ∩ KX(α+γ, t′) . Since α

has height |α| = z and |α+γ|=z−1 , by induction on z we assume gV ∩ KX(α+γ, t′) = ZX(α+γ, t′) :
the basis of induction is z = 0 which corresponds to roots in ∆0 , that we already disposed of.
Therefore 1

nα̃
X(α+γ, t′) ∈ ZX(α+γ, t′) , so that nα̃ = 1 .

4 Algebraic supergroups GV of Cartan type

Classically, Chevalley groups are defined as follows. Fix a finite dimensional semisimple Lie
algebra g over an algebraically closed field K of characteristic zero, a Chevalley basis of g and the
associated Kostant form KZ(g) of U(g) . Then any simple finite dimensional g–module V contains
a Z–lattice M , which is KZ(g)–stable, so KZ(g) acts on M . Using this action and its extensions
by scalars to any field k , one defines one-parameter subgroups xα(t) , for all roots α and t ∈ k ,
within GL(Vk) , Vk := M ⊗ k : the Chevalley group (associated with g and V ) is the subgroup of
GL(Vk) generated by the xα(t). If one has to extend this construction to that of a genuine Z–group
scheme, then slight variations are in order, e.g. one has to “add by hand” a maximal torus.

This construction has been adapted to simple Lie superalgebras g of classical type in [9], [11].
We do now the same for all simple Lie superalgebras g of Cartan type.

4.1 One-parameter supersubgroups

The supergroups we look for will be realized as subgroup-functors of some linear supergroup
functors GL(V ) , generated by suitable subgroup functors: these are super-analogues of one-
parameter subgroups in the classical theory, thus we call them “one-parameter supersubgroups”.
Like in the classical setup, they will be of two types: multiplicative and additive: the latter ones
then will split into two more types, according to the type (even or odd) of the roots involved.

We retain the notation of sections 2 and 3. In particular, V is a fixed faithful, rational, finite
dimensional weight g–module with an admissible lattice M in it (e.g., if V is completely reducible).

Fix a commutative unital Z–algebra k , and set gV,k := k ⊗Z gV , Vk := k ⊗Z M , Uk(g) :=
k ⊗Z KZ(g) . Then gV,k acts faithfully on Vk , which yields a Lie superalgebra monomorphism
gV,k ↪−→ End(Vk) and a superalgebra morphism Uk(g) −→ End(Vk) . Now, for every A ∈ (salg)k
define gA := A⊗k gV,k

(
= A⊗Z gV

)
, VA := A⊗k Mk

(
= A⊗Z M

)
and UA(g) := A⊗k Uk(g)

(
=

A ⊗Z KZ(g)
)
. Then gA acts faithfully on VA , which yields morphisms gA ↪−→ End(VA) and

UA(g) −→ End(VA) . Moreover (as sketched in §2.9) all these constructions are functorial in A .

The splitting V = ⊕µ∈h∗Vµ of the g–module V into h–weight spaces yields, for any A ∈
(salg)k , a similar splitting Vk(A) = ⊕µ∈h

∗Vµ(A) — using notation as in Examples 2.6(a). Now

fix any element H ∈ hZ := SpanZ
(
H1, . . . , Hr

)
— see Definition 3.1(a): then µ(H) ∈ Z for any

µ ∈ Supp(V ) , as V is rational. Let U(A0̄) the group of invertible elements in A0̄ : we set

hH(u).v := uµ(H) v ∀ v ∈ Vµ(A) , µ ∈ Supp(V ) , u ∈ U(A0̄)

which defines an operator uH := hH(u) ∈ GL
(
Vk(A)

)
for all u ∈ U(A0̄) .

Note that the formal identity uH =
+∞∑
m=0

(u−1)
m
(

H
m

)
, whose right-hand side becomes a finite

sum if acting on a single weight space Vµ(A) , shows that the operator uH = hH(u) is one of those

given by the UA(g)–action on V . Note also that H =
r∑

i=1

ziHi (zi ∈ Z) yields hH(u) :=
r∏

i=1

hHi(u)
zi .

Definition 4.1. For any H ∈ hZ , we define the supergroup functor hH — also referred to as a
“multiplicative one-parameter supersubgroup” — from (salg)k to (groups) as given on objects by
hH(A) :=

{
uH := hH(u)

∣∣ u ∈U(A0̄)
}

and given on morphisms in the obvious way.
We also write hi := hHi for i = 1, . . . , r , and hα := hHα for α ∈ ∆ .
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Let α̃ ∈ ∆̃0̄ , β̃ ∈ ∆̃1̄ , and let Xα̃ and Xβ̃ be associated root vectors in B . Both Xα̃ and Xβ̃
act as nilpotent operators on V , thus on M and Vk ; the same holds for

tXα̃ , ϑXβ̃ ∈ End
(
Vk(A)

)
∀ t ∈ A0̄ , ϑ ∈ A1̄ . (4.1)

Since
(
ϑXβ̃

)2
= −ϑ2X 2

β̃
= 0 , we have Y m

/
m! ∈

(
KZ(g)

)
(A) for any m ∈ N , Y ∈

{
tXα̃ , ϑXβ̃

}
as in (4.1); moreover, Y m

/
m! acts as zero for m ≫ 0 , by nilpotency, so exp(Y ) :=

∑+∞
m=0 Y

m
/
m! ∈

GL
(
Vk(A)

)
is well defined. In particular, exp

(
ϑXβ̃

)
:=
∑+∞

m=0

(
ϑXβ,k

)m/
m! = 1 + ϑXβ̃ .

Definition 4.2. Let α̃ ∈ ∆̃0̄ , β̃ ∈ ∆̃1̄ , and let Xα̃ and Xβ̃ be as above; then set xα̃(t) :=

exp
(
tXα̃

)
= 1+ tXα̃ + t2X

(2)
α̃ + · · · , for all t ∈ A0̄ , and xβ̃(ϑ) := exp

(
ϑXβ̃

)
= 1 + ϑXβ̃ , for

all ϑ ∈ A1̄ . We define the supergroup functors xα̃ and xβ̃ from (salg)k to (groups) setting them

on objects as xα̃(A) :=
{
xα̃(t)

∣∣ t ∈A0̄

}
, xβ̃(A) :=

{
xβ̃(ϑ)

∣∣ ϑ ∈ A1̄

}
for all A ∈ (salg)k —

the definition on morphisms then should be clear.

In order to unify the notation, we shall denote by xη̃(t) , for η̃ ∈ ∆̃ , any one of the two
possibilities above, so that t ∈ A0̄ ∪A1̄ . Finally, for later convenience we shall also formally write
xζ̃(t) := 1 when π

(
ζ̃
)
belongs to the Z–span of ∆ but π

(
ζ̃
)
̸∈ ∆ .

As in the Lie supergroup setting (see subsection 2.3 in [9]), one can easily prove the following:

Proposition 4.3. The following hold:

(a) Every supergroup functor hH is representable, so it is an affine supergroup, of (super)-
dimension 1

∣∣0 . Indeed, hH(A) = Hom
(
k
[
z, z−1

]
, A
)
, for A ∈ (salg)k , with ∆

(
z±1
)
= z±1⊗z±1 .

(b) The supergroup functors xα̃ and xβ̃ are representable, so they are affine supergroups,

respectively of (super)dimension 1
∣∣0 and 0

∣∣1 . Indeed, for every A ∈ (salg)k one has xα̃(A) =

Hom
(
k[x] , A

)
with ∆(x) = x⊗1+1⊗x and xβ̃(A) = Hom

(
k[ξ] , A

)
with ∆(ξ) = ξ⊗1+1⊗ξ .

(Remark: in both cases, ∆ denotes the comultiplication in the Hopf superalgebra under exam)

4.2 Construction of supergroups GV of Cartan type

We now define our supergroups of Cartan type as suitable subgroup functors — from (salg)k
to (groups) — of GL

(
Vk
)
. Further details about the formalism of (Grothendieck) topologies in

categories and sheafification of functors can be found in [9], Appendix, and in references therein.

Once and for all, we let g and V as above, and we fix also a partition ∆ = ∆+
⨿

∆− of the
roots into positive and negative ones as in §2.22.

Definition 4.4. We call Cartan (type) supergroup functor, associated with g and V , the functor
GV : (salg)k−→(groups) defined as follows. Let A ,B ∈ Ob

(
(salg)k

)
, ϕ ∈ Hom(salg)k

(
A ,B

)
: then

— the object GV (A) is the subgroup of GL
(
Vk(A)

)
generated by the subgroups hH(A) and

xα̃(A) , with H∈hZ , α̃∈∆̃ , i.e. GV (A) :=
⟨
hH(A) , xα̃(A)

⟩
H∈hZ , α̃∈∆̃

=
⟨
hi(A) , xα̃(A)

⟩
α̃∈∆̃

i=1,...,r;

;

— the morphism GV(A)
GV(ϕ)

−→ GV(B) is the restriction of GL
(
Vk(A)

)
→GL

(
Vk(B)

)
, the morphism

induced by ϕ by functoriality of GL
(
Vk) (which maps the generators of GV(A) to those of GV(B)).

For later use, we need to consider several other supergroup functors:

Definition 4.5. Let GV be as above. We define the full subfunctors TV , G0, G
±
0 , G0̄ , G

±
0̄
, G0̄ ↑ ,

G±
0̄ ↑ and G± of GV — still from (salg)k to (groups) — as given on objects, for all A ∈ (salg)k , by

TV (A) :=
⟨
hH(A)

∣∣ H∈ hZ
⟩

=
⟨
hi(A)

∣∣ i = 1, . . . , r
⟩

G0(A) :=
⟨
hi(A) , xα̃(A)

⟩
α̃∈ ∆̃0

i=1,...,r;

, G±
0 (A) :=

⟨
hi(A) , xα̃(A)

⟩
α̃∈ ∆̃

±
0

i=1,...,r;
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G0̄(A) :=
⟨
hi(A) , xα̃(A)

⟩
α̃∈ ∆̃0̄

i=1,...,r;

, G±
0̄
(A) :=

⟨
hi(A) , xα̃(A)

⟩
α̃∈ ∆̃

±
0̄

i=1,...,r;

G0̄ ↑(A) :=
⟨
xα̃(A)

∣∣∣ α̃ ∈ ∆̃0̄ ↑

⟩
, G±

0̄ ↑(A) :=
⟨
xα̃(A)

∣∣∣ α̃ ∈ ∆̃±
0̄ ↑

⟩
G±(A) :=

⟨
xα̃(A)

∣∣∣ α̃∈∆̃±
⟩

=
⟨
G±

0̄
(A) , G±

1̄
(A)
⟩

By definition TV , G0, G
±
0 , G0̄ , G

±
0̄
, G0̄ ↑ , G±

0̄ ↑ , G
±, GV are subgroup functors of the functor

GL(Vk) , with obvious mutual inclusions. As GL(Vk) is a sheaf (in the sense of category the-
ory, cf. [9], Appendix), these subfunctors are presheaves. This implies that we can take their
sheafification — with respect to the Zariski topology in (salg)k — so next definition makes sense:

Definition 4.6. Consider on (salg)k the Zariski topology, with respect to which (salg)k itself is a
site. We call Cartan (type) supergroup, associated with g and V , the sheafification GV of GV (with
respect to the Zariski topology). In particular, GV : (salg)k→ (groups) is a sheaf functor such that
GV (A)=GV (A) when A∈(salg)k is local — i.e., it has a unique maximal homogeneous ideal.

Similarly, by TV , G0, G
±
0 , G0̄ ↑ , G±

0̄ ↑ , G0̄ , G
±
0̄

and G± we shall denote the sheafification

respectively of TV , G0, G
±
0 , G0̄ ↑ , G±

0̄ ↑ , G0̄ , G
±
0̄

and G±.

Remarks 4.7.

(a) The functors GV will eventually prove to be the “affine algebraic supergroups of Car-
tan type” which are our main object of interest. Later on, we shall prove that they are indeed
representable, so they are affine supergroups, and algebraic, with gV as tangent Lie superalgebra.

(b) By definition, the functors TV , G0, G
±
0 , G0̄ , G

±
0̄
, G0̄ ↑ , G±

0̄ ↑ and their sheafifications are
all supergroup functors which factor through (alg) = (alg)k , the category of commutative, unital
k–algebras: thus they pertain to the domain of “classical” (i.e. “non super”) algebraic geometry.

(c) We shall see later (cf. Remak 4.25) that the functor GV can also be defined by saying that
GV (A) , for A ∈ (salg)k , is the subgroup of GL(Vk)(A) generated by G0(A) and the one-parameter

subgroups xα̃(A) with α̃ ∈ ∆̃ \ ∆̃0 . A similar remark holds true for some of the subgroups of GV .

(d) By definition GV and GV — and all their supersubgroups considered above — are super-
subgroups of GL(V ) . As the latter identifies with GL(V•) — cf. Examples 2.6(b) — we can also
think of GV and GV (and their supersubgroups) as supersubgroups of GL(V•) .

In all our analysis hereafter, the key tool will be given by the commutation relations among
the generators of our supergroups: these are detailed in the next lemma. As a matter of notation,
when Γ is any group and g, h ∈ Γ we denote by (g, h) := g h g−1 h−1 their commutator in Γ .

Lemma 4.8. Let A ∈ (salg)k be fixed.

(a) Let α, β ∈ ∆ with α+ β ̸= 0 ; set ∆α,β := ∆∩
(
N+α+N+β

)
. Then, for all 0 ≤ i ≤ µ(α) ,

0 ≤ j ≤ µ(β) , and γ ∈ ∆α,β , 0 ≤ t ≤ µ(γ) , there exist ck,hγ;t ∈ Z such that(
xα,k(p) , xβ,h(q)

)
=

∏
γ=rα+sβ∈∆α,β

0≤t≤µ(γ)

xγ,t

(
ck,hγ;t p

rqs
)

(4.2)

for any p,q ∈ A0̄∪A1̄ (notation as in Definition 4.2), where the factors in right-hand side commu-
te with one another. In particular (notation of Definition 3.1) we have the following special cases:

(a.1) assume α+ β ̸∈
(
∆ ∪ {0}

)
, and p,q ∈ A0̄ ∪A1̄ (with suitable parity): then(
xα,k(p) , xβ,h(q)

)
= 1

(a.2) assume α+ β ∈ ∆ , α ̸∈ ∆0 , β ̸∈ ∆0 , and p,q ∈ A0̄ ∪A1̄ (with suitable parity): then(
xα,k(p) , xβ,h(q)

)
=
∏µ(α+β)

t=1 xα+β,t

(
(−1)

p(p)p(q)
c β,h
α,k (t)pq

)
where all factors in the right-hand product do commute with each other;
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(a.3) assume α+ β ∈ ∆ , α ∈ ∆0 , β ̸∈ ∆0 , and p,q ∈ A0̄ ∪A1̄ (with suitable parity): then(
xα,k(p) , xβ,h(q)

)
= x2α+β, t′

(
± p2 q

)
·
∏µ(α+β)

t=1 xα+β, t

(
± c β,h

α,k (t)pq
)

(for an index t′ given as in part (g) of Definition 3.1 if 2α+β ∈ ∆ , and x2α+β, t′
(
±p2q

)
:=1 if

2α+β ̸∈ ∆ ) where all factors on the right-hand side commute with each other.

(a.4) assume α, β ∈ ∆0 , and p, q ∈ A0̄ : then(
xα,1(p) , xβ,1(q)

)
=

∏
γ=rα+sβ∈∆α,β

0≤t≤µ(γ)

xα+β,1

(
c β,1
α,1 (1) p q

)
∈ G0(A)

(b) Let γ ∈ ∆−1 , let 0 ≤ j ≤ µ(−γ) = n−1 , and let ϑ, η ∈ A1̄ . Then(
xγ,1(ϑ) , x−γ,j(η)

)
=
(
1∓ ϑ ηHσγ(j)

)
= hHσγ (j)

(
1∓ ϑ η

)
∈ G0(A)

(c) Let α ∈ ∆ , 0 ≤ i ≤ µ(α) , H ∈ hZ , u ∈ U
(
A0̄

)
, u ∈A0̄ ∪A1̄ (with suitable parity). Then

hH(u) xα,i(u) hH(u)
−1

= xα,i

(
uα(H) u

)
∈ Gp(α)(A)

where p(α) := s ∈ Z2 , by definition, if and only if α ∈ ∆s .

Proof. (a) The proof follows from a direct analysis, through formal computations, just like in the
classical case of Chevalley groups, which is treated in [17], §3, Lemma 15. We shall carry it on by
looking at the general case, and later specializing to the special ones.

First of all, fix notation X := pXα,k , Y := qXβ,h . Recall that any (additive) one-parameter

supersubgroup can be expressed by a formal exponential: so xα,k(p) :=
∑+∞

m=0(pXα,k)
m/

m! :=∑+∞
r=0 X

r
/
r! = exp(X) , and xβ,h(q) :=

∑+∞
s=0 X

s
/
s! = exp(Y ) . Now, formal calculation gives

(
xα,k(p) , xβ,h(q)

)
= Ad

(
xα,k(p)

)(+∞∑
s=0

Y s
/
s!

)
·xβ,h(q)

−1
=

+∞∑
s=0

(
Ad
(
xα,k(p)

)
(Y )
)s/

s! · xβ,h(q)
−1

=

=
∑+∞

s=0

(
Ad
(
exp(X)

)
(Y )
)s/

s! · xβ,h(q)
−1

=
∑+∞

s=0

(
exp

(
ad(X)

)
(Y )
)s/

s! · xβ,h(q)
−1

where in the last step we used the (formal) identity Ad ◦ exp = exp ◦ ad . Now, moving on we get

exp
(
ad(X)

)
(Y ) =

∑+∞
r=0 ad(X)

r
(Y )
/
r! = Y + [X,Y ] +

[
X, [X,Y ]

]/
2 (4.3)

because ad(X)
r
= 0 for all r > 2 by Proposition 2.21(b).

As a consequence, if α + β ̸∈
(
∆ ∪ {0}

)
we have [X,Y ] ∈ gα+β(A) = {0} , hence (4.3) reads

exp
(
ad(X)

)
(Y ) = Y . Then the above analysis proves (a.1), since it yields(
xα,k(p) , xβ,h(q)

)
=
∑+∞

s=0 Y
s
/
s! · xβ,h(q)

−1
= xβ,h(q) · xβ,h(q)

−1
= 1

Now assume α + β ∈ ∆ but α , β ̸∈ ∆0 . Then
[
X, [X,Y ]

]
= 0 by Proposition 2.21(b) if

α ∈ ∆0̄ , and by p2 = 0 if α ∈ ∆1̄ ; thus (4.3) reads exp
(
ad(X)

)
(Y ) = Y + [X,Y ] . Similarly[

Y, [X,Y ]
]
= 0 , so the summands Y and [X,Y ] commute with each other: thus our analysis gives(

xα,k(p) , xβ,h(q)
)

=
∑+∞

s=0

(
Y + [X,Y ]

)s/
s! · xβ,h(q)

−1
= exp

(
Y + [X,Y ]

)
· xβ,h(q)

−1
=

= exp(Y ) · exp
(
[X,Y ]

)
· xβ,h(q)

−1
= exp

(
[X,Y ]

)
· exp(Y ) · xβ,h(q)

−1
= exp

(
[X,Y ]

)
since xβ,h(q) = exp(Y ) . Now [X,Y ] =

[
pXα,k , qXβ,h

]
= (−1)

p(p)p(q)
µ(α+β)∑

t=1
pq c β,h

α,k (t)Xα+β, t

by Definition 3.1(f), and the summands in the last term all commute with each other. Indeed, in

all cases except for g = S̃(n) , α + β = −εi , or g = H(2 r + 1) , α + β ∈ (2N + 1) δ , this holds
because Proposition 2.21(a) give

[
Xα+β, t′ , Xα+β, t′′

]
∈
[
gα+β , gα+β

]
= {0} . In the remaining

cases instead, the root α+ β is odd, hence either α or β is odd as well, thus p ∈ A1̄ or q ∈ A1̄ :
therefore

[
pqXα+β, t′ , pqXα+β, t′′

]
= 0 just because (pq)

2
= ±p2 q2 = 0 . The outcome is
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(
xα,k(p) , xβ,h(q)

)
= exp

(
[X,Y ]

)
= exp

(
(−1)

p(p)p(q)
pq ·

∑µ(α+β)
t=1 cβ,hα,k(t)Xα+β, t

)
=

=
∏µ(α+β)

t=1 exp
(
(−1)

p(p)p(q)
pq · cβ,hα,k(t)Xα+β, t

)
=
∏µ(α+β)

t=1 xα+β, t

(
(−1)

p(p)p(q)
pq · c β,h

α,k (t)
)

with all factors in the last product which commute among themselves. This proves (a.2).

Finally, assume that α + β ∈ ∆ and α ∈ ∆0 , β ̸∈ ∆0 (N.B.: the case α ̸∈ ∆0 , β ∈ ∆0 is
symmetric, hence we drop it). Just like before, we find

[
Y, [Y,X]

]
= 0 ; therefore

[
Y, [X,Y ]

]
=

±
[
Y, [Y,X]

]
= 0 , then also

[
Y,
[
X, [X,Y ]

]]
= ±

[
[Y,X] , [Y,X]

]
±
[
X,
[
Y, [Y,X]

]]
= 0 —

by the super-Leibnitz’ rule, and taking into account the identity
[
[Y,X] , [Y,X]

]
= 0 inside

g(A) := g0̄ ⊗k A0̄ ⊕ g1̄ ⊗k A1̄ , which is a Lie algebra — and finally (again by super-Leibnitz’ rule)[
[X,Y ],

[
X, [X,Y ]

]]
= ±

[[
X,
[
X, [X,Y ]

]]
, Y
]
±
[
X,
[
Y,
[
X, [X,Y ]

]]]
= ±[ 0 , Y ] ± [X, 0] = 0 by

Proposition 2.21(a), for the first summand, and by
[
Y,
[
X, [X,Y ]

]]
= 0 just proved, for the second.

This means that the three summands in right-hand side of (4.3) do commute with each other; thus(
xα,k(p) , xβ,h(q)

)
= exp

(
Y + [X,Y ] +

[
X, [X,Y ]

]/
2
)
· xβ,h(q)

−1
=

= exp
([

X, [X,Y ]
]/
2
)
·exp

(
[X,Y ]

)
·exp(Y ) ·xβ,h(q)

−1
= exp

([
X, [X,Y ]

]/
2
)
·exp

(
[X,Y ]

)
because xβ,h(q) = exp(Y ) . As before, [X,Y ] = (−1)

p(p)p(q)
pq ·

∑µ(α+β)
t=1 c β,h

α,k (t)Xα+β, t with

the summands in the last sum which commute with each other; similarly, we expand
[
X, [X,Y ]

]
as[

X, [X,Y ]
]
=
[
pXα,1, [pXα,1,qYβ,h]

]
= (−1)

p(p)(p(p)+p(q))
p2 q

[
Xα,k , [Xα,k , Yβ,h]

]
. Now, if

α ̸∈ ∆0 Proposition 2.21(b) gives
[
Xα,k , [Xα,k , Yβ,h]

]
= 0 , hence

[
X, [X,Y ]

]
= 0 . If instead

α ∈ ∆0 , then ( k = 1 and) either
[
X, [X,Y ]

]
= p2 q

[
Xα,1, [Xα,1, Yβ,1]

]
= ±p2 q 2X2α+β, t′ or[

X, [X,Y ]
]
= 0 , by Definition 3.1(g) — for some t′ as therein. Note also that

[
X, [X,Y ]

]
com-

mutes with each summand in the expansion [X,Y ] = (−1)
p(p)p(q)∑µ(α+β)

t=1 pq · c β,h
α,k (t)Xα+β, t ;

indeed, this occurs because
[[
X, [X,Y ]

]
, Xα+β, t

]
∈ g3α+2 β(A) , and direct (straightforward)

inspection shows that 3α+2β ̸∈ ∆ (having α+ β ∈ ∆ and α ∈ ∆0 , by assumption). So we find(
xα,1(p) , xβ,h(q)

)
= exp

([
X, [X,Y ]

]/
2
)
· exp

(
[X,Y ]

)
=

= exp
(
±p2 qX2α+β, t′

)µ(α+β)∏
t=1

exp
(
pq c β,h

α,1 (t)Xα+β, t

)
= x2α+β, t′

(
±p2 q

)µ(α+β)∏
t=1

xα+β, t

(
±c β,h

α,1 (t)pq
)

(with x2α+β, t′
(
±p2q

)
:=1 if 2α+β ̸∈ ∆) with all factors pairwise commuting, so (a.3) is proved.

The very last case to consider is (a.4), which is a classical result: see [17], §3, Lemma 15.

(b) The same arguments used for (a) give also
(
xγ,1(ϑ) , x−γ,j(η)

)
= 1− ϑ η

[
Xγ,1 , X−γ,j

]
.

Then Definition 3.1(d) gives
[
Xγ,1 , X−γ,j

]
= ±Hσγ(j) . Plugging this into the previous formula,

and noting that (ϑ η)
n
= 0 for all n > 1 , we get exactly (b).

(c) Let vµ ∈ Mµ :=
(
M ∩ Vµ

)
be any weight vector in the admissible lattice M of V used to

define GV . We show now that hH(u)xα,i(u)hH(u)
−1

and xα,i

(
uα(H) u

)
acts on the same way

on vµ : taking µ and vµ arbitrarily, this is enough to prove claim (c). Direct computation gives(
hH(u)xα,i(u)hH(u)

−1)
(vµ) = uµ(H) · hH(u)

(∑+∞
n=0 ad(uXα,i)

n
(vµ)

/
n!
)

=

= u−µ(H) ·
∑+∞

n=0
1
n! hH(u)

(
ad(uXα,i)

n
(vµ)

)
= u−µ(H)∑+∞

n=0
1
n! u(µ+nα)(H)ad(uXα,i)

n
(vµ) =

= u−µ(H) uµ(H)∑+∞
n=0

1
n!ad

(
uα(H)uXα,i

)n
(vµ) = exp

(
ad
(
uα(H)uXα,i

))
(vµ) = xα,i

(
uα(H)u

)
(vµ)

which is exactly what we needed.

4.3 The even part G0̄ of GV

Our definition of the supergroup GV does not imply (at first sight) that GV be representable.
In order to prove that, we need to know how the “even part” G0̄ of GV looks like.
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Proposition 4.9. The functor G0 is representable, hence — as it factors through (alg)k — it is an
affine group-scheme; moreover, it is also algebraic. More precisely, we have natural isomorphisms
G0

∼= ChV , where ChV : (alg)k −→ (groups) is the standard (affine, algebraic) group functor
associated with g0 and with the g0–module V by the classical Chevalley-Demazure construction.

Proof. This is just a consequence of the very definitions. Indeed, in terms of category theory (cf. for
instance [19]), the category (alg) = (alg)k is a site and both the functors G0 and ChV are sheaves.

Moreover, by construction there exist natural transformations G0
α−→ G0 , G0

β−→ ChV , and G0

coincides with ChV via β on local algebras, that is β
(
G0(R)

)
= ChV (R) for any R ∈ Ob(alg)

which is local (this follows from §3.5.3 in [6] and Corollaire 5.7.6 in [5]). As G0 by definition is the
sheafification ofG0 , the universal property characterizing the sheafification yields G0

∼= ChV .

As a second step, we have the following result for some (classical) subgroup functors of G0̄ :

Proposition 4.10. Fix any total order ≼ in ∆̃0̄ ↑ . Then we have:

(a) G0̄ ↑(A) =
∏

α̃∈∆̃
0̄ ↑

xα̃(A) for all A ∈ (salg)k , the product being ordered according to ≼ ;

(b) G0̄ ↑ E G0̄ and G0̄ ↑ E G0̄ , where E stands for “normal subgroup functor”;

(c) G0̄ = G0 · G0̄ ↑ = G0̄ ↑ · G0 and G0̄ = G0 ·G0̄ ↑ = G0̄ ↑ ·G0 . In particular, G0̄ is a
closed subgroup of GL(V ) , hence it is in turn (on its own) an affine algebraic group.

(d) the group functors G0̄ ↑ and G0̄ ↑ are both unipotent.

Proof. (a) The formulas for commutators in Lemma 4.8 imply that any (unordered) product of

several factors xα̃(tα̃) with α̃ ∈ ∆̃0̄ ↑ can be reordered. In fact, whenever we have a couple of
consecutive unordered factors, say xα̃1

(tα̃1
) xα̃2

(tα2) , we can re-write their product as

xα̃1
(tα̃1

) xα̃2
(tα2) =

(
xα̃1

(tα̃1
) , xα̃2

(tα2)
)
· xα̃2

(tα̃2
) xα̃1

(tα1)

Then formula (4.2) for
(
xα̃1

(tα̃1
) , xα̃2

(tα2)
)
tells us that the commutator is either 1, or a product

of several xα̃(tα̃) such that ht
(
π
(
α̃
))

	 ht
(
π
(
α̃1

))
, ht

(
π
(
α̃
))

	 ht
(
π
(
α̃2

))
(cf. §2.18). Therefore,

we can iterate this process in order to commute all unordered pairs of factors, up to (possibly)
introducing new factors. However, the above shows that these new factors, if any, will be attached
to roots with greater height: as the height is bounded from above, we shall end up with trivial new
factors, i.e. after finitely many steps all pairs can be reordered without introducing new factors.

As a consequence, the multiplication map �� α̃∈∆̃
0̄ ↑
xα̃(A) −−→ GV (A) — the product on left-

hand side being ordered — yields a surjection onto G0̄ ↑(A) , realized as G0̄ ↑(A) =
∏

α̃∈∆̃
0̄ ↑
xα̃(A) .

(b) Again Lemma 4.8 gives that
∏

α̃∈∆̃
0̄ ↑

xα̃(A) is normalized by G0 ; then by (a), we deduce

that G0̄ ↑ E G0̄ , whence G0̄ ↑ E G0̄ follows too.

(c) This follows easily by construction, namely from G0 ≤ G0̄ , G0 ≤ G0̄ and G0̄ =⟨
G0 , G0̄ ↑

⟩
, along with (b) . By classical theory of algebraic groups, as G0 and G0̄ ↑ are closed

subgroups of GL(V ) and G0 normalizes G0̄ ↑ one argues that the last part of claim (c) holds too.

(d) This follows from the classical theory of affine group-schemes, because we have embeddings
G0̄ ↑ ≤ G0̄ ↑ ≤ GL(V ) , and the tangent Lie algebra of G0̄ ↑ , i.e. Lie

(
G0̄ ↑

)
= g0̄ ↑ , is nilpotent.

The same (type of) arguments proves also the following:

Proposition 4.11. Fix any total order ≼ in ∆̃±
0̄ ↑ . Then we have:

(a) G±
0̄ ↑(A) =

∏
α̃∈∆̃±

0̄ ↑
xα̃(A) for all A ∈ (salg)k , the product being ordered according to ≼ ;

(b) G±
0̄ ↑ E G±

0̄
and G±

0̄ ↑ E G±
0̄
.

(c) G±
0̄
= G±

0 ·G±
0̄ ↑ and G±

0̄
= G±

0 ·G±
0̄ ↑ .

(d) the group functors G±
0̄ ↑ and G±

0̄ ↑ are both unipotent.

Proposition 4.10 and Proposition 4.11 can also be improved as follows:
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Proposition 4.12. The group product yields group-functor isomorphisms

G0̄
∼= G0 nG0̄ ↑ , G±

0̄
∼= G±

0 nG±
0̄ ↑ and G0̄

∼= G0 nG0̄ ↑ , G±
0̄

∼= G±
0 nG±

0̄ ↑ .

Proof. The right-hand side pair of isomorphisms clearly follows from the left-hand side one. As for
the latter, we have to prove that G0̄(A) ∼= G0(A)nG0̄ ↑(A) and G±

0̄
(A) ∼= G±

0 (A)nG±
0̄ ↑(A) for

every A ∈ (salg)k , and also to show that these isomorphisms are functorial in A : this second part
will be trivial, so we cope just with the first one. Actually, we prove G0̄(A) ∼= G0(A)nG0̄ ↑(A)
only, for the proof of G±

0̄
(A) ∼= G±

0 (A)nG±
0̄ ↑(A) is quite the same.

For any A ∈ (salg)k , we know by Proposition 4.10 that G0(A) ≤ G0̄(A) , G0̄ ↑(A) E G0(A)
and G0̄(A) = G0(A) ·G0̄ ↑(A) . Thus we are only left to prove G0(A)

∩
G0̄ ↑(A) =

{
e
GV

}
.

Let A ∈ (salg)k , and let g ∈ G0(A)
∩

G0̄ ↑(A) : then g = g0 ∈ G0(A) and g = g↑ ∈ G0̄ ↑(A) ,
in particular g0 = g↑ . Now let V be the g–module we use to define GV , GV , etc., splitting as
V = ⊕µVµ into direct sum of weight spaces. All root vectors of g map weight spaces into weight
spaces, namely Xη̃.Vµ ⊆ Vµ+η if Xη̃ ∈ gη (for each root η and every weight µ ). This implies that,

for all weights µ and vµ ∈ Vµ(A) , H ∈ hZ , α̃ ∈ ∆̃ and α := π
(
α̃
)
, one has (notation of §2.18)

hH(A) . vµ ∈ A0̄ vµ ⊆ Vµ(A) , xα̃(A) . vµ ∈ vµ +
(⊕

n∈N+
Vµ+nα(A)

)
(4.4)

Now, by definition, G0(A) is generated by all the hH(A) and all the xα̃(A) with α̃ ∈ ∆̃0 ;

similarly, G0̄ ↑(A) is generated by all the xα̃(A) with α̃ ∈ ∆̃0̄ ↑ . This together with (4.4) implies

g0 . vµ ∈
⊕

β∈N∆̃0
Vµ+β(A) , g↑ . vµ ∈ vµ +

(⊕
γ∈N∆̃

0̄ ↑\{0}Vµ+γ(A)
)

(4.5)

for any weight µ and any vµ ∈ Vµ , where N∆̃0 and N∆̃0̄ ↑ are the N–span of ∆̃0 and of ∆̃0̄ ↑

respectively. Definitions give also N∆̃0∩N∆̃0̄ ↑ = {0} : therefore, from (4.5) and g0 = g↑ we infer
that g0 . vµ = vµ = g↑ . vµ . Since µ and vµ ∈ Vµ(A) were arbitrarily chosen, and since GV (A)
acts faithfully on V (A) , we eventually conclude that g0 = e

GV
= g↑ .

Like in the classical case of Chevalley groups, one has also the following auxiliary result:

Lemma 4.13. Let S̃ ⊆ ∆̃ and S :=
{
π
(
α̃
) ∣∣∣ α̃ ∈ S̃

}
(cf. §2.18). Assume that S is closed,

i.e. α, β ∈ S and α + β ∈ ∆ imply that α + β ∈ S ; assume also that α ∈ S implies −α ̸∈ S ,

let GS̃ :=
⟨
xα̃

∣∣∣ α̃ ∈ S̃
⟩

be the full subfunctor of GV generated by the one-parameter subgroups

indexed by the elements in S̃, and let GS̃ be the sheafification of GS̃ .

For any total order in S̃, the group product yields scheme isomorphisms �� α̃∈S̃ xα̃
∼= GS̃ ,

�� α̃∈S̃ xα̃
∼= GS̃ , where the direct products on the left-hand side are ordered ones.

In particular, one has GS̃ = GS̃
∼= As0̄|s1̄ as superschemes, where sz :=

∣∣∣ S̃ ∩ ∆̃z

∣∣∣ .
Proof. Each one-parameter supersubgroup xα̃ is a representable supergroup, so (as a superscheme)
it is a sheaf. Any direct product of sheaves is itself a sheaf, so the left-hand side isomorphisms
in the claim, once proved, implies that GS̃ is already a sheaf, so it coincides with GS̃ . Also,

the superscheme xη̃ is isomorphic to A1|0 or A0|1 according to whether π
(
η̃
)

is even or odd

(cf. Proposition 4.3(b)), so �� α̃∈S̃ xα̃
∼= As0̄|s1̄ is clear. So we are left to prove the claim for GS̃ .

Our task is to show that, for any A ∈ (salg)k , the product map �� α̃∈S̃ xα̃(A) −→ GS̃(A)
in GS̃ is a bijection: i.e., every g ∈ GS̃ admits a unique factorization as an ordered product
g =

∏
α̃∈S̃ xα̃(tα̃) for some tα̃ ∈ A0̄ ∪A1̄ . This result can be found via the classical argument —

cf. [17], §3, pp. 24–25 — which now works again using Lemma 4.8 as the basic ingredient.

A direct application of the previous lemma is the following ( S̃ ∈
{
∆̃0̄ ↑ , ∆̃±

0̄
, ∆̃±

0 , ∆̃±
0̄ ↑ , ∆̃

±
}
):
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Proposition 4.14. Fix any total order in ∆̃0̄ ↑ , in ∆̃±
0̄
, in ∆̃±

0 , in ∆̃±
0̄ ↑ , in ∆̃± . Then the group

product yields scheme isomorphisms

�� α̃∈∆̃
0̄ ↑
xα̃

∼= G0̄ ↑ ∼= G0̄ ↑ , �� α̃∈∆̃±
0̄

xα̃
∼= G±

0̄
∼= G±

0̄
, �� α̃∈∆̃±

0
xα̃

∼= G±
0

∼= G±
0

�� α̃∈∆̃±
0̄ ↑
xα̃

∼= G±
0̄ ↑

∼= G±
0̄ ↑ , �� α̃∈∆̃±xα̃

∼= G± ∼= G±

where the direct product on the left is always ordered according to the fixed total order. In particular

G0̄ ↑ ∼= G0̄ ↑ ∼= AN
0̄ ↑ | 0 , G±

0̄
∼= G±

0̄
∼= AN±

0̄
| 0 , G±

0
∼= G±

0
∼= AN0| 0

G±
0̄ ↑

∼= G±
0̄ ↑

∼= AN±
0̄ ↑ | 0 , G± ∼= G± ∼= AN±| 0

as superschemes, where N0̄ ↑ :=
∣∣∆̃0̄ ↑

∣∣ , N±
0̄
:=
∣∣∆̃±

0̄

∣∣ , N0 :=
∣∣∆̃0

∣∣ , N±
0̄ ↑ :=

∣∣∆̃±
0̄ ↑

∣∣ , N± :=
∣∣∆̃±

∣∣ .
4.4 The functors GV as affine algebraic supergroups

In this subsection we shall show that the supergroup functors GV defined in subsection 4.2 are
(the functors of points of) affine supergroups, and also algebraic. We need some more definitions:

Definition 4.15. For any A ∈ (salg)k , we define the subsets of G(A)

G1̄(A) :=
{∏m

i=1 xγ̃i
(ϑi)

}
m∈N , γ̃i∈∆̃1̄ , ϑi∈A1̄

, G±
1̄
(A) :=

{∏m
i=1 xγ̃i

(ϑi)
}
m∈N , γ̃i∈∆̃±

1̄
, ϑi∈A1̄

Let N± :=
∣∣∣∆̃±

1̄

∣∣∣ and N :=
∣∣∣∆̃1̄

∣∣∣ = N+ +N− , and fix total orders ≼ in ∆̃±
1̄

and ∆̃1̄ : we set

G±,<
1̄

(A) :=
{∏N±

i=1 xγ̃i
(ϑi)

∣∣∣ γ̃1 � · · · � γ̃N± ∈ ∆̃±
1̄
, ϑ1, . . . , ϑN± ∈ A1̄

}
G<

1̄
(A) :=

{∏N
i=1 xγ̃i

(ϑi)
∣∣∣ γ̃1 � · · · � γ̃N ∈ ∆̃1̄ , ϑ1, . . . , ϑN ∈ A1̄

}
We use also similar notations to denote the sheafifications G1̄ , G±

1̄
and G±,<

1̄
.

Using once more Lemma 4.8, we obtain the following factorization result for the functor GV :

Proposition 4.16. Let A ∈ (salg)k . There exist set-theoretic factorizations

GV (A) = G0̄(A) G1̄(A) = G1̄(A) G0̄(A) , G±(A) = G±
0̄
(A) G±

1̄
(A) = G±

1̄
(A) G±

0̄
(A)

Proof. The proof for GV (A) works for G
±(A) too, so we stick to the former.

It is enough to prove either one of the equalities, say the first one. Also, it is enough to show that
G0̄(A)G1̄(A) is closed by multiplication: thus we must show that g0̄ g1̄ · g′0̄ g

′
1̄ ∈ G0̄(A)G1̄(A)

for all g0̄ , g
′
0̄ ∈ G0̄(A) and g1̄ , g

′
1̄ ∈ G1̄(A) . By the very definitions, we need only to prove that(

1 + ϑ1Xβ̃1

)
· · ·
(
1 + ϑmXβ̃m

)
xα̃(t) ,

(
1 + ϑ1Xβ̃1

)
· · ·
(
1 + ϑmXβ̃m

)
hη(u) ∈ G0̄(A)G1̄(A)

for all m ∈ N , β̃1, . . . , β̃m ∈ ∆̃1̄ , α̃ ∈ ∆̃0̄ , η ∈ ∆, ϑ1, . . . , ϑm ∈ A1̄ , t ∈ A0̄ and u ∈ U
(
A0̄

)
.

But this follows by an easy induction on m , via the formulas in Lemma 4.8.

Carrying further on our analysis, we shall improve the above result by replacing the factor G1̄

with a factor G<
1̄
. As intermediate step, this requires the following technical result:

Lemma 4.17. Let A ∈ (salg)k . Then — with notation of subsection 2.1 — we have

G1̄(A) ⊆ G0̄

(
A

(2)

1̄

)
G<

1̄
(A) , G1̄(A) ⊆ G<

1̄
(A)G0̄

(
A

(2)

1̄

)
G±

1̄
(A) ⊆ G±

0̄

(
A

(2)

1̄

)
G±,<

1̄
(A) , G±

1̄
(A) ⊆ G±,<

1̄
(A)G±

0̄

(
A

(2)

1̄

)
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Proof. We deal with the first identity, the other being similar. Indeed, we prove the stronger result⟨
G1̄(A) , G0̄

(
A

(2)

1̄

)⟩
⊆ G0̄

(
A

(2)

1̄

)
G<

1̄
(A) (4.6)

where
⟨
G1̄(A) , G0̄

(
A

(2)

1̄

)⟩
is the subgroup generated by G1̄(A) and G0̄

(
A

(2)

1̄

)
.

Any element of
⟨
G1̄(A) , G0̄

(
A

(2)

1̄

)⟩
is a product g = g1 g2 · · · gk in which each factor gi is

either of type hηi(ui) , or xα̃i
(ti) , or xγ̃i

(ϑi) , with ηi ∈ ∆, α̃i ∈ ∆̃0̄ , γ̃i ∈ ∆̃1̄ and ui ∈ U
(
A

(2)

1̄

)
,

ti ∈ A2
1̄ , ϑi ∈ A1̄ . Such a product belongs to G0̄

(
A

(2)

1̄

)
G<

1̄
(A) if and only if all factors indexed by

the ηi ∈ ∆ and by the α̃j ∈ ∆̃0̄ are on the left of those indexed by the γ̃ℓ ∈ ∆1̄ , and moreover the
latter occur in the order prescribed by ≼ . In this case, we say that the factors of g are ordered.
We shall now re-write g as a product of ordered factors, by repeatedly commuting the original
factors, as well as new factors which come in along this process.

As we have only a finite number of odd coefficients in the expression for g , we can assume
without loss of generality that A1̄ is finitely generated as an A0̄ –module. If m is the cardinality

of any (finite) set of (odd) generators of A1 , this implies Am
1̄ = {0} and A

(m)

1̄
= 0 when m > m .

Let us consider two consecutive factors gi gi+1 in g . If they are already ordered, we are done.
Otherwise, there are four possibilities:

— (1) gi = xγ̃i
(ϑi) , gi+1 = hηi(ui) . In this case we rewrite

gi gi+1 = xγ̃i
(ϑi)hηi(ui) = hηi(ui)xγ̃i

(ϑ′
i)

with ϑ′
i ∈ Ami

1̄
if ϑi ∈ Ami

1̄
, thanks to Lemma 4.8(c). In particular we replace a pair of unordered

factors with a new pair of ordered factors. Even more, this shows that any factor of type hηi(ui)
can be flushed to the left of our product so to give a new product of the same nature, but with all
factors of type hηi(ui) on the left-hand side.

— (2) gi = xγ̃i
(ϑi) , gi+1 = xα̃i+1

(ti+1) . In this case we rewrite

gi gi+1 = gi+1 gi g
′
i with g′i :=

(
gi
−1, gi+1

−1
)
=
(
xγ̃i

(−ϑi) , xα̃i+1
(−ti+1)

)
so we replace a pair of (consecutive) unordered factors with a pair of ordered factors followed by
another, new factor g′i . However, letting m1,m2 ∈ N+ be such that ϑi ∈ Am′

1̄ , ti+1 ∈ Am′′

1̄ , by
Lemma 4.8 this g′i is a product of new factors of type xγ̃j

(ϑ′
j) with ϑ′

j ∈ A
mj

1̄
, mj ≥ m′ +m′′ .

— (3) gi = xγ̃i
(ϑi) , gi+1 = xγ̃i+1

(ϑi+1) . In this case we rewrite

gi gi+1 = gi+1 gi g
′
i with g′i :=

(
gi
−1, gi+1

−1
)
=
(
xγ̃i

(−ϑi) , xγ̃i+1
(−ϑi+1)

)
so we replace a pair of unordered factors with a pair of ordered ones, followed by a new factor g′i
which, again by Lemma 4.8, is a product of new factors of type xα̃j

(t′j) or hηj (u
′
j) with t′j ∈ A

mj

1̄
,

u′
j ∈ U

(
A

(mj)

1̄

)
, where mj ≥ m′ +m′′ for m′,m′′ ∈ N+ such that ϑi ∈ Am′

1̄ , ϑi+1 ∈ Am′′

1̄ .

— (4) gi = xγ̃(ϑi) , gi+1 = xγ̃(ϑi+1) . In this case we rewrite

gi gi+1 = xγ̃i
(ϑi)xγ̃i+1

(ϑi+1) = xγ̃(ϑi)xγ̃(ϑi+1) = xγ̃(ϑi+ϑi+1) =: g′i

so we replace a pair of unordered factors with a single factor. In addition, each pair gi−1 g
′
i and

g′i gi+2 respects or violates the ordering according to what the old pair gi−1 gi and gi+1 , gi+2 did.

Now we iterate this process: whenever we have any unordered pair of consecutive factors in
the product we are working with, we perform any one of steps (1) through (4) explained above.
At each step, we substitute an unordered pair with a single factor (step (4)), which does not form
any more unordered pairs than the ones we had before, or with an ordered pair (steps (1)–(3)),
possibly introducing new additional factors. However, any new factor is either of type xα̃(t) , with

t ∈ A m
1̄ , or of type xγ̃(ϑ) , with ϑ ∈ A m

1̄ , or of type hη(u) , with u ∈ U
(
A

(m)

1̄

)
: in all cases, the

values of m are (overall) strictly increasing after each iteration of this procedure. As Am
1̄ = {0}

for m ≫ 0 , after finitely many steps such new factors are trivial, i.e. eventually all unordered
(consecutive) factors will commute with each other and will be re-ordered without introducing any
new factors. Thus the process stops after finitely many steps, proving (4.6).

A direct consequence of Proposition 4.16 and Lemma 4.17 is the following “factorization result”:
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Proposition 4.18. For every A ∈ (salg)k we have

GV (A) = G0̄(A)G
<
1̄
(A) , GV (A) = G<

1̄
(A)G0̄(A)

We aim to show that the above decompositions are essentially unique. We need another lemma:

Lemma 4.19. Let A,B∈(salg)k , B a subsuperalgebra of A. Then GV(B) is a subgroup of GV(A) .

Proof. By definition GV is a subgroup of GL(V ) , so elements in GV (A) are realized as matrices
with entries in A , and similarly for B replacing A . Then it is clear that any matrix in GV (B) is in
GV (A) , and two such matrices are equal in GV (B) if and only if they are equal in GV (A) too.

For the proof of the main result we need the following intermediate step:

Lemma 4.20. Let A ∈ (salg)k , and g± , f± ∈ G±,<
1̄

(A) . If g− g+ = f− f+ , then g± = f± .

Proof. To begin with, we write the element g− as an ordered product g− =
∏N−

d=1

(
1 + ϑd Xγ̃d

)
,

for some ϑd ∈ A1̄ , where the γd ∈ ∆̃−
1̄

are all the negative odd roots, ordered as in Definition

4.15; also, hereafter N±=
∣∣∆̃±

1̄

∣∣ . Expanding the product on the right-hand side we get

g− =
∑

0≤k≤N−
1≤ d1<···<dk≤N−

(−1)(
k
2) ϑd1 · · ·ϑdk

Xγ̃d1
· · ·Xγ̃dk

Similarly, f− =
∏N−

b=1

(
1+ ηb Xγ̃b

)
, for some ηd ∈ A1̄ , and then we have the expansion f −1

− =∏1
b=N−

(
1 + ηb Xγ̃b

)−1
=
∏1

b=N−

(
1− ηb Xγ̃b

)
=
∑

0≤h≤N−
N−≥ b1>···>bh≥ 1

(−1)(
h+1
2 ) ηb1 · · · ηbh Xγ̃b1

· · ·Xγ̃bh
.

Now let V = ⊕µVµ be the splitting of V into a direct sum of weight spaces. Then Xη̃.Vµ ⊆
Vµ+η if Xη̃ ∈ gη (for each root η and every weight µ ): this and the previous expansions yield(
f −1
− g−

)
. vµ ∈

⊕
γ−∈N∆−

1̄
Vµ+γ− for all weights µ and vµ ∈ Vµ(A) , with N∆−

1̄
being the N–span of

∆−
1̄
. In a similar way — with parallel notation — we find also

(
f+ g−1

+

)
. vµ ∈

⊕
γ+∈N∆+

1̄
Vµ+γ+ .

Now, the assumption g− g+ = f− f+ implies f −1
− g− = f+ g−1

+ . Since N∆−
1̄
∩N∆+

1̄
= {0} , by

the previous analysis the only weight space in which both
(
f −1
− g−

)
. vµ and

(
f+ g−1

+

)
. vµ may

have a non-trivial weight component is Vµ(A) itself. In particular, letting
((
f −1
− g−

)
. vµ
)
µ+γ− be

the weight component of
(
f −1
− g−

)
. vµ inside Vµ+γ−(A) , we have

((
f −1
− g−

)
. vµ
)
µ+γ− = 0 for

any γ− ∈ N∆−
1̄
\ {0} . We shall now describe these components, and deduce that g− = f− .

From now on we use short-hand notation η
b
:= ηb1 · · · ηbh , X γ̃b

:= Xγ̃b1
· · ·Xγ̃bh

, and ϑ d :=

ϑd1 · · ·ϑdk
, X γ̃d

:= Xγ̃d1
· · ·Xγ̃dk

, for all ordered strings b :=
(
b1 > · · ·> bh

)
and d :=

(
d1 >

· · ·>dk
)
. By

∣∣b∣∣ := h and
∣∣d∣∣ := k we denote the length of b and d respectively. Now, we have

f −1
− g− =

∑N−
h, k=0

∑
|b|=h
|d|=k

(−1)(
h+1
2 )+(k2) η

b
X γ̃b

ϑ d X γ̃d

=
∑N−

h, k=0

∑
|b|=h
|d|=k

(−1)(
h+1
2 )+(k2)+hk

η
b
ϑ d X γ̃b

X γ̃d

by the above expansions of f −1
− and g− . For every γ− ∈ N∆−

1̄
, this last formula yields((

f −1
− g−

)
. vµ
)
µ+γ− =

∑N−
h, k=0

∑
|b|=h , |d|=k

π(γ̃b) +π(γ̃d) = γ−
(−1)(

h+1
2 )+(k2)+hk

η
b
ϑ d X γ̃b

X γ̃d
. vµ

where π
(
γ̃b
)
:=
∑|b|

i=1 π
(
γ̃bi
)

and π
(
γ̃d
)
:=
∑|d|

j=1 π
(
γ̃dj

)
— notation of §2.18. In particular, for

a root γ− := γ−
q ∈ ∆−

1̄
we can single out the only two summands in the last formula indexed by

a pair of strings whose lengths are one and zero: then the whole formula reads((
f −1
− g−

)
. vµ
)
µ+γ−

q
=

∑N−
p=1

π(γ̃p)= γ
−
q

(
ϑp − ηp

)
Xγ̃p

. vµ +

(4.7)
+
∑N−

h, k=0
(h,k) ̸=(0,1)
(h,k) ̸=(1,0)

∑
|b|=h , |d|=k

π(γ̃b) +π(γ̃d) = γ
−
q

(−1)(
h+1
2 )+(k2)+hk

η
b
ϑ d X γ̃b

X γ̃d
. vµ
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For every γ− ∈ ∆−
1̄
, we call n-height of γ the highest number |γ−| such that γ− itself is the sum

of exactly |γ| negative roots. Looking at (4.7), we see that all roots π
(
γ̃bi
)
or π

(
γ̃dj

)
involved in the

strings b or d occurring in the last, double sum necessarily satisfy
∣∣π(γ̃bi)∣∣ � |γ−

q | ,
∣∣π(γ̃dj

)∣∣ �
|γ−

q | . Now fix any γ−
q ∈ ∆−

1̄
such that |γ−

q | = 1 : then our last remark implies that (4.7) reduces

to
((
f −1
− g−

)
. vµ
)
µ+γ−

q
=
∑N−

p=1
π(γ̃p)= γ

−
q

(
ϑp− ηp

)
Xγ̃p

. vµ ; thus from
((
f −1
− g−

)
. vµ
)
µ+γ−

q
= 0 we

eventually get
∑N−

p=1
π(γ̃p) = γ

−
q

(
ϑp− ηp

)
Xγ̃p

. vµ = 0 . As g acts faithfully on V , hence gA does the same

on VA , we get
∑N−

p=1
π(γ̃p) = γ

−
q

(
ϑp− ηp

)
Xγ̃p

= 0 inside gA . Since the Xγ̃p
are part of a (Chevalley) basis

of g , we conclude that ϑp = ηp for all p ∈ {1, . . . , N−} such that π(γ̃p) has n-height 1 .

We shall now extend this result to all root vectors Xγ̃p
, by induction on the n-height of π

(
γ̃−
p

)
.

Take in general any γ−
q ∈ ∆−

1̄
with |γ−

q | > 1 : as induction hypothesis, we assume that for all

γ̃p′ ∈ ∆̃−
1̄

such that
∣∣π(γ̃p′

)∣∣ � ∣∣γ−
q

∣∣ we have ϑp′ = ηp′ . Consider the last, double sum in (4.7):
any “monomial” in the root vectors occurring there is of the form

X γ̃b
X γ̃d

= Xγ̃b1
· · ·Xγ̃−

bh

Xγ̃d1
· · ·Xγ̃dk

(4.8)

with b1 > · · · > bh and d1 < · · · < dk . Moreover, by construction we can assume also that
bi ̸= dj for all i and j : indeed, if bi = dj in some b′ and d′ , then the inductive assumption gives

ηbi = ϑdj , hence η
b′
ϑ d′ = 0 and so (−1)(

h+1
2 )+(k2)+hk

η
b′
ϑ d′ X γ̃b′

X γ̃d′
. vµ = 0 .

Now, the monomial in (4.8) will occur a second time in the same sum as follows. A first case is
when bh > d1 : then X γ̃b

X γ̃d
= X γ̃b′

X γ̃d′
for b′ :=

(
b1 , . . . , bh , d1

)
and d′ :=

(
d2 , . . . , dk

)
;

this includes also the case h = 0 . The second case is bh < d1 : then X γ̃b
X γ̃d

= X γ̃b′
X γ̃d′

for

b′ :=
(
b1 , . . . , bh−1

)
and d′ :=

(
bh , d1 , . . . , dk

)
; this makes sense for k = 0 as well.

In both cases, the new strings b′ and d′ enjoy the property
∣∣b′∣∣ = ∣∣b∣∣± 1 and

∣∣d′∣∣ = ∣∣d∣∣∓ 1 .

Now, whenever we consider any such pair of monomials X γ̃d
X γ̃d

and X γ̃b′
X γ̃d′

occur-

ring in the last (double) sum in (4.7) and such that X γ̃d
X γ̃d

= X γ̃b′
X γ̃d′

, by induction we

have η
b
ϑ d = η

b′
ϑ d′ . Even more, a direct check shows that for the signs involved one has

(−1)(
h+1
2 )+(k2)+hk

+ (−1)(
h′+1

2 )+(k
′
2 )+h′k′

= 0 where h =
∣∣b∣∣ , k =

∣∣d∣∣ , h′ =
∣∣b′∣∣ , k′ =

∣∣d′∣∣ . Thus
the two (identical!) monomials X γ̃d

X γ̃d
and X γ̃b′

X γ̃d′
in that sum cancel out each other.

The outcome is that the last, double sum in (4.7) is actually zero: thus (4.7) itself reduces to((
f −1
− g−

)
. vµ
)
µ+γ−

q
=
∑N−

p=1
π(γ̃p) = γ

−
q

(
ϑp− ηp

)
Xγ̃p

. vµ : and, as before, one deduces ϑp = ηp for all p .

Thus the above induction argument yields ϑp = ηp for all p = 1, . . . , N− , hence g− = f− .

An entirely similar analysis shows that g+ = f+ , whence the claim is proved.

At last, we are ready for our main result:

Theorem 4.21. For any A ∈ (salg)k , the group product yields a bijection

G0̄(A)×G−,<
1̄

(A)×G+,<
1̄

(A) ↪−−−� GV (A)

and all the similar bijections obtained by permuting the factors G±,<
1̄

(A) and/or switching the
factor G0̄(A) to the right.

Proof. We shall prove the first mentioned bijection.

In general, Proposition 4.18 gives GV (A) = G0̄(A)G
<
1̄
(A) , so the product map from G0̄(A)×

G<
1̄
(A) toGV (A) is onto. But in particular, we can choose an ordering on ∆1̄ such that ∆−

1̄
≼ ∆+

1̄
,

hence G<
1̄
(A) = G−,<

1̄
(A)G+,<

1̄
(A) , so we are done for surjectivity.

To prove that the product map is injective amounts to showing that for any g ∈ GV (A)
the factorization g = g0̄ g− g+ with g0̄ ∈ G0̄(A) , g± ∈ G±,<

1̄
(A) , is unique. In other words, if

g = g0̄ g− g+=f0̄f−f+ with g0̄ , f0̄∈ G0̄(A) , g± , f±∈ G±,<
1̄

(A) , we must prove g0̄ =f0̄ , g± =f± .

34



By definition of G0̄(A) , both g0̄ and f0̄ are products of finitely many factors of type xα̃(tα̃)

and hi(si) for some tα̃ ∈ A0̄ , si ∈ U
(
A0̄

)
— with α̃ ∈ ∆̃0̄ , i = 1, . . . , r . Moreover, there exist

product expansions g± =
∏N±

d=1

(
1 + ϑ±

d Xγ̃±
d

)
, f± =

∏N±
d=1

(
1 + η±d Xγ̃±

d

)
like in the proof of

Lemma 4.20. We call B the superalgebra of A generated by all the tα̃ , the si , the ϑ±
d and the

η±d : this is finitely generated (as a superalgebra), and B1̄ is finitely generated as a B0̄–module.
By Lemma 4.19, GV (B) is a subgroup into GV (A) ; therefore the identity g0̄ g− g+ = f0̄ f− f+

holds inside GV (B) as well. Thus we can switch from A to B , i.e. we can assume from scratch
that A = B . In particular A is finitely generated, so A1̄ is finitely generated as an A0̄ –module.

Consider in A the ideal A1̄ , the submodules Am
1̄ (cf. section 2.1) and the ideal

(
Am

1̄

)
of A

generated by Am
1̄ (m∈N ): as Am

1̄ is homogeneous, we have A
/(

Am
1̄

)
∈ (salg)k . Moreover, as A1̄

is finitely generated (over A0̄), we have Am
1̄ = {0} =

(
Am

1̄

)
for m≫0 . So it is enough to prove

g0̄ ≡ f0̄ mod
(
Am

1̄

)
, g± ≡ f± mod

(
Am

1̄

)
∀ m ∈ N (4.9)

hereafter, for any A′ ∈ (salg)k , any I ideal of A′ with πI : A′ −� A′/I the canonical projection,

by x ≡ y mod I we mean that x and y in GV (A
′) have the same image in GV

(
A′/I) via GV (πI) .

We prove (4.9) by induction, the case m = 0 being clear, as there is no odd part.
Let (4.9) be true for even m . In particular, g± ≡ f± mod

(
Am

1̄

)
: then the proof of Lemma

4.20 applied to GV

(
A
/
Am

1̄

)
gives ϑ±

d ≡ η±d mod
(
Am

1̄

)
for all d , hence (ϑ±

d −η±d ) ∈
(
Am

1̄

)
∩A1̄ ⊆(

Am+1
1̄

)
, for all d , by an obvious parity argument. Thus g± ≡ f± mod

(
Am+1

1̄

)
too, hence from

g0̄ g− g+ = f0̄ f− f+ we get g0̄ ≡ f0̄ mod
(
Am+1

1̄

)
as well, that is (4.9) holds for m+1 .

Let now (4.9) hold for odd m . Then g0̄ ≡ f0̄ mod
(
Am

1̄

)
; but g0̄ , f0̄ ∈ G0̄(A) = G0̄(A0̄)

by definition, hence g0̄ ≡ f0̄ mod
(
Am

1̄

)
∩ A0̄ . Therefore g0̄ ≡ f0̄ mod

(
Am+1

1̄

)
because, by an

obvious parity argument again, one has
(
Am

1̄

)
∩A0̄ ⊆

(
Am+1

1̄

)
. Thus from g0̄ g− g+ = f0̄ f− f+ we

get also g− g+ ≡ f− f+ mod
(
Am+1

1̄

)
. Then Lemma 4.20 again — now applied to G

(
A
/
Am+1

1̄

)
— eventually gives g± ≡ f± mod

(
Am+1

1̄

)
, so that (4.9) holds for m+1 too.

The “overall consequence” of the last result is the following, straightforward corollary:

Corollary 4.22.

(a) The group product yields functor isomorphisms

G0̄ ×G−,<
1̄

×G+,<
1̄

∼=−−→ GV , G0̄ ×G−,<
1̄

×G+,<
1̄

∼=−−→ GV

as well as those obtained by permuting the (−)-factor and the (+)-factor and/or moving the
(
0̄
)
-

factor to the right. All these induce similar functor isomorphisms with the left-hand side obtained

by permuting the factors above, like G+,<
1̄

×G0̄ ×G−,<
1̄

∼=−→ GV , G−,<
1̄

×G0̄ ×G+,<
1̄

∼=−→ GV , etc.

(b) The group product yields functor isomorphisms

G±
0̄
×G±,<

1̄

∼=−−→ G±
V , G±

0̄
×G±,<

1̄

∼=−−→ G±
V , G±,<

1̄
×G±

0̄

∼=−−→ G±
V , G±,<

1̄
×G±

0̄

∼=−−→ G±
V

(c) Let ≼ be a total order on ∆̃1̄ such that ∆̃−
1̄
≼ ∆̃+

1̄
or ∆̃+

1̄
≼ ∆̃−

1̄
. Then the group product

yields isomorphisms G0̄×G<
1̄

∼=−→GV , G0̄×G<
1̄

∼=−→GV , G<
1̄
×G0̄

∼=−→GV , G<
1̄
×G0̄

∼=−→ GV .

Yet another crucial step we can move on now is the following:

Proposition 4.23. The functors G±,<
1̄

: (salg)k −→ (sets) are representable: namely, they are the

functor of points of the superscheme A0|N±
k , where N± :=

∣∣∆̃±
1̄

∣∣ . In particular they are sheaves,

hence G±,<
1̄

= G±,<
1̄

. Similarly, for any total order in ∆̃1̄ such that ∆̃−
1̄
≼ ∆̃+

1̄
or ∆̃+

1̄
≼ ∆̃−

1̄
, we

have G<
1̄
= G<

1̄
∼= A0|N as super-schemes, with N :=

∣∣∆1̄

∣∣ = N+ +N− .

Proof. Clearly, there exists a natural transformation Ψ± : A0|N±
k −→ G±,<

1̄
given on objects by

Ψ±(A) : A0|N±
k (A)−→ G±,<

1̄
(A) , (ϑ1, . . . , ϑN±) 7→

∏N±
i=1 xγ̃i

(ϑi)
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Now given g±
1̄

=
∏N±

i=1 xγ̃i
(ϑ′

i) ∈ G±,<
1̄

(A) , h±
1̄

=
∏N±

i=1 xγ̃i
(ϑ′′

i ) ∈ G±,<
1̄

(A) , assume that

g±
1̄

= h±
1̄
, hence h±

1̄
(g±

1̄
)
−1

= 1 . Then we get
(
ϑ′
1, . . . , ϑ

′
N±

)
=
(
ϑ′′
1 , . . . , ϑ

′′
N±

)
just as showed in

the proof of Lemma 4.20. This means that Ψ± is an isomorphism of functors, which proves the
first part of the claim. The last part of the claim then follows like for Corollary 4.22(c).

Finally, we prove that the supergroup functors GV are affine algebraic:

Theorem 4.24. Every functor GV is an affine algebraic supergroup.

Proof. First, G−,<
1̄

and G+,<
1̄

are affine, and algebraic, by Proposition 4.23; moreover, by Propo-
sition 4.10(c), or by Proposition 4.12, G0̄ is affine algebraic as well. Now Corollary 4.22 gives
GV

∼= G0̄ × G−,<
1̄

× G+,<
1̄

as superschemes. As any direct product of affine algebraic super-
schemes is affine algebraic too (see [3], Ch. 10), we can eventually conclude the same for GV .

Remark 4.25. Theorem 4.24 and Proposition 4.23 together show that GV
∼= G0̄×G−,<

1̄
×G+,<

1̄

as superschemes. As G±,<
1̄

∼= G±,<
1̄

is generated by the one-parameter supersubgroups xγ̃

(
γ̃ ∈

∆̃±
1̄

)
, we conclude that GV can also be described as GV (A) =

⟨
G0̄(A) ∪

{
xγ̃(A)

}
γ̃∈∆̃1̄

⟩
for all

A ∈ (salg)k . Even more, as G0̄
∼= G0 n G0̄ ↑ by Proposition 4.12 and G0̄ ↑ ∼= �� α̃∈∆̃

0̄ ↑
xα̃ by

Proposition 4.14, we have also GV (A) =
⟨
G0(A) ∪

{
xα̃(A)

}
α̃∈∆̃\∆̃0

⟩
, for all A ∈ (salg)k .

We finish with an additional, non-obvious remark: under mild assumptions, the supergroup
GV , which by construction is a supersubgroup of GL(V ) , is indeed a closed one:

Proposition 4.26. Assume that g1̄ as a k–submodule of gl(V )1̄ is a direct summand with a k–free
complement. Then GV is a closed supersubgroup of GL(V ) . In particular, this is always true if
k is a field.

Proof. By construction we have that G ≤ GL(V ) . Consider the factorization GV = G0̄ ×G<
1̄

in Corollary 4.22(c): by construction, G0̄ is just a classical algebraic group(-scheme), embedded
into GL(V ) as a closed subgroup, therefore it is enough to show that G<

1̄
is closed too.

Recall that GL(V ) can be realized as an open supersubscheme of End(V ) = Matm|n(k) , where
m|n is the (super)rank of V ; so it is enough to prove that G<

1̄
is closed in Matm|n(k) ; recall also

O
(
End(V )

)
= O

(
Matm|n(k)

)
= k

[{
x′
i,j , x

′′
r,s , ξ

′
i,s , ξ

′′
r,j

}r,s=1,...,n;

i,j=1,...,m;

]
Using Proposition 4.23, we identify A0|N

k
∼= G<

1̄
so that the point 0 in A0|N

k corresponds to the
identity I in G<

1̄
. Then the tangent superspace to G<

1̄
at I corresponds to the tangent superspace

to A0|N
k at 0 , naturally identified with A0|N

k again. By the assumption on g1̄ , we can complete
the k–basis

{
Xγ̃1

, . . . , Xγ̃N

}
of g1̄ to a k–basis of gl(V )1̄ : this in turn correspond to a “change

of odd variables” in O
(
End(V )

)
, from

{
ξ′i,s , ξ

′′
r,j

}r,s=1,...,n;

i,j=1,...,m;
to some new set of odd variables,

say
{
ξ̂1 , . . . , ξ̂2mn

}
, such that

⟨
Xγ̃h

, ξ̂k
⟩
= δh,k . Letting J be the embedding map of G<

1̄
into End(V ) , the tangent map d

I
J (of J at I ) is expressed by a 2-by-2 block matrix whose

only non-trivial block (in the right-bottom corner) is
(

∂ξ̂h
∂ϑk

)
h,k=1,...,N ;

. Now, given A ∈ (salg)k ,

any g =
∏N

i=1 xγ̃i
(ϑi) ∈ G<

1̄
(A) expands as g =

∏N
i=1 xγ̃i

(ϑi) = I +
∑N

i=1 ϑi Xγ̃i
+ O(2) ,

where O(2) stands for some element in gl
(
V (A)

)
= A0̄⊗k gl(V )0̄+A1̄⊗k gl(V )1̄ whose (non-zero)

coefficients in A0̄ and A1̄ actually belong to A 2
1̄ (cf. Subsec. 2.1). This implies that ∂ξ̂h

∂ϑk
= δh,k , so

that the only non-trivial block in the matrix of d
I
J is the identity matrix of size N . Thanks to

this last remark, we can adapt the Inverse Function Theorem and its corollaries (see [3], §§5.1–2)
to the present context: the outcome is that there exists “a change of variables”{

x′
i,j , x

′′
r,s

}r,s=1,...,n;

i,j=1,...,m;
7→
{
x̃′
i,j , x̃

′′
r,s

}r,s=1,...,n;

i,j=1,...,m;
,

{
ξ̂t

}
t=1,...,N ;

7→
{
ξ̃t

}
t=1,...,N ;

such that the morphism of superalgebras J ∗ : O
(
End(V )

)
−→ O

(
G<

1̄

)
corresponding to J is

given by mapping x̃′
i,j 7→ δi,j , x̃′′

r,s 7→ δr,s , ξ̃t 7→ ϑt for t ≤ N , ξ̃t 7→ 0 for t > N . In turn,

G<
1̄
= Im(J ) is the zero locus Ker

(
J ∗) , hence it is a closed supersubscheme of End(V ) .
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4.5 The dependence on V

The construction of the supergroupsGV was made via the Lie superalgebra g and the g–module
V . So we have to clarify how supergroups attached to different g–modules are related among them.
Moreover, the construction involves the choice of an admissible Z–lattice M in V : nevertheless,
we shall presently show that the outcome, i.e. GV itself, is actually independent of that choice.

4.27. The weight lattice of GV . Let Lw be the lattice of all “integral weights” of g0 (in
short,“the weight lattice of g0”), using standard terminology, cf. for instance [13]: in particular,
these are weights with respect to the Cartan subalgebra h of g . Also, we let Lr be the lattice
spanned by all the h–roots of g (in short, “the root lattice”): here by “ h–roots” we mean the
eigenvalues in g of the adjoint action of h (again), not of h ; these h–roots are just the restrictions
(as linear functionals) from h to h of the roots of g considered in §2.18 (which might be called
“ h–roots”). Actually, nothing changes in all cases but H(n) : for the latter, an explicit description
of the h–roots follows from considering the description of the h–roots and reading it modulo δ .

From §2.18 we see that the root lattice Lr is spanned by the weights ε1 , . . . , εr of the
defining representation of the reductive Lie algebra g0 . On the other hand, the weight lattice
Lw is spanned by the so-called fundamental dominant weights ω1 , . . . , ωr . Now, looking at the
relationship between the εi and the ωj one sees that the quotient module Lw

/
Lr is

— trivial, when g is of type W , S or S̃ ,

— isomorphic to Z2 , when g is of type H(2r + 1) ,

— isomorphic to Z2 ⊕ Z2 , when g is of type H(2r) ;

therefore, in all cases Lw is just “slightly bigger” than Lr .

Now let GV be a supergroup constructed as in section 4, associated with the Lie superalgebra g
of Cartan type and with a faithful, rational, finite dimensional g–module V with admissible lattice
M . Now Corollary 4.22, Proposition 4.23, Proposition 4.12 and Proposition 4.14 altogether give

GV
∼= G0̄ ×G<

1̄
∼= G0 ×G0̄↑ ×G<

1̄
∼= G0 × AN

0̄↑

∣∣ 0 × A0|N ∼= G0 × AN
0̄↑

∣∣N
(with notations used there), i.e. GV

∼= G0 × AN
0̄↑

∣∣N . By Proposition 4.9, G0
∼= ChV is a

classical, split reductive algebraic group. By classical theory we know that G0
∼= ChV depends

only on the lattice of g0–weights (= g–weights) of V : we denote this weight lattice by LV .
Now, for the lattice LV associated with the supergroup GV we have clearly Lr ⊆ LV ⊆ Lw .

By the remarks above about Lw

/
Lr , we have that LV is always “very close” to Lr or Lw : in

particular, we always have equalities Lr = LV = Lw when g is of type W , S or S̃ (i.e., not H).

Let nowGV andG′
V ′ be two Cartan supergroups obtained from g via different g–modules V and

V ′. We let xα̃(t) , x
′
α̃(t) , and hH(u) , h′

H(u) , be the points of the one-parameter supersubgroups

in GV and G′
V ′ associated with α̃ ∈∆̃ , t ∈ A0̄∪A1̄ , and H∈hZ , u∈U

(
A0̄

)
— cf. subsection 4.1.

Lemma 4.28. Let ϕ : GV −→ G′
V ′ be a morphism of the supergroups mentioned above. Assume

that ϕA

(
G0(A)

)
= G′

0(A) and ϕA

(
xα̃(t)

)
= x′

α̃(t) for all A ∈ (salg)k , t ∈ A0̄∪A1̄ , α̃ ∈ ∆̃\∆̃0 .

Then Ker
(
ϕ
)
⊆ Z(G0) , where Z(G0) is the center of G0 .

Proof. First, note that ∆̃ \ ∆̃0 = ∆̃ 0̄↑ ∪ ∆̃−
1̄
∪ ∆̃+

1̄
, and fix a total order ≼ on this set such that

∆̃ 0̄↑ ≼ ∆̃−
1̄

≼ ∆̃+
1̄
. Then take g ∈ GV (A) with g ∈ Ker

(
ϕA

)
. By Corollary 4.22, Proposition

4.23, Proposition 4.12, Proposition 4.14 and Proposition 4.9, there is a unique factorization of g

g = g0 ·
∏

β̃∈∆̃
0̄↑
xβ̃(tβ̃) ·

∏
γ̃−∈∆̃−

1̄

xγ̃−(ϑγ̃−) ·
∏

γ̃+∈∆̃+
1̄

xγ̃+(ϑγ̃+) (4.10)

(all products being ordered with respect to ≼ ) for some g0 ∈ G0(A) , tβ̃ ∈ A0̄ and ϑγ̃− ∈ A1̄ . A

similar factorization also holds for ϕA(g) in G′
V ′(A) . All this along with ϕA(g) = eG′

V ′ (A) , with

ϕA(g) = ϕA(g0) ·
∏

β̃∈∆̃
0̄↑
ϕA

(
xβ̃(tβ̃)

)
·
∏

γ̃−∈∆̃−
1̄

ϕA

(
xγ̃−(ϑγ̃−)

)
·
∏

γ̃+∈∆̃+
1̄

ϕA

(
xγ̃+(ϑγ̃+)

)
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and with the unicity of the factorization of ϕA(g) implies, by the assumption ϕA

(
xα̃(t)

)
= x′

α̃(t) ,
that all factors in the product on right-hand side here above are trivial. In turn, all factors but g0 on
right-hand side of (4.10) are trivial too; therefore g = g0 ∈ G0(A)

∩
Ker

(
ϕA

)
= Ker

(
ϕA

∣∣
G0(A)

)
.

By assumption ϕA

∣∣
G0

: G0 −� G′
0 is an epimorphism, with G0 and G′

0 being connected

split reductive algebraic groups over Z having tangent Lie algebra g (by Proposition 4.9), so
dϕ : G0 −→ G′

0 is an isomorphism. By classical theory this forces Ker
(
ϕA

∣∣
G0

)
⊆ Z(G0) .

Using this last result, we can now show that the relation between supergroups GV associated
with different g–modules V is the same as in the classical setting. The result reads as follows:

Proposition 4.29. Let GV and G′
V ′ be two affine supergroups constructed using two g–modules V

and V ′ as in subsection 3.4. If LV ⊇ LV ′ , then there exists a unique morphism ϕ : GV −→ G′
V ′

such that Ker (ϕ) ⊆ Z
(
G0

)
and ϕA

(
xα̃(t)

)
= x′

α̃(t) for every A ∈ (salg)k , t ∈ A0̄ ∪ A1̄ ,

α̃ ∈ ∆̃ \ ∆̃0 . Moreover, ϕ is an isomorphism if and only if LV = LV ′ .

Proof. By classical theory, if LV ⊇ LV ′ there exists a well-defined epimorphism ϕ0 : G0 −� G′
0 :

in particular, we can (and we do) choose it so that dϕ0 = idg0
(recall that Lie

(
G0

)
= g0 =

Lie
(
G0

)
by Proposition 4.9). As a consequence, we have that ϕ0 acts on one-parameter (additive

and multiplicative) subgroups of G0 as ϕ0

(
xα̃(t)

)
= x′

α̃(t) and ϕ0

(
hH(u)

)
= h′

H(u) .

Now we extend ϕ0 to a morphism ϕ : GV −→ G′
V ′ as follows. Fix A ∈ (salg)k and a total order

in ∆̃\∆̃0 ; use the unique factorization inGV (A) — like in the proof of Lemma 4.28 — to factor g as
in (4.10). Then define ϕA(g) := ϕ0(g0) ·

∏
β̃∈∆̃

0̄↑
x′
β̃
(tβ̃) ·

∏
γ̃−∈∆̃−

1̄

x′
γ̃−(ϑγ̃−) ·

∏
γ̃+∈∆̃+

1̄

x′
γ̃+(ϑγ̃+) .

This gives a well-defined map ϕA : GV (A) −→ G′
V ′(A) , which by construction is functorial in

A : thus we have a natural transformation ϕ — a morphism of superschemes — from GV to G′
V ′ .

Moreover, this ϕ is also a morphism of supergroups. In fact, if A ∈ (salg)k is local then ϕA is
a group morphism: indeed, GV (A) = GV (A) and G′

V ′(A) = G′
V ′(A) , and we have ϕA(g h) =

ϕA(g)ϕA(h) because all the relations used to commute elements in GV (A) or in G′
V ′(A) so to write

a given element in “normal form” as in (4.10) actually do not depend on the chosen representation.
Finally, by Proposition A.12 in [9], we have that ϕ is uniquely determined by its effect on local
superalgebras, on which we saw it is a morphism: thus we conclude that ϕ is globally a morphism.

By construction ϕ is also onto. Thus all assumptions of Lemma 4.28 hold, and we can conclude
that Ker (ϕ) ⊆ Z

(
G0

)
and ϕA

(
xα̃(t)

)
= x′

α̃(t) . Finally, again by construction ϕ is an isomor-
phism if and only if ϕ0 is an isomorphism itself: but this in turn holds if and only if LV = LV ′ .

As a direct consequence, we have the following “independence result”:

Corollary 4.30. Every supergroup GV constructed so far is independent, up to isomorphism, of
the choice (which is needed in the very construction) of an admissible lattice M of V .

Proof. Let M and M ′ be two admissible lattices of V , and set V ′ := V . Construct GV and GV ′

using respectively M and M ′ : then we have LV = LV ′ , so Proposition 4.29 gives GV
∼= GV ′ .

4.6 Lie’s Third Theorem for the supergroups GV

Let GV be an (affine) supergroup over the ring k , built out of the Lie superalgebra g (of Cartan
type) over K and of the g–module V as in subsection 4.2. In subsection 4.1 we have introduced
the Lie superalgebra gV,k := k ⊗Z gV over k starting from the Z–lattice gV . We now show that
the algebraic supergroup GV has gV,k as its tangent Lie superalgebra.

We start recalling how to associate a Lie superalgebra with a supergroup scheme ([3], §§11.2–5).

4.31. The Lie superalgebra of a supergroup scheme. For a given A ∈ (salg)k let A[ϵ] :=
A[x]

/(
x2
)

be the superalgebra of dual numbers, in which ϵ := x mod
(
x2
)

is taken to be even.

Then A[ϵ] = A⊕Aϵ , and there are natural morphisms i : A −→ A[ϵ] , a
i7→ a , and p : A[ϵ] −→ A ,(

a + a′ϵ
) p7→ a , such that p ◦ i = idA . Given a supergroup k–functor G : (salg)k−→ (groups) ,
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denote the morphism associated with p : A[ϵ] −→ A by G(p)A : G(A(ϵ)) −→ G(A) . This gives a
unique Lie algebra valued functor Lie(G) : (salg)k −→ (Lie)k given on objects by Lie(G)(A) :=
Ker

(
G(p)A

)
. For the Lie structure, one first defines the adjoint action Ad : G −→ GL(Lie(G))

of G on Lie(G) as Ad(g)(x) := G(i)(g) · x ·
(
G(i)(g)

)−1
for all g ∈ G(A) , x ∈ Lie(G)(A) . Then

one defines the adjoint morphism ad := Lie(Ad) : Lie(G) −→ Lie(GL(Lie(G))) := End(Lie(G)) ,
and finally sets [x, y] := ad(x)(y) for all x, y ∈ Lie(G)(A) . Further details are in [3], §§11.3–5;
note that the authors there assume k to be a field, yet this is not required for the present context.

When G is (the functor of points of) a supergroup k–scheme and k is a field, the functor Lie(G)
is quasi-representable (cf. §2.9): indeed, it can be identified with (the functor of points of) the
tangent superspace at the identity of G , denoted Te(G) . In turn, Te(G) bears a structure of Lie
k–superalgebra, as usual (cf. [3], §11.4.); moreover, we point out that it bears also a canonical 2–
operation, which can be given using the (standard) identification of Te(G) with the k–superalgebra
of left-invariant superderivations (into itself) of O(G) , the Hopf k–superalgebra representing G .

We shall presently see that for Cartan k–supergroups GV this is the case also if k is not a field:
we shall then denote by Lie(G) both the above functor and the associated k–supermodule. Note
that this is also the case for the k–supergroup Lie(GLm|n) : indeed, it is well known that, whatever
k is, the functor Lie(GLm|n) is quasi-representable, and identifies with the Lie k–superalgebra
glm|n ; as the latter is free (as a k–module) of finite rank, Lie

(
GLm|n

)
is in fact representable too.

Eventually, we are now ready for the main result of this subsection.

Theorem 4.32. Let GV be the affine supergroup of Cartan type built upon g and the g–module
V (cf. section 4.2). Then Lie(GV ) is quasi-representable, and actually representable, namely
Lie(GV ) = Lg

V,k
as functors from (salg)k to (Lie)k .

Proof. The result follows from sheer computations: as everything takes place inside GL(V ), one
can argue like in the standard example of Lie(GLm|n) — which can be found, e.g., in [3], §11.3.

First, from the decomposition GV = G0̄×G<
1̄
= G0̄×

(
�� γ̃∈∆̃1̄

xγ̃

)
— see Corollary 4.22 and

Proposition 4.23 — we find at once that

Lie(GV )(A) = Lie(G0̄)(A0̄) ×
(
�� γ̃∈∆̃1̄

( 1 + ϵA1̄ Xγ̃)
)

=

= Lie(G0̄)(A0̄) ×
(
1 + ϵ

∑
γ̃∈∆̃1̄

A1̄ Xγ̃

)
= Lie(G0̄)(A0̄) ×

(
1 + ϵA1̄ ⊗k g1̄

)
Second, by the results in subsection 4.3 and by the classical theory of Chevalley groups we

know that Lie(G0̄) is quasi-representable (and actually representable), with Lie(G0̄) = L(g0̄)V,k

where (g0̄)V,k := k ⊗Z (g0̄)V and (g0̄)V :=
{
X ∈g0̄

∣∣X.M ⊆ M
}
= hV

⊕(⊕
α̃∈∆̃0̄

ZXα̃

)
much

like in Proposition 3.17 and in subsection 4.1. From this and the previous remark, it follows that

Lie(GV )(A) = L(g0̄)V,k
(A0̄) ×

(
1 + ϵA1̄ ⊗k g1̄

)
= A0̄ ⊗k (g0̄)V,k +A1̄ ⊗k g1̄ = L(g0̄)V,k⊕g1̄

(A)

so that Lie(GV ) = Lg
V,k

— as claimed — because (g0̄)V,k ⊕ g1̄ = gV,k . In particular, as gV,k is

free of finite rank it follows that Lie(GV ) is representable too.

4.7 Special supersubgroups of GV

In subsections 4.2 and 4.3 we considered the (super)subgroupsG0̄ andG0 ofGV . We introduce
now some other remarkable supersubgroups, associated with special Lie supersubalgebras of g .

Definition 4.33. Fix a splitting ∆̃0 = ∆̃+
0

⨿
∆̃−

0 of the classical root system ∆̃0 = ∆0 (of g0)
into positive and negative roots. For all A∈(salg)k and t>−1 , define the subgroups of GV (A)

G−1↑(A) :=
⟨
hH(A) , xα̃(A)

∣∣∣ H∈ hZ , α̃ ∈
⨿

z>−1∆̃z

⟩
,

(
G−1↑

)
0̄
(A) := G−1↑(A)

∩
G0̄(A)

Gt↑(A) :=
⟨
xα̃(A)

∣∣∣ α̃ ∈
⨿

z>t ∆̃z

⟩
,

(
Gt↑
)
0̄
(A) := Gt↑(A)

∩
G0̄(A)

G−1(A) :=
⟨
xγ̃(A)

∣∣∣ γ̃ ∈ ∆̃−1

⟩
, G−1,0(A) :=

⟨
hH(A) , xα̃(A)

∣∣∣ H ∈ hZ , α̃ ∈ ∆̃−1

⨿
∆̃0

⟩
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G−
min(A) :=

⟨
xγ̃(A) , hH(A) , xα̃(A)

∣∣∣ γ̃ ∈∆̃−1 ,H ∈ hZ , α̃ ∈∆̃−
0

⟩
G+

max(A) :=
⟨
hH(A) , xα̃(A) , xβ̃(A)

∣∣∣ H ∈ hZ , α̃ ∈∆̃+
0 , β̃ ∈∆̃z ∀ z>0

⟩
(the last three rows only for g ̸∼= S̃(n) ). Let Gt↑ ,

(
Gt↑
)
0̄
, G−1 , G−1,0 , G

−
min , G

+
max : (salg)k −→

(groups) , for t≥−1 , be the corresponding full subgroup functors of GV , and Gt↑ ,
(
Gt↑
)
0̄
— for

t≥−1 — G−1 , G−1,0 , G
−
min and G+

max the sheafification functors of the each of the above.

Lemma 4.13 and Lemma 4.8 yield the following properties of these special supersubgroups:

Proposition 4.34. The following hold:

(a) Gt↑
∼= �� α̃∈

⨿
z>t∆̃z

xγ̃
∼= Gt↑ ,

(
Gt↑
)
0̄
∼= �� α̃∈

⨿
z>t∆̃z∩∆̃0̄

xγ̃
∼=
(
Gt↑
)
0̄

for all t >−1 ;

(b) Gp↑ = Gp↑ E Gq↑ = Gq↑ ,
(
Gp↑
)
0̄
=
(
Gp↑

)
0̄
E
(
Gq↑

)
0̄
=
(
Gq↑
)
0̄
, for all −1 < q ≤ p ;

(c) G−1,0 = G−1oG0 , G−1,0 = G−1oG0 ; G−1↑ = G0nG0↑ , G−1↑ = G0nG0↑ ;

(d) G±
min = G−1oG±

0 , G±
min = G−1oG±

0 , and G±
max = G±

0 nG0↑ , G±
max = G±

0 nG0↑

where G±
0 and G±

0 are given as in Definition 4.5 and Definition 4.6 with respect to the splitting

∆̃0 = ∆̃+
0

⨿
∆̃−

0 fixed in Definition 4.33.

(e) the supergroup functors Gt↑ ,
(
Gt↑
)
0̄
— for t ≥ −1 — and — for g ̸∼= S̃(n) — G−1 ,

G−1,0 , G±
min and G±

max are all representable, hence they are affine (algebraic) supergroups.

Finally, the “Lie’s Third Theorem” holds for these supersubgroups too, by the same arguments:

Theorem 4.35. For every affine supergroup Gt↑ ,
(
Gt↑
)
0̄
( t≥−1) , G−1 , G−1,0 , G±

min and
G±

max as above the corresponding tangent Lie algebra functor Lie(−) is representable, namely

Lie
(
Gt↑
)
= LgZ

t↑
, Lie

((
Gt↑
)
0̄

)
= L(gZ

t↑
)
0̄

∀ t ≥ 0

Lie
(
G−1↑

)
= L(g−1↑ )V,k

, Lie
((
G−1↑

)
0̄

)
= L(g−1↑ )V, k ; 0̄

Lie
(
G−1

)
= LgZ

−1
, Lie

(
G−1,0

)
= L(g−1,0)V,k

Lie
(
G±

min

)
= L(b±

min)V,k
, Lie

(
G±

max

)
= L(b±

max)V,k

as functors from (salg)k to (Lie)k , where (g−1↑)V,k := (gV )0ngZ0↑ , (g−1↑)V, k ; 0̄ := (gV )0n
(
gZ0↑
)
0̄
,

(g−1,0)V,k := gZ−1 o (gV )0 ,
(
b±min

)
V,k := gZ−1 o (gV)

±
0 and

(
b±max

)
V,k := (gV)

±
0 n gZ0↑ , with

(gV)0 = hV ⊕
(⊕

α∈∆0
gZα
)

and (gV)
±
0 = hV ⊕

(⊕
α∈∆±

0
gZα
)

— notation of Definition 2.23 and

Definition 3.11.

4.8 The uniqueness theorem

In this subsection we shall prove that every connected affine algebraic k–supergroup whose
tangent Lie superalgebra is of Cartan type and whose classical subgroup (see below) is k–split, is
necessarily isomorphic to one of the supergroups GV we constructed. So, up to isomorphism the
supergroups GV are the unique ones of the above mentioned type. We begin with a definition:

Definition 4.36. Let G is an (affine) supergroup, H := O(G) the Hopf k–superalgebra represen-

ting it, and H := H
/(

H1̄
2 ⊕H1̄

)
= H0̄

/
H1̄

2 , which is a (classical) commutative Hopf algebra.

The affine group-scheme Gev represented by H = O(G) — so that O
(
Gev

)
= O(G) —

is called the classical supersubgroup(-scheme) associated with G . By construction, Gev coincides,
as a group functor, with the restriction of G to the category of commutative (unital, associative)
k–algebras.

The quotient map π : H := O(G)−� O
(
Gev

)
= H yields an embedding j : Gev ↪−→ G , so

that Gev actually identifies with a closed (super)subgroup of G .
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Again by construction one has that every (closed) supersubgroup K of G which is classical
is actually a (closed) subgroup of Gev . Moreover, the functor Lie

(
Gev

)
is the restriction of

Lie(G) to the category of (classical) commutative algebras: furthermore, when the latter is quasi-
representable, say Lie(G) = Lg , then the former is quasi-representable too, with Lie

(
Gev

)
= Lg0̄

.

Remark 4.37. Let G := GV be as in Definition 4.6 . Then
(
GV

)
ev

∼= G0̄ and
(
G±

V

)
ev

∼= G±
0̄

.

4.38. Supergroups with tangent Lie superalgebra of Cartan type. Let G be a connected
affine algebraic supergroup, defined over k . We assume that the functor Lie (G) associated with G
(cf. § 4.31) is quasi-representable, with Lie (G) = Lg

V ′,k
where gV ′,k := k⊗ZgV ′ : in particular, g is

a simple Lie superalgebra of Cartan type, we fix in g a Chevalley basis, V ′ is a rational g–module
with an admissible lattice, etc. In short, we might say that “G has tangent Lie superalgebra
which is simple of Cartan type”. In particular, this means that gV ′,k is free as a k–module, with
rk k(gV ′,k) = dimK(g) , and it is a Lie k–superalgebra, whose Z2–grading gV ′,k = (gV ′,k)0̄⊕ (gV ′,k)1̄
is given by (gV ′,k)a := k ⊗Z (gV ′)a (for a = 0, 1 ) where g = g0̄ ⊕ g1̄ is the Z2–grading of g . To
simplify notation we shall drop all superscripts “V ′,k ”, writing just g , g0̄ and g1̄ , tacitly assuming
that all these objects are k–forms (specified above) of the initial objects defined over K .

According to Definition 4.36, the supergroup G has a “classical” subgroup Gev , such that
Lie (Gev) = g0̄ . The assumptions also imply that Gev is a connected affine algebraic (classical)
group-scheme, defined over k . Now g0̄ = g0 ⊕ g0̄ ↑ (cf. Definition 2.23), with g0 reductive and
g0̄ ↑ nilpotent: by the classical theory, from Lie

(
Gev

)
= g0̄ we deduce that Gev

∼= G′
0 nG′

0̄ ↑ for

some connected algebraic groups G′
0 and G′

0̄ ↑ such that Lie (G′
0)

∼= g0 and Lie
(
G′

0̄ ↑

) ∼= g0̄ ↑ . In
particular, G′

0 is reductive and G′
0̄ ↑ is unipotent. In addition, we assume that G is k–split, by

which we mean — by definition — that the classical reductive group G′
0 is k–split.

In this subsection we show that G is (isomorphic to) a “Cartan supergroup” GV associated
with g and with some g–module V as in section 4.

For our arguments to apply, we need yet another technical requirement, namely we assume that
G is linearizable, i.e. it is embeddable into some GLn|m as a closed supersubgroup (this is true
when G ∼= GV , hence it is a necessary condition). Note that this is automatically true when the
ground ring k is a field, or k is a PID — e.g., k = Z — and O(G) is free as a k–module.

4.39. Linearizing G . By classification theory of split reductive groups, G′
0 can be realized via the

classical Chevalley construction: namely, there is a faithful, rational, finite dimensional g0 –module
Ṽ , with an admissible lattice M̃ , such that G′

0 is isomorphic to the affine group-scheme associated

with g0 and with Ṽ by the classical Chevalley’s construction. Similarly, by classification theory of
unipotent algebraic groups, G′

0̄ ↑ is isomorphic to the group G0̄ ↑ in Definition 4.6. Overall, we get
Gev

∼= G′
0 nG0̄ ↑ . Actually, one has even more: Gev

∼= G′
0 nG0̄ ↑ can be realized at one strike

by means of a (slight extension of the) classical Chevalley’s construction, based upon a faithful,

rational, finite dimensional g0̄ –module V̂ with an admissible lattice M̂ . Then the dual g0̄ –module

V̂ ∗ is also faithful, rational, finite dimensional with M̂∗ as an admissible lattice.

By assumption G is linearizable, so it identifies with a closed supersubgroup of some GLn|m .

Then Gev identifies with a closed subgroup of
(
GLn|m

)
ev
, the classical subgroup of GLn|m .

Pick the
(
GLn|m

)
ev
–module Û := Ind

(GLn|m)
ev

Gev

(
V̂ ∗) — thought of as a functor from (salg)k

to (k–mod) — induced (by the classical theory of representations of algebraic groups) from the

Gev–module V̂ ∗. Let Û∗ be the (GLn|m)
ev
–module dual to Û ; as Ind

(GLn|m)
ev

Gev

(
V̂ ∗) maps onto V̂ ∗,

we have that V̂ ∼= V̂ ∗∗ embeds into Û∗, i.e. Û∗ contains a Gev–submodule isomorphic to V̂ .
Now, as Lie

((
GLn|m

)
ev

)
=
(
gln|m

)
0̄
, the

(
GLn|m

)
ev
–module Û∗ is also a

(
gln|m

)
0̄
–module. As(

gln|m
)
0̄
is a Lie (super)subalgebra of gln|m , we can perform on Û∗ the induction from

(
gln|m

)
0̄

to gln|m : this yields a gln|m–module W := Ind
gln|m
(gln|m)

0̄

(
Û∗) , described by

W := Ind
gln|m
(gln|m)

0̄

(
Û∗) = U

(
gln|m

)
⊗

U((gln|m)0̄)
Û∗
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Now W is a GLn|m–module too: indeed, one simply has to restrict the action of Lgln|m to GLn|m
(thought of as a subfunctor of Lgln|m). Yet we need to describe the GLn|m–action on W explicitly.

It is known that GLn|m “splits” into a direct product — as a superscheme — of the subgroup(
GLn|m

)
ev

and the totally odd supersubscheme
(
GLn|m

)
odd

:= I +
(
gln|m

)
1̄
, where I := In+m is

the identity (block) matrix of size (n+m)× (n+m) : the splitting is given by the matrix product,

namely GLn|m(A) ∼=
(
GLn|m

)
ev
(A) ×

(
GLn|m

)
odd

(A) via the unique factorization

(
a | β
γ | d

)
=(

a | 0
0 | d

)
·
(

In | a−1β

d−1γ | Im

)
for each block matrix

(
a | β
γ | d

)
∈ GLn|m(A) , with A ∈ (salg)k .

Every gev ∈
(
GLn|m

)
ev
(A) acts on any decomposable tensor y⊗ û ∈ U

(
gln|m

)
⊗

U((gln|m)0̄)
Û∗ =

W via gev .
(
y ⊗ û

)
= Ad(gev)(y) ⊗ gev .û , where on left-hand side we take the natural GLn|m–

action on U
(
gln|m

)
induced from the adjoint action on gln|m . Moreover, every godd = I + g′ ∈(

GLn|m
)
odd

(A) acts on any y ⊗ û as above by godd .
(
y ⊗ û

)
=
(
I + g′

)
.
(
y ⊗ û

)
=
(
y + g′y

)
⊗ û .

As G is (embedded as) a closed supersubgroup of GLn|m , the GLn|m–module W is also a
G–module. Moreover, by Remark 3.13, both for G and for GLn|m — which is a “Chevalley super-
group” in the sense of [9] — the Kostant superalgebra (with scalars extended to k) identifies with
the superalgebra of distributions: then Remark 3.13 tells also that Uk(g) embeds into Uk

(
glm|n

)
.

Then we can consider inside the G–module W the subspace V := Uk(g)⊗Uk(g0̄)
V̂ : also, it is clear

(thanks to the explicit description of the G–action) that this V is a G–submodule of W .

Tracking through the whole construction, as V̂ is rational and faithful as a Gev–module we see
that V in turn is rational and faithful as a G–module. Thus G embeds as a closed supersubgroup
inside GL(V ) , and Gev as a closed subgroup of G . Also, as M̂ is an admissible lattice in the

g0̄–module V̂ , we see that M := Kk(g)⊗Kk(g0̄)
M̂ is admissible in the g–module V (hereafter, we

write Kk(t) := k⊗Z KZ(t) , and “admissible lattice” has the obvious meaning when passing from

Z–modules to k–modules). Finally, as V̂ is finite dimensional, and Kk(g) is (free) of finite rank as
a Kk(g0̄)–module (see Corollary 3.12) we argue that V is finite dimensional too.

By construction — including the fact that V = U(g) ⊗U(g0̄) V̂ =
∧
g1̄⊗V̂ as a g0̄–module is

just V̂ ⊕r for r := rankU(g0̄)(U(g)) = 2dim(g1̄) — the g0̄–action on V is just a diagonalization (r

times) of the g0–action on V̂ : as a consequence, the embedded copy of
(
GV

)
ev

inside GL(V ) is

a (r times) diagonalized copy of the group obtained in GL
(
V̂
)
from the g0̄–action on V̂ via the

Chevalley construction. By assumption this group is Gev , thus
(
GV

)
ev

= Gev inside GL(V ) .

4.40. Splitting G . Recall that GL(V ) splits as GL(V ) = GL(V )0̄×GL(V )1̄ , with GL(V )1̄(A) :=
I+gl(V )1̄(A1̄) (cf. § 4.39). Then denote by π0̄ and π1̄ the projection maps of GL(V ) onto GL(V )0̄
and GL(V )1̄ . Note that GL(V )0̄ = π0̄

(
GL(V )

)
coincides with

(
GL(V )

)
ev

:= GL(V )
∣∣
(alg)k

.

Look atG embedded inside GL(V ) : then π0̄(G) is the restrictionG
∣∣
(alg)k

, hence π0̄(G) = Gev

(by Definition 4.36), so π0̄(G) ≤ G . Given g ∈ G(A) , for A ∈ (salg)k , it factors as g = g0̄ · g1̄
with g0̄ := π0̄(g) ∈ GL(V )0̄ , g1̄ := π1̄(g) ∈ GL(V )1̄ . Then g0̄ ∈ Gev(A) ≤ G(A) and π1̄(g) =:
g1̄ = g0̄

−1g ∈ G(A) , so π1̄(g) ∈ G(A) too; it follows that π1̄(G) ⊆ G (as a supersubscheme) too.
The outcome is that the factorization GL(V ) = GL(V )0̄ ×GL(V )1̄ = π0̄

(
GL(V )

)
× π1̄

(
GL(V )

)
of GL(V ) induces the factorization G = π0̄(G)× π1̄(G) = Gev × π1̄(G) of G as well.

4.41. Construction of a supergroup GV and comparison with G . The G–module V
constructed in §4.39 is obviously also a representation of the Lie superalgebra Lie(G) = g . More

precisely, V = U(g)⊗U(g0̄)V̂ implies V = Ind g
g0̄

(
V̂
)
. In addition, we saw that: (a) V has finite

dimension, (b) V is rational, (c) V contains M := Kk(g)⊗Kk(g0̄) M̂ as an admissible lattice.

Therefore, using V and M we can construct the affine algebraic supergroup GV , as in section
4, which is embeddded inside GL(V ) as a closed (cf. Proposition 4.26) connected supersubgroup.

By the analysis above, we can embed both G and GV as closed supersubgroups of GL(V ) :
thus we identify G and GV with their images in GL(V ) , and their tangent Lie superalgebras with
the corresponding images in gl(V ) . We can now prove the main result of this subsection:
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Theorem 4.42. Let G and GV be as above. Then G = GV .

Proof. By the analysis in §4.40, the splitting GL(V ) = GL(V )0̄ × GL(V )1̄ , with GL(V )1̄(A) :=
I+ gl(V )1̄(A1̄) , and the embedding of G in GL(V ) provide a splitting G = Gev × Godd , with
Gev = π0̄(G) and Godd := π1̄(G) . Similarly, the same fact with GV replacing G yields GV =(
GV

)
ev
×
(
GV

)
odd

, with
(
GV

)
ev
= π0̄(GV ) =G0̄ and

(
GV

)
odd

:= π1̄

(
GV

)
— see Remark 4.37.

All these splittings are superscheme isomorphisms given by the group product map. So as G =
Gev ·Godd and GV =

(
GV

)
ev
·
(
GV

)
odd

, it is enough to prove Gev =
(
GV

)
ev

and Godd =
(
GV

)
odd

.

First, the identity Gev =
(
GV

)
ev

follows from §4.39. Indeed, therein we last pointed out that
(the copy of) Gev inside GL(V ) can be realized through the classical Chevalley’s construction via
the g0̄–module V and the lattice M ; but this is exactly the same outcome as first performing the
construction of the supergroup GV and then taking its classical subgroup

(
GV

)
ev
, so we are done.

Second, definitions yield Godd = I+T
I

(
Godd

)
as a supersubscheme of GL(V )1̄ , where TI

(
Godd

)
is the tangent superspace to Godd at I ; similarly

(
GV

)
odd

= I+T
I

((
GV

)
odd

)
. But by construction

we have also T
I

(
Godd

)
= g1̄ = T

I

((
GV

)
odd

)
, hence Godd =

(
GV

)
odd

.

5 The standard case

In this section we look somewhat in detail the example of the supergroup GΛ(n) associated with
g := W (n) and with the “standard” g–module V := Λ(n) — i.e., the defining representation of
g := W (n) . Our analysis then can be easily adapted to the case g := S(n) and V := Λ(n) again.
More in general, as each Cartan type Lie superalgebra is naturally embedded in W (n) , from the
present analysis one can also deduce (with some extra work) a similar analysis for the other cases.

5.1 The affine algebraic supergroup GΛ(n)

From now on, we retain the notation of subsection 2.3, and we let g := W (n) = DerK
(
Λ(n)

)
and V := Λ(n) . Fix the K–bases BΛ(n) :=

{
ξe
∣∣ e ∈{0, 1}n

}
in Λ(n) and BW (n) :=

{
ξa ∂i

∣∣ a ∈
{0, 1}n, i = 1, . . . , n

}
in W (n) — see subsections 2.3, 2.10 and 3.3. Recall that BW (n) is a

Chevalley basis of g := W (n) : the root vectors Xα̃

(
α̃ ∈ ∆̃

)
are the ξa ∂i with a ̸= ei , while

the “toral type” elements Hi are just the remaining elements ξi ∂i of BW (n) ( i = 1, . . . , n ).

By definition, g acts on V := Λ(n) by (super)derivations. Explicitly, the action of any basis
element in BW (n) onto any basis element in BΛ(n) reads

ξa ∂i
(
ξe
)

= ± δ1,e(i) ξ
a+e−ei (5.1)

This simple formula has deep consequences. The first is that the W (n)–module Λ(n) is rational,
as the Hi act diagonally with integral eigenvalues. A second consequence is that(

ξa ∂i
)2

= 0 ∀ a ̸= ei ,
(
ξi ∂i

)2
= ξi ∂i ∀ i = 1, . . . , n (5.2)

(note that ξei = ξi ). The left-hand part of (5.2) implies that all divided powers X
(m)
α̃ of even

root vectors
(
α̃ ∈ ∆̃

)
with m > 1 act as zero on Λ(n) . From this and from (5.1) it follows at

once that the Z–span of BΛ(n) , call it M , is an admissible lattice of Λ .

As another consequence, we can describe the one-parameter supersubgroups xα̃ and hi asso-
ciated with root vectors Xα̃ = ξa ∂i

(
a ̸= ei

)
and “toral” elements Hi = ξi ∂i . For xα̃ one has

xα̃(u) := exp
(
uXα̃

)
=
∑+∞

m=0

(
uXα̃

)m/
m! = 1 + uXα̃ = 1 + u ξa ∂i , for any A ∈ (salg)k

and u ∈ Ap(α̃) , where p
(
α̃
)
is the parity of π

(
α̃
)
. Matching this with (5.1), the action of xα̃(u)

on basis elements of Λ(n)(A) := A0̄ ⊗ZM0̄ +A1̄ ⊗ZM1̄ reads (for t ∈ Ap(e))

t ξe
xα̃(u)
≻−−→ xα̃(u)

(
t ξe
)

= t ξe + u ξa ∂i
(
t ξe
)

= t ξe ± δ1,e(i) u t ξa+e−ei
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Similarly, for hi we find t ξe
hi(u)
≻−−→ hi(u)

(
t ξe
)
= uδ1,e(i) t ξe for all t ∈ Ap(e) .

In particular, this yields the following “point-set description” of GΛ(n) :

Proposition 5.1. Let GΛ(n) be the supergroup associated with g := W (n) and the W (n)–module

Λ(n) as in Section 4, and let us fix total orders in ∆̃0̄ ↑ and in ∆̃1̄ such that ∆̃−
1̄

≼ ∆̃+
1̄

or

∆̃+
1̄
≼ ∆̃−

1̄
. Then for any A ∈ (salg)k the group GΛ(n)(A) is given by

GΛ(n)(A) = GLn(A0̄)×
(
�� α̃∈∆̃

0̄ ↑
(1 +A0̄ Xα̃)

)
×
(
�� γ̃∈∆̃1̄

(1 +A1̄ Xγ̃)
)

(the products indexed by ∆̃0̄ ↑ or by ∆̃1̄ being ordered according to the fixed orders), as well as by
all set-theoretic factorizations that one gets by permuting the three factors above with one another.

Proof. As we noticed in §4.27, GΛ(n) factors into GΛ(n)
∼= G0 × G0̄ ↑ × G<

1̄
, and in addition

G<
1̄

∼= �� γ̃∈∆̃1̄
xγ̃(A) , G0̄ ↑ ∼= �� α̃∈∆̃

0̄ ↑
xα̃(A) and G0

∼= ChΛ(n) . The latter is the standard

(affine, algebraic) group functor associated by the classical Chevalley construction with g0 ∼= gln
and with the gln–module Λ(n) : but the very construction clearly gives G0

∼= ChΛ(n)
∼= GLn .

Finally, taking into account the additional remark that xα̃(A) = (1 + A0̄ Xα̃) for α̃ ∈ ∆̃0̄ ↑ and

xγ̃(A) = (1 +A1̄ Xγ̃) for γ̃ ∈ ∆̃1̄ — by the above analysis — we end up with the claim.

Remark 5.2. The factorization of GΛ(n)(A) in the above Proposition is a special instance of the
general result in §4.27. But the present case is much easier to handle, as commutation relations
among one-parameter supersubgroups (as in Lemma 4.8) look simpler: e.g., for α̃, β̃ ∈ ∆̃0̄ ↑

⨿
∆̃1̄

one has
(
xα̃(p) , xβ̃(q)

)
=
(
1+pXα̃ , 1+qXβ̃

)
= 1+pq

[
Xα̃ , Xβ̃

]
where (cf. Examples 3.3(a))

the bracket
[
Xα̃ , Xβ̃

]
is either zero, or a root vector, or a sum (with signs) of two such vectors.

5.2 GΛ(n) as a supergroup of automorphisms

In the present subsection we prove that the supergroup functor GΛ(n) actually is a group
functor of automorphisms, namely the group functor of superalgebra automorphisms canonically
associated with the k–superalgebra Λ(n) . We begin with a (general) definition.

Definition 5.3. Let A ∈ (salg)k be any k–superalgebra which, as a k–module, is free of finite
rank. We define the supergroup functor Aut

(
A
)
: (salg)k −→ (groups) as the full subfunctor of

the group functor GL(A•) — cf. 2.6(b) — whose value on objects is Aut
(
A
)
(A) := Aut(salg)A

(
AA

)
— the group of all A–linear superalgebra automorphisms of AA := A⊗kA — for all A ∈ (salg)k .

5.4. The group functor Aut
(
Λ(n)

)
. Given the k–superalgebra A = Λ(n) , we are interested

into Aut
(
Λ(n)

)
: our ultimate goal is to show that GΛ(n) = Aut

(
Λ(n)

)
. Note that

Aut
(
Λ(n)

)
(A) = Aut(salg)A

(
Λ(n)A

)
= Aut(salg)A

(
A[ξ1, . . . , ξn]

)
∀ A ∈ (salg)k (5.3)

because Λ(n)A := A ⊗k Λ(n) = A ⊗k k[ξ1, . . . , ξn] = A[ξ1, . . . , ξn] . Now, given A ∈ (salg)k , any
ϕ ∈ Aut(salg)A

(
A[ξ1, . . . , ξn]

)
is uniquely determined by the images of the ξj : these are of the form

ϕ(ξj) = κj +
∑n

i=1 ci,j ξi +
∑

|e|>1
|e| is even

κe,j ξ
e +

∑
|e|>1

|e| is odd

ce,j ξ
e ∀ j = 1, . . . , n (5.4)

with the only constraints that each ϕ(ξj) be again odd, which means κj , κe,j ∈ A1̄ , ci,j , ce,j ∈ A0̄ ,
and that ϕ itself be invertible. By the nilpotency of the ξt , it is clear that ϕ is invertible if and

only if the square matrix of the ci,j ’s is invertible, i.e. Cϕ :=
(
ci,j
)j=1,...,n;

i=1,...,n;
∈ GLn(A0̄) . Note also

that (5.4) means that ϕ ∈ Aut(salg)A
(
Λ(n)A

)
= Aut(salg)A

(
A[ξ1, . . . , ξn]

)
can be written as

ϕ =
n∑

j=1

κj ∂j +
n∑

i=1

n∑
j=1

ci,j ξi ∂j +
n∑

j=1

∑
|e|>1

|e| is even

κe,j ξ
e ∂j +

n∑
j=1

∑
|e|>1

|e| is odd

ce,j ξ
e ∂j (5.5)

Thus every ϕ ∈ Aut(salg)A
(
Λ(n)A

)
is uniquely associated with a string of coefficients: the κj , the

κe,j , the ci,j and the ce,j as above. Therefore, the overall conclusion is the following:
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Proposition 5.5. The group functor Aut
(
Λ(n)

)
is representable — hence it is an (affine) su-

pergroup scheme — and isomorphic, as a superscheme, to A0|n ×GLn × A| ∆̃
0̄↑|
∣∣ 0 × A0

∣∣| ∆̃
1̄↑| .

We are now ready for the main result of this subsection:

Theorem 5.6. GΛ(n) = Aut
(
Λ(n)

)
, that is GΛ(n) coincides with the group functor Aut

(
Λ(n)

)
.

Proof. By construction, we must prove that GΛ(n)(A) = Aut
(
Λ(n)

)
(A) := Aut(salg)A

(
Λ(n)A

)
with Λ(n)A := A⊗kΛ(n) = A[ξ1, . . . , ξn] , A∈(salg)k . We begin by GΛ(n)(A) ⊆ Aut(salg)A

(
Λ(n)A

)
.

By Remarks 4.7(d), GΛ(n)(A) is a subgroup of GL(VA) : we must only prove that its elements
are superalgebra automorphisms. As GΛ(n) is the sheafification of GΛ(n) , and Aut is a sheaf, it

is enough to prove that GΛ(n)(A) ⊆ Aut(salg)A
(
Λ(n)A

)
. Now, the group GΛ(n)(A) is generated

by such elements as xα̃(t) := exp
(
tXα̃

)
, xβ̃(ϑ) := exp

(
ϑXβ̃

)
, hi(u) := uHi ; both Xα̃ and

Xβ̃ are superderivations of Λ(n) , hence they also define (uniquely) A–linear superderivations of

Λ(n)A := A⊗k Λ(n) . But then both tXα̃ and ϑXβ̃ are A–linear derivations of Λ(n)A into itself:

taking their exponentials we get (A–linear) automorphisms of Λ(n)A , so that xα̃(t), xβ̃(ϑ) ∈
Aut(salg)A

(
Λ(n)A

)
. A similar argument proves hi(u) ∈ Aut(salg)A

(
Λ(n)A

)
, hence we are done.

Now we prove that the above inclusion is an identity. We begin with an aside observation: by
the explicit description of automorphisms in (5.5), one sees that for each A ∈ (salg)k the subsets

Aut
(
Λ(n)

)
≤0

(A) :=
{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κe,j = 0 = ce,j ∀ e, j
}

Aut
(
Λ(n)

)
0↑
(A) :=

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = 0 = ci,j ∀ i, j
}

are subgroups of Aut
(
Λ(n)

)
(A) , which altogether generate Aut

(
Λ(n)

)
(A) . This defines two

supersubgroups Aut
(
Λ(n)

)
≤0

and Aut
(
Λ(n)

)
0↑

which jointly generate Aut
(
Λ(n)

)
.

The first supersubgroup Aut
(
Λ(n)

)
≤0

is isomorphic to the algebraic group Affn = G×n
a oGLn

of all affine-linear transformations of the (totally odd) affine superspace A0|n . It contains the
subgroup G′

≤0(A) generated by all the elements (1+ϑ∂j) = x−εj(ϑ) , (1+ t ξi ∂j) = xεi−εj(t) and
hi(u) of GΛ(n)(A) — for ϑ ∈ A1̄ , t ∈ A0̄ , u ∈ U(A0̄) , i, j = 1, . . . , n . All these G′

≤0(A) define a

supergroup functor, whose sheafification G′
≤0 clearly coincides with Aut

(
Λ(n)

)
≤0

.

The second supersubgroup Aut
(
Λ(n)

)
0↑

contains the subgroup G′
0↑(A) generated by the ele-

ments (1+t ξe ∂j) = xαe,j(t) — for t ∈ A0̄∪A1̄ , i, j = 1, . . . , n , where αe,j is the unique element

of ∆̃ associated with e and j . We shall now show that G′
0↑(A) coincides with Aut

(
Λ(n)

)
0↑

: by

the previous analysis, this will be enough to prove that Aut
(
Λ(n)

)
= GV . Consider the subsets

Aut
(
Λ(n)

)
>t
(A) :=

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = 0 = ci,j , κe,j = 0 = ce,j ∀ i, j , ∀ |e| ≤ t
}

for all t = 2, . . . , n ; then easy computations, basing upon (5.5) and upon the formula(
1 + t′ ξa ∂j

) (
1 + t′′ ξb ∂k

)
= 1 + t′ ξa ∂j + t′′ ξb ∂k ± δb(j),1 t

′ t′′ ξa+b−ej ∂k

show that these subsets form a strictly decreasing sequence of normal subgroups Aut
(
Λ(n)

)
0↑

,

which ends with the trivial subgroup. It is immediate to see that Aut
(
Λ(n)

)
0↑

/
Aut

(
Λ(n)

)
>2

(A)

is generated by the cosets (1 + t ξe ∂j) mod Aut
(
Λ(n)

)
>2

(A) with |e| = 2 . Similarly, one sees

easily for all t (by iteration) that Aut
(
Λ(n)

)
0↑

/
Aut

(
Λ(n)

)
>t
(A) is generated by the cosets

(1+ t ξe ∂j) mod Aut
(
Λ(n)

)
>1
(A) with 2≤ |e|≤ t . For t=n this yields the expected result.

5.3 Special supersubgroups of GΛ(n)

We finish this section with an explicit description of the special supersubgroups of GΛ(n) that
we considered along the way — cf. §4.3 and §4.7 — namely (for all t ≥ −1 )

G−1 , G0 , G−1,0 , G0̄ , G0̄↑ , Gt↑ ,
(
Gt↑

)
0̄

, G±
min , G±

max
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Such a description follows from Propositions 4.10, 4.11, 4.12, 4.14 and 4.34; using the identification
GΛ(n) = Aut

(
Λ(n)

)
in Theorem 5.6 and by (5.5), all those results yield easily the following:

Proposition 5.7. For every A ∈ (salg)k , we have:

(a) G−1(A) =
{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣ ci,j = κe,j = ce,j = 0 ∀ e , i, j
} ∼= G×n

a,odd(A) , so that

G−1
∼= G×n

a,odd , where Ga,odd is defined on objects by A 7→ Ga,odd(A) := A1̄ (as additive group);

(b) G0(A) =
{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = κe,j = ce,j = 0 ∀ e , j
} ∼= GLn(A) , so that

G0
∼= GLn , where GLn is the classical general linear affine group extended to superalgebras via

(salg)k ∋ A 7→ GLn(A) := GLn(A0̄) ;

(c) G−1,0(A) =
{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κe,j = ce,j = 0 ∀ e , j
}
=: Aut

(
Λ(n)

)
≤0

(A) , so that

G−1,0 = G−1 oG0
∼= G×n

a,odd oGLn =: Aff0|n , the latter being the (classical) algebraic group of

all affine-linear transformations of the totally odd affine superspace A0|n ;

(d) G0̄↑(A) =
{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = ci,j = κe,j = 0 ∀ e , i, j
}
, so that G0̄↑

∼= AN
0̄↑| 0

k
as affine superschemes, where N0̄↑ :=

∣∣∆̃0̄ ↑

∣∣ =∑z>0

∣∣∆̃z ∩ ∆̃0̄

∣∣ ;
(e) G0̄(A) =

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = κe,j = 0 ∀ e , j
}
, so that G0̄ = G0 n G0̄↑

∼=
GLn × AN

0̄↑| 0
k as affine superschemes;

(f) Gt↑(A) =
{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = ci,j = κe,j = ce,j = 0 ∀ i, j, ∀ e : |e| ≤ t + 1
}

for

all t > −1 , therefore Gt↑
∼= A

N 0̄

t↑ |N
1̄

t↑
k as affine superschemes, where Ns

t↑ :=
∑

z>t

∣∣∆̃z ∩ ∆̃s

∣∣ ; in
particular, G0↑(A) =

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = ci,j = 0 ∀ i, j
}
, hence G0↑

∼= A
N+

0↑
|N−

0↑
k ;

(g) G−1↑(A) =
{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = 0 ∀ j
}
, so G−1↑ = G0nG0↑

∼= GLnnA
N+

0↑
|N−

0↑
k

as affine superschemes;

(h)
(
Gt↑
)
0̄
(A) =

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = ci,j = κe,j = ce′,j = 0 ∀ i, j, e , ∀ e′ : |e′| ≤ t+1
}

for all t >−1 , therefore
(
Gt↑
)
0̄
∼= A

N+

t↑
| 0

k as (totally even) affine superschemes; in particular,(
G0↑

)
0̄
(A) =

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = ci,j = κe,j = 0 ∀ i, j, e
}
, hence G0↑

∼= A
N+

0↑
| 0

k ;

(i)
(
G−1↑

)
0̄
(A) =

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣κj = κe,j = 0 ∀ i, j, e
}
, thus G−1↑ = G0 nG0↑

∼=

GLn nA
N+

0↑
| 0

k as (totally even) affine superschemes;

(j) let ∆̃0 = ∆̃+
0

⨿
∆̃−

0 be the splitting of the root system ∆̃0 = ∆0 of g0 = gln given by

∆̃+
0 :=

{
εi − εj

∣∣ 1 ≤ i < j ≤ n
}

and ∆̃−
0 :=

{
εi − εj

∣∣ 1 ≤ j < i ≤ n
}
, and define G−

min and
G+

max accordingly as in Definition 4.33. Then we have

G−
min(A) =

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣ ci,j = κe,j = ce,j = 0 ∀ i, j, e : i < j
} ∼= G−1oB−

G+
max(A) =

{
ϕ ∈ Aut

(
Λ(n)

)
(A)

∣∣ κj = ci,j = 0 ∀ i, j : i > j
} ∼= B+nG0↑

where B± is the Borel subgroup of G0 = GLn of all invertible upper/lower triangular matrices.
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Exposé XXII, 156–262.
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