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Abstract

In the framework of algebraic supergeometry, we give a construc-
tion of the scheme-theoretic supergeometric analogue of Chevalley
groups, namely affine algebraic supergroups associated to simple Lie
superalgebras of classical type. This provides a unified approach to
most of the algebraic supergroups considered so far in literature, and
an effective method to construct new ones. As an intermediate step,
we prove an existence theorem for Chevalley bases of simple classi-
cal Lie superalgebras and a PBW-like theorem for their associated
Kostant superalgebras. !
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1 Introduction

In his work of 1955, Chevalley provided a combinatorial construction of all
simple algebraic groups over any field. In particular, his method led to a proof
of the existence theorem for simple algebraic groups and to new examples of
finite simple groups which had escaped the attention of specialists in group
theory. The groups that Chevalley constructed are now known as Chevalley
groups. Furthermore, Chevalley’s construction provided a description of all
simple algebraic groups as group schemes over Z.

In this paper we adapt this philosophy to the setup of supergeometry,
so as to give an explicit construction of algebraic supergroups whose Lie
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superalgebra is of classical type over an arbitrary field (or even ring). Our
construction provides at one stroke the supergroups corresponding to the
families A(m,n), B(m,n), C(n), D(m,n) of basic Lie superalgebras and
to the families of strange Lie superalgebras P(n), Q(n), as well as to the
exceptional basic Lie superalgebras F'(4), G(3), D(2,1;a) — for a € Z; cf.
[14] for the general case. To our knowledge, supergroups corresponding to the
exceptional Lie superalgebras have not previously appeared in the literature.

To explain our work, we first revisit the whole classical construction.

Let g be a finite dimensional simple (or semisimple) Lie algebra over an
algebraically closed field K (e.g. K = C). Fix in g a Cartan subalgebra;
then a root system is defined, and g splits into weight spaces indexed by
the roots. Also, g has a special basis, called Chevalley basis, for which the
structure constants are integers, satisfying special conditions in terms of the
root system. This defines an integral form of g, called Chevalley Lie algebra.

In the universal enveloping algebra of g, there is a Z—integral form, called
Kostant algebra, with a special “PBW-like” basis of ordered monomials,
whose factors are divided powers of weight vectors and binomial coefficients
of Cartan generators, corresponding to elements of the Chevalley basis of g.

If V' is a faithful g—module, there is a Z—-lattice M C V', which is stable
under the action of the Kostant algebra. Hence the Kostant algebra acts on
the vector space Vi := k ®z M for any field k. Moreover there exists an
integral form gy of g leaving the lattice invariant and depending only on the
representation V' and not on the choice of the lattice.

For any root vector X of g, we take the exponential exp(tX) € GL(V%),
t € k (as X acts as nilpotent, the expression makes sense). The sub-
group of GL(Vf) generated by all the exp(tX), for all roots and all ¢, is
the Chevalley group Gy (k), as introduced by Chevalley. This defines Gy (k)
set-theoretically, as an abstract group; some extra work is required to show
it is an algebraic group and to construct its functor of points. We refer the
reader to [29], [6], [17] for a comprehensive treatment of all of these aspects.

We want to extend Chevalley’s construction to the supergeometric setting.

In supergeometry the best way to introduce supergroups is via their func-
tor of points. Unlikely the classical setting, the points over a field of a super-
group tell us very little of the supergroup itself. In fact such points miss the
odd coordinates and describe only the classical part of the supergroup. In
other words, over a field we cannot see anything beyond classical geometry.



Thus we cannot generalize Chevalley’s recipe as it is, but we need to suit-
ably and subtly modify it introducing the functor of points language right
at the beginning, reversing the order in which the classical treatment was
developed.

The functor of points approach realizes an affine supergroup as a repre-
sentable functor from the category of commutative superalgebras (salg) to
the category of groups (groups). In this work, we shall first construct a
functor from (salg) to (groups), and then we shall prove it is representable.

Our initial datum is a simple Lie superalgebra of classical type (or a direct
sum of finitely many of them, if one prefers), say g: in our construction it
plays the role of the simple (or semisimple) Lie algebra in Chevalley’s setting.
We start by proving some basic results on g (previously known only partially,
cf. [18], [30]) like the existence of Chevalley bases, and a PBW-like theorem
for the Kostant Z—form of the universal enveloping superalgebra.

Next we take a faithful g—module V', and we show that there exists a
lattice M in V fixed by the Kostant superalgebra and also by a certain
integral form gy of g, which again depends on V only. We then define a
group-valued functor Gy , from the category of commutative superalgebras
to the category of sets, as follows. For any commutative superalgebra A,
Gy (A) is the subgroup of GL(V(A)) — the general linear supergroup on V'
— generated by the homogeneous one-parameter unipotent subgroups (acting
on M ) associated to the root vectors, together with the multiplicative one-
parameter subgroups (formally corresponding to exponentials of elements in
the Cartan subalgebra). In this supergeometric setting, one must carefully
define the homogeneous one-parameter subgroups, which may have three
possible superdimensions: 1|0, 0|1 and 1|1. This also will be discussed.

As a group-theoretical counterpart of the Zy—splitting g = go®g; , we find
a factorization Gy (A) = Go(A) GT(A) = Go(A) x Gy (A). Here Gy(A) is
(roughly) a classical Chevalley-like group attached to go and V', while G5 (A)
may be euristically thought of as exponential of A;®g; . In fact we show that
the functor GT : A — G7T(A) is representable and isomorphic to Aﬂzldim(gl) :

Actually, our result is more precise: indeed, g; in turn splits into g, =
g] @ g; according to the splitting of odd roots into positive and negative
ones, and so at the group level we have G5 (A4) = G"~(A) x G"<(A) and
G(A) = G<(A) x Go(A) x G"=(A), resembling the classical “big cell”
decomposition, which however in this context holds globally.

Despite the analogy with Chevalley construction, Gy is not a repre-



sentable functor, hence it is not an algebraic supergroup. This is a phe-
nomenon already observed at the classical level: one-parameter subgroups,
defined via their functor of points, do not generate Chevalley groups over an
arbitrary commutative ring. Hence we need to consider the sheafification Gy
of the functor Gy, which coincides with Gy on local superalgebras (we pro-
vide at the end an appendix with a brief treatment of sheafification of func-
tors). In particular, Gy inherits the factorization Gy = GoG; = Gg x Gy,
with G; = G; and Gg being a classical (reductive) Chevalley-like group-
scheme associated to go and V' . More in detail, we find the finer factorization
Gy (A) = Go(A) x G7S(A) x G (A) with G(A) = G"~(A) x G]"<(A)
and GI<(4) = G7<(A). As Gy = G, and Gy are representable, the above
factorization implies that Gy, is representable too, and so it is an algebraic
supergroup. We then take it to be, by definition, our “Chevalley supergroup”.

In the end, we prove the functoriality in V' of our construction, and that,
over any field k, the Lie superalgebra Lie(Gy ) is just k® gy as one expects.

2 Preliminaries

In this section we introduce some basic preliminaries of supergeometry. Our
main references are [8], [24] and [33].

2.1 Superalgebras, superspaces, supergroups

Let k be a unital, commutative ring.

We call k—superalgebra any associative, unital k—algebra A which is Zy—
graded; that is, A is a k—algebra graded by the two-element group Z,. Thus
Asplitsas A= Ayd Ay, and A, Ay, C A,y . The k—submodule Ay and its
elements are called even, while A; and its elements odd. By p(z) we denote
the parity of any homogeneous element = € A, (). Clearly, k-superalgebras
form a category, whose morphisms are all those in the category of algebras
which preserve the unit and the Zs—grading. At last, for any n € N we call
A} the Ag—submodule of A spanned by all products ¢ - - -9, with ¥; € A;
for all 7, and Ag") the unital subalgebra of A generated by Aj".

A superalgebra A is said to be commutative iff zy = (—1)P@PWyz for all
homogeneous x, y € A . We denote by (salg) the category of commutative
superalgebras; if necessary, we shall stress the role of k by writing (salg), .
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Definition 2.1. A superspace S = (|S|,OS) is a topological space |S| en-
dowed with a sheaf of commutative superalgebras Og such that the stalk
Ogs.. is a local superalgebra for all = € |5].

A morphism ¢ : S — T of superspaces consists of a pair ¢ = (|q§|, ¢*) ,
where ¢ :|S| — |T| is a morphism of topological spaces and ¢*: Op —
».Og 1is a sheaf morphism such that ¢} (m|¢|(x)) = m, where myy,) and
m, are the maximal ideals in the stalks Op 4z and Og, respectively and
¢ is the morphism induced by ¢* on the stalks. Here as usual ¢.Og is the
sheaf on |T| defined as ¢,05(V) := Og(¢p1(V)) .

Given a superspace S = (|S], OS) , let Ogp and Og; be the sheaves on
|S| defined as follows: Ogo(U) := Os(U),, Os:1(U) := Og(U), for each
open subset U in |S|. Then Ogy is a sheaf of ordinary commutative algebras,
while Og; is a sheaf of Ogy-modules.

Definition 2.2. A superscheme is a superspace S := (|S|,(95) such that
(|S l, 0570) is an ordinary scheme and Og; is a quasi-coherent sheaf of Og—
modules. A morphism of superschemes is a morphism of the underlying
superspaces.

Definition 2.3. Let A € (salg) and let O4, be the structural sheaf of the
ordinary scheme Spec (Ag) = (Spec(Ag), O4,) , where Spec (Ag) denotes the
prime spectrum of the commutative ring Ay . Now A is a module over Ay,
so we have a sheaf Oy of O4,—modules over Spec(Ay) with stalk A,, the
p-localization of the Ap—module A, at the prime p € Spec(Ay) .

We define the superspace Spec(A) := (Spec(Ag), O4) . By its very
definition Spec (A) is a superscheme.

Given f: A — B a superalgebra morphism, one can define Spec (f) :
Spec (B) — Spec(A) in a natural way, very similarly to the ordinary set-
ting, thus making Spec into a functor Spec : (salg) — (sets), where (salg)

is the category of (commutative) superalgebras and (sets) the category of
sets (see [7], ch. 5, or [10], ch. 1, for more details).

Definition 2.4. We say that a superscheme X is affine if it is isomorphic
to Spec(A) for some commutative superalgebra A .

Clearly any superscheme is locally isomorphic to an affine superscheme.
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Example 2.5. The affine superspace Ailq, also denoted kP17, is defined —
for each p, g € N — as Aﬁlq = (AL, OAp\q) , with
k

OAi‘q|U = OAﬁ‘U@)k[Sl...{(J] , U open in k?

where k[ ... §,] is the exterior (or “Grassmann”) algebra generated by &,
..., &, and (’)Aﬁ denotes the sheaf of polynomial functions on the classical
affine space AP := kP . Indeed, this is an example of affine superscheme,

because Aﬁlq >~ Spec (klzy, ...,z @kl ... &)) -

The concept of supermanifold provides another important example of su-
perspace. While our work is mainly focused on the algebraic category, we
neverthless want to briefly introduce the differential setting, since our defi-
nition of Chevalley supergroup is modelled on the differential homogeneous
one-parameter subgroups, as we shall see in section 5.

We start with an example describing the local model of a supermanifold.
Hereafter, when we speak of supermanifolds, we assume k to be R or C.

Example 2.6. We define the superspace kPI? as the topological space k?
endowed with the following sheaf of superalgebras. For any open subset

U C kP weset Oppia(U) := O (U)®k[EL ... €9] where Oy denotes here the
sheaf of smooth, resp. analytic, functions on k” when k =R, resp. k =C.

Definition 2.7. A supermanifold of dimension p|q is a superspace M =
(|M|, Onr) which is locally isomorphic (as superspace) to kPl9; that is, for
all © € |M| there exist an open neighborhood V, C |M| of z and an open
subset U C kP such that (’)M‘Vz = (’)kp\q| U A morphism of supermanifolds
is simply a morphism of superspaces. Supermanifolds, together with their
morphisms, form a category that we denote with (smflds).

The theory of supermanifolds resembles very closely the classical theory.
More details on the basic facts of supergeometry can be found for example
in [33], Ch. 4, or in [7], Ch. 3-4. Here instead, we turn now to examine the
notion of functor of points, both in the algebraic and the differential category.

Definition 2.8. Let X be a superscheme. Its functor of points is the functor
hx : (salg) — (sets) defined as hx(A) := Hom(Spec(A),X) on the
objects and as hx(f)(¢) := ¢ o Spec(f) on the arrows. If hy is group
valued, i. e. it is valued in the category (groups) of groups, we say that
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X is a supergroup. When X is affine, this is equivalent to the fact that
O(X) — the superalgebra of global sections of the structure sheaf on X —
is a (commutative) Hopf superalgebra. More in general, we call supergroup
functor any functor G : (salg) — (groups) .

Any representable supergroup functor is the same as an affine supergroup:
indeed, the former corresponds to the functor of points of the latter.

Following a customary abuse of notation, we shall then use the same letter
to denote both the superscheme X and its functor of points hx .

Similarly we can define the functor of points for supermanifolds.

Definition 2.9. For any supermanifold M , we define its functor of points
hyr : (smflds)® — (sets) , where (smflds)® denotes the opposite category to
(smflds), as follows:

— M+ hy(T) :==Hom(T, M) for any object M in (smflds)’,

— hy(f) s 0= hy(f)(@) := o f for any arrow f € Hom(T’,T) in
(smflds)’, and any ¢ € Hom(1", M) .

If the functor hj; is group valued we say that M is a Lie supergroup.

The importance of the functor of points is spelled out by a version of
Yoneda’s Lemma, that essentially tells us that the functor of points recap-
tures all the information carried by the supermanifold or the superscheme.

Proposition 2.10. (Yoneda’s Lemma)

Let C be a category, C° its opposite category, and two objects M, N in C .
Consider the functors hy : C°— (sets) and hy : C°— (sets) defined by
ha(T) := Hom(T, M), hy(T):=Hom(T,N) on any object T in C° and
by hy(f)(@) :==dof, hn(f)(W) =1 o f on any arrow f € Hom(T’,T)
in (smflds)®, for any ¢ € Hom(T’,M) and P € Hom(T’,N) )

Then there exists a one-to-one correspondence between the natural trans-
formations {hy — hy} and the morphisms Hom(M, N) .

This has the following immediate application to supermanifolds: two su-
permanifolds are isomorphic if and only if their functors of points are.

The same is true also for superschemes even if, with our definition of their
functor of points, this is not immediately clear. In fact, given a superscheme
X, we can give another definition of functor of points, equivalent to the pre-
vious one, as the functor from the category of superschemes to the category



of sets, defined as T — Hom(T, X)) . Now, Yoneda’s Lemma tells us that

two superschemes are isomorphic if and only if their functors of points are.
For more details on functors of points in the two categories, and the equi-

valence of the two given definitions in the algebraic setting, see [7], Ch. 3-5.

In the present work, we shall actually consider only affine supergroups,
which we are going to describe mainly via their functor of points.

The next examples turn out to be very important in the sequel.

Examples 2.11.

(1) Let V be a super vector space. For any superalgebra A we define
V(A) = (AV), = Ag® Vo ® Ay ® V1 . This is a representable functor
in the category of superalgebras, whose representing object is Pol(V'), the
algebra of polynomial functions on V. Hence any super vector space can be
equivalently viewed as an affine superscheme.

(2) GL(V) as an algebraic supergroup. Let V be a finite dimensional su-
per vector space of dimension p|q. For any superalgebra A, let GL(V)(A) :=
GL(V(A)) be the set of isomorphisms V(A4) — V(A) . If we fix a homo-
geneous basis for V', we see that V = kPI9 ; in other words, V, = kP
and V7 = k?. In this case, we also denote GL(V) with GL(p|q). Now,
GL(p|q)(A) is the group of invertible matrices of size (p + ¢) with diagonal
block entries in Ag and off-diagonal block entries in A; . It is well known that
the functor GL(V) is representable; see (e.g.), [33], Ch. 3, for further details.

(3) GL(V) as a Lie supergroup. Let V be a super vector space of
dimension p|g over R or C. For any supermanifold 7', define GL(V)(T)
as the set of isomorphisms V(T') — V(7T); by an abuse of notation we
shall use the same symbol to denote GL in the algebraic and the differential
setting. When we are writing V(T'), we are taking V' as a supermanifold,
hence V(T) = Hom(T,V). By a result in [21] (§2.15, page 208), we have
that Hom(7, V) = Hom(Oy(V), Or(T)) . If we fix a homogeneous basis for
V', Hom(7', V') can be identified with the set of all (p+¢)—uples with entries in
Or(T), the first p entries being even and the last ¢ odd. As before, GL(V)(T)
can be identified with the group of (p+¢q) x (p+¢) invertible matrices, whose
diagonal blocks have entries in Or(T)o, while the off-diagonal blocks have
entries in O7p(T);. Now again, GL(V) is a representable functor (see [33],
Ch. 6), i.e. there exists a supermanifold — again denoted by GL(V) — whose
functor of points is exactly GL(V).



2.2 Lie superalgebras

From now on, we assume k to be such that 2 and 3 are not zero and they are
not zero divisors in k. Moreover, all k-modules hereafter will be assumed to
have no p —torsion for p € {2,3}.

Definition 2.12. Let g = go ® g1 be a super (i.e., Zy—graded) k—-module
(with no p—torsion for p € {2,3}, as mentioned above). We say that g is a
Lie superalgebra, if we have a bracket [, ]:g x g — g which satisfies the
following properties (for all z, y € g homogeneous):

(1) Anti-symmetry: [z,y] + (—=1)PDPW [y 2] = 0
(2) Jacobi identity:
(PO, [y, 2] + (PP, 2] + ()" [z [ y)) = 0

Example 2.13. Let V =1 @& Vi be a free super k-module, and consider
End(V), the endomorphisms of V' as an ordinary k-module. This is again a
free super k-module, End(V) = End(V)o ® End(V');, where End(V'), are
the morphisms which preserve the parity, while End(V"); are the morphisms
which reverse the parity. If V' has finite rank, and we choose a basis for V'
of homogeneous elements (writing first the even ones), then End(V) is the
set of all diagonal block matrices, while End(V); is the set of all off-diagonal
block matrices. Thus End(V) is a Lie superalgebra with bracket

[A,B] := AB— (-1)*®IBA  for all homogeneous A, B € End(V) .

The standard example is V :=kPl? = k? k9, with Vj :=k? and V; := k.
In this case, we also write End(kP!?) := End(V) or gl(p|g) := End(V) .
In End(V') we can define the supertrace as follows:

str (é g) — tr(A) — tr(D)

For the rest of this section, we assume k to be an algebraically closed
field of characteristic zero — though definitions make sense in general.

Definition 2.14. A non-Abelian Lie superalgebra g is called a classical Lie
superalgebra if it is simple, i.e. it has no nontrivial (homogeneous) ideals, and
g1 is completely reducible as a go—module. Furthermore, g is said to be basic
if, in addition, it admits a non-degenerate, invariant bilinear form.
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Examples 2.15. (cf. [20], [27])

(1) —sl(m|n). Define sl(m|n) as the subset of gl(m|n) all matrices with
supertrace zero. This is a Lie subalgebra of gl(m|n), with Zy,—grading

sl(m|n)y = sl(m) ®sl(n) ® gl(1) , si(m|n); = fu@f, & fl.@ fn

where f, is the defining representation of sl(r) and f/ is its dual (for any r).
When m # n this Lie superalgebra is a classical one.

(2) — osp(p|q) . Let ¢ denote a nondegenerate consistent supersymmet-
ric bilinear form in V := kPl This means that V; and V; are mutually
orthogonal and the restriction of ¢ to Vj is symmetric and to V; is skewsym-
metric (in particular, ¢ = 2n is even). We define in gl(p|q) the subalgebra

osp(p|q) := osp(p, |q), ® osp(p|q), by setting, for all s € {0,1},

osp(pla), == {¢ € allpla) | &(e(w).y) = —(=1) " 6w, () Yo,y € W }

and we call osp(p|q) an orthosymplectic Lie superalgebra. Again, all the
osp(p|q)’s are classical Lie superalgebras, actually Lie supersubalgebras of
gl(p|q) . Note also that osp(0| ¢) is the symplectic Lie algebra, while osp(p| 0)
is the orthogonal Lie algebra.

We can also describe the explicit matrix form of the elements of osp(p|q) .
First, note that, in a suitable block form, the bilinear form ¢ has matrix

0 I, 0 0 0 o L. 0 o0
L 00 0 0 P S
6=10 01 0 of , o¢o=|m
0 0 0 I,
0 0 0 0 I, 0 o0 -1 o
0 0 0 —I, 0 "

n

according to whether (p,q) = (2m+1,2n) or (p,q) = (2m,2n) . Then,
in the block form given by the partition of rows and columns according to
(p+q) =m+m+1+n+n orto (p+q) =m+m+n+n (depending on the
parity of p ), the orthosymplectic Lie superalgebras osp(p |q) read as follows:

A B u X X

_ _pT
c -A v v v |B=78
t t t t ¢=-C
osp(p|q) = osp(2m+1[2n) = vt —ut 0 2 2 | 5 pT
Y Xtz D E o
vyt —xt — r -p) F=F



A B X X B=-BT
c —A'Y v | c=-c"
Yt Xt D E | E=ET
Yt —Xt* F -D F=FT

osp(plq) = osp(2m|2n) =

Moreover, if m,n > 2, then we have — with notation like in (1) — that

osp(2m+1[2n), = o(2m+1) @ sp(2n) , osp(2m|2n), = o(2m) ® sp(2n)
0sp(p|2n); = fo® fon VP >2,  0sp(22n); = f

Definition 2.16. Define the following Lie superalgebras:
(1) A(m,n) :=sl(m+1|n+l), A(n,n):=sl(n+1] n—l—l)/kIQn . Vm#n;

(2) B(m,n) := osp(2m + 1| 2n) , V m>0,n>1;
(3) C(n )': osp(2|2n —2), for all n > 2;
(4) D(m,n) := osp(2m|2n) , forall m>2, n>1;
Aeslin+1
(5) {(C P ety |, ASMEY
A B
(6) 5 4 €olnr1ln+) | Besintl) { /Kl

The importance of these examples lies in the following (cf. [20], [27]):

Theorem 2.17. Let k be an algebraically closed field of characteristic zero.
Then the classical Lie superalgebras over k are either isomorphic to a simple
Lie algebra or to one of the following classical Lie superalgebras:

A(m,n), m>n>0,m+n>0; B(m,n), m>0n>1; C(n), n>3
D(m,n), m>2n>1,; P(n), n>2; Qn), n>2
F4);  GB);  D21a), ack\{0,-1}

(for the definition of the third line items, and for a proof, we refer to [20]).
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Remark 2.18. Let k be a commutative unital ring as at the beginning of the
section, and g a Lie k—superalgebra. A Lie supersubalgebra € of g is called
cyclic if it is generated by a single element = € g: then we write ¢ = (x).
In contrast to the classical case, one has not a priori (x) = k.x, because
one may have [x,z| # 0. For homogeneous x € g, three cases may occur:

re€gy — [r,2]=0 = (z)=kz (2.1)
re€g, [v,2]=0 = (zr)=kz (2.2)
reg, [r,7]#0 = (z) = kookzr, (2.3)

In particular, the sum in (2.3) is direct because [z, x] € go, and goNg; ={0} .
Moreover, this sum exhausts the Lie supersubalgebra generated by x because
[m, [z, xH = 0, by the (super) Jacobi identity. The Lie superalgebra structure
is trivial in the first two cases; in the third instead, setting vy := [z, ], it is

lz|=1, [yl =0, [,z =y, [y,y]=0, [v,y]=0=]y,z]

2.3 Homogeneous one-parameter supersubgroups

A one-parameter subgroup of a Lie group is the unique (connected) subgroup
K which corresponds, via Frobenius theorem, to a specific one-dimensional
Lie subalgebra € of the tangent Lie algebra g of the given Lie group G'. To
describe such K one can use the exponential map, which gives K = exp(¥) :
thus, € is generated by some non-zero vector X € £, which actually spans ¢,
and using X and the scalars in k one describes K via the exponential map.
Finally, when g is linearized and expressed by matrices, the exponential map
is described by the usual formal series on matrices exp(X) := Y0 X" /nl .

We shall now adapt this approach to the context of Lie supergroups.

Let G be a Lie supergroup over k (as usual, for supermanifolds we take
k=R or k=C), and g = Lie (G) its Lie superalgebra (for the construction
of the latter, see for example [33], Ch. 6). Assume furtherly that G is em-
bedded as a supergroup into GL(V') for some suitable supervector space V';
in other words, G is realized as a matrix Lie supergroup. Consequently its
Lie superalgebra g is embedded into gl(V). As customary in supermanifold
theory, we denote with G also the functor of points of the Lie supergroup G .
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In the differential setting, G : (smflds) — (groups), G(7') = Hom(7,G),
where (smflds) denotes the category of supermanifolds.

Recall that — see Definition 2.18 — in the super context the role of
one-dimensional Lie subalgebras is played by cyclic Lie subalgebras.

Definition 2.19. Let X € g = Lie(G) be a homogeneous element. We
define one-parameter subgroup associated to X the Lie subgroup of G cor-
responding to the cyclic Lie supersubalgebra (X)), generated by X in g, via
the Frobenius theorem for Lie supergroups (see [33], Ch. 4, and [7], Ch. 4).

Now we describe these one-parameter subgroups. Fix a supermanifold
T, and set A := O(T) (the superalgebra of global sections). Let ¢t € Ay,
e A ,and X €gg, Y €g1, Z € go such that [Y,Z] =0. We define

exp (tX) = Jrzojot”X”/n! = 1+tX—|—;—TX2+--- e GL(V(T)) (2.5)
exp(WY) = 1 +9Y e GL(V(T)) (2.6)

exp(tZ+9Y) = exp(tZ)-exp(WY) = exp (VYY) -exp (tZ) =
=exp(tZ) - (1+9Y) = (1+9Y)-exp(tZ) € GL(V(T)) (2.7)

All these expressions single out well-defined elements in GL(V(T)) . In par-
ticular, exp (¢ X) in (2.5) belongs to the subgroup of GL(V/(T')) whose ele-
ments are all the block matrices whose off-diagonal blocks are zero. This is
the standard group of matrices GL (AO ® Vo) x GL (Al ® Vl) , and exp (t X)
is defined inside here as the usual exponential of a matrix.

More in general, one can define the matrix exponential as a natural trans-
formation between the functors of points of the Lie superalgebra g and of the
Lie supergroup G'; see also [3], Part II, Ch. 2, for yet another approach. Our
interest lies in the algebraic category, so we do not pursue this point of view.

Note that the set exp (Ao X) = {exp (t X) ‘t € AO} is clearly a sub-
group of G, once we define, very naturally, the multiplication as

exp (tX) -exp (s X) = exp ((t+ s) X)

On the other hand, if we consider the same definition for exp (A1 Y) =
{ exp (19 Y) | 196/11} , we see it is not a subgroup, in fact,

exp (hY) -exp (YY) = (14+401Y) (1+0:Y) = 14+, Y+, Y+ 010, Y?
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formally in the universal enveloping algebra, while on the other hand:
exp ((191+192>Y) = ].—f— (’191+192)Y = 1+191Y+192Y

So, recalling that Y2 = [V,Y] / 2, we see that exp (A1 Y) is a subgroup if
and only if [Y,Y] =0 or ¢¥;95 = 0 for all ¥;,95 € A;. This reflects the
fact that the k—span of X € go is always a Lie supersubalgebra of g, but
the k—span of Y € g; is a Lie supersubalgebra iff [Y,Y] =0, by (2.1-3).
Thus, taking into account (2.3), when [Y,Y] # 0 we must consider
exp ((Y}(T)) = exp (A1 Y + A YQ) , as the one-parameter subgroup cor-
responding to the Lie supersubalgebra (Y'). The outcome is the following:

Proposition 2.20. There are three distinct types of one-parameter subgroups
associated to an homogeneous element in g . Their functor of points are:

(a) for any X € go, we have
ax(T) = {exp(tX) |t € Or(T), } = k'°(T) = Hom(C®(R),Or(T))
(b) for any Y €g1, [Y,Y] =0, we have
xy (T {expz?Y)_l—i-z?Y‘Q?EOT }—
= k"(T) = Hom(k[¢], Or(T))
(¢c) forany Y €gi, Y?:=[Y,Y]/2#0, we have
ay(T) = {exp (tY?+0Y) [t € Op(T),, ¥ € OT (T), } =
= k'(T) = Hom(C™(R)[¢], Or(T))
where C*(R) denotes the global sections of the differential functions on R
—if k=R, if k =C instead we shall similarly take analytic functions.

In cases (a) and (b) the multiplication structure is obvious, and in case
(c) it is given by (t,9)- (¢',9) = (t+t =9, 9+7").

Proof. The case (a), namely when X is even, is clear. When instead X is odd
we have two possibilities: either [X, X] =0 or [X,X] # 0. The first pos-
sibility corresponds, by Frobenius theorem, to a 0|1-dimensional subgroup,
whose functor of points, one sees immediately, is representable and of the
form (b). Let us now examine the second possibility. The Lie subalgebra
(X)) generated by X is of dimension 1|1, by (2.3); thus by Frobenius theorem
it corresponds to a Lie subgroup of the same dimension, isomorphic to k!/*.
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Now we compute the group structure on this k'l | using the usual functor
of points notation to give the operation of the supergroup. For any commu-
tative superalgebra A, we have to calculate t” € Ay, ¢ € A; such that

exp (tX*+0X) exp(t' X*+ 0 X) = exp (" X* + 0" X)
where t,t' € Ay, 9, € A;. The direct calculation gives

exp(t X +0X) exp (' X*+0' X) =
= (1+9X) exp (t X?) -exp (' X?) (1 + ' X)
= (14+9X) exp((t+t)X?) (1+9' X) =
= exp (t+1)X?) (1+9X) (1+9'X) =
= exp((t+t')X2) (14+@W+9)X 99 X?) =
= exp((t+1)X?) (1 -9 X*) (1+(W+9)X) =
= exp ((t+1)X ) xp (— 1919’X2)(1+(19—|—19’)X) =
xp ((t+t —99) X?) (1+ (W +9)X) =
= exp ((t+t'—99)X* + (0 + ) X)

where we use several special properties of the formal exponential. n

Remark 2.21. The supergroup structure on k'/* in Proposition 2.20(c) was
introduced in [8]. See also [26], §6.5 and §9.6 for a treatment of one-parameter
(super)subgroups in a differential setting (with the same outcome as ours).

3 Chevalley bases and Chevalley algebras

Let our ground ring be an algebraically closed field K of characteristic zero.

Let us assume g to be a classical Lie superalgebra: the whole construction
will clearly extend to any direct sum of finitely many summands of this type.
We now prove that g has a very remarkable basis, the analogue of what
Chevalley found for finite dimensional (semi)simple Lie algebras.
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3.1 Root systems

Fix once and for all a Cartan subalgebra f of go. The adjoint action of h
splits g into eigenspaces, namely g, := {J: €g } [h,z] = a(h)z, V he b}
(for any o € h*), so that g = @,y 8o - Then we define

Ao == {aebh*\ {0} | gango#{0}} = {even roots of g}
Ay = {aebh | gang #{0}} = {odd roots of g}
A = Ay UA; = {roots of g}

A is called the root system of g, and each g, is called a root space.
In particular, Ag is the root system of the (reductive) Lie algebra gg , and
A1 is the set of weights of the representation of gy in g; .

If g is not of type P(n) nor Q(n), there is an even non-degenerate, invari-
ant bilinear form on g, whose restriction to b is in turn an invariant bilinear
form on b . If instead g is of type P(n) or Q(n), then such a form on h exists
because g is simple (of type A,,). In any case, we denote this form by (:U, y) ,
and we use it to identify bh* to b, via a — H, , and then to define a similar
form on h*, such that (o/, o/’) = (Ha/, Hau) . Each H, is called the coroot
associated to «; these coroots can be explicitly described as in [18], §2.5; in
particular, one has a(H,) =2 whenever (a,a) #0.

For g of type P(n) we shall adopt the following abuse of notation. For
any even root a;; (notation of [13], §2.48), by H,, ; we shall mean the coroot
mentioned above; for any odd root j3;; instead, we shall set Hg, ; := H,, , .

The main properties of the root system of g are collected in the following:
Proposition 3.1. (see [20, 27, 28]) Assume g is classical, and n € N.

(a) g#Q(n) = ANA=0, g=0Qn) = A=A U{0}.

(b)) —Ag=2Ay, A1 CA;. Ifg#P(n), then —Ay =14, .

(¢) Let g# P(2), and o, b€ A, a=cf, with c€ K\ {0}. Then
a,BeA, (r=0,1) =c=+1, a€A, ,feAy, 71#s=>c=%2 .

(d) If g ¢ {A(1,1),P(3),Q(n)}, then dimg(ga) =1 for each o € A
As for the remaining cases, one has:

o If g=A(1,1), then dimg(g,) = 1+r for each o € A, ;
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o If g=P(3), then dimg(ga) =1 for a € AgU (A1 \ (=Ay)), and
dimg(ga) =2 for a € Ay N(=Ay);

o If g=Q(n), then dimg (go Ng;) =2 for « € A\ {0}, i € {0,1},
and dimg (ga—o N g;) =n for i € {0,1}, with ga—oNgo=1h.

We fix a distinguished simple root system for g, say II = {aq,...,a},
as follows. If g & {A(1,1), P(3),Q(n)} , we take as II a subset of A in which
a; € Ap for all but one index 7, and such that any o € A is either a sum
of some «;’s — then it is called positive — or the opposite of such a sum
— then it is called negative (when g is basic, fixing II is equivalent to fix
a special triangular decomposition g = n_ @ h & n, ; see [13], §2.45). If
g = Q(n), then A = Ay U {0}, we take as Il any simple root system of
Aq, and we define positive and negative roots accordingly, letting the special
odd root (5 = 0 be (by definition) both positive and negative. Finally, if
g€ {A(1,1), P(3)}, then there exist linear dependence relations among the
a;’s, so that any odd root which is negative can also be seen as positive; we
shall then deal with these cases in a different way.

As for notation, we denote by A1, resp. A~, the set of positive, resp. neg-
ative, roots; also, we set AF := ATNA, for r € {0,1}. Finally, we define:

Definition 3.2. Given «,f € A, we call a—string through [ the set
Y5 = {B-ra,....B—a,B,84+a,...,8+qa} (Ch")
with 7,¢ € N uniquely determined by the conditions (8 — (r+1)a) € A,
(B+(g+1)a) €A, and (B+ja)e AU{0} forall —r <j<gq.
One knows — cf. for instance [28] — that ¥§ C AU {0} . Indeed, one
has 0 € X% if and only if a € {£243, 5, £3/2} .

3.2 Chevalley bases and algebras

The key result of this subsection is an analogue, in the super setting, of a
classical result due to Chevalley. It is the starting point we shall build upon
later on. We keep the notation and terminology of the previous subsections.

From now on, we shall consider g to be classical but not of any of the
following types: A(1,1), P(3), Q(n) or D(2,1;a) with a ¢ Z . The cases A—
P-Q will be treated separately in §6; the case D(2,1;a) with a € Z instead
is dealt with in [14].
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Definition 3.3. Let g be a classical Lie superalgebra as above. We call

..... aEA
such that:

(a) {Hl, ey Hg} is a K—basis of b ; moreover, with H, € § as in §3.1,
bz = SpanZ(Hl, o ,Hg) = Spanz({Ha ‘ aEAﬁ(—A)}) :

(b) [Hi H;] =0, [H;,Xo]=a(H)Xs, Vije{l,....0}, a€A;

(¢) [Xo)»X_o] =0aHa ¥V acAn(-A)

with H, as in §3.1, and o0, :=—1 if a € A7, 0, :=1 otherwise;

(@) [Xa) Xs] = cop Xars V@ B€A:a#t—B, B#—a, with
(d.1) if (a+p)¢A, then chp=0, and X,ip5:=0,

(d.2) if (a,a) # 0 or (6,5) # 0, and (cf. Definition 3.2) if X§ :=
{5 —ra, ..., B+ qa} is the a—string through 8, then c¢,3 = +(r+1),
with the following exceptions: if g = P(n), with n # 3, and o = §;;,
B =, ; (notation of [13], §2.48, for the roots of P(n)), then ¢, 5 = £(r+2) ;

(d.3) if (a,a) =0= (5,6), then c,p3 = :I:ﬁ(Ha) )

N.B.: this definition clearly extends to direct sums of finitely many g’s.

Remarks 3.4.

(1) Our definition extends to the super setup the same name notion for
(semi)simple Lie algebras. For type A it was essentially known as “folklore”,
but we cannot provide any reference. In the orthosymplectic case (types B,
C and D) it was considered, in weaker form, in [30]. More in general, it was
previously introduced in [18] for all basic types, i.e. missing types P and Q.

N.B.: when reading [18] for G(3) one should do a slight change, namely
use the Cartan matrix — and Dynkin diagram, etc. — as in Kac’s paper [20].

(2) 1f B is a Chevalley basis of g, the definition implies that all structure
coefficients of the (super)bracket in g w.r.t. B belong to Z .

Definition 3.5. If B is a Chevalley basis of g, we set g” := Z-span of B,
and we call it the Chevalley superalgebra (of g).
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Remarks 3.6.

(1) By Remark 3.4(2), gZ is a Lie superalgebra over Z. One can check
that a Chevalley basis B is unique up to a choice of a sign for each root
vector and the choice of the H;’s: thus g” is independent of the choice of B.

(2) With notation as in Definition 3.3(e), let g be of type A, B, C,
D or P. Then if (o,a) =0 = (8,8) one has B(H,) = £(r+1),
with the following exceptions: if g = osp(M|2n) with M > 1 (i.e. g is
orthosymplectic, not of type B(0,n)) and — with notation of [13], §2.27 —

(.8) = £(ei+ 65, —+6;)  or (a,f)=£(e 65, —& — )

then 6(Ha) = £(r+2) . Therefore: If g is of type A, B, C, D or P, then
condition (d.3) in Definition 3.3 reads just like (d.2), with the handful of
exceptions mentioned before.

(3) For notational convenience, in the following we shall also set X := 0
whenever § belongs to the Z—span of A but § ¢ A .

3.3 Existence of Chevalley bases

The existence of a Chevalley basis for the types A, B, C', D is a more or
less known result; for example an (almost) explicit Chevalley basis for types
B, C and D can be found in [30]. More in general, an (abstract) existence
result, with a uniform proof, is given in [18] for all basic types — thus missing
the strange types, P and (). In this section we present an existence theorem
which covers all cases, i.e. including both basic and strange cases: our proof
is constructive, in that we explicitly present a concrete Chevalley basis, for
all cases but F'(4) and G(3) — for which we refer to [18] — by a case-by-case
analysis. A sketch of a uniform proof is presented in Remark 3.8 later on.

Theorem 3.7. Every classical Lie superalgebra has a Chevalley basis.

Proof. The proof is case-by-case, by direct inspection of each type. Only
cases A(1,1), P(3), Q(n) are postponed to §6.

In general, for the root vectors X,’s, we must carefully fix a proper nor-
malization. For the H;’s in the Chevalley basis, belonging to h, one sees
that, in the basic cases, one can almost always take simple coroots (for a
distinguished system of simple roots); case P(n) is just slightly different.
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We call g our classical Lie superalgebra. As a matter of notation, from
now on we denote by e; ; = ((5h7i 5k7j)h bl rts forall 4,5 € {1,...,m+n},
the elementary matrix in gl(r|s) with a 1 in position (i, j) and 0 elsewhere.

A(m,n) , m#mn: Inthiscase g=sl(m+1jn+1) Cgllm+1n+1).

We fix the distinguished simple root system II := {aq,..., @pine1} with
QG =& —E&i41 (Z =1,... ,m) ; Qi1 i= €yl — 01, Amt14+j5 = 5]’ _5j+1 (j =
1,...,n), using standard notation (like in [13], say). Then we define the
Hy’s as Hy := H,, = epr — €py1h41 for kB & {m+1,m+n+2}, and
Hy1 = Ha oy = €mgimt1 + €myame2 - For the root vectors X, ’s instead
we just take all the e;;’s with ¢ # j. It is then a routine matter to check

that these vectors form a Chevalley basis.
A(n,n) : In this case g = sl(n+1|n+ 1)/K Iyn41y - Keeping notation

as above, we set T := x + K lyp,41) in sl(n+1] n+1)/K Iy(n1y = @ - Then
Lnyry = > i H; + (n+1) Hypyy — Z?leH2(n+1)_j ., so that we have

Sy i i+ (n+1) Hypr — Y7 j Honyy—; = 0

a Z-linear dependence relation among simple coroots which reflects a similar
relation among simple roots; thus we can get Hg, 1 from the other simple
coroots. Then {Hi}izl,...,Qn U {Xz‘,j}#j is a K-basis of g which satisfies
all properties in Definition 3.3.

B(m,n), C(n), D(m,n) , m#n: Here g=o0sp(M|N) C gl(M|N)

for some M € N, which is odd, zero or even positive according to whether
we are in case B, C' or D respectively, and some even N € N. Then M €
{2m + 1,2m} and N = 2n for suitable m,n € N. In any case, g is an
orthosymplectic Lie superalgebra, and we can describe all cases at once.

With notation as before, we consider the following root vectors (for all
1<i,5<m, M+1<7,7<M+n):

Eieie; == €ij — €j1mitm E_cive; = €ivmjrm — € (Z < j)
E+5i+€]' ‘= €ij+m — Citm E_Ei_aj ‘= €j4m,i — Citm,j (Z < ])
E.. = +V2 (ei,2m+1 - eQerl,ier) , B = —V?2 (ei+m,2m+1 - e2m+1,2’)
Eis s, = €y —€jiniin , E_sy+6, = €itmjem—€jy (i <j")
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. . -/ -/
Eis 45, = € jantejitn E_s,-s, = €ignj +€jriny (" #7")

E+25i, = Ciitn E—Na = Cirpng
E+z—:¢+6j/ = € ji4n T €5 itn Efafaj/ = Citm, — €/4myi
E—&—ei—éj/ = Gy — € tnitm E—ei—i-éj/ = €itm,j'+n T €5
E+5j/ = +\/§ (€2m+1,j'+n+ej',2m+1) ) E—aj, = _\/§<ej’+n,2m+1_82m+l,j’)

where +(e; £¢;), xe;, £(0y £6;), £20,, £(e; £6;), £, are the roots
of the orthosymplectic Lie superalgebra g as in [13], §2.27.

The H;’s are just H,, with a € H’g where H’g is chosen as follows:

ng(m,n) = {51—(52,..., Op—1—Ons 200, E1 — €25y Eme1 — Em 5m}
if m=#£0,
Mpom = {61 =02, not — 0, 20, }
Cy = {81, 01— 02, ., Opo — Oy, 2001}
i ={01— 02, 01— 0n, . 200 61— €2, Ema1— Em s Eme1t Em }
(using standard notation). Note that in all cases but B(0,n) the chosen IIj

is just a distinguished set of simple roots. Setting j' :== M+ j =2m+ 1,
with m =1 in case C(n), the corresponding coroots are

ng_gﬂ_l = (ej/,j/ — ej/+n7j/+n) — (ej/+1,j/+1 — ej/+1+n,j/+1+n) in all cases
He ., = (em’ - ei+m,i+m) - (ei+1,i+1 - ei+1+m,i+1+?ﬂ) in all cases
Hys, = (en/m/ — en/+n7n/+n) in all cases
Hel = (61’1 —62,2) for C’(n)
Has, y 1= (o1, (-1 = Cn-1)4m, (1)) for C(n)

Hamfl-l—em = (em—l,m—l - em—1+m,m—1+m) + (em,m_ em+m,m+m) for D(m7n>

Now, a Chevalley basis is formed by the root vectors X, := F, and the
Cartan generators (simple coroots) H, as above: the verification follows by
a careful, yet entirely straightforward, calculation.

F(4),G(3) : See[18], Theorem 3.9 (which applies to every basic type).
D(2,1;a), a € Z : Recall that g = D(2,1;a) is a contragredient Lie

superalgebra. To describe it, we fix a specific choice of Dynkin diagram and
corresponding Cartan matrix, like in [13], §2.28 (first choice), namely
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2 1 1 a 3 0

O X o (aivj)i,jzl,l?); =

1
2
0

NN O Q

—1
-1
Then g = D(2,1;a) is defined as the Lie superalgebra over K with generators

hi, e, fi (i=1,2,3), with degrees p(h;) :==0, p(e;) := 14, p(fi) ==
d1; (i=1,2,3), and with relations (for all 7,j =1,2,3)

[hmh]}zo ) [61761]:0 ’ [fl?fl]zo ’
[hi,e;] = 4aije; | (i, 3] = —aij [, lei f5] =6 hi
Moreover, the root system is given by A_ = —A, and
A-i- = {(11, Qg , O3, Oél+042, O{1+043, O{1+042+043, 2&1+()[2+a3}

Now we introduce the following elements:

€1,2 ‘= [61762} y €13 = [61763} y €123 = [61,2763] ) 6/1,1,2,3 = [61761,2,3]
f2,1 = [f?afl} ) f3,1 = [fg,fﬂ y €321 = [f37f2,1] ) f§72,1,1 = [f3,2,1>f1]
All these are root vectors, say e1=Xa, , f31=X_(a1403) > €1,23=Xa1+as+as »
and so on. These, together with the original generators, do form a K-basis
of g. The relevant new brackets among all these basis elements — dropping
the zero ones, those coming from others by (super-)skewcommutativity, and

those involving the h;’s (which are given by the fact that the e,’s and the
fo’s are root vectors, involving all roots of g ) — are the following:

[61762} =€1,2, [31, 63] =€13, [61,61,2,3} = 6/171,273

[61,f2,1} = f2, [617f3,1] =afs, [61,f§,2,1,1} = —(1+a)f3,271
[62761,3] = —€123, [627 f2,1} =f1, [62,f3,2,1} = f31
[63, 61,2} = —€1,23, [637 f3,1} = fi, [€3>f3,2,1} = f2,1

[f1>f2] =—fa1, [f1>f3] =—f31, [f1>f3,2,1] = fé,z,l,l
[f1,€1,2] =e2, [f17€1,3] =aes, [f1763,1,2,3] = (1+a)er2s

[f27f3,1} = f3,2,1 ) [f27€1,2] = —€1, [f27€1,2,3} = —€13
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[f37f2,1} = f3,2,1 ) [f37€1,3] = —€1, [f37€1,2,3} = —€12
le12,€13] = —€l123 » le12, fo1] = hi—hs |

le12, faon] =afs le12, fa01.1] = (14a) fsa

y<y sy

le13, foa] = mi—ahs, ers, faoa] = fo ers: fiona] = (140) fon

Lo faa] = —fipan s [foerps] =aes,  [for,elias] = —(1+a)ers

[faa e123] = €2, [fan, €105 = —(1+a)ers

(v faza] = hi—ha—ahs . [eras fiana] = —(1+a)fy |
[f321,€11038) = —(1+a)er, [€l103 fo211] = —(14a)(2hy—hy—ahs)

Now we modify just two root vectors taking (recall a # —1 by assumption)

€1,123 ‘= —i—(l—l—a)_l €123 faon1 = —(1+a)_1f§7271,1 ;
then the above formulas has to be modified accordingly (many coefficients
(14 a) cancel out). Looking at the final outcome it is then easy to check that

B = {Hz y €iy fi}i:l’z’3 U {61,2 ,€13,€123,€1,123, 2.1, [3.1, [32,15 f3,2,1,1}

with Hy := hy, Hy:= (1+a) ' (2hi—ha—ahs), Hz:= hs, is indeed a
Chevalley basis for g = D(2,1;a).

P(n), n#3: We fix the distinguished set of even simple roots

Mpy = {€1— €2, s En1 —Ens En — Engrs 26041 |
and the corresponding even (simple) coroots, which are H; := H. ., =
(ei,i - ei+1,i+1) — (ei+n+1,i—|—n+1 — ei+1+n+1,i+1+n+1) (V1<i<n), Hypy =
Hy. .. = (€nsin1 — e2(n+1)’2(n+1)) . As root vectors (the odd roots being
+0;;:=x(e;+¢;) Vi#j,and v :=2¢; Vi, asin [13], §2.48) we take
(even) Eoy, 7= €ij — Cnjpltjnilti V1i<i#j<n
(odd) E, = €int14i Vi<i<n+1
(odd) Eip ;= €inyi1j + €jniy1ri = Eyg,, Vi<i<j<n
(odd) E_g = enp14ji — €ny14ij = —E_p,, V1i<i<j<n

Direct check shows that the above elements H,; and root vectors form a basis
as required. This follows from the commutation formulas in [13], §2.48, which
only need the following correction: [E, ,, Es, | =2E,, (i#}). O
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Remark 3.8. A uniform proof of Theorem 3.7.

We sketch here, quite roughly (and up to some details) another possible
proof of Theorem 3.7, kindly suggested by the referee. This works by a uni-
form argument for all basic cases — like in [18], but with different arguments
— and can also be adopted again (once the definition of Chevalley basis is
set up) for the strange case Q(n) as well. Thus in the end only the strange
case P(n) is left apart: therefore, we assume hereafter that g is of basic type.

To begin with, for the H;’s in the Chevalley basis (belonging to §) one
proceeds like in the proof above. For the even root vectors X, (o € Ay)
one takes them as they are given in a “standard” Chevalley basis of the Lie
algebra gy — with easy adaptations when g is reductive. Finally, for the odd
root vectors Xz (8 € Aq) one of course has to choose each one of them in the
root space gg, which is one-dimensional, yet then one also must carefully fix
a proper normalization to get integral coefficients in the expression for the
Lie brackets.

As a first step, note that in all basic cases the go—module g; is a direct
sum of simple go—modules whose highest weight is minuscule (or “nonzero
minimal dominant” in Humphreys’ terminology, cf. [17], §13, exercise 13).

Now, a simple go—module V(A) with minuscule highest weight A is as
follows (cf. [19], Ch. 5A.1). First, the set of weights of such a V() is just
WX, the W—orbit of A\, where W is the Weyl group of go. Then each weight
space V/(A),, in V/(A) is one-dimensional, hence given by a single basis vector
vy, so that V/(A), = Kv, . Thus we start with a K-vector space V' having

basis {U“}MEW , © then a go-module structure on V', for which it has highest

A, is given by the following simple formulas:

Huv, =pu(H)v, , VHebh, V pueW
Xiavy =0, X qu,:=0, VaeAf,ueW: puH,) =0
Xiav, =0, X g, :=v, o, YaeAl, neW: uH,)=+1 (3.1)
XiaVpy i=Vpta, X av,: =0, VaeAl,peW: u(H,) =-1

We now shall use these remarks in order to construct at the same time
an isomorphic copy of g and a Chevalley basis inside it.

First, we know that g; as an h-module splits into g, = $gea,gp Where
each odd root space gs is one-dimensional. Now we fix a nonzero vector
ys € g3\ {0} for each B € A;: we shall find our odd root vector Xz in the
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Chevalley basis by a suitable normalization of yz , which is fixed by imposing
relations (¢) and (d) in Definition 3.3.

Now note that [ys,y_s] € h. Let us call H(B) := [ys,y—pg|. Therefore,
for all o € Ay one has

[Xo: [ys, y—5l] = [Xa,H(B)] = —a(H(B)) Xa

while the Jacobi identity yields

(Xa [ys,y-6l] = [[Xa sl v-s] + [y5,[Xa,y-s]] =0

when a(H,) = B(H,) = 0, since in that case one has (o« + ) ¢ A. This
means that a(H(3)) =0 <= «(Hg) = 0, so that H(B) is a scalar
multiple of Hg, say H(f) = ng Hp for some ng € K; moreover, one has
ng # 0 as the same analysis gives [Xo,[ys,y-s]] #0 when S(H,) #0.
Therefore, we shall fix our odd root vectors Xz (8 € Ay) as given by

Xp = ngl/ 2 ys (which makes sense because K is algebraically closed): it

follows that [Xs, X_g] = Hg, so relations (¢) in Definition 3.3 do hold.

Now we modify the Lie superalgebra structure on g, keeping the same
vector space structure but changing the Lie bracket [ , | as follows. We keep
[, ] untouched when restricted to go (hence gy keeps the same Lie algebra
structure) and to g; , i.e. when computed on elements which are homogeneous
of the same parity. On the other hand, we modify the bracket on elements
of different parities, simply by re-defining the (adjoint) action of g onto g;
using formulas (3.1) with the Xg’s playing the role of the v,’s. In other
words, we (re)normalize the go—action on g; , so to have an isomorphic copy
g} of the go—module g; , whose structure is described by (3.1) with the Xjz’s
replacing the v,’s.

In addition, the Lie bracket of g defines on the go—module g; a go—valued,
symmetric bilinear form v : (n,{) — ¥(n,¢{) := [n,(], for which the
Jacobi identity reads

$¢<7]7Q - ¢($7]7<) + 1/)(7]71['(:) Ve 90 77;C S (32>

(where the go—action on go itself is again the adjoint action). Using any

go—module isomorphism & : gy = g}, we define a form ¢ : g} x g) — go
by ' := 1 o ®*? which again will enjoy the similar properties as in (3.2).
Then the formula [7/,¢'] = ¢/(/,{') — for all /,{’ € g} — defines a
go—valued bracket on g} : along with the go—action on g} and the Lie bracket
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on gy itself, this uniquely determines an overall bracket on ¢’ := go@ g} . By
construction, g’ with this bracket is a Lie superalgebra isomorphic to g.

Finally, we still have to check that the new odd root vectors Xz we chose
do satisfy — for the Lie superalgebra g’ — conditions (d) in Definition 3.3.
This follows by direct check: indeed, if v,6 € A; with v+ # 0 then we
have [X,, Xs| = c¢,5X,4+s for some c,s5 € K, and so

(Xot) (X5, Xs]] = 05 [Xorr), Xops] = craHoe)  (33)
On the other hand, the Jacobi identity gives

[X—(7+6) ) [X’Y >X5H = HX—(V+6) 7X’Y] 7X5} + [X’Y ) [X—('y+5) :Xé]] =
= [Xos, Xo] +[X,, X ] = ~H s+ H, = Hs+ Hy, = Hy5 = —H_(y15)

Comparing with (3.3), this gives ¢, s = —1, which actually proves that the
conditions required in Definition 3.3(d) actually do hold.

Tiding everything up, we eventually find that — by construction — the
new odd root vectors actually complete our Chevalley basis, g.e.d.

4 Kostant superalgebras

Let K be an algebraically closed field of characteristic zero.

Throughout this section we assume g to be a classical Lie superalgebra,
with g not of type A(1,1), P(3), Q(n) or D(2,1;a) with a ¢ Z. We treat
cases A-P-Q in § 6, while D(2,1;a) with a € Z is disposed of in [14].

4.1 Kostant’s Z—form

For any K-algebra A, we define the binomial coefficients

(y) _ Y= (y—ntl)

n n!

for all y€ A, n € N. We recall a (standard) classical result, concerning
Z—integral valued polynomials in a polynomial algebra K[yl, e ,yg} :
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Lemma 4.1. (¢f. [17], §26.1) Let Klyi, ...,y be the K-algebra of polyno-
mials in the indeterminates yy , ..., y; . Let also

[ntZ(K[yl,...,yt]) = {fE Klyi, ...,y |f(zl,...,zt) EL NVz1,...,2 EZ}

Then Intz(Klyi,...,u]) is a Z-subalgebra of Ky, ...,y , which is free as
a Z—(sub)module, with Z-basis { I, (“) | ni,...,n €N} .

Let U(g) be the universal enveloping superalgebra of g. We fix a Cheval-
ley basis B = {Hy,...,Hy} ][] {Xo‘}aeA of g as in §3.2, and let bz be the
free Z-module with basis {Hy,...,Hs} . Given h € U(h), we denote by
h(Hq,...,H;) the expression of h as a function of the H;’s. As immediate
consequence of Lemma 4.1, we have the following:

Corollary 4.2.
(a) Hy := {heU(f)) | h(zl,...,z@) €, Vz,...,z € Z} is a free

Z—submodule of U(h), with basis By := {Hle <H> ni,... ,WEN} )

(b) The Z-subalgebra of U(g) generated by all the elements (H,;Z> with
Heby, z€Z, neN, coincides with Hy .

Now, mimicking the classical construction, we define a Z-form of U(g):

Definition 4.3. We call “divided powers” all elements XM= X} / n!, for

a€Ay, neN. We call Kostant superalgebra, or Kostant’s Z—form of U(g)

the unital Z-subsuperalgebra of U(g), denoted by K7(g), generated by
XC(Y”), Xy, <H> V aeAy, neN, yeA;, i=1,....¢.

n

Remarks 4.4. Let Kz(go) be the unital Z-subalgebra of U(gg) generated by
the elements X\ , (Z) with a € Ag, n € N. This gives back “almost” a

classical object, namely the Kostant’s Z—form of U(gp) : the latter is defined
(and well-known) in terms of a classical Chevalley basis when g is semisimple
— which is often, but not always, the case for simple Lie superalgebras g
of classical type; moreover, that definition can be easily extended to the
reductive case (depending on a choice ). Nevertheless, in general the algebra
Kz(go) we are considering is slightly different, namely a bit larger, because
of the way we chose the Cartan elements Hy , ..., H, in the Chevalley basis.
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Another important classical result is the following:

Lemma 4.5. (cf. [17], §26.2) Let o € Ay, and m,n € N. Then

X xm  _ z;nj'rOL(m,n) (k) <Ha—m—n+2k:> X (k)

« —o —a k

4.2 Commutation rules

In the classical setup, a description of K7(go) comes from a “PBW-like”
theorem: namely, Kz(go) is a free Z-module with Z-basis the set of ordered
monomials (w. r. to any total order) whose factors are divided powers in the
root vectors X, (o € Ag) or binomial coefficients in the H; (i =1,...,¢).
We shall prove a similar result in the “super-framework”. Like in the
classical case, this follows from a direct analysis of commutation rules among
divided powers in the even root vectors, binomial coefficients in the H;’s and
odd root vectors. To perform such an analysis, we list hereafter all such rules;
in particular, we also need to consider slightly more general relations.
The relevant feature is that all coefficients in these relations are in 7Z.
We split the list into two sections: (1) relations involving only even gener-
ators (known by classical theory); (2) relations involving also odd generators.
All these relations are proved via simple induction arguments: the classi-
cal ones (in the first list) are well-known (see [17], §26), and the new ones are
proved in a similar way, using Theorem 3.7. Details are left to the reader.

(1) Even generators only (that is (H> s and XU’s only, a € Ag ):

(%) (%) = () () 0

Vije{l,....0}, VnmeN

XWpH) = f(H-na(H) X (4.2)
VaelAy, Heh, ne N, f(T) e K[T]

XM xm) (“;’;’”) X (nbm) VaeAy, ¥ nmeN (4.3)
XWX = x{M XM + Lht Va,B€ Ny, ¥V n,meN  (4.4)
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where [.h.t. stands for a Z-linear combinations of monomials in the X ék)’s

and in the <H1> s whose “height” — that is, by definition, the sum of all

(&
“exponents” k occurring in such a monomial — is less than n +m.

A special case is the following (already seen in Lemma 4.5):

Xén) X(m) _ lezg(m,n) X(m—k) (Ha7m7n+2k> X&n—k’) (45)

—« —« k

Vae Ay, VmneN

(2) Odd and even generators (also involving the X,’s, v € Ay):

X, F(H) = f(H—~(H)) X, (4.6)
VyeA, heb, f(T)eK[T]
ey Xoy = [X0, X,] = 2X2 |V yel (4.7)
hence 29¢A = XI=0, V n>2
and 2ve A = X3:0777/2-X27:12X27

(because cyy =24 if v,2v €A, see Definition 3.3)

X X, =-X,X_ +H, VyeAn(—A4) (4.10)
with H, = [X,, X_,] € bz,

X7X5 = —X5X7—|—C%5X7+5, V0, v+d#0 (4.11)
with ¢, s as in Definition 3.3,
XOX, = X, X0+ S (1) (1) Xoa X092
VneN, VaelAy, veEA : a#+2y,

with 0272{7—7“@,...,7,...,74—(]&}, Xotha =0 if (v+hka) €A,
and e, ==x1 such that [XQ,XW(S_l)OJ:ss (r+s) Xytsa

XXM = xWx o X x™ = xWx_ (4.13)
Xy X0 = XXy + 2 9(H) XPTV X, (4.14)
X, XM = xWx — o yH) X"V X (4.15)

VneN, VyelA, a=27v€Ay, 2zy:=0cyy/2==E2
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Remark 4.6. In [30], the following commutation formula
X, () = S () () x,

is given, for the orthosymplectic case, for all H; = H,, , with a; € Ay
simple, and v € A;. Actually, this is equivalent to (4.6), because the <H1> s

generate the polynomials in H;, and in general the following identity holds:

(o) = Sty o () - (%)

4.3 Kostant’s PBW-like theorem

We are now ready to state and prove our super-version of Kostant’s theorem:

Theorem 4.7. The Kostant superalgebra Kyz(g) is a free Z-module. For
any given total order < of the set AU {1, e ,E} , a Z-basis of Kz(g) is
the set B of ordered “PBW-like monomials”, i.e. all products (without repeti-
tions) of factors of type Xé"“), <ZIZ> and X, —with a € Ay, 1 € {1, . ,E} ,
v € Ay and ng, n; € N — taken in the right order with respect to =< .

Proof. Let us call “monomial” any product in any possible order, possibly
with repetitions, of several Xc(yn“)’s, several (Hisfzi> 's — with z; € Z — and

several X;"7’s, m, € N. For any such monomial M , we define three numbers,
namely:

— its “height” ht(M), namely the sum of all n,’s and m,’s occurring
in M (so it does not depend on the binomial coefficients in the H;’s);

— its “factor number” fac(M), defined to be the total number of factors
(namely X", (H_Z) or X, ) within M itself;

— its “inversion number” inv(M), which is the sum of all inversions of
the order < among the indices of factors in M when read from left to right.
We can now act upon any such M with any of the following operations:

~(1) we move all factors (Hle

) to the leftmost position, by repeated
use of relations (4.2) and (4.6): this produces a new monomial M’ multiplied

on the left by a suitable product of several (new) factors (Hisféi) ;
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~(2) we re-write any power of an odd root vector, say X;7, n,>1, as
XM= X2hre = X Xe = 2d )l X XO

for some 2z € Z, d, € N, €, € {0,1} with n, =2d, +¢,, using (4.7-9);

—(3) whenever two or more factors xs get side by side, we splice

them together into a single one, times an integral coefficient, using (4.3);

~(4) whenever two factors within M occur side by side in the wrong
order w. r. to =, i.e. we have any one of the following situations

M= XpO XU M= X X
M - ‘..X6m5Xéna)... ; M ey ...Xfym’yX(Sm(s.‘.

with o Z 8, e Z v, 6 Z @ and vy = J respectively, we can use all relations
(4.4-5) and (4.10-18) to re-write this product of two distinguished factors,
so that all of M expands into a Z-linear combination of new monomials.

By definition, Kz(g) is spanned over Z by all (unordered) monomials in
the X&”)’s, the (f) and the X,’s. Let us consider one of these, say M.

(3

First of all, M is a PBW-like monomial, i.e. one in B, if and only if no
one of steps (2) to (4) may be applied. But if not, we now see what is the
effect of applying such steps. We begin with (1): applied to M , it gives

M =HM

Hi—%
Si

where H is some product of ( > ’s, and M’ is a new monomial such that

ht(/\/l’) = ht(/\/l) , fac(/\/l') < fac(/\/l) , mv(/\/l') < mv(/\/l)

and the strict inequality in the middle holds if and only if H # 1, i.e. step
(1) is non-trivial. Indeed, all this is clear when one realizes that M’ is nothing

but “M ripped off of all factors (Hisfzi> ’s.”

k3

Then we apply any one of steps (2), (3) or (4) to M’. Step (2) gives

M =M with ht(M”) < ht(M’)
for some z € Z and some monomial M” (possibly zero). Step (3) yields
M = 2 MY with ht(MY) = ht(M’), fac(MV) S fac(M')

for some z € Z and some monomial M" . Finally, step (4) instead gives
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M = M+ 3 g4 M, with  ht(My) S ht(M') YV k,
and  ht(M) = ht(M') , inv(M") S inv(M)

where z, € Z (for all k), and M" and the M,’s are monomials.

In short, through either step (2), or (3), or (4), we achieve an expansion
M =S I HM, 2 €7 (4.16)

where — unless the step is trivial, for then we get all equalities — we have
(nt(M3) 5 B (M) v (Jac (M) 5 fac(M)) v (ino(My) $ ino(M)) (417)

Now we can repeat, namely we apply step (1) and step (2) or (3) or (4)
to every monomial M, in (4.16); and then we iterate. Thanks to (4.17), this
process will stop after finitely many iterations. The outcome then will read

M = 3 LHI M z €L (4.18)

where z'm)(/\/l;-’ ) =0 for every index j, i.e. all monomials M are ordered
and without repetitions, that is they belong to B. Now each H/ belongs to Hz,
(notation of Corollary 4.2), just by construction. Then Corollary 4.2 ensures
that each 7-[;-’ expand into a Z-linear combination of ordered monomials in

the <f;> ’s. Therefore (4.18) yields
M =S, 2 HI MY NS/ (4.19)

where every H. is an ordered monomial, without repetitions, in the <f112> ’s,
1

while for each index s we have M7 = M7 for some j — those in (4.18).
Using again — somehow “backwards”, say — relations (4.2) and (4.6), we

can “graft” every factor (Ij) occurring in each 2 in the right position inside
the monomial M7 | so to get a new monomial M¢ which is ordered, without
repetitions, but might have factors of type (Hm_z> with 2z, € Z \ {0} —

Hi—Zi
m

i

thus not belonging to B. But then < ) € Hy , hence again by Corollary
4.2 that factor expands into a Z-linear combination of ordered monomials,

without repetitions, in the (ZJ> ’s. Plugging every such expansion inside each

monomial M’ instead of each (Hm_z> — i=1,...,f/ — we eventually find

7
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M= 2 M, 2 €L (4.20)

r
where now every M., is a PBW-like monomial, i.e. M. € B for every 7.

Since K7z(g), by definition, is spanned over Z by all monomials in the
Xs, the X,’s and the (Z) s, by the above K7(g) is contained in Span,(B) .
On the other hand, by definition and by Corollary 4.2, Span,(B) in turn is
contained in K7z(g). So Kz(g) = Spany(B), i.e. B spans Kz(g) over Z.

At last, the “PBW theorem” for Lie superalgebras over fields ensures that
B is a K-basis for U(g), because B := {Hi,...,H} []{ X, | aeA} isa
K-basis of g (cf. [33]). Thus B is linearly independent over K, hence over Z .
Therefore B is a Z-basis for Kz(g), and the latter is a free Z—module.  [J

Remarks 4.8.

(a) To give an example, let us fix any total order < in AU {1, e ,E}
such that Ay < {1, . ,E} < A; . Then the basis B from Theorem 4.7 reads

B = { HaerXc(vna) Hf:l (5;) l_I'yeAl‘XY;AY ’ UZRRL EN? €y € {Oa 1}} (421)

(b) For g = gl(m|n), a Z-basis like (4.21) was more or less known in
literature (see, e.g., [5]). For g = osp(n|m), it is given in [30], Theorem 3.6.

Theorem 4.7 has a direct consequence. To state it, note that g, the odd
part of g%, has {XV ‘ veAl} as Z-basis, by construction; then let A g% be
the exterior Z-algebra over gZ. Then we have an integral version of the well
known factorization U(g) = U(go) ®x A g1 (see [33]):

Corollary 4.9. There exists an isomorphism of Z-modules

Kz(g) = Kz(go) ®z Aol

Proof. Let us choose a PBW-like basis B of Kz(g) — from Theorem 4.7 —
as in (4.21). Then each PBW-like monomial can be factorized into a left
¢
factor A times a right factor p, namely [] x5 I <f¢> ITXy=Xp
aclg i=1 N 7 yen
with A =[] en, x4 I, <fl> and p:=][,c5, X5 . But all the \’s span

K7(go) over Z (by classical Kostant’s theorem) while the p’s span A gZ. O
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Remarks 4.10.

(a) Following a classical pattern (and cf. [4], [5], [30] in the super context)
we can define the superalgebra of distributions Dist(G) on any supergroup
G . Then Dist(G) = Kz(g) ®z K, when g:= Lie(G) is classical.

(b) In this section we proved that the assumptions of Theorem 2.8 in [30]
do hold for any supergroup G whose tangent Lie superalgebra is classical.
Therefore, all results in [30] do apply to such supergroups.

5 Chevalley supergroups

(Classically, Chevalley groups are defined as follows. Let g be a finite dimen-
sional semisimple Lie algebra over an algebraically closed field K of charac-
teristic zero. Choosing a Chevalley basis of g, we can define a Kostant form
Kz(g), generated by divided powers of root vectors. Then any simple g—
module V' contains a Z-lattice M, which is K7(g)-stable, hence K7(g) acts
on M . Using this action and its extensions by scalars to arbitrary fields k,
we define one-parameter subgroups z,(t), for all roots a and ¢ € k, in the
group GL(Vg), Vi :=k®zM . The Chevalley group (associated to g and V)
is then, by definition, the subgroup of GL(Vj) generated by the x,(t)’s.

Now we provide a similar construction for the super context. We work
out our construction for classical Lie superalgebras not of type A(1,1), P(3),
Q(n) or D(2,1;a) with a & Z; we treat cases A-P-Q in chapter 6.

5.1 Admissible lattices

Let K be an algebraically closed field of characteristic zero. If R is a unital
subring of K, and V' a finite dimensional K—vector space, a subset M CV is
called R-lattice (or R—form) of V' if M = Spang(B) for some basis B of V.
Let g be a classical Lie superalgebra (as above) over K, with rk(g) = ¢,
let a Chevalley basis B of g and the Kostant algebra Kz(g) be as in §§3-4.

Definition 5.1. Let V be a g-module, and let M be a Z-lattice of it.

(a) We call V rational if bz := Span, (Hl, ce Hg) acts diagonally on V
with eigenvalues in Z; in other words, one has V = Gaueb*vl“ with V, =
{veV |hw=pu(h)vVheh}, and p(H;) € Z (for alliand all yu : V), # {0} ).

(b) We call M admissible (lattice) — of V' — if it is Kz(g)-stable.
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Remark 5.2. If g is not of either types A(m,n), C(n), Q(n) or D(2,1;a),
then any finite dimensional g-module V' is automatically rational. However
in the other cases the rationality assumption is actually restrictive.

Theorem 5.3. Let g be a classical Lie superalgebra. Any rational, finite
dimensional, semisimple g—module V' contains an admissible lattice M. Any

such M is the sum of its weight components, i.e. M = @ (M NV,).
HED™

Proof. The proof is the same as in the classical case. Without loss of gener-
ality, we can assume that V' be irreducible of highest weight. Letting v be a
highest weight vector, take M := Ky(g).v ; then M spans V over K, and it is
clearly K7(g)-stable because K7(g) is a subalgebra of U(g). The proof that
M is actually a Z-lattice of V' and that M splits into M = @, (M N Vu) is
detailed in [29], §2, Corollary 1, and it applies here with minor changes. [

We also need to know the stabilizer of an admissible lattice:

Theorem 5.4. Let V' be a rational, finite dimensional g—module, M an ad-
missible lattice of V', and gV:{XEg ‘ X.MQM} . If 'V is faithful, then

gV:hV@(@aEAZXa) y hV = {HEF)‘M(H)GZ,V[LEA}

where A is the set of all weights of V. In particular, gy is a lattice in g, and
it 1s independent of the choice of the admissible lattice M (but not of V).

Proof. The classical proof in [29], §2, Corollary 2, applies again, with some
additional arguments to take care of odd root spaces. Indeed, with the same
arguments as in [loc. cit.] one shows that gy = by @ (Baea (gvNKX,)) ;
then one still has to prove that gyNK X, = Z X, for all « € A. The
arguments in [loc. cit.] also show that gyNKX, = Z X, is a cyclic Z-
submodule of gy , hence it may be spanned (over Z) by some n—l X, with
ne € Ny (for all a € A). What is left to prove is that n = 1. i

For every even root o € Ag, one can repeat once more the argument in
[loc. cit.] and eventually find n, = 1. Instead, for each « € A; one sees —
by an easy case by case analysis, for instance — that there exists o' € A,

such that (a4 ') € Ag, (o —a') € A . Then (notation of Definition
3.3(d)) Caw = £1, and so [Xa L Xa} = n—lﬂXajLa/ . On the other

’ _—
,na

hand, clearly X, € g C gy, hence [X L Xa] € (gvﬁ KXa+a/) , with

o s Tho
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(gvﬂ KX(HO/) = Z Xo1or because (a + 0/) € Ay. Then the outcome is
atar € L Xqt1or, which yields n=1, q.e.d. O

Na

Remark 5.5. Let () and P respectively be the root lattice and the weight
lattice of g; one knows that there exists simple, rational, finite dimensional
g-modules V; and Vp whose weights span ) and P respectively. Then by
Theorem 5.4 one clearly has gy, € gy C gy, for any rational, finite
dimensional g-module V.

5.2 Construction of Chevalley supergroups

From now on, we retain the notation of §5: in particular, V' is a rational,
finite dimensional g—module, and M is an admissible lattice of it.

We fix a commutative unital Z-algebra k: as in §2.2, we assume k to be
such that 2 and 3 are not zero and they are not zero divisors in k. We set

gk = k®Z gv , ‘/]k = k®ZM ) Uk(g) = k@z KZ(Q) :

Then gy acts faithfully on Vi, which yields an embedding of gy into gl(Vf) .
For any A € (salg), = (salg), the Lie superalgebra g, := A ®y gk acts
faithfully on Vi(A) := A @y Vi, hence it embeds into gl(Vi(A4)), etc.

Let a € Ay, B,7 € Ay, and let X,,, X3 and X, be the associated root
vectors (in our fixed Chevalley basis of g ). Assume also that [Xg, X3] =0
and [X7 ,XW] # 0; we recall that the latter occurs if and only if 2y € A.

Every one of X,, X3 and X, acts as a nilpotent operator on V', hence

on M and Vg, i.e. it is represented by a nilpotent matrix in gl(Vf) ; the same
holds for

tXo, VX5, 9X,+tX> € End(Vi(A)) Vitedy, veA . (5.1

Taking into account that X, and X? commute, and X* = +2X,, — by
(4.9) — we see at once that, for any n € N, we have Y"/n! € (Kz(g))(A) for
any Y asin (5.1); moreover, Y"/ n! =0 for n > 0, by nilpotency. Therefore,
the formal power series exp(Y) : +°° yn / n! , when computed for Y as
n (5.1), gives a well-defined element in GL (Vk(A)) , expressed as finite sum.

In addition, expressions like (2.5-7) again make sense in this purely alge-

braic framework — up to taking GL(Vi(A)) instead of GL(V (1)) .
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For any o € A C h*, let H, € hz be the corresponding coroot (cf. 3.1).
Let V = @,V, be the splitting of V' into weight spaces; as V' is rational, we
have p(H,) € Z for all a € A. Now, for any A € (salg) and t € U(Ay) —
the group of invertible elements in Ay — we set

ho(t)v = HHa) 4 VoveV,, neb;

this defines another operator (which also can be locally expressed by expo-
nentials)

ha(t) € GL(Vi(A)) VteU(4) . (5.2)
More in general, if H = 3\_ a;H,, € bz we define hy(t) =[], hei(t) .

Definition 5.6. (a) Let a€Ay, f,v€A, and X, , Xp, X, as above. We
define the supergroup functors z, , s and z., from (salg) to (groups) as

To(A) = {exp(tXa) |t€A0} :{(1+tXa+t2Xo§2)+~~) |t€A0}
zg(A) = {exp(V Xp) |9 A1} ={(1+0Xp) |Ve A}
z,(A) = {exp(W X, +tX?) | Ve A, ted} =

= {(1+9X,)exp(tX2) |V e A, t €A}

(notice that z,(A), z5(A), z,(A) € GL(Vk(A)), by construction).

(b) Let H € bz . We define the supergroup functor hy (also referred to
as a “multiplicative one-parameter supersubgroup”) from (salg) to (groups)

We also write h; :=hy, for i=1,...,0, and h, :=hg, for a € A.

Note that, as the H;’s form a Z-basis of h, the subgroup of GL(Vﬁ((A))
generated by all the hy(t)’'s — h € bz, t € U(Ay) — is in fact generated
by the h;(t)’'s — i=1,...,¢, t € U(Ap).

Notation 5.7. By a slight abuse of language we will also write
To(t):=exp(tXa), ws(0):=exp(VXs), x,(t 0):=exp(VX, +1X7)
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Moreover, to unify the notation, xs(t) will denote, for 6 € A, any one of
the three possibilities above, so that t denotes a pair (¢,0) € Ay x Ay, with
¥ or t equal to zero — hence dropped — when either 6 € Ay, or § € A,
with [X5 , X(;} =0, ie. 20 ¢ A. Finally, for later convenience we shall also
formally write x(t) := 1 when ¢ belongs to the Z-span of A but ( ¢ A.

Definition 5.6 is modeled in analogy with the Lie supergroup setting (see
Section 2.3): this yields the first half of

Proposition 5.8.
(a) The supergroup functors z,, xz and x, in Definition 5.6(a) are
representable, and they are affine supergroups. Indeed, for each A € (salg),

z4(A) = Hom(k[z], A) , Ayz) =z@1+1®x
z5(A) = Hom(k[¢], 4) , As(6) = E@1+10¢

zy(A) = Hom(k[m,g],A), Az) =2@1+1@r -,
Ay =E1+1®¢

where Ags denotes the comultiplication in the Hopf superalgebra of the one-
parameter subgroup corresponding to the root § € A.

(b) Every supergroup functor hy in Definition 5.6(b) is representable,
and it is an affine supergroup. More precisely,

hg(A) = Hom(k[z, 2_1},/1) , A(zil) = Al A .

Before we define the Chevalley supergroups, we give the definition of the
reductive group Gy associated to a given classical Lie superalgebra g.

First of all, note that, by construction, any hy(A) and any z,(A) for
a € Ay depends only on Ag: thus, these are indeed classical affine groups.
Moreover, the hy(A)’s generate a classical torus T'(Ay) inside GL(Vi(Ao))

T(Ao) == (hu(A)|Hebz) = (hi(A) |i=1,...,0).

Now, go is a reductive Lie algebra (semisimple iff g has no direct sum-
mands of type A), whose Cartan subalgebra is f. The Chevalley basis of g
contains a basis of gg which has all properties of a classical Chevalley basis
for go, except for the fact that the H;’s are associated to integral weights
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which may not be even (simple) roots. In other words a classical Chevalley
basis for go is not a subset of a Chevalley basis for g. In general one can
show that we can always choose a basis for h in such a way that only one of
the H,’s is associated to an odd root. It is however important to stress that
the integral lattice generated by the elements Hy,..., H; inside b is strictly
larger than the lattice generated inside the Cartan by just the even elements,
and this despite the fact that in most cases h = by .

By construction the stabilizer of V in go is (go)y = bv @ (Paca, ZXa )
with by as in Theorem 5.4 and so we can mimic the classical construction of
Chevalley proceeding in the following way.

Consider the group functor Gy : (alg) — (groups) — where (alg) is the
category of commutative k—algebras — with Gy(Ay), for Ay € (alg), being
the subgroup of GL(Vi(Ap)) generated by the torus T'(4y) and the x4 (A4)’s
with o € Ag. By the definition of T'(Ap), we can also say that Go(Ap) is
generated by the h;(A)’s and the z,(A)’s with a € A, i.e.

Go(Ag) = <T(A0), TalA) ‘ aeA0> - <hi(A), ro(A) | i=1,... ¢ a€A0>

By construction, the group-functors Gy and 71" are subfunctors of the
representable group functor GL(Vf), hence they both are presheaves (see
Appendix A). Let Gy and T be their sheafification (see Appendix A). Then
T is representable and we shall now show that also Gy is representable.

We consider Gy, Gg, Ty and T as group-functors defined on (salg) which
factor through (alg), setting Go(A) := Go(Ap), and so on.

Consider b)Y := Spanz({Ha ‘ aE AO}) ; this is another Z—form of b, with
hY, C bhz. Now define

T'(Ag) = (hy(A) [HERY) | GhAg) = <T’(A0), Ta(A) ‘ a€A0>

The assignments A — T"(A) :=T'(Ag) and A — Gy(A) := G{(Ap) provide
new group-functors defined on (salg), which clearly factor through (alg), like
T and G, above; also, they are presheaves too. Then we define the functors
T’ and Gy as the sheafifications of 7" and G, respectively.

On local algebras — in (alg) — the functor Gj, is isomorphic via a natural
transformation with the functor of points of the Chevalley group-scheme
associated with go and V. Therefore, we have that G{, is representable.

The group Gi,(Ap) and T'(Ap) are subgroups of GL(Vj)(Ap) , whose mutual
intersection is 7"(Ap). The subgroup Go(Ap), generated by G{(Ay) and
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T(Ap) inside GL(Vk)(Ap), can be seen as the fibered coproduct of G{(Ap)
and T'(Ap) over T"(Ap) . In more down-to-earth terms, we can describe it as
follows. Inside GL(Vj)(Ay), the subgroup T'(Ay) acts by adjoint action over
Gy(Ap) , hence the subgroup Go(Ap) , being generated by T'(Ap) and G (Ay) ,
is a quotient of the semi-direct product T'(A4y) x G,(Ap). To be precise, we
have the functorial isomorphism:

Go(As) = (T(Ao) x Go(Ao)) / K (Ag)

where A — K(Ag) := {(t,t') |t € T'(Ag) } defines — on (salg), through
(alg) — a subgroup(-functor) of T x Gy . Therefore Gy = (T Gg)/K as

group-functors, hence Gg = (T X G{))/K because T'x G = T x G| as set-
valued functors (i.e., forgetting the group structure). Taking sheafifications,
we get Go = (T x G{))/K : as both T and Gj are representable, the

direct product T x G}, is representable too, hence its quotient (T x G{) / K

( = GO) is representable as well, i.e. G is representable, q.e.d.

We now define the Chevalley supergroups in a superscheme-theoretical
way, through sheafification of a suitable functor from (salg) to (grps), “gen-
erated” inside GL(Vk(A)) by the one-parameter supersubgroups given above.

Definition 5.9. Let g and V be as above. We call Chevalley supergroup
functor, associated to g and V', the functor G : (salg) — (grps) given by:

—if A€ Ob((salg)) welet G(A) be the subgroup of GL(Vi(A)) generated
by Go(A) and the one-parameter subgroups xzg(A) with 8 € A;, that is

G(A) = <G0(A),;z:5(A) ‘ 5€A1>

By the previous description of Gy, we see that G(A) is also generated by the
hi(A)’s and all the one-parameter subgroups z5(A)’s — 6 € A — or even by
T(A) and the x5(A)’s, that is

G(A) = <h,-(A) , 5(A)

i=1,...0 0€n) = (T(A), 5s(A) ‘ seA)
— if ¢ € Homsag) (A, B), then Endy(¢) : Endy (Vi(A)) — Endy (Vi(B))

(given on matrix entries by ¢ itself) respects the sum and the associative
product of matrices. Then Endy(¢) clearly restricts to a group morphism
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GL(Vi(A4)) — GL(Vik(B)). The latter maps the generators of G(A) to
those of G(B), hence restricts to a group morphism G(¢) : G(A) — G(B) .

We call Chevalley supergroup the sheafification G of G. By Appendix A,
Theorem A.8, G : (salg) — (grps) is a functor such that G(A) = G(A)
when A € (salg) is local (i.e., it has a unique maximal homogeneous ideal).

Remark 5.10. The sheafification is already necessary at the classical level,
that is when we construct semisimple algebraic groups (from semisimple Lie
algebras), as it is explained in [11], §5.7. In fact, it is clearly stated in
5.7.6 that in general the one-parameter subgroups and the torus generate
the algebraic group only over local algebras.

5.3 Chevalley supergroups as algebraic supergroups

The way we defined the Chevalley supergroup G does not imply — at least
not in an obvious way — that G is representable, in other words, that G
is the functor of points of an algebraic supergroup scheme. The aim of this
section is to prove this important property.

We shall start by studying the commutation relations of the generators
and derive a decomposition formula for G(A) resembling the classical Cartan
decomposition in the Lie theory, and one reminding the classical “big cell”
decomposition in the theory of reductive algebraic groups.

We begin with some more definitions:

Definition 5.11. For any A € (salg), we define the subsets of G(A)

Gr(A) = { T @) [ €N, 3w € A1, 01, b € Ay
GE(A) ::{ T, (b ‘nEN,al,...,aneAﬁ,tl,...,tner}
Gi(A) ::{ 1 Ty (0 ‘nEN,fyl,...,'ynEAf,ﬁl,...,ﬁneAl}
G=(4) = {11

"o (t ‘neN ﬁl,...,@neAi,tl,...,tnerxAl}:

= (Gi(4), GY(4))
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Moreover, fixing any total order < on AT | and letting N, = }Aiﬁ

, we set
GEEA) = { T2 0) | < < €AF Vi, iy, € A
and for any total order < on Ay, and letting N := ‘A} =N, + N_, we set
GT(4) = {H]ivz1$%(79z‘) ‘ N <<y €A1, U, 0N € A1}

Note that for special choices of the order, one has G5 (A) = G7"~(A) -
G{™(A) or GY(A) =G ™(4)- G (4) .
Similar notations will denote the sheafifications G, , G¥, G(jf, Gic, etc.

Remark 5.12. Note that G1(4), GF(A), GF(A) and G*(A) are subgroups
of G(A), while G"<(A) and G5 (A) instead are not, in general. And similarly
with “G7” instead of “G” everywhere.

As a matter of notation, when [ is any group and ¢g,h € I' we denote
by (g,h) :=ghg ' h™! their commutator in I". Next result will be crucial.

Lemma 5.13.

(a) Let o€ Ny, veE A, A€ (salg) and t € Ay, ¥ € Ay. Then there
exist ¢, €7 such that

(50). 2a(®) = s @rreales9) € Gi(A)
(the product being finite). More precisely, with e, = £1 and r as in (4.12),
(1+9X,, 7a(t)) = [ (1 L e () £ Xwa)

where the factors in the product are taken in any order (as they do commute).
(b) Let v,0€Ay, A€ (salg), U,ne Ay . Then (notation of Definition 3.3)

(2,(0), 25(n)) = @ys(—cy50m) = (1=¢,59nXy45) € Go(A)
if 0 # —v ; otherwise, for 6 = —~, we have

(z,(9), 2_y(n)) = (1=9nH,) = hy(1-9n) € Go(A)

(c) Let a,pe A, Ac(salg), t € U(Ay), ue AgxA; =A. Then
ho(t) w5(u) ha(t) ™ = ws(t"u) € Gy (4)
where p(B) := s, by definition, if and only if B € Ay .
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Proof. The result follows directly from the classical results in [29], pg. 22
and 29, and simple calculations, using the relations in §4.2 and the identity
(9n)* = —92n% = 0. In particular, like in the classical setting, every hq(t)
acts — via the adjoint representation — diagonally on each root vector Xz,
with weight t?(1«) . Also, we point out that the nilpotency of any ,n € A,
implies that of ¥n (GAO), which has several consequences.

First we have (1—19 77) , (1—2 ) 77) € U(Ay) . Second, we have the identity
(1-9nH,) = hy(1—9n) (since (1— ﬁn)“(HV) =1—19Yn) as operators
on Vi(A), which is mentioned (and used) in the second instance of (b). [

Remark 5.14. A direct consequence of the previous Lemma is the following.
Assume g; € x5, (A7) = {5, (n) [lu€ A"} —cf. §2.1 —for j =1,2 and
01 in Ay. Then we have (g1 , gg) € [ o0 To14s6s (A’1”+5”2) if 0o € Ay and
(91 , gg) € X5, 46, (A;”JF”Q) or (gl, gg) € T(Ag"ﬁm)) if 69 € A;.

Next result is a group-theoretical counterpart of the splitting g = go®g; -
It is a super-analogue of the classical Cartan decomposition (for reductive
groups). In the differential setting, it was — somewhat differently — first
pointed out by Berezin (see [3], Ch. 2, §2).

Theorem 5.15. Let A € (salg). There exist set-theoretic factorizations

G(A) = Go(A) Gi(4) G(A) = Gi(A) Go(4)
G=(A) = GF(4) GY(4) . G=(4) = GY(4) G5 (4)

Proof. The proof for G(A) works for G(A) as well, so we stick to the former.

It is enough to prove either one of the equalities, say the first one. Also,
it is enough to show that Go(A)Gi(A) is closed by multiplication, since it
contains all generators of G(A) and their inverses. So we have to show that
9091 - 9091 € Go(A) G1(A), for all go, g5 € Go(A), g1,91 € G1(A). By the
very definitions, we need only to prove that

(1+ 0 Xp,) - (14001 Xp, ) (1+ 9, X5,) za(u) € Go(A)Gi(A)
(140 Xa,) -+ (1+ 001 X5, ) (140, X5,) hs(t) € Go(A) Gy(A)

for all Bl,...,ﬁne Al, AS A07 o€ A, 791,...,'(9716/11, UGA[), te U(AQ)
This comes from an easy induction on n , via the formulas in Lemma 5.13. [
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Lemma 5.16. Let A € (salg). Then
Gi(A) € Go(AP)GF(4) . Gi(4) C GF(4)Go(AP)
GE(A) C GE(AP)GE=(A) . GH(A) C GF<(A) G (AD)

Proof. We deal with the first identity, the other ones are similar. Indeed, we
shall prove the slightly stronger result

(G1(4), GAP)) € Go(AP) Gy (A) (5.3)

where (G;(4), G.(A§2))> is the subgroup generated by G1(A) and G.(A?)) :
the latter being G.(Agz)) = <{ha(u),xa(t) | € Ag,u € U(A?)),t € A} }> :

Any element of (G;(A), G.(A§2))> is a product g = g1 g2+ g, in which
each factor g; is either of type hq,(u;), or x4, (t;), or z,,(¢;), with a; € Ay,
v € Ay and u; € U(Agz)), t; € A2, ¥; € A;. Such a product belongs
to Gy (Aﬁ”) G5 (A) if all factors indexed by the «; € Ay are on the left of
those indexed by the v; € Ay, and moreover the latter occur in the order
prescribed by <. In this case, we say that the factors of g are ordered. We
shall now re-write g as a product of ordered factors, by repeatedly commuting
the original factors, as well as new factors which come in along this process.

Since we have only a finite number of odd coefficients in the expression
for g, we can assume without loss of generality that A; is finitely generated
as an Ag-module. This implies that A = {0} and Al =0 for n larger
than the number of odd generators of A; .

Let us consider two consecutive factors g¢; g;+1 in g. If they are already
ordered, we are done. Otherwise, there are four possibilities:

T (1) 9i = xai(ti)7 gi+1 = ha, (ul)a or g; = .T%(l(}i), Jiv1 = h%(“z)
In this case we rewrite
9i9i+1 = Loy (tl) ha, (ul) = ha, (ul) La; (t;)
or 9i Givr = T, (0) ho, (i) = ha,(ui) 2, ()
with ¢, € A" 9, e A" if t; € A", ¥; € A", thanks to Lemma 5.13(¢).
In particular we replace a pair of unordered factors with a new pair of ordered
factors. Even more, this shows that any factor of type h,(u;) can be flushed

to the left of our product so to give a new product of the same nature, but
with all factors of type hq,(u;) on the left-hand side.
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—(2) gi=14,(ti), git1 =2, (¥ip1). In this case we rewrite
9iGir1 = Giv19: g, with ¢ := (g ", 9i+1_1) = (iﬂai(—ti), 96%-+1(—79i+1))
so we replace a pair of unordered (consecutive) factors with a pair of ordered
(consecutive) factors followed by another, new factor g;. However, letting
ni,ne € Ny be such that t; € A", ¥,11 € A", by Remark 5.14 this ¢, is
a product of new factors of type xo,(t;) with ¢ € A", nj > n; +ni4q .

—(3) gi=xy,(0), gix1 = 2+, (Viy1). In this case we rewrite
9i 9iv1 = Giv10i 9, with gj:= (gi_17 g¢+1_1) = (%i(_ﬁi), %1-+1(—19i+1))
so we replace a pair of unordered factors with a pair of ordered factors fol-
lowed by a new factor g, which — again by Remark 5.14 — is again of type
To(t) or he(u) with t € A", u € U(Al(")) , where n > n; + n;yp for
ny,ng € Ny such that 9; € A" and 9,41 € A{™.

—(4) gi=24(0;), git1 =24(U;41) . In this case we rewrite
9 giv1 = Ty (Vi) 2y, (Vitn) = 25(03) 27 (Fin) = 2y(i40ita)
so we replace a pair of unordered factors with a single factor. In addition, each

of the pairs ¢;_1 ¢, and ¢ g;+o respects or violates the ordering according to
what the corresponding old pair ¢;_1¢9; and g;11,givo did.

Now we iterate this process: whenever we have any unordered pair of
consecutive factors in the product we are working with, we perform any
one of steps (1) through (4) explained above. At each step, we substitute
an unordered pair with a single factor (step (4)), which does not form any
more unordered pairs than the ones we had before, or with an ordered pair
(steps (1)-(4)), possibly introducing new additional factors. However, any
new factor is either of type x,(t), with ¢ € A", or or of type hs(u),
with uw € U (Al(")) , for values of n which are (overall) strictly increasing
after each iteration of this procedure. As A" = {0}, for n > 0, after
finitely many steps such new factors are trivial, i.e. eventually all unordered
(consecutive) factors will commute with each other and will be re-ordered
without introducing any new factors. Thus the process stops after finitely
many steps, proving (5.3). ]

Theorem 5.17. For any A € (salg) we have
G(A) = Go(A)GT(4) ,  G(A) = GT(A)Go(4)
Proof. This follows at once from Theorem 5.15 and Lemma 5.16. O
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Our aim is to show that the decompositions we proved in the previous
proposition are essentially unique. We need one more lemma:

Lemma 5.18. Let A, B € (salg), with B being a subsuperalgebra of A.
Then G(B) < G(A), i.e. G(B) is a subgroup of G(A).

Proof. This is not in general true for any supergroup functor; however, GG
by definition is a subgroup of some GL(V'), hence the elements in G(A) are
realized as matrices with coefficients in A, and those in G(B) as matrices
with coefficients in B . It is then clear that any matrix in G(B) is in G(A),
and two such matrices are equal in G(B) if and only if they are equal as
matrices in G(A) as well. O

We are ready for our main result:

Theorem 5.19. For any A € (salg), the group product yields bijections
Go(A) x GI™(A) x G"S(A) — G(4)

and all the similar bijections obtained by permuting the factors Gf’<(A)
and/or switching the factor Go(A) to the right.

Proof. We shall prove the first mentioned bijection. In general, Proposition
5.17 gives G(A) = Go(A) GT(A), so the product map from Go(A)x G (A)
to G(A) is onto; but in particular, we can choose an ordering on A; for which
AT = Af  hence GT(A) = G7(A) GT=(A), so we are done for surjectivity.

To prove that the product map is also injective amounts to showing that
for any g € G(A), the factorization ¢ = gog_ g, with go € Go(A) and
g+ € GE=(A) is unique. In other words, if we have

g = Go9-9+ = fof—f-f- ) gU7f0€G0(A)7 g:taf:tEGit’<(A)

we must show that go = fy and g+ = fi .

To begin with, we write the last factors in our identities as
N, N,
g+ = d:il (1 + ?9(? X@t) ) fr = d:i1 (1 + nét Xﬁ)

for some t;,s; € Ap, and ¥;,n; € Ay, with Ny = |Aﬂ . Here the ”yj € AT
are all the positive or negative odd roots, ordered as in Definition 5.11.
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Expanding the products expressing g+ and fi we get
gr = 1+ 205 ﬁiX + + s 2 Dodefl. N}t (_1)(2) by X+

fo= 1 SN X T Sy (DO EX

where X7¢ = Xﬁl : Xﬁ; OF =g, Dy, N =1, -+ N, , for every
k > 1 and every k-tuple d := (dy,...,d) € {1,... ,Ni}k. For later use,
note that these formulas imply also

N_ 2N_
floo=1+ X (W-n) X+ X -0 .n)X; (5.4)
d=1 k=2 ge{a,..., N,}’c - =
. Ny 2N
feort =1+ S (=00 X+ 3 3 @ (=2t ) Xy (55)
d=1 =2 def{1,...,Np}* .

where the @ﬁ’s are suitable monomials (in the ¥;’s and n;’s) of degree k
with a coefficient 41, and O =% .

Note that, letting V' be the g-module used in Definition 5.9 to define
G(A), all the identities above actually hold inside End (Vi.(A)) .

We proceed now to prove the following, intermediate result:

Claim: Let gs, f+ € G7<(A) besuch that g_ g, = f_ f. Then g+ = f+ .

Indeed, let V' = @®,V,, be the splitting of V' as direct sum of weight spaces.
Root vectors map weight spaces into weight spaces, via X;5.V, C V15 (for
each root § and every weight 1). An immediate consequence of this and of
the expansions in (5.4-5) is that, for all weights ¢ and v, € V,, \ {0},

(f—_l g—)'vu € @W—GNA;VM-&-V* ) (f—i— 9;1)'7]# S @7+€NA1+VM+7+

where NAT is the N-span of Af. In particular, this means that the only
weight space in which both (f_’1 g,).vu and (f+ g;l).vu may have a non-
trivial weight component is V,, itself, as NAT N NAT = {0}. Moreover,
let us denote by ((f:l g_)'v“)uﬂ; the weight component of (f:l g_).vu

inside V, I and similarly let (( [+ g;l) .vu)# ot be the weight component
d
of (fyg:').v, inside V,sqt - Then, looking in detail at (5.4-5), we find

((F7192) ) = (0= ma) X v Vd=1,...,N_
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((Fr 95 vi) s = (00 = 93) X0 Vd=1,...,Ny

In fact, this is certainly true for 'yj simple, and one can check directly case
by case that any odd root ﬂyj can never be the sum of three or more odd
roots all positive or negative like %:lt itself. Now, since by hypothesis we
have g_g. = f_f+, sothat f-'g = f.g;', comparing the weight
components of the action of both sides of this equation on weight spaces V),
— and recalling that g acts faithfully on V', so Xﬁ-Vu # 0 for some p —

we get right away 95 = n; for all d, hence g+ = fi, q.e.d. &

Let now go on with the proof. By definition of G¢(A), both gy and f; are
products of finitely many factors of type x,(t,) and h;(s;) for some t, € Ag,
s; € U(Ap) — with a € Ag, i =1,...,¢. We call B the superalgebra of A
generated by all the ﬁﬁ’s, the 77di’s, the t,’s and the s;’s. Then B is finitely
generated (as a superalgebra), and B; is finitely generated as a Bp—module.

By Lemma 5.18, G(B) embeds injectively as a subgroup into G(A) ; so the
identity gog_ g+ = fof- f+ also holds inside G(B). Thus we can switch
from A to B, i.e. we can assume from scratch that A = B. In particular
then, A is finitely generated, hence A; is finitely generated as an Ap—module.

Consider in A the ideal A; , the submodules A" (cf. §2.1), for each n € N,
and the ideal (A]') of A generated by A': as A} is homogeneous, we have
also A/(A]') € (salg) . Moreover, as A; is finitely generated (over Ag), by
assumption, we have A = {0} = (AJ") for n>> 0. So it is enough to prove

go = fo mod (A7), g+ = f+ mod (A}) VneN  (5.6)

where, for any A’ € (salg), any I ideal of A" with m; : A —» A’/I the
canonical projection, by x =y mod I we mean that two elements x and y
in G(A’) have the same image in G(A’/I) via the map G(m).

We prove (5.6) by induction. The case n = 0 is clear (there is no odd
part). We divide the induction step in two cases: n even and n odd.

Let (5.6) be true for n even. In particular, g+ = fi mod (A]"): then (see
the proof of the Claim above) we have 95 =17 mod (Aln) for all d, hence
(97 —ny) € (A7) NA; C (A7TY), for all d, by an obvious parity argument.
Thus g+ = fi mod (A7™) too, hence — from gog_gr = fof-f+ —
go = fo mod (A7) as well, i.e. (5.6) holds for n+1, g.e.d.

Let now (5.6) hold for n odd. Then gy = fo mod (Af); but gy, fo €
Go(A) = Go(Ap) by definition, hence gy = fo mod (Aln) N Ag. Therefore
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go = fo mod (A?H), because (Af) N Ay C (A?H) by an obvious parity
argument again. Thus from gog_g. = fo f- f+ we get also g_g. = f_ f+
mod (A7) . Then the Claim above — applied to G(A/(A7*")) — eventu-
ally gives gy = fy mod (A}™), so that (5.6) holds for n+1. O

Corollary 5.20. The group product yields functor isomorphisms
Gox Gy S x Gy~ =@ Gox G “x G/ = G

as well as those obtained by permuting the (—)-factor and the (4)-factor
and/or moving the (0)-factor to the right. Moreover, all these induce simi-
lar functor isomorphisms with the left-hand side obtained by permuting the

factors above, like GT< x Gy x G’ =aq, G xGyx G =@, et

Proof. The first isomorphism arises from Theorem 5.19. The second one then
is an easy consequence of the first one and of Theorem A.8 of Appendix A,
because G is the sheafification of G. Similarly for the other functors. O]

Remark 5.21. The functor isomorphisms G x Gy x G = q, G x
GoxGUS =5 G, GI"xGox G =5 G and G " xGox G = G
can be thought of as sort of a super-analogue of the classical big cell decom-
position for reductive algebraic groups.

Proposition 5.22. The functors G : (salg) — (sets) are representable:
they are the functor of points of the superscheme Ai'Ni, with Ny = |Aﬂ .
In particular they are sheaves, hence Gli’< = Gli’< .

Proof. Clearly, by the very definitions, there exists a natural transformation
U+ AO Ne _, GF< given on objects by

UHA) L AP GTNA) L (0w o T (1)
Now given gi = [} 2.,(0}) € G “(4), Wi = [12 2,(9)) € GT(4),
assume that g¢F = hi, hence hy (g7) = 1. Then we get (V... 0,) =

( I ,19?’\&) just as showed in the proof of Theorem 5.19. This means that
U* is an isomorphism of functors, which proves the claim. O]

Finally, we can prove that the Chevalley supergroups are algebraic:
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Theorem 5.23. Every Chevalley supergroup G is an algebraic supergroup.

Proof. We only need to show that the functor GG is representable. Now,
Corollary 5.20 and Proposition 5.22 give G = Gy x G]"S x G | with
G[’< and G;= being representable; but G also is representable — as it is
a classical algebraic group, see §5.2. But any direct product of representable
functors is representable too (see [7], Ch. 5), so we are done. ]

Remark 5.24. This theorem asserts that Chevalley supergroup functors
actually provide algebraic supergroups. This is quite remarkable, as some of
these supergroups had not yet been explicitly constructed before. In fact,
giving the functor of points of a supergroup it is by no means sufficient to
define the supergroup: proving the representability — i.e., showing that there
is a superscheme whose functor of points is the given one — can be very hard.

For example using the procedure described above, it is possible to con-
struct the algebraic supergroups corresponding to all of the exceptional clas-
sical Lie superalgebras F'(4), G(3) and D(2,1;a) — for a € Z — and to the
strange Lie superalgebras.

The existence of such groups in the differential and analytic categories is
granted through the theory of Harish-Chandra pairs, in which the category
of supergroups is identified with pairs consisting of a Lie group and a super
Lie algebra, (see [22], [2], [31] for more details on this subject). Our theory
allows to realize such supergroups explicitly and over arbitrary fields.

Another immediate consequence of Corollary 5.20 and Proposition 5.22 is
the following, which improves, for Chevalley supergroups, a more general re-
sult proved by Masuoka (cf. [25], Theorem 4.5) in the algebraic-supergeometry
setting (see also [31], and references therein, for the complex-analytic case).

Proposition 5.25. For any Chevalley supergroup G, there are isomor-
phisms of commutative superalgebras

O(G) = O(Gy) ® O(G"") @ O(G™~) =
= O(GO)@)k[{’l,...,ENJ ®]k[X1,---,XN+]

where Ny = |A1ﬂ, the subalgebra O(Gy) is totally even, and &, ..., En_
and X1,...,Xn, are odd elements.
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We conclude this section with the analysis of a special case, that of com-
mutative superalgebras A for which A% = {0} . This is a typical situation in
commutative algebra theory: indeed, any such A is nothing but the central
extension of the commutative algebra Ay by the Ag—module A .

Proposition 5.26. Let G be a Chevalley supergroup functor, and let G be its
associated Chevalley supergroup. Assume A € (salg) is such that A2 = {0} .
Then G (A), G7(A) and G1(A) are normal subgroups of G(A), with

GE(A) = GT(A) = A™(4) with Ny = |AF|
Gi(4) = Gi(4)-GI(4) = Gr A) - Gr(4)
Gi(A) = Gr(A) x GT(4) = GI(A) x G (4) =

(Y]

(where “ =7 means isomorphic as groups), the group structure on AgNi(A)
being the obvious one. In particular, G(A) is the semidirect product, namely

G(A) 2 Go(A) X G1(A) = Go(Ay) x <A§'N*(A) xAgM(A)) . of the classical
group Go(Ap) with the totally odd affine superspace AEN‘(A) X AgN+(A) .

Similar results hold with a symbol “G” replacing “G” everywhere.

Proof. The assumptions on A and the commutation formulas in Lemma
5.13(b) ensure that all the 1-parameter subgroups associated to odd roots do
commute with each other. This implies that G7 (A) G (4) = G{ (A) G (A),
that the latter coincides with G1(A), that GF(A) = Gi"~(A), and also that
G5 (A) and G, (A) are subgroups of G(A) . Moreover, Lemma 5.13(a) implies
that G- (A) and G1(A) are also normalized by Go(A). By Theorem 5.15 we
conclude that GF(A) and G(A) are normal in G(A).

All remaining details follow from Proposition 5.22 and Theorem 5.23.
The statement for G clearly follows as well. m

5.4 Independence of Chevalley and Kostant superal-
gebras

Next question is the following: what is the role played by the representation
V'? Moreover, we would like to show that our construction is independent
of the choice of an admissible Z-lattice M in a fixed g-module (over K).
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Let G’ and G be two Chevalley supergroups obtained by the same g,
possibly with a different choice of the representation. We denote with X,
and with X/ respectively the elements of the Chevalley basis in g identified
(as usual) with their images under the two representations of g .

Lemma 5.27. Let ¢ : G — G’ be a morphism of Chevalley supergroups
such that on local superalgebras A we have

(1) ¢4(Go(4)) = Gy(A)
(2) pa(l+9Xg) =149 X} VBeA , veA
Then Ker(¢a) C T , where T is the mazimal torus in the ordinary

algebraic group Go C G (see §5.2).

Proof. For any local superalgebra A we have G(A) = G(A). Now let g €
G(A)=G(A), g € Ker(¢a). By Theorem 5.19 we have g = g; go g, with
G0 EGo(A), g €GT=(A); but then da(g7) dalgo) da(gr) = dalg) = e, -
By the assumption (2) and the uniqueness of expression of g, we have that
da(gr) = eq = dalg) and go € Ker(¢oa) € T(A), where ¢4 is the
restriction of ¢4 to Go(A). The claim follows. O

Let now Ly be the root lattice of g; also, we let L; be the weight lattice
of g, defined to be the lattice of weights of all rational g—modules.

For any lattice L with Ly C L C Ly, there is a corresponding Chevalley
supergroup. The relation between Chevalley supergroups corresponding to
different lattices is the same as in the classical setting.

Theorem 5.28. Let G and G’ be two Chevalley supergroups constructed
using two representations V and V' of the same g over the same field K (as
in §5.1), and let Ly, Ly be the corresponding lattices of weights.

If Ly D Ly, then there exists a unique morphism ¢ : G — G’ such
that ¢A(1 +19Xa) =1+9X.,, and Ker(¢a) C Z(G(A)), for every
local algebra A . Moreover, ¢ is an isomorphism if and only if Ly = Ly .

Proof. As the same theorem is true for the classical part Gg , we can certainly
set up amap ¢y : Gg — Gy, and the corresponding one on the sheafification.
Now we define ¢ : G — G’ in the following way. For A € (salg), we set

pa(l+9X,) :=1+9X), da(g0) := ¢o,a(g0) ; then

da((1+h Xay) - (149, Xa,) 9o (L4+m Xp,) - (141, X3,)) =
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= (1+00X,,) - (L+9, Xa,) do,a(g0) (1+m Xp,) -+ (140, X5,)

This gives a well-defined ¢4 which in fact is also a morphism (i.e., natural
transformation): indeed, ¢a(gh) = ¢a(g) pa(h) because all the relations
used to commute elements in Gy (A), Go(A) and G{(A) — so to write a
given element in G(A) in the “normal form” as in Corollary 5.20 — do not
depend on the chosen representation, where now A is taken to be local (by
Proposition A.12 in the Appendix A, we have that the natural transformation
¢ is uniquely determined by its behaviour on local superalgebras). O

As a direct consequence, we have the following “independence result”:

Corollary 5.29. Fvery Chevalley supergroup Gy is independent — up to
isomorphism — of the choice of an admissible lattice M of V' considered in
the very construction of Gy itself.

Proof. Let M and M’ be two admissible lattices of V. Then consider V' :=
V', and consider Gy and Gy~ constructed using respectively the two lattices
M and M’'. By construction we have Ly = Ly, hence Theorem 5.28 give
Gy = Gy, which proves the claim. O

5.5 Lie’s Third Theorem for Chevalley supergroups
Let now k be a field, with char(k) # 2,3.

Let G be a Chevalley supergroup scheme over k, built out of a classical
Lie superalgebra g over K as in §5.2. In §5.1, we have constructed the Lie
superalgebra gy := k ®z gy over k starting from the Z-lattice gy . We now
show that the algebraic supergroup G has gy as its tangent Lie superalgebra.

We start recalling how to associate a Lie superalgebra to a supergroup
scheme. For more details see [7].

Let A € (salg) and let Ale] := Alz]/(2?) be the superalgebra of dual
numbers, in which € := x mod (12) is taken to be even. We have that

Ale] = A® e A, and there are two natural morphisms i: A —s Ale], a v a,
and p:Alel — A, (a+ed’) ¥>a, suchthat poi=idy.
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Definition 5.30. For each supergroup scheme G, consider the homomor-
phism G(p): G(A(e)) — G(A) . Then there is a supergroup functor

Lie(G) : (salg) — (sets) , Lie(G)(A) := Ker(G(p))

Proposition 5.31. (¢f. [7], §6.3.) Let G be a supergroup scheme. The func-
tor Lie(G) is representable and can be identified with (the functor of points
of ) the tangent space at the identity of G , namely Lie(G)(A) = (A® Ti,),
where T, is the super vector space mGJG/mQG’lG , with mg1, being the maz-
imal ideal of the local algebra Og 1, -

With an abuse of notation we will use the same symbol Lie(G) to denote
both the functor and the underlying super vector space.

Next we show that Lie(G) has a Lie superalgebra structure: this is equiv-
alent to asking the functor Lie(G) : (salg) — (sets) to be Lie algebra valued.

Definition 5.32. Define the adjoint action of G on Lie(G) as
Ad:G — GLLie(G) ,  Ad(g)(x) == G(i)g) = (G(i)(s)
for all g € G(A), x € Lie(G)(A) . Define also the adjoint morphism ad as
ad := Lie(Ad) : Lie(G) — Lie(GL(Lie(G))) := End(Lie(G))

where GL and End are the functors defined as follows: GL(V)(A) and
End(V')(A), for a supervector space V', are respectively the automorphisms
and the endomorphisms of V(A):=(A® V), .

Finally, we define [z,y] :=ad(x)(y), for all z,y € Lie(G)(A).

-1

Proposition 5.33. (c¢f. [7], §6.5.) The functor Lie(G) : (salg) — (sets) is
Lie algebra valued, via the bracket | | ] defined above.

Let us now see an important example.

Example 5.34. We compute the functor Lie(GL,,p,) . Consider the map

GLuja(p) © GLunja (A(€)) — GLynjn(A) <p+€p/ ﬁeq/) "~ (p q)

r+er’ s4+es r s
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with p, p’, s and s’ having entries in Ag, and ¢, ¢/, r and r’ having entries in
Ay ; moreover, p and s are invertible matrices. One can see immediately that

Lie(GLpnm)(A) = Ker (GLpnm(p)) = {(Im;fp, Iniq,es’)}

where [, is an ¢ x ¢ identity matrix. The functor Lie(GL,,,) is clearly group
valued and can be identified with the (additive) group functor M,,,

M, (A) = Hom(M(m|n)*, A) = Homsg (Sym (M (m|n)*), A)

where M(mn) = {(Z g)} o g’ tnt2mn with P, Q, R and S being

mXxm, mxn,nxm and n X n matrices with entries in k — is a supervector
space. An X € M(mn) iseveniff Q = R=0,itisoddiff P=S5=0.
Notice that M (m|n) is a Lie superalgebra, whose Lie superbracket is given
by [X,Y] = XY — (=1)PYPPyx 5o Lie(GL,,,) is a Lie superalgebra.
Let us compute explicitly for this special case the morphisms Ad and ad .
Since G(i) : GLyj(A) — GLyp(A(€)) is an inclusion, if we identify
GL;j (A) with its image we can write

By definition we have Lie(GL(Mpyn))(A) = {1+ €8 | B € GL(Mpun)(A) } .
So we have, for a,b € My,j,(A) = Lie(GLyn)(A) = {1+€a ‘ a € Mpyjn(A)},
ad(l4+e€a)(b) = (1+ea)b(l—€a) = b+ (ab—ba)e = b+ €la, b

The outcome is ad(l +e€a) =id +€f(a), with f(a) =[a,—].

We are ready for the main theorem of this section.
Theorem 5.35. If G = Gy is a Chevalley supergroup built upon g and V',
then Lie(Gy) =g as functors with values in (Lie-alg) .

Proof. The first remark is that all our arguments take place inside GL(V),
hence we can argue using the formulas of the previous example. Certainly
we know that the two spaces under exam have the same (super)dimension, in
fact by Theorem 5.23 we know that G = Gy x G7 , hence its tangent space
at the origin has dimension dim(go) |dim(g1). It is also clear by classical
considerations that Lie(Gy )y = go. An easy calculation shows that Lie(Gy/)
contains all the generators of g; , hence we have the result. O]
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6 The cases A(1,1), P(3) and Q(n)

In this section we examine how some statements and proofs in the theory we
have developed need to be suitably modified in order to obtain the construc-
tion of Chevalley supergroups for the special cases A(1,1), P(3), Q(n).
The main fact to point out is a special feature of these three cases which
make them different from all other ones: namely, some (odd) roots have
multiplicity greater than one, so the set of (odd) roots itself is no longer fit
to index (odd) root vectors in a basis. This leads us to introduce a different
index set for root vectors, still close to the root set but definitely different.

As to types A(1,1) and P(3), according to §3.1 in both cases there exist
linear dependence relations that identify some (odd) positive roots with some
(odd) negative ones. Now, for the common value of such a root we can find a
root vector when considering the root as a positive one, and another, linearly
independent root vector, when looking at the same root as a negative one.
In the end, any such root has exactly multiplicity 2, and we just have to find
out a neat way to index all root vectors in a consistent manner.

The solution is immediate: the same way of indexing root vectors that
we adopted respectively for A(n,n) —n > 1 — and for P(m) — m # 2 —
still works in the present context. Similarly, the description of a Chevalley
basis is (up to using a suitably adapted notation) essentially the same —
both for A(1,1) and P(3) — as in the general case. Then all our results
— about Kostant algebras, Chevalley groups and their properties — follow:
statements and proofs are the same, just minimal notational changes occur.

For type Q(n) instead, the new, “exotic” feature is that the root set
includes also 0, as an odd root with multiplicity n, while all other roots
are both even and odd and have multiplicity 2. Root vectors then must be
indexed by a greater set then the root set. Moreover, all root vectors relative
to the root 0 are odd, while for any root « # 0 there exist an even as well
as an odd root vector attached to a.. With such root vectors we can build
up a (suitably defined) Chevalley basis.

All our results again hold true in case Q(n) too, with the same statements;
however, in this case some proofs need additional arguments, due to the
special behavior of the root 0 and of the root vectors in a Chevalley basis.
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6.1 Chevalley bases and Chevalley superalgebras

Throughout the section g denotes any Lie superalgebra of type A(1,1), P(3)
or Q(n). We begin with the following definition (sort of a generalization of
root system), yielding our tool to index root vectors in a Chevalley basis.

Definition 6.1. We define a set A := Ag[JA;, amap 7: A — AU{0}
and two partial operations on A ( partlal” in the sense that A is not closed
with respect to them) +: A x A --> A, —:A--> A, as follows.

(a) if g = A(1,1), we set AT := AT and A, = A UA; = A,.
The latter can be described by subsets of pairs indexing the (even) positive
or negative roots — in the (classical) root system of type A(1) x A(1) —
namely Ay := AF[[A; with Af = A} = {(1,2),(3,4)}, Aj = A; =
{(2,1),(4,3)}; with these 1dent1ﬁcat10ns one has —(i Jj) = (j, i) for the
opposate of a root. Similarly, we define A* = { (1,3),(1,4),(2,3), (2,4)},
A7 =1{(3,1),(4,1),(3,2),(4,2,)} , and eventually A, := Af]_[ﬁ;.

The partlal operations — and + on A are given by

—(r,s) == (s,7) | (i,5) + (h, k) == 6,0 (i, k) — (—=1)FBD =R 5 (b, )

where e(t,1) ;=1 if t,1 >2 or t,l >2, and &(t,]) :== —1 otherwise.
Now, the set A; of odd roots of g identifies with the quotient space
= A / ~, where the equivalence relation ~ between pairs given by

(1,4) ~ (3,2) , (1,3) ~ (4,2) , (2,3) ~ (4,1) , (2,4) ~ (3,1)

(note that the partition into ~-equivalence classes is “transversal” to the
partition Ay := A} ]_[A ). We define 7: A = AjJ[A; — AU{0} as
the identity map on AO = Ay and as the quotient map on AL

(b) if g=P(3), weset Af:=AF and Ay := Af UA; = Ay. The
latter can be described by subsets of pairs indexing the (even) positive or
negative roots — in the (classical) root system of type A(3) — namely Ay =

A+HA with AF =Af = { i,] }1§z<g§4’ A_ Ay = {(j’i)}1§i<j§4’
with —(r,s) = (s,7). Then we define A; := AT[[A] with AT =
{[h’ k]}1§h§k§4 and Ap = { 4P }1<p<q<4

The partial operatlons — and + on A are defined as follows. Let us
consider in the free Z-module Z* the canonical basis, whose elements are
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1:=(1,0,0,0), &5:=(0,1,0,0), e3:=(0,0,1,0), &4:=(0,0,0,1)
and let us consider the embedding of A into Z4 given by
(’I“, S) — (57" - 55) ’ [hv k] = (gh + Ek) ) [Q7p] = _(511 + Ep)

forall r#s, h <k, p< q. Then we define the partial operations — and
+ on A as being the restrictions of the same name operations in Z*, taking
the former as defined (on ﬁ) whenever the result belongs to A itself.

Let ~ be the equivalence relation in Ay given by

[1,2]~[43] , [L,3]~[42 , [L4~[32 ,
[273] ~ [47 1] ) [274] ~ [37 1] ) [374] ~ [2> 1] ;

then the set A; of odd roots of g identifies with the quotient space A; =
A 1/~ . We define = : A=Ay J[A; — AU{0} as the identity map on

Ao Ay and as the quotient map on A; .

(¢) if g = Qn), then A = Ay = AJ[{0}; we define AT :=
AF x {(0,1)} and A, := Af UA; . Then we fix any partition [F]] 1= =
{1,...,n} of {1,...,n}, and we set Kf = ((Af\{O})x{(l, 1)}) 1T ({0} X
{(1,9)};cz) , and Ay == AT A7 . Note that AgNA; =0 (by defini-
tion!), whereas Ag N A; = Ay # ) instead.

As A C (A x {0,1} x I,,), the map m: A — AU{0} = A is just
the restriction to A of the projection onto the first factor, and the operator
—: A — A is given by taking the opposite on the left-hand factor. Finally,
the partial operation (a, ﬁ) — a+ [ is given by

(a,(p,1) + (B.(q,4)) = (a+8,(p+q(mod2),iNj))

Note that this operation has a neutral element 0, namely 0 = (0, (0,1)).

We are now ready to give the definition of Chevalley basis. We invite the
reader to look and compare with Definition 3.3 that holds for classical Lie
superalgebras different from A(1,1), P(3) and Q(n) to notice the differences.

Definition 6.2. Let g be as above. We call Chevalley basis of g any homo-
geneous K-basis B = {H }1 {X5}aeﬁ with the following properties.

.....
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(a) {Hl, e Hg} is a K-basis of b ; moreover, with H, € b as in §3.1:
if g#Q(n), bz = SpanZ(Hl, . ,Hg) = Spanz({Ha | aEAﬁ(—A)}) ;
if g=Q(n), bz:=Spany(Hy,....H) = {heb|(h,hy) EZ VYacA};

(b) [Hi H;] =0, [H;,Xz]=n(a)H,) Xz, Vi je{l,....0}, aeA;

(c.) if g#Q(n), then

[Xa,X_a} :O'aHﬂ(a) V&’Eﬁﬂ(—ﬁ),
with Hr) as in (a), and o5 :=—1 if a € A7, 0z :=1 otherwise;
(c.Q) if g=Q(n), then
[X(a7(071)) 7X(—a,(0,1))] = H, A QEA\{O}, with H, as in (a) ;
[X(a,(l,l)) 7X(—a,(1,1))} = H, W OéEA\ {O}, with H, € bz ;
[X(a,0,0) X(—a1.1))] = X(0,(1,0)) VaeA\ {0},
with Xo,(,a)) 7= Dk Cak X0, I Ha = Dy o Hi

[X(O,(l,i)) 7X(07(17j))} = 2H,‘7j v i,j = 1, o, n with H € hz ;

(@) [Xa.X3] =cz3 )%+5 Va,feA: a+—B, B+—a, with
(d.1) if (& ) then ¢;5=0, and X3, 5:=0,
(d.2) if (w(@), (@) #0 or (W(B) 7(B)) # 0, and (cf. Definition 3.2)

it ZWEZ; { ( )—ra(@), ... (5 )+ gn(a)} is the m(@)-string through
W(ﬁ) , then ¢ 3 = +(r+1), with the following exceptions:

(d.2-1) if g=P(3),and a=1[i,j], B=(i,j) — notation of 6.1(3) —
then cz3=+(r+2);

(d.2-11) it g = Q(n), and @ = (0,(1,k)), B = (& — ¢;,(1,1)) —
using the standard notation for the classical root system of type A,, — then
¢z = (6 +€)(aw) ;

(d.3) if (w(a),m(@)=0= (ﬂ(g),ﬂ'(ﬁ ), then Caf = iﬁ(ﬁ)(Hﬂ(a)) :

Here again, for notational convenience, we shall write X5 := 0 whenever
0 belongs to the Z—span of A but either § € A, or § € A and 7T(5) =0.
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Remarks 6.3.

(1) The Chevalley superalgebra (of g) is defined again just like in the
other cases, namely as gZ := Z-span of B, where B is any Chevalley basis
of g. Again, it is a Lie superalgebra over Z , independent of the choice of B.

(2) 1t (7(@),7(@)) = 0= (7(B),7(8)) then 7(8)(Hpm) = £(r+1).
Therefore, condition (d.3) in Definition 6.2 reads just like (d.2).

Now we show how to prove the existence of Chevalley bases — as claimed
in Theorem 3.7 — in the present cases. We proceed by direct construction
of explicit bases; on the other hand, it is worth stressing that the “uniform
argument” sketched in Remark 3.8 does apply again to case A(1, 1), and even
to case Q(n), up to a few, obvious changes.

A(1,1), P(3) : Incase A(1,1), the description of an explicit Chevalley

basis given in the proof of Theorem 3.7 for A(n,n) — n # 1 — works again,
verbatim. Similarly the description of a Chevalley basis for P(n) — n # 3
— applies again to P(3), up to reading (notation as in Definition 6.1(3))

ai,j = <Z7j)7 ﬁh,k = [h’ak]7 Bq,p = [Q7p]; Vi = [271]7 forall 1 S/l;éj§47
1<h<k<4, 1<p<qg<4.

Q(n) : In this case a Chevalley basis is a variation of the basis given in

[13], §2.49 (we change the Cartan generators); we now describe it explicitly.
First consider the Lie superalgebra (sub-superalgebra of gl(n+1|n+1))

On) = {(g i) € gl(nt1|n+1) ‘ Acgl(nt1), B esl(nrl) }

such that, by definition, Q(n) := @(n)/K[2<n+l) . Take in Q(n) the elements

Li:=ei; + €ipnttitnt1, Kt i=e€tiini1 — €41t4nt2 T C€pnilt — Copnt2,it1
Eij:i=eij+ eitntijtnsl Fij = e€ijint1 + Ciyni1

forall i,5=1,...,n+1,t=1,...,n, 1 # j. Then

i#j i#j
{Li}¢=1 n+1 U {Eivj}i,jjzl n+1 U {Kt}tzl n U {Evj}i,jjzl n+1

....................

is a homogeneous K-basis of @(n), the L;’s and the £ ;’s being even, the
Ky’s and the F; ;’s being odd. As Ip,41) = Ly + -+ Lypy41, the quotient Lie

superalgebra Q(n) := Q(n) / KI5(+1) has homogeneous K-basis
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= {Li}i:1 n U {Ew}zf]ﬂ n+1 U {Kt}t:1 U { U}zfjl

77777777777777777777

where we use again the same symbols to denote the images of elements of
Q(n) inside Q(n) . In terms of these, the multiplication table of Q(n) reads

|:LZ7L]:| =0 ) [leKt} =0
[Kr s Ks] =2 (57“73 - 5r,s+1) L, +2 (57“,5 - 51”—1—1,5) Lr—i—l
(L Eig] = cij(Le) Biy o [Lis Fig] = (L) Fi

[KtaEi,j} = @z‘j(Lt—LtH)Fi,j ) [Kt,Fi,j] = ai,j(Lt_LtJrl)Ei,j

[Eij Ere] = 0,5 Eie — 804 Erj Y (i,§) £ (6, k)
(Eij. Figl = 60 Fip — 00 Fy Y (i,5) # (0, k)
[Fij  Fre] = 61 Eig + 00 Exj v o (i,5) # (¢, k)
[E”’E ]ILi_Lj? [EH?F} :Zi;th, [E]7F:| :Li‘i‘LJ’

where the «; ;’s are the non-zero roots of Q(n), forming the classical root
system of type A,, (namely «;; = €;—¢; , where the ¢,’s form the dual basis to
the canonical basis of the diagonal matrices in gl(n+1) ), while &; ; := €;+¢€; .

In particular, this shows that the L;’s (i = 1,...,n) form a K-basis of
the Cartan subalgebra of~Q( n) — which is the image in Q(n) of the subspace

of diagonal matrices in QQ(n) — each E;;, resp. each Fj;, is a root vector
(the former being even, the latter odd) for the root «; ;, and the K;’s form
a K—basis of the (totally odd) zero root space, namely g,—o N g1 . Now set

Hy == Ly, Xk = Ke , Xiy01) = By X, = Fij

forall k=1,...,n and 7,7 =1,...,n+1 with ¢ # 5 . Then the above
formulas eventually show that B := {Hk}k:1 . 11 {Xa}aeﬁ is a Chevalley

basis of g = Q(n) in the sense of Definition 3.3, by direct check.

Remark 6.4. For g of type Q(n) — to be precise, of type é(n) — a Cheval-
ley basis was given also in [4], Lemma 4.3.
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6.2 Kostant superalgebras

In §4.1, the Kostant’s superalgebra K7(g) was defined as the subalgebra of
U(g) generated by divided powers of the root vectors attached to even roots,
root vectors attached to odd roots, and binomial coefficients in the elements
of the Chevalley basis which belong to h. We perform exactly the same
construction for A(1,1), P(3) and @Q(n): thus the definition of K7(g) for
the present cases reads essentially like Definition 4.3, the only difference is
that root vectors are indexed by elements of A instead of A .

The commutation rules among generators of Kz(g) are very close to those
in §4.2. Nevertheless, some differences occur, which we now point out.

(1) Even generators only: These relations involve only the H;’s and their
binomial coefficients, and root vectors relative to even roots. Then they are
just the same as in §4.2, just reading A, instead of Ay, X145 instead of X, ,
X3 instead of Xg, m(@)(H) instead of a(H) and Hy@g) instead of H,.

(2) Odd and even generators (also involving the X5’s, 7 € Ay):

X5 f(H) = f(H-=(3)(H)) X5
Vel heb, f(T)eK[T

XX = —-XzX 5 + Hs VIeAin(-4A)

with Hﬁ = [Xq, X_ﬁ] € by, l

X5X; = —X5X5 + 55 Xﬁﬂi ,

V’y,(SEAl, ( )+7r((5)7é0

with C5 asin Definition 6.2,

X(oy01) X(—a(1,1)) = X(=a,11) X(a01)) + X, 10)) , V€A
with X(o,(1,a)) = D pe1€ask X(0,(1,k)) as in Definition 6.2(c.Q),

Xo,0) Xo,15) = —X0,05) Xo0,0,0) + 2Hi; , Vi,j
with H’L,_] = [X(O,(l,i))y X(O,(l,j)):| € [)Z as in Definition 33(0@),
Xé”)X:/ = X5X )+ 2kt (Hs 1€ ) <T+k> X5+ ~X(n K

VnelN, V &er,ﬁeAl ca#£ £25, a#(0,(1,4)), for any 7,
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with 02 = {3 —7a,....,7,...,7+qa}, Xepa:=0 if (F+ka) ¢ A,
and e, ==£1 such that [Xo, Xoi(-1)a] =& (r+ ) Xyisa

(n) _ (n) (n—1)
X)) X006 = X©,00) X(ayo1y) — U Hr) X 01y Xia,1)

VneN, Vaecl,, Vk,

XX = XX

¥

X=x" = xWx o

X5 X = XV X5 + 2 7(3)(Hy) X'V X5
X X = XX o a(3)(Hy) XV X5

—a

VneN, YieA,, a=27€l,, z:=c55/2 =42

Using these relations, one proves the PBW-like theorem for Kz(g), i.e.
Theorem 4.7, with the same arguments as in the other cases. What changes
is only the statement, as root vectors are now indexed by elements of A .

A similar comment applies to the Corollary 4.9 and the Remarks after it.

6.3 Chevalley supergroups and their properties

The construction of Chevalley supergroups of types A(1,1), P(3) and Q(n)
follows step by step that of other cases in §5. Like for the previous steps, one
essentially has only to change root vectors indexed by elements of A with
root vectors indexed by A.

The ingredients and the strategy are exactly the same, in particular a
Chevalley basis to start with. The second ingredient is the notion of admis-
sible lattices: their definition, existence and description of their stabilizers
are dealt with just like in §5.1.

Using an admissible lattice, we define supergroup functors xz, hy and

h; , associated to each 5 € E, H e by and i =1,...,¢, just like in Definition
5.6. The analysis carried on about such objects in §5.2 — in particular,
Proposition 5.8 — extends to the present context too. Then we introduce the
direct analogue of Definition 5.9, where the 23 ’s replace the x;’s, thus getting
the notions of Chevalley supergroup functor GG and Chevalley supergroup G .
Similarly, all definitions and considerations about Gy and Gy (the latter being
a classical Chevalley-like algebraic group) also extend to the present case.
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To extend the construction and analysis carried on in §5.3, we can repeat
the same definitions, up to replacmg A with A A* with Ai o with a, etc.
Thus we have subsets Gi"<(A) and subgroups G1(A), Gi(A), G’i(A) and
G*(A) of G(A), and similarly with “G7” instead of “G”.

The first modification we have to do is in Lemma 5.13, which now reads

Lemma 6.5.

(a) Let a= (a,(0,1)) €Ny, FEA,, Ac (salg) and t € Ay, U € A .
If v & {( —a,(l,l)) , (O, (1,2))} , there exist cs €7 such that

(mg(ﬁ), $a<t)) = HS>0 $§+5&(03 tslg) S Gl(A)
(the product being finite). More precisely (cf. §6.2 for the notation),
(1 +0X5, x&@)) = Lo <1 + Il ee (S:T) L X’v“Jrsa)

where the factors in the product are taken in any order (as they do commute).

If 7= —(a, (1, 1)) , then — with notation of Definition 6.2(c.Q)) —

(25(0), 25(t)) = z,0m(—tVY) == (1=t Xpna) =
:Hk( _ea;k’tﬁX, ) Hk 0(1k)( eart?) € Gi(A)

where the factors in the product are taken in any order (as they do commute).
If instead 5 = (0, (1,7)) for some i, then

(27(9), 2a(t)) = wmsa(a(H)tY) = (1+a(H)tV X@a1y) € Gi(A)
(b) Let 57,0€ Ay, Ac(salg), U,n€A,. Then (notation of Definition 6.2)
(050, 25(n)) = 2oi5(—cs59m) = (1—e590X-5) € Go(A)
if 7(7)+7(0) #0; otherwise, for F=(7,(1,1)), 6= (—7,(1,1))=:—7,
(25(0), 25() = (1=9nHz) = hi (1-9n) € Go(4)

and eventually, for 7 = (0,(1,7)), & = (0,(1,7)),
(20000 T ) = (1=29nHi;) = ha, (1-29n) € Go(A)

3

with Qy, € b* corresponding to H;; € b — notation of §6.2.
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(c) Let &, €A, Ac (salg), t € U(Ay), uec Ayx Ay = A. Then
ha(t) a5(u) ha(t) ™ = az("PU@ u) € G,5(A)
where p(ﬁ) .= 1, by definition, if and only if B € A, .

The proof of the above follows right the same arguments as before.

Then all results from Theorem 5.15 to Proposition 5.26 extend to the
present case, both for statements and proofs — more or less verbatim indeed.
In particular, we have factorizations G = Go x G and G = Gy x G}
— as well as the “big cell’-type ones — the latter implying that the group
functor G is representable, thus it is an algebraic supergroup.

Finally, all the content of §5.4 and §5.5 extends to the present context,
without any change. This means that all our construction still are indepen-
dent of specific choices, and that the algebraic supergroups thus obtained do
have the original Lie superalgebras as their tangent Lie superalgebras.

A Sheafification

In this Appendix we discuss the concept of sheafification of a functor in super-
geometry. Most of this material is known or easily derived from known facts.
We include it here for completeness and lack of an appropriate reference.

Hereafter we shall make a distinction between a superscheme X and its
functor of points, that we shall denote by hy or, if X = Spec(A), by ha.

We start by defining local and sheaf functors. For their definitions in the
classical setting see for example [9], pg. 16, or [10], ch. VL.

Definition A.1. Let F : (salg) — (sets) be a functor. Fix A € (salg).
Let {fi}ie[ - Ao, ({fl}zel) = Ao and let (bz A — Afi , (bij : Afi — Afifj
be the natural morphism, where Ay := A[ffl}. We say that F' is lo-
cal if for any A € (salg) for any family {o;}icr, a; € F(Ay,), such that
F(¢ij) (i) = F(¢;i)(ay) for all ¢ and j, there exists a unique a € F(A) such
that F(¢;)(«) = o for all possible families { f;};e; described above.
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We want to rewrite this definition in more geometric terms in order to
show that this is essentially the gluing property appearing in the usual defi-
nition of sheaf on a topological space.

We first observe that there is a contravariant equivalence of categories
between the category of commutative superalgebras (salg) and the category
of affine superschemes (aschemes), i.e. those superschemes that are the spec-
trum of some superalgebra (see Section 2 for more details). The equivalence
is realized by A +— Spec(A) and it is explained in full details in [7], Obser-
vation 5.1.6. Hence a functor F': (salg) — (sets) can also be equivalenty
regarded as a functor F : (aschemes)” — (sets). With an abuse of notation
we shall use the same letter to denote both functors.

Let F be a local functor, regarded as F' : (aschemes)’ — (sets), and
let F'4 be its restriction to the affine open subschemes of Spec(A). Then Fy
is a sheaf in the usual sense; we must just forget the subscheme structure
of the affine subschemes of Spec(A) and treat them as open sets in the
topological space Spec(A), their morphisms being the inclusions. Then Fj
being a functor means that it is a presheaf in the Zariski topology, while the
property detailed in Definition A.1 ensures the gluing of any family of local
sections which agree on the intersection of any two parts of an open covering.

The most interesting — for us — example of local functor is the following:

Proposition A. 2 ([7], Proposition 5.5.5) If X is a superscheme, its functor
of points (salg) % (sets), A~ hx(A) :== Hom(Spec(A),X ), is local.

We now turn to the following problem. If we have a presheaf F on a
topological space in the ordinary sense, we can always build its sheafification,
which is a sheaf F together with a sheaf morphism « : F — F . This is the
(unique) sheaf, which is locally isomorphic to the given presheaf and has the
following universal property: any presheaf morphism ¢ : F — G, with G a
sheaf, factors via o (for more details on this construction, see [16], Ch. II).
We now want to give the same construction in our more general setting.

The existence of sheafification of a functor from the category of algebras
to the category of sets is granted in the ordinary case by [9], ch. I, §1, no. 4,
which is also nicely summarized in [9], ch. III, §1, no. 3. The proof is quite
formal and one can carry it to the supergeometric setting. We however prefer
to introduce Grothendieck topologies and the concept of site and to construct
the sheafification of a functor from (salg) to (sets) through them. In fact, as
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we shall see, very remarkably Grothendieck’s treatment is general enough to
comprehend supergeometry. For more details one can refer to [15] and [32].

Definition A.3. We call a category C a site if it has a Grothendieck topology,
i.e. to every object U € C we associate a collection of so-called coverings of
U, i.e. sets of arrows {U; — U}, such that:

i) If V. — U is an isomorphism, then the set {V — U} is a covering;

it) If {U; — U} is a covering and V' — U is any arrow, then the fibered
products {U; xy V'} exist and the collection of projections {U; xy V} — V
is a covering;

i) If {U; — V'} is a covering and for each index i we have a covering
{Vij — U;}, then the collection {V;; — U; — U} is a covering of U .

One can check that (salg), (aschemes) and their ordinary correspondents
are sites (for the existence of fibered products in such categories see [7], ch. 5).

Definition A.4. Let C be a site. A functor F': C° — (sets) is called sheaf
if for all objects U € C, coverings {U; — U} and families a; € F(U;) we
have the following. Let p} : U; xy Uy — Ui, p - Ui Xy Uj — U; denote
the natural projections and assume F(p;;)(a;) = F(pj;)(a;) € F(U; xy Uj)
for all 4, j. Then 3!'a € F(U) whose pull-back to F'(U;) is a;, for every i.

We are ready for the sheafification of a functor in this very general setting.

Definition A.5. Let C be a site and let F': C° — (sets) be a functor (in
a word, it is a set-valued “presheaf” on C°). A sheafification of F' is a sheaf
F : C° —> (sets) with a natural transformation « : F' — F | such that:
i) forany U € C and &1 € F(U) such that ay(€) = ay(n) in F(U),
there is a covering {o; : U; — U} such that F(0;)(&) = F(o;)(n) in F(U;);
i) for any U € C and any € € F(U), there is a covering {o; : U; — U}
and elements & € F(U;) such that ay, (&) = F(0:)(€) in F(U;).

The next theorem states the fundamental properties of the sheafification.

Theorem A.6. (cf. [32]) LetC be a site, F':C°— (sets) a functor.

i) If Fisa sheafification of F with a : F' — ]:;, then any morphism
Y F — G, with G a sheaf, factors uniquely through F.

it) F admits a sheafification ﬁ, unique up to a canonical isomorphism.

We shall use this construction for C = (aschemes), or equivalently C°=(salg).
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Observation A.7. Let F : (aschemes)® — (sets) be a functor, F its
sheafification. Then F is the sheafification of F in the usual sense, that
is the sheafification of F' as sheaf defined on the topological space Spec(A).
In particular, since a sheaf and its sheafification are locally isomorphic, we
have that Fs, = F4,, i.e. they have isomorphic stalks (via the natural map
a: F — ﬁ) at any p € Spec(A), for all superalgebras A. To ease the
notation we shall drop the suffix A and write just F}, instead of Fs, .

The rest of this section is devoted to prove the following result:

Theorem A.8. Let F,G : (salg) — (sets) be two functors, with G sheaf.
Assume we have a natural transformation F — G, which is an isomor-

phism on local superalgebras, i.e. F(R) = G(R) (via this map) for all local
superalgebras R. Then F = G . In particular, F'= G if also F' is a sheaf.

Lemma A.9. Let F : (salg) — (sets) be a functor; for p € Spec(A), let
F, = hﬂF(R) , where the direct limit is taken for the rings R corresponding
to the open affine subschemes of Spec(A) containing p. Then F, = F(A,).

Proof. By Yoneda’s Lemma, we have
Fp = @F(R) = hngOIH(hR,F) = HOIIl(hth,F) = HOIIl(hAp,F) = F(Ap)
as lim and Hom commute (cf. [23], p. 141) and A, = lim R (cf. [1], p-47). O

Lemma A.10. Let A € (salg), p € Spec(Ag). Then A, (= the localization
at p of A as an Ag—module) is a local superalgebra, whose mazximal ideal is
m=(my, (Al)p) , where myg is the mazimal ideal in the algebra (Ao), = (Ap), -

Proof. From A = Ap & Ay we get A, = (Ao), @ (A1), and clearly this is
a superalgebra with (A,)) = (Ao),, (Ap); = (A1), . Now let us consider
m = (mg, (A1>p) = my + (Al)p . By the above, m % Ap = (Ao)p D (Al)p .
Now take x & m: then x = zo +x; with z¢ € (Ag),, z1 € (A1), so zp is
invertible in (Ao), C (A1), and z; is nilpotent, hence x is invertible. O

Proposition A.11. Let F,G : (salg) — (sets) be local functors and let « :
F — G be a natural transformation. Assume that Fa = G4 via o, where
Fy and G 4 denote the ordinary sheaves corresponding to the restrictions of
F and G to the category of open affine subschemes in Spec(A) (morphisms
given by the inclusions). Then « is an isomorphism, hence F = G .
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Proof. We can certainly write an inverse for a4 for every object A, the prob-
lem is to see if it is well behaved on the arrows. However, this is true because
« is a natural transformation. O

We are ready for the proof of Theorem A.8:

Proof of Theorem A.8. Assume first F' and G are sheaves. Since F(R) =
G(R) for all local algebras R, by Lemma A.9 this implies that F, = G, for
all p € Spec(A), for all superalgebras A. Hence F4 = G4 by [16], ch. II,
§1.1. By Proposition A.11, we have that F' = G (all isomorphisms have to
be intended via the natural transformation a : F — F ).

Now assume F is not a sheaf. We have a: F — F — G by Theorem
A.6. If A € (salg), restricting our functors to the open affine sets in Spec (A)
we get Fy4 — ﬁA — G 4. By Observation A.7, Fy and ]:;A are locally iso-
morphic via «, so F, = Fy,. By hypothesis F(R) = G(R), so F, = G, by
Proposition A.9, hence ﬁp = G, . Arguing as before, we get the result. [

Along the same lines, the reader can prove the following proposition:

Proposition A.12. Let ¢ : F — G be a natural transformation between
two local functors from (salg) to (sets). Assume we know ¢r for all local
superalgebras R. Then ¢ is uniquely determined.
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