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Abstract

In the framework of algebraic supergeometry, we give a construc-
tion of the scheme-theoretic supergeometric analogue of Chevalley
groups, namely affine algebraic supergroups associated to simple Lie
superalgebras of classical type. This provides a unified approach to
most of the algebraic supergroups considered so far in literature, and
an effective method to construct new ones. As an intermediate step,
we prove an existence theorem for Chevalley bases of simple classi-
cal Lie superalgebras and a PBW-like theorem for their associated
Kostant superalgebras. 1
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1 Introduction

In his work of 1955, Chevalley provided a combinatorial construction of all
simple algebraic groups over any field. In particular, his method led to a proof
of the existence theorem for simple algebraic groups and to new examples of
finite simple groups which had escaped the attention of specialists in group
theory. The groups that Chevalley constructed are now known as Chevalley
groups. Furthermore, Chevalley’s construction provided a description of all
simple algebraic groups as group schemes over Z .

In this paper we adapt this philosophy to the setup of supergeometry,
so as to give an explicit construction of algebraic supergroups whose Lie

2



superalgebra is of classical type over an arbitrary field (or even ring). Our
construction provides at one stroke the supergroups corresponding to the
families A(m,n), B(m,n), C(n), D(m,n) of basic Lie superalgebras and
to the families of strange Lie superalgebras P (n), Q(n), as well as to the
exceptional basic Lie superalgebras F (4), G(3), D(2, 1; a) — for a ∈ Z ; cf.
[14] for the general case. To our knowledge, supergroups corresponding to the
exceptional Lie superalgebras have not previously appeared in the literature.

To explain our work, we first revisit the whole classical construction.

Let g be a finite dimensional simple (or semisimple) Lie algebra over an
algebraically closed field K (e.g. K = C ). Fix in g a Cartan subalgebra;
then a root system is defined, and g splits into weight spaces indexed by
the roots. Also, g has a special basis, called Chevalley basis, for which the
structure constants are integers, satisfying special conditions in terms of the
root system. This defines an integral form of g , called Chevalley Lie algebra.

In the universal enveloping algebra of g , there is a Z–integral form, called
Kostant algebra, with a special “PBW-like” basis of ordered monomials,
whose factors are divided powers of weight vectors and binomial coefficients
of Cartan generators, corresponding to elements of the Chevalley basis of g .

If V is a faithful g–module, there is a Z–lattice M ⊆ V , which is stable
under the action of the Kostant algebra. Hence the Kostant algebra acts on
the vector space Vk := k ⊗Z M for any field k . Moreover there exists an
integral form gV of g leaving the lattice invariant and depending only on the
representation V and not on the choice of the lattice.

For any root vector X of g , we take the exponential exp(tX) ∈ GL(Vk) ,
t ∈ k (as X acts as nilpotent, the expression makes sense). The sub-
group of GL(Vk) generated by all the exp(tX), for all roots and all t , is
the Chevalley group GV (k), as introduced by Chevalley. This defines GV (k)
set-theoretically, as an abstract group; some extra work is required to show
it is an algebraic group and to construct its functor of points. We refer the
reader to [29], [6], [17] for a comprehensive treatment of all of these aspects.

We want to extend Chevalley’s construction to the supergeometric setting.

In supergeometry the best way to introduce supergroups is via their func-
tor of points. Unlikely the classical setting, the points over a field of a super-
group tell us very little of the supergroup itself. In fact such points miss the
odd coordinates and describe only the classical part of the supergroup. In
other words, over a field we cannot see anything beyond classical geometry.
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Thus we cannot generalize Chevalley’s recipe as it is, but we need to suit-
ably and subtly modify it introducing the functor of points language right
at the beginning, reversing the order in which the classical treatment was
developed.

The functor of points approach realizes an affine supergroup as a repre-
sentable functor from the category of commutative superalgebras (salg) to
the category of groups (groups) . In this work, we shall first construct a
functor from (salg) to (groups) , and then we shall prove it is representable.

Our initial datum is a simple Lie superalgebra of classical type (or a direct
sum of finitely many of them, if one prefers), say g : in our construction it
plays the role of the simple (or semisimple) Lie algebra in Chevalley’s setting.
We start by proving some basic results on g (previously known only partially,
cf. [18], [30]) like the existence of Chevalley bases, and a PBW-like theorem
for the Kostant Z–form of the universal enveloping superalgebra.

Next we take a faithful g–module V , and we show that there exists a
lattice M in V fixed by the Kostant superalgebra and also by a certain
integral form gV of g , which again depends on V only. We then define a
group-valued functor GV , from the category of commutative superalgebras
to the category of sets, as follows. For any commutative superalgebra A,
GV (A) is the subgroup of GL(V (A)) — the general linear supergroup on V
—generated by the homogeneous one-parameter unipotent subgroups (acting
on M ) associated to the root vectors, together with the multiplicative one-
parameter subgroups (formally corresponding to exponentials of elements in
the Cartan subalgebra). In this supergeometric setting, one must carefully
define the homogeneous one-parameter subgroups, which may have three
possible superdimensions: 1|0 , 0|1 and 1|1 . This also will be discussed.

As a group-theoretical counterpart of the Z2–splitting g = g0⊕g1 , we find
a factorization GV (A) = G0(A)G

<
1 (A)

∼= G0(A) × G<
1 (A) . Here G0(A) is

(roughly) a classical Chevalley-like group attached to g0 and V , while G<
1 (A)

may be euristically thought of as exponential of A1⊗g1 . In fact we show that
the functor G<

1 : A 7→ G<
1 (A) is representable and isomorphic to A0|dim(g1)

k .
Actually, our result is more precise: indeed, g1 in turn splits into g1 =

g+1 ⊕ g−1 according to the splitting of odd roots into positive and negative
ones, and so at the group level we have G<

1 (A)
∼= G−,<

1 (A) × G+,<
1 (A) and

G(A) ∼= G−,<
1 (A) × G0(A) × G+,<

1 (A) , resembling the classical “big cell”
decomposition, which however in this context holds globally.

Despite the analogy with Chevalley construction, GV is not a repre-
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sentable functor, hence it is not an algebraic supergroup. This is a phe-
nomenon already observed at the classical level: one-parameter subgroups,
defined via their functor of points, do not generate Chevalley groups over an
arbitrary commutative ring. Hence we need to consider the sheafification GV

of the functor GV , which coincides with GV on local superalgebras (we pro-
vide at the end an appendix with a brief treatment of sheafification of func-
tors). In particular, GV inherits the factorization GV = G0 G1

∼= G0×G1 ,
with G1 = G1 and G0 being a classical (reductive) Chevalley-like group-
scheme associated to g0 and V . More in detail, we find the finer factorization
GV (A) = G0(A)×G−,<

1 (A)×G+,<
1 (A) with G1(A) = G−,<

1 (A)×G+,<
1 (A)

and G±,<
1 (A) = G±,<

1 (A) . As G1 = G1 and G0 are representable, the above
factorization implies that GV is representable too, and so it is an algebraic
supergroup. We then take it to be, by definition, our “Chevalley supergroup”.

In the end, we prove the functoriality in V of our construction, and that,
over any field k , the Lie superalgebra Lie(GV ) is just k⊗gV as one expects.

2 Preliminaries

In this section we introduce some basic preliminaries of supergeometry. Our
main references are [8], [24] and [33].

2.1 Superalgebras, superspaces, supergroups

Let k be a unital, commutative ring.

We call k–superalgebra any associative, unital k–algebra A which is Z2–
graded; that is, A is a k–algebra graded by the two-element group Z2 . Thus
A splits as A = A0 ⊕A1 , and AaAb ⊆ Aa+b . The k–submodule A0 and its
elements are called even, while A1 and its elements odd. By p(x) we denote
the parity of any homogeneous element x ∈ Ap(x) . Clearly, k–superalgebras
form a category, whose morphisms are all those in the category of algebras
which preserve the unit and the Z2–grading. At last, for any n ∈ N we call
An

1 the A0–submodule of A spanned by all products ϑ1 · · ·ϑn with ϑi ∈ A1

for all i , and A
(n)
1 the unital subalgebra of A generated by An

1 .
A superalgebra A is said to be commutative iff xy = (−1)p(x)p(y)yx for all

homogeneous x, y ∈ A . We denote by (salg) the category of commutative
superalgebras; if necessary, we shall stress the role of k by writing (salg)k .
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Definition 2.1. A superspace S =
(
|S|,OS

)
is a topological space |S| en-

dowed with a sheaf of commutative superalgebras OS such that the stalk
OS,x is a local superalgebra for all x ∈ |S| .

A morphism ϕ : S −→ T of superspaces consists of a pair ϕ =
(
|ϕ|, ϕ∗) ,

where ϕ : |S| −→ |T | is a morphism of topological spaces and ϕ∗ : OT −→
ϕ∗OS is a sheaf morphism such that ϕ∗

x

(
m|ϕ|(x)

)
= mx where m|ϕ|(x) and

mx are the maximal ideals in the stalks OT, |ϕ|(x) and OS,x respectively and
ϕ∗
x is the morphism induced by ϕ∗ on the stalks. Here as usual ϕ∗OS is the

sheaf on |T | defined as ϕ∗OS(V ) := OS(ϕ
−1(V )) .

Given a superspace S =
(
|S|,OS

)
, let OS,0 and OS,1 be the sheaves on

|S| defined as follows: OS,0(U) := OS(U)0 , OS,1(U) := OS(U)1 for each
open subset U in |S| . Then OS,0 is a sheaf of ordinary commutative algebras,
while OS,1 is a sheaf of OS,0–modules.

Definition 2.2. A superscheme is a superspace S :=
(
|S|,OS

)
such that(

|S|,OS,0

)
is an ordinary scheme and OS,1 is a quasi-coherent sheaf of OS,0–

modules. A morphism of superschemes is a morphism of the underlying
superspaces.

Definition 2.3. Let A ∈ (salg) and let OA0 be the structural sheaf of the
ordinary scheme Spec (A0) =

(
Spec (A0),OA0

)
, where Spec (A0) denotes the

prime spectrum of the commutative ring A0 . Now A is a module over A0 ,
so we have a sheaf OA of OA0–modules over Spec (A0) with stalk Ap , the
p–localization of the A0–module A , at the prime p ∈ Spec (A0) .

We define the superspace Spec (A) :=
(
Spec (A0),OA

)
. By its very

definition Spec (A) is a superscheme.

Given f : A −→ B a superalgebra morphism, one can define Spec (f) :
Spec (B) −→ Spec (A) in a natural way, very similarly to the ordinary set-
ting, thus making Spec into a functor Spec : (salg) −→ (sets) , where (salg)
is the category of (commutative) superalgebras and (sets) the category of
sets (see [7], ch. 5, or [10], ch. 1, for more details).

Definition 2.4. We say that a superscheme X is affine if it is isomorphic
to Spec (A) for some commutative superalgebra A .

Clearly any superscheme is locally isomorphic to an affine superscheme.
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Example 2.5. The affine superspace Ap|q
k , also denoted kp|q , is defined —

for each p , q ∈ N — as Ap|q
k :=

(
Ap

k,OAp|q
k

)
, with

OAp|q
k

∣∣
U

= OAp
k

∣∣
U
⊗ k[ξ1 . . . ξq] , U open in kp

where k[ξ1 . . . ξq] is the exterior (or “Grassmann”) algebra generated by ξ1,
. . . , ξq , and OAp

k
denotes the sheaf of polynomial functions on the classical

affine space Ap
k := kp . Indeed, this is an example of affine superscheme,

because Ap|q
k

∼= Spec
(
k[x1, . . . , xp]⊗k k[ξ1 . . . ξq]

)
.

The concept of supermanifold provides another important example of su-
perspace. While our work is mainly focused on the algebraic category, we
neverthless want to briefly introduce the differential setting, since our defi-
nition of Chevalley supergroup is modelled on the differential homogeneous
one-parameter subgroups, as we shall see in section 5.

We start with an example describing the local model of a supermanifold.
Hereafter, when we speak of supermanifolds, we assume k to be R or C .

Example 2.6. We define the superspace kp|q as the topological space kp

endowed with the following sheaf of superalgebras. For any open subset

U ⊆ kp we set Okp|q(U) := Okp(U)⊗k
[
ξ1 . . . ξq

]
where Okp denotes here the

sheaf of smooth, resp. analytic, functions on kp when k = R , resp. k = C .

Definition 2.7. A supermanifold of dimension p|q is a superspace M =
(|M |,OM) which is locally isomorphic (as superspace) to kp|q ; that is, for
all x ∈ |M | there exist an open neighborhood Vx ⊂ |M | of x and an open
subset U ⊆ kp such that OM

∣∣
Vx

∼= Okp|q

∣∣
U
. A morphism of supermanifolds

is simply a morphism of superspaces. Supermanifolds, together with their
morphisms, form a category that we denote with (smflds) .

The theory of supermanifolds resembles very closely the classical theory.
More details on the basic facts of supergeometry can be found for example
in [33], Ch. 4, or in [7], Ch. 3–4. Here instead, we turn now to examine the
notion of functor of points, both in the algebraic and the differential category.

Definition 2.8. Let X be a superscheme. Its functor of points is the functor
hX : (salg) −→ (sets) defined as hX(A) := Hom

(
Spec (A) , X

)
on the

objects and as hX(f)(ϕ) := ϕ ◦ Spec (f) on the arrows. If hX is group
valued, i. e. it is valued in the category (groups) of groups, we say that
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X is a supergroup. When X is affine, this is equivalent to the fact that
O(X) — the superalgebra of global sections of the structure sheaf on X —
is a (commutative) Hopf superalgebra. More in general, we call supergroup
functor any functor G : (salg) −→ (groups) .

Any representable supergroup functor is the same as an affine supergroup:
indeed, the former corresponds to the functor of points of the latter.

Following a customary abuse of notation, we shall then use the same letter
to denote both the superscheme X and its functor of points hX .

Similarly we can define the functor of points for supermanifolds.

Definition 2.9. For any supermanifold M , we define its functor of points
hM : (smflds)◦ −→ (sets) , where (smflds)◦ denotes the opposite category to
(smflds) , as follows:

— M 7→ hM(T ) := Hom
(
T,M

)
for any object M in (smflds)◦ ,

— hM(f) : ϕ 7→ hM(f)(ϕ) := ϕ ◦ f for any arrow f ∈ Hom
(
T ′, T

)
in

(smflds)◦, and any ϕ ∈ Hom
(
T ′,M

)
.

If the functor hM is group valued we say that M is a Lie supergroup.

The importance of the functor of points is spelled out by a version of
Yoneda’s Lemma, that essentially tells us that the functor of points recap-
tures all the information carried by the supermanifold or the superscheme.

Proposition 2.10. (Yoneda’s Lemma)
Let C be a category, C◦ its opposite category, and two objects M , N in C .

Consider the functors hM : C◦−→ (sets) and hN : C◦−→ (sets) defined by
hM(T ) := Hom

(
T,M

)
, hN(T ) := Hom

(
T,N

)
on any object T in C◦ and

by hM(f)(ϕ) := ϕ ◦ f , hN(f)(ψ) := ψ ◦ f on any arrow f ∈ Hom
(
T ′, T

)
in (smflds)◦, for any ϕ ∈ Hom

(
T ′,M

)
and ψ ∈ Hom

(
T ′, N

)
.

Then there exists a one-to-one correspondence between the natural trans-
formations

{
hM −→ hN

}
and the morphisms Hom(M,N) .

This has the following immediate application to supermanifolds: two su-
permanifolds are isomorphic if and only if their functors of points are.

The same is true also for superschemes even if, with our definition of their
functor of points, this is not immediately clear. In fact, given a superscheme
X, we can give another definition of functor of points, equivalent to the pre-
vious one, as the functor from the category of superschemes to the category
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of sets, defined as T −→ Hom(T,X) . Now, Yoneda’s Lemma tells us that
two superschemes are isomorphic if and only if their functors of points are.

For more details on functors of points in the two categories, and the equi-
valence of the two given definitions in the algebraic setting, see [7], Ch. 3–5.

In the present work, we shall actually consider only affine supergroups,
which we are going to describe mainly via their functor of points.

The next examples turn out to be very important in the sequel.

Examples 2.11.

(1) Let V be a super vector space. For any superalgebra A we define
V (A) := (A⊗ V )0 = A0 ⊗ V0 ⊕ A1 ⊗ V1 . This is a representable functor
in the category of superalgebras, whose representing object is Pol(V ) , the
algebra of polynomial functions on V . Hence any super vector space can be
equivalently viewed as an affine superscheme.

(2) GL(V ) as an algebraic supergroup. Let V be a finite dimensional su-
per vector space of dimension p|q. For any superalgebra A , let GL(V )(A) :=
GL

(
V (A)

)
be the set of isomorphisms V (A) −→ V (A) . If we fix a homo-

geneous basis for V , we see that V ∼= kp|q ; in other words, V0 ∼= kp

and V1 ∼= kq . In this case, we also denote GL(V ) with GL(p|q) . Now,
GL(p|q)(A) is the group of invertible matrices of size (p + q) with diagonal
block entries in A0 and off-diagonal block entries in A1 . It is well known that
the functor GL(V ) is representable; see (e.g.), [33], Ch. 3, for further details.

(3) GL(V ) as a Lie supergroup. Let V be a super vector space of
dimension p|q over R or C . For any supermanifold T , define GL(V )(T )
as the set of isomorphisms V (T ) −→ V (T ) ; by an abuse of notation we
shall use the same symbol to denote GL in the algebraic and the differential
setting. When we are writing V (T ), we are taking V as a supermanifold,
hence V (T ) = Hom(T, V ) . By a result in [21] (§2.15, page 208), we have
that Hom(T, V ) = Hom

(
OV (V ),OT (T )

)
. If we fix a homogeneous basis for

V , Hom(T, V ) can be identified with the set of all (p+q)–uples with entries in
OT (T ), the first p entries being even and the last q odd. As before, GL(V )(T )
can be identified with the group of (p+q)×(p+q) invertible matrices, whose
diagonal blocks have entries in OT (T )0, while the off-diagonal blocks have
entries in OT (T )1 . Now again, GL(V ) is a representable functor (see [33],
Ch. 6), i.e. there exists a supermanifold — again denoted by GL(V ) — whose
functor of points is exactly GL(V ) .
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2.2 Lie superalgebras

From now on, we assume k to be such that 2 and 3 are not zero and they are
not zero divisors in k . Moreover, all k–modules hereafter will be assumed to
have no p –torsion for p ∈ {2, 3} .

Definition 2.12. Let g = g0 ⊕ g1 be a super (i.e., Z2–graded) k–module
(with no p –torsion for p ∈ {2, 3} , as mentioned above). We say that g is a
Lie superalgebra, if we have a bracket [ , ] : g× g −→ g which satisfies the
following properties (for all x, y ∈ g homogeneous):

(1) Anti-symmetry: [x, y] + (−1)p(x) p(y)[y, x] = 0

(2) Jacobi identity:

(−1)p(x) p(z) [x, [y, z]] + (−1)p(y) p(x) [y, [z, x]] + (−1)p(z) p(y) [z, [x, y]] = 0

Example 2.13. Let V = V0 ⊕ V1 be a free super k–module, and consider
End(V ) , the endomorphisms of V as an ordinary k–module. This is again a
free super k–module, End(V ) = End(V )0 ⊕ End(V )1 , where End(V )0 are
the morphisms which preserve the parity, while End(V )1 are the morphisms
which reverse the parity. If V has finite rank, and we choose a basis for V
of homogeneous elements (writing first the even ones), then End(V )0 is the
set of all diagonal block matrices, while End(V )1 is the set of all off-diagonal
block matrices. Thus End(V ) is a Lie superalgebra with bracket

[A,B] := AB − (−1)|A||B|BA for all homogeneous A,B ∈ End(V ) .

The standard example is V := kp|q = kp ⊕ kq , with V0 := kp and V1 := kq .
In this case, we also write End

(
kp|q) := End(V ) or gl(p |q) := End(V ) .

In End(V ) we can define the supertrace as follows:

str

(
A B
C D

)
:= tr(A)− tr(D) .

For the rest of this section, we assume k to be an algebraically closed
field of characteristic zero — though definitions make sense in general.

Definition 2.14. A non-Abelian Lie superalgebra g is called a classical Lie
superalgebra if it is simple, i.e. it has no nontrivial (homogeneous) ideals, and
g1 is completely reducible as a g0–module. Furthermore, g is said to be basic
if, in addition, it admits a non-degenerate, invariant bilinear form.
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Examples 2.15. (cf. [20], [27])

(1) — sl(m|n) . Define sl(m|n) as the subset of gl(m|n) all matrices with
supertrace zero. This is a Lie subalgebra of gl(m|n) , with Z2–grading

sl(m|n)0 = sl(m)⊕ sl(n)⊕ gl(1) , sl(m|n)1 = fm ⊗ f ′
n ⊕ f ′

m ⊗ fn

where fr is the defining representation of sl(r) and f ′
r is its dual (for any r ).

When m ̸= n this Lie superalgebra is a classical one.

(2) — osp(p |q) . Let ϕ denote a nondegenerate consistent supersymmet-
ric bilinear form in V := kp|q . This means that V0 and V1 are mutually
orthogonal and the restriction of ϕ to V0 is symmetric and to V1 is skewsym-
metric (in particular, q = 2n is even). We define in gl(p |q) the subalgebra
osp(p |q) := osp(p, |q)0 ⊕ osp(p |q)1 by setting, for all s ∈ {0, 1} ,

osp(p |q)s :=
{
ℓ ∈ gl(p |q)

∣∣∣ ϕ(ℓ(x), y) = −(−1)s |x| ϕ
(
x, ℓ(y)

)
∀x, y ∈ kp|q

}
and we call osp(p |q) an orthosymplectic Lie superalgebra. Again, all the
osp(p| q)’s are classical Lie superalgebras, actually Lie supersubalgebras of
gl(p |q) . Note also that osp(0| q) is the symplectic Lie algebra, while osp(p| 0)
is the orthogonal Lie algebra.

We can also describe the explicit matrix form of the elements of osp(p |q) .
First, note that, in a suitable block form, the bilinear form ϕ has matrix

ϕ =


0 Im 0 0 0
Im 0 0 0 0
0 0 1 0 0
0 0 0 0 In
0 0 0 −In 0

 , ϕ =


0 Im 0 0
Im 0 0 0
0 0 0 In
0 0 −In 0


according to whether (p, q) = (2m+1, 2n) or (p, q) = (2m, 2n) . Then,
in the block form given by the partition of rows and columns according to
(p+ q) = m+m+1+n+n or to (p+ q) = m+m+n+n (depending on the
parity of p ), the orthosymplectic Lie superalgebras osp(p |q) read as follows:

osp(p |q) = osp(2m+1|2n) =




A B u X X1

C −At v Y Y1
−vt −ut 0 zt zt1
Y t
1 X t

1 z1 D E
−Y t −X t −z F −D

 :

B = −BT

C = −CT

E = ET

F = F T


11



osp(p |q) = osp(2m |2n) =




A B X X1

C −At Y Y1
Y t
1 X t

1 D E
−Y t −X t F −D

 :

B = −BT

C = −CT

E = ET

F = F T


Moreover, if m,n ≥ 2 , then we have — with notation like in (1) — that

osp(2m+1|2n)0 = o(2m+1)⊕ sp(2n) , osp(2m|2n)0 = o(2m)⊕ sp(2n)

osp(p |2n)1 = fp ⊗ f2n ∀ p > 2 , osp(2|2n)1 = f ⊕2
2n

Definition 2.16. Define the following Lie superalgebras:

(1) A(m,n) := sl(m+1|n+1) , A(n, n) := sl(n+1|n+1)
/
kI2n , ∀ m ̸=n ;

(2) B(m,n) := osp(2m+ 1| 2n) , ∀ m ≥ 0 , n ≥ 1 ;

(3) C(n) := osp(2| 2n− 2) , for all n ≥ 2 ;

(4) D(m,n) := osp(2m| 2n) , for all m ≥ 2 , n ≥ 1 ;

(5) P (n) :=

{(
A B
C −At

)
∈ gl(n+1|n+1)

∣∣∣∣ A ∈ sl(n+1)
Bt = B , Ct = −C

}
(6) Q(n) :=

{(
A B
B A

)
∈ gl(n+1|n+1)

∣∣∣∣ B ∈ sl(n+1)

}/
kI2(n+1)

The importance of these examples lies in the following (cf. [20], [27]):

Theorem 2.17. Let k be an algebraically closed field of characteristic zero.
Then the classical Lie superalgebras over k are either isomorphic to a simple
Lie algebra or to one of the following classical Lie superalgebras:

A(m,n) , m≥n≥0 , m+n > 0 ; B(m,n) , m ≥ 0, n ≥ 1 ; C(n) , n ≥ 3

D(m,n) , m ≥ 2, n ≥ 1 ; P (n) , n ≥ 2 ; Q(n) , n ≥ 2

F (4) ; G(3) ; D(2, 1; a) , a ∈ k \ {0,−1}

(for the definition of the third line items, and for a proof, we refer to [20]).
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Remark 2.18. Let k be a commutative unital ring as at the beginning of the
section, and g a Lie k–superalgebra. A Lie supersubalgebra k of g is called
cyclic if it is generated by a single element x ∈ g : then we write k = ⟨x⟩ .

In contrast to the classical case, one has not a priori ⟨x⟩ = k.x , because
one may have [x, x] ̸= 0 . For homogeneous x ∈ g , three cases may occur:

x ∈ g0 =⇒ [x, x] = 0 =⇒ ⟨x⟩ = k.x (2.1)

x ∈ g1 , [x, x] = 0 =⇒ ⟨x⟩ = k.x (2.2)

x ∈ g1 , [x, x] ̸= 0 =⇒ ⟨x⟩ = k.x⊕ k.[x, x] (2.3)

In particular, the sum in (2.3) is direct because [x, x] ∈ g0 , and g0 ∩ g1={0} .
Moreover, this sum exhausts the Lie supersubalgebra generated by x because[
x, [x, x]

]
= 0 , by the (super) Jacobi identity. The Lie superalgebra structure

is trivial in the first two cases; in the third instead, setting y := [x, x] , it is

|x| = 1 , |y| = 0 , [x, x] = y , [y, y] = 0 , [x, y] = 0 = [y, x].

2.3 Homogeneous one-parameter supersubgroups

A one-parameter subgroup of a Lie group is the unique (connected) subgroup
K which corresponds, via Frobenius theorem, to a specific one-dimensional
Lie subalgebra k of the tangent Lie algebra g of the given Lie group G . To
describe such K one can use the exponential map, which gives K = exp(k) :
thus, k is generated by some non-zero vector X ∈ k , which actually spans k ,
and using X and the scalars in k one describes K via the exponential map.
Finally, when g is linearized and expressed by matrices, the exponential map
is described by the usual formal series on matrices exp(X) :=

∑+∞
n=0X

n
/
n! .

We shall now adapt this approach to the context of Lie supergroups.

Let G be a Lie supergroup over k (as usual, for supermanifolds we take
k = R or k = C ), and g = Lie (G) its Lie superalgebra (for the construction
of the latter, see for example [33], Ch. 6). Assume furtherly that G is em-
bedded as a supergroup into GL(V ) for some suitable supervector space V ;
in other words, G is realized as a matrix Lie supergroup. Consequently its
Lie superalgebra g is embedded into gl(V ) . As customary in supermanifold
theory, we denote with G also the functor of points of the Lie supergroup G .

13



In the differential setting, G : (smflds) −→ (groups) , G(T ) = Hom(T,G) ,
where (smflds) denotes the category of supermanifolds.

Recall that — see Definition 2.18 — in the super context the role of
one-dimensional Lie subalgebras is played by cyclic Lie subalgebras.

Definition 2.19. Let X ∈ g = Lie (G) be a homogeneous element. We
define one-parameter subgroup associated to X the Lie subgroup of G cor-
responding to the cyclic Lie supersubalgebra ⟨X⟩, generated by X in g , via
the Frobenius theorem for Lie supergroups (see [33], Ch. 4, and [7], Ch. 4).

Now we describe these one-parameter subgroups. Fix a supermanifold
T , and set A := O(T ) (the superalgebra of global sections). Let t ∈ A0 ,
θ ∈ A1 , and X ∈ g0 , Y ∈ g1 , Z ∈ g0 such that [Y, Z] = 0 . We define

exp
(
tX

)
:=

+∞∑
n=0

tnXn
/
n! = 1 + tX +

t2

2!
X2 + · · · ∈ GL

(
V (T )

)
(2.5)

exp
(
ϑY

)
:= 1 + ϑY ∈ GL

(
V (T )

)
(2.6)

exp
(
t Z + ϑY

)
:= exp

(
t Z

)
· exp

(
ϑY

)
= exp

(
ϑY

)
· exp

(
t Z

)
=

= exp
(
t Z

)
·
(
1 + ϑY

)
=

(
1 + ϑY

)
· exp

(
t Z

)
∈ GL

(
V (T )

)
(2.7)

All these expressions single out well-defined elements in GL
(
V (T )

)
. In par-

ticular, exp
(
tX

)
in (2.5) belongs to the subgroup of GL

(
V (T )

)
whose ele-

ments are all the block matrices whose off-diagonal blocks are zero. This is
the standard group of matrices GL

(
A0⊗V0

)
×GL

(
A1⊗V1

)
, and exp

(
tX

)
is defined inside here as the usual exponential of a matrix.

More in general, one can define the matrix exponential as a natural trans-
formation between the functors of points of the Lie superalgebra g and of the
Lie supergroup G ; see also [3], Part II, Ch. 2, for yet another approach. Our
interest lies in the algebraic category, so we do not pursue this point of view.

Note that the set exp
(
A0X

)
=

{
exp

(
tX

) ∣∣ t ∈ A0

}
is clearly a sub-

group of G , once we define, very naturally, the multiplication as

exp
(
tX

)
· exp

(
sX

)
= exp

(
(t+ s)X

)
On the other hand, if we consider the same definition for exp

(
A1 Y

)
:={

exp
(
ϑY

) ∣∣ϑ∈A1

}
, we see it is not a subgroup, in fact,

exp
(
ϑ1 Y

)
· exp

(
ϑ2 Y

)
=

(
1+ϑ1 Y

) (
1+ϑ2 Y

)
= 1+ϑ1 Y+ϑ2 Y+ϑ1ϑ2 Y

2
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formally in the universal enveloping algebra, while on the other hand:

exp
(
(ϑ1 + ϑ2)Y

)
= 1 +

(
ϑ1 + ϑ2

)
Y = 1 + ϑ1 Y + ϑ2 Y

So, recalling that Y 2 = [Y, Y ]
/
2 , we see that exp

(
A1 Y

)
is a subgroup if

and only if [Y, Y ] = 0 or ϑ1 ϑ2 = 0 for all ϑ1, ϑ2 ∈ A1 . This reflects the
fact that the k–span of X ∈ g0 is always a Lie supersubalgebra of g , but
the k–span of Y ∈ g1 is a Lie supersubalgebra iff [Y, Y ] = 0 , by (2.1–3).

Thus, taking into account (2.3), when [Y, Y ] ̸= 0 we must consider
exp

(
⟨Y ⟩(T )

)
= exp

(
A1 Y + A0 Y

2
)
, as the one-parameter subgroup cor-

responding to the Lie supersubalgebra ⟨Y ⟩ . The outcome is the following:

Proposition 2.20. There are three distinct types of one-parameter subgroups
associated to an homogeneous element in g . Their functor of points are:

(a) for any X ∈ g0 , we have

xX(T ) =
{
exp(tX)

∣∣ t ∈ OT (T )0
}

= k1|0(T ) = Hom
(
C∞(R),OT (T )

)
(b) for any Y ∈ g1 , [Y, Y ] = 0 , we have

xY (T ) =
{
exp(ϑY ) = 1 + ϑY

∣∣ϑ ∈ OT (T )1
}

=

= k0|1(T ) = Hom
(
k[ξ],OT (T )

)
(c) for any Y ∈ g1 , Y

2 := [Y, Y ]
/
2 ̸= 0 , we have

xY (T ) =
{
exp

(
t Y 2 + ϑY

) ∣∣ t ∈ OT (T )0 , ϑ ∈ OT (T )1
}

=

= k1|1(T ) = Hom
(
C∞(R)[ξ],OT (T )

)
where C∞(R) denotes the global sections of the differential functions on R
— if k = R ; if k = C instead we shall similarly take analytic functions.

In cases (a) and (b) the multiplication structure is obvious, and in case
(c) it is given by (t, ϑ) ·

(
t′, ϑ′) =

(
t+ t′ − ϑϑ′ , ϑ+ ϑ′ ) .

Proof. The case (a), namely when X is even, is clear. When instead X is odd
we have two possibilities: either [X,X] = 0 or [X,X] ̸= 0 . The first pos-
sibility corresponds, by Frobenius theorem, to a 0|1–dimensional subgroup,
whose functor of points, one sees immediately, is representable and of the
form (b). Let us now examine the second possibility. The Lie subalgebra
⟨X⟩ generated by X is of dimension 1|1, by (2.3); thus by Frobenius theorem
it corresponds to a Lie subgroup of the same dimension, isomorphic to k1|1.
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Now we compute the group structure on this k1|1 , using the usual functor
of points notation to give the operation of the supergroup. For any commu-
tative superalgebra A , we have to calculate t′′ ∈ A0 , ϑ

′′ ∈ A1 such that

exp
(
tX2 + ϑX

)
· exp

(
t′X2 + ϑ′X

)
= exp

(
t′′X2 + ϑ′′X

)
where t, t′ ∈ A0 , ϑ, ϑ

′ ∈ A1 . The direct calculation gives

exp
(
tX2 + ϑX

)
· exp

(
t′X2 + ϑ′X

)
=

=
(
1 + ϑX

)
exp

(
tX2

)
· exp

(
t′X2

) (
1 + ϑ′X

)
=

=
(
1 + ϑX

)
exp

(
(t+ t′)X2

) (
1 + ϑ′X

)
=

= exp
(
(t+ t′)X2

) (
1 + ϑX

) (
1 + ϑ′X

)
=

= exp
(
(t+ t′)X2

) (
1 + (ϑ+ ϑ′)X − ϑϑ′X2

)
=

= exp
(
(t+ t′)X2

) (
1− ϑϑ′X2

) (
1 + (ϑ+ ϑ′)X

)
=

= exp
(
(t+ t′)X2

)
exp

(
− ϑϑ′X2

) (
1 + (ϑ+ ϑ′)X

)
=

= exp
(
(t+ t′ − ϑϑ′)X2

) (
1 + (ϑ+ ϑ′)X

)
=

= exp
(
(t+ t′ − ϑϑ′)X2 + (ϑ+ ϑ′)X

)
where we use several special properties of the formal exponential.

Remark 2.21. The supergroup structure on k1|1 in Proposition 2.20(c) was
introduced in [8]. See also [26], §6.5 and §9.6 for a treatment of one-parameter
(super)subgroups in a differential setting (with the same outcome as ours).

3 Chevalley bases and Chevalley algebras

Let our ground ring be an algebraically closed field K of characteristic zero.

Let us assume g to be a classical Lie superalgebra: the whole construction
will clearly extend to any direct sum of finitely many summands of this type.
We now prove that g has a very remarkable basis, the analogue of what
Chevalley found for finite dimensional (semi)simple Lie algebras.
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3.1 Root systems

Fix once and for all a Cartan subalgebra h of g0 . The adjoint action of h
splits g into eigenspaces, namely gα :=

{
x ∈ g

∣∣ [h, x] = α(h)x , ∀ h∈ h
}

(for any α ∈ h∗ ), so that g =
⊕

α∈h∗ gα . Then we define

∆0 :=
{
α ∈ h∗ \ {0}

∣∣ gα ∩ g0 ̸= {0}
}

= { even roots of g }
∆1 :=

{
α ∈ h∗

∣∣ gα ∩ g1 ̸= {0}
}

= { odd roots of g }
∆ := ∆0 ∪∆1 = { roots of g }

∆ is called the root system of g , and each gα is called a root space.
In particular, ∆0 is the root system of the (reductive) Lie algebra g0 , and

∆1 is the set of weights of the representation of g0 in g1 .

If g is not of type P (n) nor Q(n), there is an even non-degenerate, invari-
ant bilinear form on g , whose restriction to h is in turn an invariant bilinear
form on h . If instead g is of type P (n) or Q(n), then such a form on h exists
because g0 is simple (of type An). In any case, we denote this form by

(
x, y

)
,

and we use it to identify h∗ to h, via α 7→ Hα , and then to define a similar
form on h∗, such that

(
α′, α′′) =

(
Hα′ , Hα′′

)
. Each Hα is called the coroot

associated to α ; these coroots can be explicitly described as in [18], §2.5; in
particular, one has α(Hα) = 2 whenever (α, α) ̸= 0 .

For g of type P (n) we shall adopt the following abuse of notation. For
any even root αi,j (notation of [13], §2.48), by Hαi,j

we shall mean the coroot
mentioned above; for any odd root βi,j instead, we shall set Hβi,j

:= Hαi,j
.

The main properties of the root system of g are collected in the following:

Proposition 3.1. (see [20, 27, 28]) Assume g is classical, and n ∈ N .

(a) g ̸= Q(n) =⇒ ∆0 ∩∆1 = ∅ , g = Q(n) =⇒ ∆1 = ∆0 ∪ {0} .

(b) −∆0 = ∆0 , −∆1 ⊆ ∆1 . If g ̸= P (n) , then −∆1 = ∆1 .

(c) Let g ̸= P (2) , and α, β ∈ ∆ , α = c β , with c ∈ K \ {0} . Then
α, β ∈ ∆r (r = 0, 1) ⇒ c = ±1 , α ∈ ∆r , β ∈ ∆s , r ̸= s ⇒ c = ±2 .

(d) If g ̸∈
{
A(1, 1) , P (3) , Q(n)

}
, then dimK(gα) = 1 for each α ∈ ∆ .

As for the remaining cases, one has:

• If g = A(1, 1) , then dimK(gα) = 1+r for each α ∈ ∆r ;
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• If g = P (3) , then dimK(gα) = 1 for α ∈ ∆0 ∪
(
∆1 \ (−∆1)

)
, and

dimK(gα) = 2 for α ∈ ∆1 ∩ (−∆1) ;

• If g = Q(n) , then dimK
(
gα ∩ gi

)
= 2 for α ∈ ∆ \ {0} , i ∈ {0, 1} ,

and dimK
(
gα=0 ∩ gi

)
= n for i ∈ {0, 1} , with gα=0 ∩ g0 = h .

We fix a distinguished simple root system for g , say Π = {α1, . . . , αℓ} ,
as follows. If g ̸∈

{
A(1, 1), P (3), Q(n)

}
, we take as Π a subset of ∆ in which

αi ∈ ∆0 for all but one index i , and such that any α ∈ ∆ is either a sum
of some αi’s — then it is called positive — or the opposite of such a sum
— then it is called negative (when g is basic, fixing Π is equivalent to fix
a special triangular decomposition g = n− ⊕ h ⊕ n+ ; see [13], §2.45). If
g = Q(n) , then ∆ = ∆0 ∪ {0} , we take as Π any simple root system of
∆0 , and we define positive and negative roots accordingly, letting the special
odd root ζ0 = 0 be (by definition) both positive and negative. Finally, if
g ∈

{
A(1, 1), P (3)

}
, then there exist linear dependence relations among the

αi’s, so that any odd root which is negative can also be seen as positive; we
shall then deal with these cases in a different way.

As for notation, we denote by ∆+, resp. ∆−, the set of positive, resp. neg-
ative, roots; also, we set ∆±

r := ∆± ∩∆r for r ∈ {0, 1} . Finally, we define:

Definition 3.2. Given α, β ∈ ∆ , we call α–string through β the set

Σα
β :=

{
β − r α , . . . , β − α , β , β + α , . . . , β + q α

} (
⊂ h∗

)
with r, q ∈ N uniquely determined by the conditions

(
β − (r + 1)α

)
̸∈ ∆ ,(

β + (q + 1)α
)
̸∈ ∆ , and (β + j α) ∈ ∆ ∪ {0} for all −r ≤ j ≤ q .

One knows — cf. for instance [28] — that Σα
β ⊆ ∆ ∪ {0} . Indeed, one

has 0 ∈ Σα
β if and only if α ∈

{
± 2β , ±β , ±β/2

}
.

3.2 Chevalley bases and algebras

The key result of this subsection is an analogue, in the super setting, of a
classical result due to Chevalley. It is the starting point we shall build upon
later on. We keep the notation and terminology of the previous subsections.

From now on, we shall consider g to be classical but not of any of the
following types: A(1, 1) , P (3) , Q(n) or D(2, 1; a) with a ̸∈ Z . The cases A–
P–Q will be treated separately in §6; the case D(2, 1; a) with a ̸∈ Z instead
is dealt with in [14].
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Definition 3.3. Let g be a classical Lie superalgebra as above. We call
Chevalley basis of g any homogeneous K–basis B =

{
Hi

}
1,...,ℓ

⨿{
Xα

}
α∈∆

such that:

(a)
{
H1, . . . , Hℓ

}
is a K–basis of h ; moreover, with Hα∈ h as in §3.1,

hZ := SpanZ
(
H1, . . . , Hℓ

)
= SpanZ

({
Hα

∣∣α∈∆∩(−∆)
})

;

(b)
[
Hi , Hj

]
= 0 ,

[
Hi , Xα

]
= α(Hi)Xα , ∀ i, j∈{1, . . . , ℓ } , α∈∆ ;

(c)
[
Xα , X−α

]
= σαHα ∀ α ∈ ∆ ∩ (−∆)

with Hα as in §3.1, and σα := −1 if α ∈ ∆−
1 , σα := 1 otherwise;

(d)
[
Xα , Xβ

]
= cα,β Xα+β ∀ α, β ∈ ∆ : α ̸= −β , β ̸= −α , with

(d.1) if (α+ β) ̸∈ ∆ , then cα,β = 0 , and Xα+β := 0 ,

(d.2) if
(
α, α

)
̸= 0 or

(
β, β

)
̸= 0 , and (cf. Definition 3.2) if Σα

β :={
β − r α , . . . , β + q α

}
is the α–string through β , then cα,β = ±(r+ 1) ,

with the following exceptions: if g = P (n) , with n ̸= 3 , and α = βj,i ,
β = αi,j (notation of [13], §2.48, for the roots of P (n)), then cα,β = ±(r+2) ;

(d.3) if
(
α , α

)
= 0 =

(
β , β

)
, then cα,β = ±β

(
Hα

)
.

N.B.: this definition clearly extends to direct sums of finitely many g’s.

Remarks 3.4.

(1) Our definition extends to the super setup the same name notion for
(semi)simple Lie algebras. For type A it was essentially known as “folklore”,
but we cannot provide any reference. In the orthosymplectic case (types B ,
C and D ) it was considered, in weaker form, in [30]. More in general, it was
previously introduced in [18] for all basic types, i.e. missing types P and Q .

N.B.: when reading [18] for G(3) one should do a slight change, namely
use the Cartan matrix — and Dynkin diagram, etc. — as in Kac’s paper [20].

(2) If B is a Chevalley basis of g , the definition implies that all structure
coefficients of the (super)bracket in g w.r.t. B belong to Z .

Definition 3.5. If B is a Chevalley basis of g , we set gZ := Z–span of B ,
and we call it the Chevalley superalgebra (of g).
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Remarks 3.6.

(1) By Remark 3.4(2), gZ is a Lie superalgebra over Z . One can check
that a Chevalley basis B is unique up to a choice of a sign for each root
vector and the choice of the Hi’s: thus g

Z is independent of the choice of B .

(2) With notation as in Definition 3.3(e), let g be of type A, B, C,
D or P . Then if

(
α , α

)
= 0 =

(
β , β

)
one has β

(
Hα

)
= ±(r+1) ,

with the following exceptions: if g = osp(M |2n) with M ≥ 1 (i.e. g is
orthosymplectic, not of type B(0, n) ) and — with notation of [13], §2.27 —

(α, β) = ±
(
εi + δj , −εi + δj

)
or (α, β) = ±

(
εi − δj , −εi − δj

)
then β

(
Hα

)
= ±(r+2) . Therefore: If g is of type A, B, C, D or P , then

condition (d.3) in Definition 3.3 reads just like (d.2), with the handful of
exceptions mentioned before.

(3) For notational convenience, in the following we shall also set Xδ := 0
whenever δ belongs to the Z–span of ∆ but δ ̸∈ ∆ .

3.3 Existence of Chevalley bases

The existence of a Chevalley basis for the types A, B, C, D is a more or
less known result; for example an (almost) explicit Chevalley basis for types
B , C and D can be found in [30]. More in general, an (abstract) existence
result, with a uniform proof, is given in [18] for all basic types — thus missing
the strange types, P and Q . In this section we present an existence theorem
which covers all cases, i.e. including both basic and strange cases: our proof
is constructive, in that we explicitly present a concrete Chevalley basis, for
all cases but F (4) and G(3) — for which we refer to [18] — by a case-by-case
analysis. A sketch of a uniform proof is presented in Remark 3.8 later on.

Theorem 3.7. Every classical Lie superalgebra has a Chevalley basis.

Proof. The proof is case-by-case, by direct inspection of each type. Only
cases A(1, 1) , P (3) , Q(n) are postponed to §6.

In general, for the root vectors Xα’s, we must carefully fix a proper nor-
malization. For the Hi’s in the Chevalley basis, belonging to h , one sees
that, in the basic cases, one can almost always take simple coroots (for a
distinguished system of simple roots); case P (n) is just slightly different.
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We call g our classical Lie superalgebra. As a matter of notation, from
now on we denote by ei,j :=

(
δh,i δk,j

)
h,k=1,...,r+s

for all i, j ∈ {1, . . . ,m+n} ,
the elementary matrix in gl(r|s) with a 1 in position (i, j) and 0 elsewhere.

A(m,n) , m ̸= n : In this case g = sl(m+1|n+1) ⊆ gl(m+1|n+1) .

We fix the distinguished simple root system Π := {α1, . . . , αm+n+1} with
αi := εi− εi+1

(
i = 1, . . . ,m

)
, αm+1 := εm+1− δ1 , αm+1+j := δj − δj+1

(
j =

1, . . . , n
)
, using standard notation (like in [13], say). Then we define the

Hk’s as Hk := Hαk
= ek,k − ek+1,k+1 for k ̸∈ {m+1,m+n+2 } , and

Hm+1 := Hαm+1 = em+1,m+1 + em+2,m+2 . For the root vectors Xα’s instead
we just take all the ei,j’s with i ̸= j . It is then a routine matter to check
that these vectors form a Chevalley basis.

A(n, n) : In this case g = sl(n+1|n+1)
/
K I2(n+1) . Keeping notation

as above, we set x := x+K I2(n+1) in sl(n+1|n+1)
/
K I2(n+1) = g . Then

I2(n+1) =
∑n

i=1 iHi + (n+1)Hn+1 −
∑n

j=1 j H2(n+1)−j , so that we have∑n
i=1 iH i + (n+1)Hn+1 −

∑n
j=1 j H2(n+1)−j = 0

a Z–linear dependence relation among simple coroots which reflects a similar
relation among simple roots; thus we can get H2n+1 from the other simple
coroots. Then

{
H i

}
i=1,...,2n

∪ {
X i,j

}
i̸=j

is a K–basis of g which satisfies

all properties in Definition 3.3.

B(m,n) , C(n) , D(m,n) , m ̸= n : Here g = osp(M |N) ⊆ gl(M |N)

for some M ∈ N , which is odd, zero or even positive according to whether
we are in case B, C or D respectively, and some even N ∈ N . Then M ∈
{2m + 1, 2m} and N = 2n for suitable m,n ∈ N . In any case, g is an
orthosymplectic Lie superalgebra, and we can describe all cases at once.

With notation as before, we consider the following root vectors (for all
1 ≤ i, j ≤ m , M + 1 ≤ i′, j′ ≤M + n ):

E+εi−εj := ei,j − ej+m,i+m , E−εi+εj := ei+m,j+m − ej,i
(
i < j

)
E+εi+εj := ei,j+m − ej,i+m , E−εi−εj := ej+m,i − ei+m,j

(
i < j

)
E+εi := +

√
2
(
ei,2m+1 − e2m+1,i+m

)
, E−εi := −

√
2
(
ei+m,2m+1 − e2m+1,i

)
E+δi′−δj′

:= ei′,j′−ej′+n,i′+n , E−δi′+δj′
:= ei′+m,j′+m−ej′,i′

(
i′ < j′

)
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E+δi′+δj′
:= ei′,j′+n+ej′,i′+n , E−δi′−δj′

:= ei′+n,j′ +ej′+n,i′
(
i′ ̸= j′

)
E+2 δi′ := ei′,i′+n , E−2 δi′ := ei′+n,i′

E+εi+δj′
:= ei,j′+n + ej′,i+n , E−εi−δj′

:= ei+m,j′ − ej′+m,i

E+εi−δj′ := ei,j′ − ej′+n,i+m , E−εi+δj′ := ei+m,j′+n + ej′,i

E+δj′ := +
√
2
(
e2m+1,j′+n+ej′,2m+1

)
, E−δj′ := −

√
2
(
ej′+n,2m+1−e2m+1,j′

)
where ±(εi ± εj) , ±εi , ±(δi′ ± δj′) , ±2δi′ , ±(εi ± δj′) , ±δj′ are the roots
of the orthosymplectic Lie superalgebra g as in [13], §2.27.

The Hi’s are just Hα, with α ∈ Π′
g where Π′

g is chosen as follows:

Π′
B(m,n) :=

{
δ1 − δ2 , . . . , δn−1 − δn , 2δn , ε1 − ε2 , . . . , εm−1 − εm , εm

}
if m ̸= 0 ,

Π′
B(0,n) :=

{
δ1 − δ2 , . . . , δn−1 − δn , 2 δn

}
Π′

C(n) :=
{
ε1 , δ1 − δ2 , . . . , δn−2 − δn−1 , 2 δn−1

}
Π′

D(m,n) :=
{
δ1− δ2 , . . . , δn−1− δn , . . . , 2δn , ε1− ε2 , . . . , εm−1− εm , εm−1+ εm

}
(using standard notation). Note that in all cases but B(0, n) the chosen Π′

g

is just a distinguished set of simple roots. Setting j′ := M+ j = 2m+ 1 ,
with m = 1 in case C(n) , the corresponding coroots are

Hδj−δj+1
:=

(
ej′,j′ − ej′+n,j′+n

)
−
(
ej′+1,j′+1 − ej′+1+n,j′+1+n

)
in all cases

Hεi−εi+1
:=

(
ei,i − ei+m,i+m

)
−

(
ei+1,i+1 − ei+1+m,i+1+m

)
in all cases

H2 δn :=
(
en′,n′ − en′+n,n′+n

)
in all cases

Hε1 :=
(
e1,1 − e2,2

)
for C(n)

H2 δn−1 :=
(
e(n−1)′, (n−1)′ − e(n−1)′+n, (n−1)′+n

)
for C(n)

Hεm−1+εm :=
(
em−1,m−1− em−1+m,m−1+m

)
+
(
em,m− em+m,m+m

)
for D(m,n)

Now, a Chevalley basis is formed by the root vectors Xα := Eα and the
Cartan generators (simple coroots) Hα as above: the verification follows by
a careful, yet entirely straightforward, calculation.

F (4) , G(3) : See [18], Theorem 3.9 (which applies to every basic type).

D(2, 1; a) , a ∈ Z : Recall that g = D(2, 1; a) is a contragredient Lie
superalgebra. To describe it, we fix a specific choice of Dynkin diagram and
corresponding Cartan matrix, like in [13], §2.28 (first choice), namely
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2

⃝−−
1
−−−

1⊗
−−

a
−−−

3

⃝ ,
(
ai,j

)
i,j=1,2,3;

:=

 0 1 a
−1 2 0
−1 0 2


Then g = D(2, 1; a) is defined as the Lie superalgebra over K with generators
hi , ei , fi (i = 1, 2, 3) , with degrees p(hi) := 0 , p(ei) := δ1,i , p(fi) :=
δ1,i (i = 1, 2, 3) , and with relations (for all i, j = 1, 2, 3 )[

hi, hj
]
= 0 ,

[
e1, e1

]
= 0 ,

[
f1, f1

]
= 0 ,[

hi, ej
]
= +ai,j ej ,

[
hi, fj

]
= −ai,j fj ,

[
ei, fj

]
= δi,j hi .

Moreover, the root system is given by ∆− = −∆+ and

∆+ = {α1 , α2 , α3 , α1 + α2 , α1 + α3 , α1 + α2 + α3 , 2α1 + α2 + α3}

Now we introduce the following elements:

e1,2 :=
[
e1, e2

]
, e1,3 :=

[
e1, e3

]
, e1,2,3 :=

[
e1,2, e3

]
, e′1,1,2,3 :=

[
e1, e1,2,3

]
f2,1 :=

[
f2, f1

]
, f3,1 :=

[
f3, f1

]
, e3,2,1 :=

[
f3, f2,1

]
, f ′

3,2,1,1 :=
[
f3,2,1, f1

]
All these are root vectors, say e1=Xα1 , f3,1=X−(α1+α3) , e1,2,3=Xα1+α2+α3 ,
and so on. These, together with the original generators, do form a K–basis
of g . The relevant new brackets among all these basis elements — dropping
the zero ones, those coming from others by (super-)skewcommutativity, and
those involving the hi’s (which are given by the fact that the e•’s and the
f•’s are root vectors, involving all roots of g ) — are the following:[

e1, e2
]
= e1,2 ,

[
e1, e3

]
= e1,3 ,

[
e1, e1,2,3

]
= e′1,1,2,3[

e1, f2,1
]
= f2 ,

[
e1, f3,1

]
= a f3 ,

[
e1, f

′
3,2,1,1

]
= −(1+a)f3,2,1[

e2, e1,3
]
= −e1,2,3 ,

[
e2, f2,1

]
= f1 ,

[
e2, f3,2,1

]
= f3,1[

e3, e1,2
]
= −e1,2,3 ,

[
e3, f3,1

]
= f1 ,

[
e3, f3,2,1

]
= f2,1[

f1, f2
]
= −f2,1 ,

[
f1, f3

]
= −f3,1 ,

[
f1, f3,2,1

]
= f ′

3,2,1,1[
f1, e1,2

]
= e2 ,

[
f1, e1,3

]
= a e3 ,

[
f1, e

′
1,1,2,3

]
= (1+a) e1,2,3[

f2, f3,1
]
= f3,2,1 ,

[
f2, e1,2

]
= −e1 ,

[
f2, e1,2,3

]
= −e1,3
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[
f3, f2,1

]
= f3,2,1 ,

[
f3, e1,3

]
= −e1 ,

[
f3, e1,2,3

]
= −e1,2[

e1,2, e1,3
]
= −e′1,1,2,3 ,

[
e1,2, f2,1

]
= h1−h2 ,[

e1,2, f3,2,1
]
= a f3 ,

[
e1,2, f

′
3,2,1,1

]
= (1+a)f3,1[

e1,3, f3,1
]
= h1−ah3 ,

[
e1,3, f3,2,1

]
= f2 ,

[
e1,3, f

′
3,2,1,1

]
= (1+a)f2,1[

f2,1, f3,1
]
= −f ′

3,2,1,1 ,
[
f2,1, e1,2,3

]
= a e3 ,

[
f2,1, e

′
1,1,2,3

]
= −(1+a) e1,3[

f3,1, e1,2,3
]
= e2 ,

[
f3,1, e

′
1,1,2,3

]
= −(1+a) e1,2[

e1,2,3, f3,2,1
]
= h1−h2−ah3 ,

[
e1,2,3, f

′
3,2,1,1

]
= −(1+a)f1 ,[

f3,2,1, e
′
1,1,2,3

]
= −(1+a) e1 ,

[
e′1,1,2,3, f

′
3,2,1,1

]
= −(1+a)

(
2h1−h2−ah3

)
Now we modify just two root vectors taking (recall a ̸= −1 by assumption)

e1,1,2,3 := +(1+a)−1 e′1,1,2,3 , f3,2,1,1 := −(1+a)−1f ′
3,2,1,1 ;

then the above formulas has to be modified accordingly (many coefficients
(1+a) cancel out). Looking at the final outcome it is then easy to check that

B :=
{
Hi , ei , fi

}
i=1,2,3

∪{
e1,2 , e1,3 , e1,2,3 , e1,1,2,3 , f2,1 , f3,1 , f3,2,1 , f3,2,1,1

}
with H1 := h1 , H2 := (1+ a)−1(2h1−h2−ah3) , H3 := h3 , is indeed a
Chevalley basis for g = D(2, 1; a) .

P (n) , n ̸= 3 : We fix the distinguished set of even simple roots

Π′
P (n) :=

{
ε1 − ε2 , . . . , εn−1 − εn , εn − εn+1 , 2 εn+1

}
and the corresponding even (simple) coroots, which are Hi := Hεi−εi+1

=(
ei,i − ei+1,i+1

)
−

(
ei+n+1,i+n+1 − ei+1+n+1,i+1+n+1

)
( ∀ 1≤ i≤ n ), Hn+1 :=

H2 εn+1 =
(
en+1,n+1 − e2(n+1),2(n+1)

)
. As root vectors (the odd roots being

±βi,j := ±(εi + εj) ∀ i ̸= j , and γi := 2 εi ∀ i , as in [13], §2.48) we take

(even) Eαi,j
:= ei,j − en+1+j,n+1+i ∀ 1 ≤ i ̸= j ≤ n

(odd) Eγi := ei,n+1+i ∀ 1 ≤ i ≤ n+ 1

(odd) E+βi,j
:= ei,n+1+j + ej,n+1+i =: E+βj,i

∀ 1 ≤ i < j ≤ n

(odd) E−βi,j
:= en+1+j,i − en+1+i,j =: −E−βj,i

∀ 1 ≤ i < j ≤ n

Direct check shows that the above elements Hi and root vectors form a basis
as required. This follows from the commutation formulas in [13], §2.48, which
only need the following correction:

[
Eαi,j

, Eβi,j

]
= 2Eγi (i ̸=j).
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Remark 3.8. A uniform proof of Theorem 3.7.
We sketch here, quite roughly (and up to some details) another possible

proof of Theorem 3.7, kindly suggested by the referee. This works by a uni-
form argument for all basic cases — like in [18], but with different arguments
— and can also be adopted again (once the definition of Chevalley basis is
set up) for the strange case Q(n) as well. Thus in the end only the strange
case P (n) is left apart: therefore, we assume hereafter that g is of basic type.

To begin with, for the Hi’s in the Chevalley basis (belonging to h) one
proceeds like in the proof above. For the even root vectors Xα (α ∈ ∆0)
one takes them as they are given in a “standard” Chevalley basis of the Lie
algebra g0 — with easy adaptations when g0 is reductive. Finally, for the odd
root vectors Xβ (β ∈ ∆1) one of course has to choose each one of them in the
root space gβ , which is one-dimensional, yet then one also must carefully fix
a proper normalization to get integral coefficients in the expression for the
Lie brackets.

As a first step, note that in all basic cases the g0–module g1 is a direct
sum of simple g0–modules whose highest weight is minuscule (or “nonzero
minimal dominant” in Humphreys’ terminology, cf. [17], §13, exercise 13).

Now, a simple g0–module V (λ) with minuscule highest weight λ is as
follows (cf. [19], Ch. 5A.1). First, the set of weights of such a V (λ) is just
W.λ , the W–orbit of λ , where W is the Weyl group of g0 . Then each weight
space V (λ)µ in V (λ) is one-dimensional, hence given by a single basis vector
vµ so that V (λ)µ = K vµ . Thus we start with a K–vector space V having

basis
{
vµ
}
µ∈W.λ

: then a g0–module structure on V , for which it has highest

λ , is given by the following simple formulas:

H.vµ := µ(H) vµ , ∀ H ∈ h , ∀ µ ∈ W.λ

X+α.vµ := 0 , X−α.vµ := 0 , ∀ α ∈ ∆+
0 , µ ∈ W.λ : µ(Hα) = 0

X+α.vµ := 0 , X−α.vµ := vµ−α , ∀ α ∈ ∆+
0 , µ ∈ W.λ : µ(Hα) = +1 (3.1)

X+α.vµ := vµ+α , X−α.vµ := 0 , ∀ α ∈ ∆+
0 , µ ∈ W.λ : µ(Hα) = −1

We now shall use these remarks in order to construct at the same time
an isomorphic copy of g and a Chevalley basis inside it.

First, we know that g1 as an h–module splits into g1 = ⊕β∈∆1gβ where
each odd root space gβ is one-dimensional. Now we fix a nonzero vector
yβ ∈ gβ\ {0} for each β ∈ ∆1 : we shall find our odd root vector Xβ in the

25



Chevalley basis by a suitable normalization of yβ , which is fixed by imposing
relations (c) and (d) in Definition 3.3.

Now note that [ yβ , y−β] ∈ h . Let us call H(β) := [ yβ , y−β]. Therefore,
for all α ∈ ∆0 one has[

Xα, [ yβ , y−β]
]
=

[
Xα , H(β)

]
= −α

(
H(β)

)
Xα

while the Jacobi identity yields[
Xα , [ yβ , y−β]

]
=

[
[Xα , yβ] , y−β

]
+
[
yβ , [Xα , y−β]

]
= 0

when α(Hb) = β(Hα) = 0 , since in that case one has (α ± β) ̸∈ ∆ . This
means that α

(
H(β)

)
= 0 ⇐⇒ α(Hβ) = 0 , so that H(β) is a scalar

multiple of Hβ , say H(β) = nβ Hβ for some nβ ∈ K ; moreover, one has
nβ ̸= 0 as the same analysis gives

[
Xα , [ yβ , y−β]

]
̸= 0 when β(Hα) ̸= 0 .

Therefore, we shall fix our odd root vectors Xβ (β ∈ ∆1) as given by

Xβ := n
−1/2
β yβ (which makes sense because K is algebraically closed): it

follows that
[
Xβ , X−β

]
= Hβ , so relations (c) in Definition 3.3 do hold.

Now we modify the Lie superalgebra structure on g , keeping the same
vector space structure but changing the Lie bracket [ , ] as follows. We keep
[ , ] untouched when restricted to g0 (hence g0 keeps the same Lie algebra
structure) and to g1 , i.e. when computed on elements which are homogeneous
of the same parity. On the other hand, we modify the bracket on elements
of different parities, simply by re-defining the (adjoint) action of g0 onto g1
using formulas (3.1) with the Xβ’s playing the role of the vµ’s. In other
words, we (re)normalize the g0–action on g1 , so to have an isomorphic copy
g′1 of the g0–module g1 , whose structure is described by (3.1) with the Xβ’s
replacing the vµ’s.

In addition, the Lie bracket of g defines on the g0–module g1 a g0–valued,
symmetric bilinear form ψ : (η , ζ) 7→ ψ(η , ζ) := [ η , ζ ] , for which the
Jacobi identity reads

x.ψ(η , ζ) = ψ(x.η , ζ) + ψ(η , x.ζ) ∀ x ∈ g0 , η, ζ ∈ g1 (3.2)

(where the g0–action on g0 itself is again the adjoint action). Using any

g0–module isomorphism Φ : g1
∼=−→ g′1 , we define a form ψ′ : g′1 × g′1 −→ g0

by ψ′ := ψ ◦ Φ×2 which again will enjoy the similar properties as in (3.2).
Then the formula

[
η′, ζ ′

]
:= ψ′(η′, ζ ′) — for all η′, ζ ′ ∈ g′1 — defines a

g0–valued bracket on g′1 : along with the g0–action on g′1 and the Lie bracket
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on g0 itself, this uniquely determines an overall bracket on g′ := g0⊕ g′1 . By
construction, g′ with this bracket is a Lie superalgebra isomorphic to g .

Finally, we still have to check that the new odd root vectors Xβ we chose
do satisfy — for the Lie superalgebra g′ — conditions (d) in Definition 3.3.
This follows by direct check: indeed, if γ, δ ∈ ∆1 with γ + δ ̸= 0 then we
have [Xγ , Xδ] = cγ,δXγ+δ for some cγ,δ ∈ K , and so[

X−(γ+δ) , [Xγ , Xδ]
]
= cγ,δ

[
X−(γ+δ) , Xγ+δ

]
= cγ,δH−(γ+δ) (3.3)

On the other hand, the Jacobi identity gives[
X−(γ+δ) , [Xγ , Xδ]

]
=

[
[X−(γ+δ) , Xγ] , Xδ

]
+

[
Xγ , [X−(γ+δ) , Xδ]

]
=

= [X−δ , Xδ] + [Xγ , X−γ] = −H−δ +Hγ = Hδ +Hγ = Hγ+δ = −H−(γ+δ)

Comparing with (3.3), this gives cγ,δ = −1 , which actually proves that the
conditions required in Definition 3.3(d) actually do hold.

Tiding everything up, we eventually find that — by construction — the
new odd root vectors actually complete our Chevalley basis, q.e.d.

4 Kostant superalgebras

Let K be an algebraically closed field of characteristic zero.

Throughout this section we assume g to be a classical Lie superalgebra,
with g not of type A(1, 1), P (3), Q(n) or D(2, 1; a) with a ̸∈ Z . We treat
cases A-P-Q in § 6, while D(2, 1; a) with a ̸∈ Z is disposed of in [14].

4.1 Kostant’s Z–form

For any K–algebra A , we define the binomial coefficients(
y

n

)
:=

y(y−1) · · · (y−n+1)

n!

for all y ∈ A , n ∈ N . We recall a (standard) classical result, concerning
Z–integral valued polynomials in a polynomial algebra K

[
y1, . . . , yℓ

]
:
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Lemma 4.1. (cf. [17], §26.1) Let K[y1, . . . , yt] be the K–algebra of polyno-
mials in the indeterminates y1 , . . . , yt . Let also

IntZ
(
K[y1, . . . , yt]

)
:=

{
f ∈ K[y1, . . . , yt]

∣∣ f(z1, . . . , zt) ∈ Z ∀ z1, . . . , zt ∈Z
}

Then IntZ
(
K[y1, . . . , yt]

)
is a Z–subalgebra of K[y1, . . . , yt] , which is free as

a Z–(sub)module, with Z–basis
{∏t

i=1

(
yi
ni

) ∣∣ n1, . . . , nt ∈ N
}
.

Let U(g) be the universal enveloping superalgebra of g . We fix a Cheval-
ley basis B = {H1, . . . , Hℓ}

⨿ {
Xα

}
α∈∆ of g as in §3.2, and let hZ be the

free Z–module with basis {H1, . . . , Hℓ} . Given h ∈ U(h) , we denote by
h(H1, . . . , Hℓ) the expression of h as a function of the Hi’s. As immediate
consequence of Lemma 4.1, we have the following:

Corollary 4.2.
(a) HZ :=

{
h ∈ U(h)

∣∣ h(z1, . . . , zℓ) ∈ Z , ∀ z1, . . . , zℓ ∈ Z
}

is a free

Z–submodule of U(h) , with basis BU(h) :=
{∏ℓ

i=1

(
Hi

ni

) ∣∣∣n1, . . . , nℓ∈N
}
.

(b) The Z–subalgebra of U(g) generated by all the elements
(
H−z
n

)
with

H ∈ hZ , z ∈ Z , n ∈ N , coincides with HZ .

Now, mimicking the classical construction, we define a Z–form of U(g) :

Definition 4.3. We call “divided powers” all elements X
(n)
α := Xn

α

/
n! , for

α∈∆0 , n∈N . We call Kostant superalgebra, or Kostant’s Z–form of U(g) ,
the unital Z–subsuperalgebra of U(g) , denoted by KZ(g) , generated by

X(n)
α , Xγ ,

(
Hi

n

)
∀ α∈∆0 , n∈N , γ∈∆1 , i = 1, . . . , ℓ .

Remarks 4.4. Let KZ(g0) be the unital Z–subalgebra of U(g0) generated by

the elements X
(n)
α ,

(
Hi

n

)
with α ∈ ∆0 , n ∈ N . This gives back “almost” a

classical object, namely the Kostant’s Z–form of U(g0) : the latter is defined
(and well-known) in terms of a classical Chevalley basis when g0 is semisimple
— which is often, but not always, the case for simple Lie superalgebras g
of classical type; moreover, that definition can be easily extended to the
reductive case (depending on a choice ). Nevertheless, in general the algebra
KZ(g0) we are considering is slightly different, namely a bit larger, because
of the way we chose the Cartan elements H1 , . . . , Hℓ in the Chevalley basis.
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Another important classical result is the following:

Lemma 4.5. (cf. [17], §26.2) Let α ∈ ∆0 , and m,n ∈ N . Then

X(n)
α X

(m)
−α =

∑min(m,n)
k=0 X

(m−k)
−α

(
Hα−m−n+2 k

k

)
X(n−k)

α

4.2 Commutation rules

In the classical setup, a description of KZ(g0) comes from a “PBW-like”
theorem: namely, KZ(g0) is a free Z–module with Z–basis the set of ordered
monomials (w. r. to any total order) whose factors are divided powers in the
root vectors Xα (α ∈ ∆0 ) or binomial coefficients in the Hi ( i = 1, . . . , ℓ ).

We shall prove a similar result in the “super-framework”. Like in the
classical case, this follows from a direct analysis of commutation rules among
divided powers in the even root vectors, binomial coefficients in the Hi’s and
odd root vectors. To perform such an analysis, we list hereafter all such rules;
in particular, we also need to consider slightly more general relations.

The relevant feature is that all coefficients in these relations are in Z .
We split the list into two sections: (1) relations involving only even gener-

ators (known by classical theory); (2) relations involving also odd generators.
All these relations are proved via simple induction arguments: the classi-

cal ones (in the first list) are well-known (see [17], §26), and the new ones are
proved in a similar way, using Theorem 3.7. Details are left to the reader.

(1) Even generators only (that is
(
Hi

m

)
’s and X

(n)
α ’s only, α ∈ ∆0 ):(

Hi

n

)(
Hj

m

)
=

(
Hj

m

)(
Hi

n

)
(4.1)

∀ i, j ∈ {1, . . . , ℓ} , ∀ n,m ∈ N

X(n)
α f(H) = f

(
H − n α(H)

)
X(n)

α (4.2)

∀ α ∈ ∆0 , H ∈ h , n ∈ N , f(T ) ∈ K[T ]

X(n)
α X(m)

α =
(
n+m
m

)
X(n+m)

α ∀ α ∈ ∆0 , ∀ n,m ∈ N (4.3)

X(n)
α X

(m)
β = X

(m)
β X(n)

α + l.h.t ∀ α, β ∈ ∆0 , ∀ n,m ∈ N (4.4)
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where l.h.t. stands for a Z–linear combinations of monomials in the X
(k)
δ ’s

and in the
(
Hi

c

)
’s whose “height” — that is, by definition, the sum of all

“exponents” k occurring in such a monomial — is less than n+m .
A special case is the following (already seen in Lemma 4.5):

X(n)
α X

(m)
−α =

∑min(m,n)
k=0 X

(m−k)
−α

(
Hα −m−n+2 k

k

)
X(n−k)

α (4.5)

∀ α ∈ ∆0 , ∀ m,n ∈ N

(2) Odd and even generators (also involving the Xγ’s, γ ∈ ∆1 ):

Xγ f(H) = f
(
H − γ(H)

)
Xγ (4.6)

∀ γ ∈ ∆1 , h ∈ h , f(T ) ∈ K[T ]

cγ,γ X2 γ =
[
Xγ, Xγ

]
= 2X2

γ , ∀ γ ∈ ∆1 (4.7)

hence 2 γ ̸∈ ∆ =⇒ Xn
γ = 0 , ∀ n ≥ 2 (4.8)

and 2 γ ∈ ∆ =⇒ X2
γ = cγ,γ

/
2 ·X2 γ = ±2X2 γ (4.9)(

because cγ,γ = ±4 if γ , 2 γ ∈ ∆ , see Definition 3.3
)

X−γ Xγ = −Xγ X−γ + Hγ ∀ γ ∈ ∆1 ∩
(
−∆1

)
(4.10)

with Hγ :=
[
Xγ , X−γ

]
∈ hZ ,

Xγ Xδ = −XδXγ + cγ,δXγ+δ , ∀ γ, δ ∈ ∆1 , γ + δ ̸= 0 (4.11)

with cγ,δ as in Definition 3.3,

X(n)
α Xγ = Xγ X

(n)
α +

∑n
k=1

(∏k
s=1 εs

)(
r+ k
k

)
Xγ+k αX

(n−k)
α (4.12)

∀ n ∈ N , ∀ α ∈ ∆0 , γ ∈ ∆1 : α ̸= ±2 γ ,

with σα
γ =

{
γ − r α , . . . , γ , . . . , γ + q α

}
, Xγ+k α := 0 if (γ+k α) ̸∈ ∆ ,

and εs = ±1 such that
[
Xα , Xγ+(s−1)α

]
= εs (r + s)Xγ+s α ,

Xγ X
(n)
α = X(n)

α Xγ , X−γ X
(n)
−α = X

(n)
−α X−γ (4.13)

X−γ X
(n)
α = X(n)

α X−γ + zγ γ(Hγ) X
(n−1)
α Xγ (4.14)

Xγ X
(n)
−α = X

(n)
−α Xγ − zγ γ(Hγ) X

(n−1)
−α X−γ (4.15)

∀ n ∈ N , ∀ γ ∈ ∆1 , α = 2 γ ∈ ∆0 , zγ := cγ,γ/2 = ±2
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Remark 4.6. In [30], the following commutation formula

Xγ

(
Hi

t

)
=

∑t
r=0 (−1)t−r

(
γ(Hi)
t− r

)
·
(
Hi

r

)
Xγ

is given, for the orthosymplectic case, for all Hi = Hαi
, with αi ∈ ∆0

simple, and γ ∈ ∆1 . Actually, this is equivalent to (4.6), because the
(
Hi

m

)
’s

generate the polynomials in Hi , and in general the following identity holds:(
Hα − γ(Hα)

t

)
=

∑t
r=0 (−1)t−r

(
γ(Hα)
t− r

)
·
(
Hα

r

)

4.3 Kostant’s PBW-like theorem

We are now ready to state and prove our super-version of Kostant’s theorem:

Theorem 4.7. The Kostant superalgebra KZ(g) is a free Z–module. For
any given total order ≼ of the set ∆ ∪

{
1, . . . , ℓ

}
, a Z–basis of KZ(g) is

the set B of ordered “PBW-like monomials”, i.e. all products (without repeti-

tions) of factors of type X
(nα)
α ,

(
Hi

ni

)
and Xγ — with α ∈ ∆0 , i ∈

{
1, . . . , ℓ

}
,

γ ∈ ∆1 and nα, ni ∈ N — taken in the right order with respect to ≼ .

Proof. Let us call “monomial” any product in any possible order, possibly

with repetitions, of several X
(nα)
α ’s, several

(
Hi−zi

si

)
’s — with zi ∈ Z — and

severalX
mγ
γ ’s,mγ ∈ N. For any such monomialM , we define three numbers,

namely:

— its “height” ht(M) , namely the sum of all nα’s and mγ’s occurring
in M (so it does not depend on the binomial coefficients in the Hi’s);

— its “factor number” fac(M) , defined to be the total number of factors

(namely X
(nα)
α ,

(
Hi−zi
ni

)
or Xγ ) within M itself;

— its “inversion number” inv(M) , which is the sum of all inversions of
the order ≼ among the indices of factors in M when read from left to right.

We can now act upon any such M with any of the following operations:

– (1) we move all factors
(
Hi−zi

s

)
to the leftmost position, by repeated

use of relations (4.2) and (4.6): this produces a new monomial M′ multiplied

on the left by a suitable product of several (new) factors
(
Hi−ži

si

)
;

31



– (2) we re-write any power of an odd root vector, say X
nγ
γ , nγ>1 , as

X nγ
γ = X 2 dγ+ϵγ

γ = z X
dγ
2γ X

ϵγ
γ = z dγ! X

(dγ)
2γ X ϵγ

γ

for some z ∈ Z , dγ ∈ N , ϵγ ∈ {0, 1} with nγ = 2 dγ + ϵγ , using (4.7–9);

– (3) whenever two or more factors X
(n)
α ’s get side by side, we splice

them together into a single one, times an integral coefficient, using (4.3);

– (4) whenever two factors within M occur side by side in the wrong
order w. r. to ≼ , i.e. we have any one of the following situations

M = · · · X(nα)
α X

(nβ)

β · · · , M = · · · X(nα)
α X mγ

γ · · ·
M = · · · X mδ

δ X(nα)
α · · · , M = · · · X mγ

γ X mδ
δ · · ·

with α � β , α � γ , δ � α and γ � δ respectively, we can use all relations
(4.4–5) and (4.10–18) to re-write this product of two distinguished factors,
so that all of M expands into a Z–linear combination of new monomials.

By definition, KZ(g) is spanned over Z by all (unordered) monomials in

the X
(n)
α ’s, the

(
Hi

ni

)
and the Xγ’s. Let us consider one of these, say M .

First of all, M is a PBW-like monomial, i.e. one in B , if and only if no
one of steps (2) to (4) may be applied. But if not, we now see what is the
effect of applying such steps. We begin with (1): applied to M , it gives

M = HM′

where H is some product of
(
Hi−ži

si

)
’s, and M′ is a new monomial such that

ht
(
M′) = ht

(
M

)
, fac

(
M′) ≤ fac

(
M

)
, inv

(
M′) ≤ inv

(
M

)
and the strict inequality in the middle holds if and only if H ̸= 1 , i.e. step
(1) is non-trivial. Indeed, all this is clear when one realizes thatM′ is nothing

but “M ripped off of all factors
(
Hi−zi

si

)
’s.”

Then we apply any one of steps (2), (3) or (4) to M′ . Step (2) gives

M′ = zM′′ , with ht
(
M′′) � ht

(
M′)

for some z ∈ Z and some monomial M′′ (possibly zero). Step (3) yields

M′ = zM∨ , with ht
(
M∨)= ht

(
M′) , fac

(
M∨) � fac

(
M′)

for some z ∈ Z and some monomial M∨ . Finally, step (4) instead gives
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M′ = Mg +
∑

k z
′′
k Mk , with ht

(
Mk

)
� ht

(
M′) ∀ k ,

and ht
(
Mg) = ht

(
M′) , inv

(
Mg) � inv

(
M′)

where zk ∈ Z (for all k ), and Mg and the Mk’s are monomials.

In short, through either step (2), or (3), or (4), we achieve an expansion

M′ =
∑

k z
′′
k HM′

k , zk ∈ Z (4.16)

where — unless the step is trivial, for then we get all equalities — we have(
ht
(
M′

k

)
� ht

(
M′))∨(fac(M′

k

)
� fac

(
M′))∨(inv(M′

k

)
� inv

(
M′)) (4.17)

Now we can repeat, namely we apply step (1) and step (2) or (3) or (4)
to every monomial Mk in (4.16); and then we iterate. Thanks to (4.17), this
process will stop after finitely many iterations. The outcome then will read

M′ =
∑

j żj H
′′
j M′′

j , żj ∈ Z (4.18)

where inv
(
M′′

j

)
= 0 for every index j , i.e. all monomials M′′

j are ordered
and without repetitions, that is they belong to B . Now eachH′′

j belongs toHZ
(notation of Corollary 4.2), just by construction. Then Corollary 4.2 ensures
that each H′′

j expand into a Z–linear combination of ordered monomials in

the
(
Hi

ni

)
’s. Therefore (4.18) yields

M =
∑

s ẑs H
∧
s M∧

s , ẑs ∈ Z (4.19)

where every H∧
s is an ordered monomial, without repetitions, in the

(
Hi

ni

)
’s,

while for each index s we have M∧
s = M′′

j for some j — those in (4.18).
Using again — somehow “backwards”, say — relations (4.2) and (4.6), we

can “graft” every factor
(
Hi

ni

)
occurring in eachH∧

s in the right position inside

the monomial M∧
s , so to get a new monomial M◦

s which is ordered, without

repetitions, but might have factors of type
(
Hi−zi
mi

)
with zi ∈ Z \ {0} —

thus not belonging to B . But then
(
Hi−zi
mi

)
∈ HZ , hence again by Corollary

4.2 that factor expands into a Z–linear combination of ordered monomials,

without repetitions, in the
(
Hj

ℓj

)
’s. Plugging every such expansion inside each

monomial M∧
s instead of each

(
Hi−zi
mi

)
— i = 1, . . . , ℓ — we eventually find
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M =
∑

r zr M
!
r , zr ∈ Z (4.20)

where now every M!
r is a PBW-like monomial, i.e. M!

r ∈ B for every r .

Since KZ(g) , by definition, is spanned over Z by all monomials in the

X
(n)
α ’s, theXγ’s and the

(
Hi

m

)
’s, by the aboveKZ(g) is contained in SpanZ(B) .

On the other hand, by definition and by Corollary 4.2, SpanZ(B) in turn is
contained in KZ(g) . So KZ(g) = SpanZ(B) , i.e. B spans KZ(g) over Z .

At last, the “PBW theorem” for Lie superalgebras over fields ensures that
B is a K–basis for U(g) , because B :=

{
H1, . . . , Hℓ

}⨿{
Xα

∣∣α ∈ ∆
}

is a
K–basis of g (cf. [33]). Thus B is linearly independent over K , hence over Z .
Therefore B is a Z–basis for KZ(g) , and the latter is a free Z–module.

Remarks 4.8.

(a) To give an example, let us fix any total order ≼ in ∆ ∪
{
1, . . . , ℓ

}
such that ∆0 ≼

{
1, . . . , ℓ

}
≼ ∆1 . Then the basis B from Theorem 4.7 reads

B =
{∏

α∈∆0
X(nα)

α

∏ℓ
i=1

(
Hi

ni

)∏
γ∈∆1

Xϵγ
γ

∣∣∣ nα , ni∈N , ϵγ∈{0, 1}
}

(4.21)

(b) For g = gl(m|n) , a Z–basis like (4.21) was more or less known in
literature (see, e.g., [5]). For g = osp(n|m) , it is given in [30], Theorem 3.6.

Theorem 4.7 has a direct consequence. To state it, note that gZ1 , the odd
part of gZ , has

{
Xγ

∣∣ γ∈∆1

}
as Z–basis, by construction; then let

∧
gZ1 be

the exterior Z–algebra over gZ1 . Then we have an integral version of the well
known factorization U(g) ∼= U(g0)⊗K

∧
g1 (see [33]):

Corollary 4.9. There exists an isomorphism of Z–modules

KZ(g) ∼= KZ(g0) ⊗Z
∧
gZ1

Proof. Let us choose a PBW-like basis B of KZ(g) — from Theorem 4.7 —
as in (4.21). Then each PBW-like monomial can be factorized into a left

factor λ times a right factor ρ , namely
∏

α∈∆0

X
(nα)
α

ℓ∏
i=1

(
Hi

ni

) ∏
γ∈∆1

X
ϵγ
γ = λ · ρ

with λ :=
∏

α∈∆0
X

(nα)
α

∏ℓ
i=1

(
Hi

ni

)
and ρ :=

∏
γ∈∆1

X
ϵγ
γ . But all the λ’s span

KZ(g0) over Z (by classical Kostant’s theorem) while the ρ’s span
∧

gZ1 .

34



Remarks 4.10.

(a) Following a classical pattern (and cf. [4], [5], [30] in the super context)
we can define the superalgebra of distributions Dist (G) on any supergroup
G . Then Dist (G) = KZ(g)⊗Z K , when g := Lie (G) is classical.

(b) In this section we proved that the assumptions of Theorem 2.8 in [30]
do hold for any supergroup G whose tangent Lie superalgebra is classical.
Therefore, all results in [30] do apply to such supergroups.

5 Chevalley supergroups

Classically, Chevalley groups are defined as follows. Let g be a finite dimen-
sional semisimple Lie algebra over an algebraically closed field K of charac-
teristic zero. Choosing a Chevalley basis of g , we can define a Kostant form
KZ(g) , generated by divided powers of root vectors. Then any simple g–
module V contains a Z–lattice M , which is KZ(g)–stable, hence KZ(g) acts
on M . Using this action and its extensions by scalars to arbitrary fields k,
we define one-parameter subgroups xα(t), for all roots α and t ∈ k , in the
group GL(Vk) , Vk := k⊗ZM . The Chevalley group (associated to g and V )
is then, by definition, the subgroup of GL(Vk) generated by the xα(t)’s.

Now we provide a similar construction for the super context. We work
out our construction for classical Lie superalgebras not of type A(1, 1) , P (3) ,
Q(n) or D(2, 1; a) with a ̸∈ Z ; we treat cases A-P-Q in chapter 6.

5.1 Admissible lattices

Let K be an algebraically closed field of characteristic zero. If R is a unital
subring of K , and V a finite dimensional K–vector space, a subset M⊆V is
called R–lattice (or R–form) of V if M= SpanR(B) for some basis B of V .

Let g be a classical Lie superalgebra (as above) over K , with rk(g) = ℓ ,
let a Chevalley basis B of g and the Kostant algebra KZ(g) be as in §§3–4.

Definition 5.1. Let V be a g–module, and let M be a Z–lattice of it.

(a) We call V rational if hZ := SpanZ
(
H1, . . . , Hℓ

)
acts diagonally on V

with eigenvalues in Z ; in other words, one has V =
⊕

µ∈h∗Vµ , with Vµ :={
v∈V

∣∣h.v = µ(h) v ∀h∈h
}
, and µ(Hi) ∈ Z (for all i and all µ : Vµ ̸= {0} ).

(b) We call M admissible (lattice) — of V — if it is KZ(g)–stable.
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Remark 5.2. If g is not of either types A(m,n), C(n), Q(n) or D(2, 1; a) ,
then any finite dimensional g–module V is automatically rational. However
in the other cases the rationality assumption is actually restrictive.

Theorem 5.3. Let g be a classical Lie superalgebra. Any rational, finite
dimensional, semisimple g–module V contains an admissible lattice M . Any
such M is the sum of its weight components, i.e. M =

⊕
µ∈h∗

(
M ∩ Vµ

)
.

Proof. The proof is the same as in the classical case. Without loss of gener-
ality, we can assume that V be irreducible of highest weight. Letting v be a
highest weight vector, take M := KZ(g).v ; thenM spans V over K , and it is
clearly KZ(g)–stable because KZ(g) is a subalgebra of U(g) . The proof that
M is actually a Z–lattice of V and that M splits into M = ⊕µ

(
M ∩ Vµ

)
is

detailed in [29], §2, Corollary 1, and it applies here with minor changes.

We also need to know the stabilizer of an admissible lattice:

Theorem 5.4. Let V be a rational, finite dimensional g–module, M an ad-
missible lattice of V , and gV =

{
X∈g

∣∣X.M⊆M
}
. If V is faithful, then

gV = hV
⊕(

⊕α∈∆ ZXα

)
, hV :=

{
H ∈ h

∣∣ µ(H) ∈ Z , ∀ µ ∈ Λ
}

where Λ is the set of all weights of V . In particular, gV is a lattice in g , and
it is independent of the choice of the admissible lattice M (but not of V ).

Proof. The classical proof in [29], §2, Corollary 2, applies again, with some
additional arguments to take care of odd root spaces. Indeed, with the same
arguments as in [loc. cit.] one shows that gV = hV ⊕

(
⊕α∈∆

(
gV ∩KXα

))
;

then one still has to prove that gV ∩ KXα = ZXα for all α ∈ ∆ . The
arguments in [loc. cit.] also show that gV ∩ KXα = ZXα is a cyclic Z–
submodule of gV , hence it may be spanned (over Z) by some 1

nα
Xα with

nα ∈ N+ (for all α ∈ ∆). What is left to prove is that n = 1 .
For every even root α ∈ ∆0 , one can repeat once more the argument in

[loc. cit.] and eventually find nα = 1 . Instead, for each α ∈ ∆1 one sees —
by an easy case by case analysis, for instance — that there exists α′ ∈ ∆1

such that
(
α + α′) ∈ ∆0 ,

(
α − α′) ̸∈ ∆ . Then (notation of Definition

3.3(d)) cα,α′ = ±1 , and so
[
Xα′ , 1

nα
Xα

]
= 1

nα
Xα+α′ . On the other

hand, clearly Xα′ ∈ gZ ⊆ gV , hence
[
Xα′ , 1

nα
Xα

]
∈
(
gV ∩KXα+α′

)
, with
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(
gV ∩ KXα+α′

)
= ZXα+α′ because

(
α + α′) ∈ ∆0 . Then the outcome is

1
nα
Xα+α′ ∈ ZXα+α′ , which yields n = 1 , q.e.d.

Remark 5.5. Let Q and P respectively be the root lattice and the weight
lattice of g ; one knows that there exists simple, rational, finite dimensional
g–modules VQ and VP whose weights span Q and P respectively. Then by
Theorem 5.4 one clearly has gVQ

⊆ gV ⊆ gVP
for any rational, finite

dimensional g–module V .

5.2 Construction of Chevalley supergroups

From now on, we retain the notation of §5: in particular, V is a rational,
finite dimensional g–module, and M is an admissible lattice of it.

We fix a commutative unital Z–algebra k : as in §2.2, we assume k to be
such that 2 and 3 are not zero and they are not zero divisors in k . We set

gk := k⊗Z gV , Vk := k⊗Z M , Uk(g) := k⊗Z KZ(g) .

Then gk acts faithfully on Vk , which yields an embedding of gk into gl(Vk) .
For any A ∈ (salg)k = (salg) , the Lie superalgebra gA := A ⊗k gk acts

faithfully on Vk(A) := A⊗k Vk , hence it embeds into gl
(
Vk(A)

)
, etc.

Let α ∈ ∆0 , β, γ ∈ ∆1 , and let Xα , Xβ and Xγ be the associated root
vectors (in our fixed Chevalley basis of g ). Assume also that

[
Xβ , Xβ

]
= 0

and
[
Xγ , Xγ

]
̸= 0 ; we recall that the latter occurs if and only if 2 γ ∈ ∆ .

Every one of Xα , Xβ and Xγ acts as a nilpotent operator on V , hence
on M and Vk , i.e. it is represented by a nilpotent matrix in gl(Vk) ; the same
holds for

tXα , ϑXβ , ϑXγ + tX 2
γ ∈ End

(
Vk(A)

)
∀ t ∈ A0 , ϑ ∈ A1 . (5.1)

Taking into account that Xγ and X 2
γ commute, and X 2

γ = ±2X2γ — by

(4.9) — we see at once that, for any n ∈ N , we have Y n
/
n! ∈

(
KZ(g)

)
(A) for

any Y as in (5.1); moreover, Y n
/
n! = 0 for n≫ 0 , by nilpotency. Therefore,

the formal power series exp(Y ) :=
∑+∞

n=0 Y
n
/
n! , when computed for Y as

in (5.1), gives a well-defined element in GL
(
Vk(A)

)
, expressed as finite sum.

In addition, expressions like (2.5–7) again make sense in this purely alge-
braic framework — up to taking GL

(
Vk(A)

)
instead of GL

(
V (T )

)
.
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For any α ∈ ∆ ⊆ h∗ , let Hα ∈ hZ be the corresponding coroot (cf. 3.1).
Let V = ⊕µVµ be the splitting of V into weight spaces; as V is rational, we
have µ(Hα) ∈ Z for all α ∈ ∆ . Now, for any A ∈ (salg) and t ∈ U(A0) —
the group of invertible elements in A0 — we set

hα(t).v := tµ(Hα) v ∀ v ∈ Vµ , µ ∈ h∗ ;

this defines another operator (which also can be locally expressed by expo-
nentials)

hα(t) ∈ GL
(
Vk(A)

)
∀ t ∈ U(A0) . (5.2)

More in general, if H =
∑ℓ

i=1 aiHαi
∈ hZ we define hH(t) :=

∏ℓ
i=1 h

ai
αi
(t) .

Definition 5.6. (a) Let α∈∆0 , β, γ∈∆1 , and Xα , Xβ , Xγ as above. We
define the supergroup functors xα , xβ and xγ from (salg) to (groups) as

xα(A) :=
{
exp

(
tXα

) ∣∣ t ∈ A0

}
=

{(
1 + tXα + t2X

(2)
α + · · ·

) ∣∣ t ∈ A0

}
xβ(A) :=

{
exp

(
ϑXβ

) ∣∣ ϑ ∈ A1

}
=

{(
1 + ϑXβ

) ∣∣ ϑ ∈ A1

}
xγ(A) :=

{
exp

(
ϑXγ + tX 2

γ

) ∣∣ ϑ ∈ A1 , t ∈ A0

}
=

=
{(

1 + ϑXγ

)
exp

(
tX 2

γ

) ∣∣ ϑ ∈ A1 , t ∈ A0

}
(notice that xα(A) , xβ(A) , xγ(A) ⊆ GL

(
Vk(A)

)
, by construction).

(b) Let H ∈ hZ . We define the supergroup functor hH (also referred to
as a “multiplicative one-parameter supersubgroup”) from (salg) to (groups)

hH(A) :=
{
tH := hH(t)

∣∣ t ∈U(A0)
}
⊂ GL

(
Vk(A)

)
We also write hi := hHi

for i = 1, . . . , ℓ , and hα := hHα for α ∈ ∆ .

Note that, as the Hi’s form a Z–basis of hZ , the subgroup of GL
(
Vk(A)

)
generated by all the hH(t)’s — h ∈ hZ , t ∈ U(A0) — is in fact generated
by the hi(t)’s — i = 1, . . . , ℓ , t ∈ U(A0) .

Notation 5.7. By a slight abuse of language we will also write

xα(t) := exp
(
tXα

)
, xβ(ϑ) := exp

(
ϑXβ

)
, xγ(t, ϑ) := exp

(
ϑXγ + tX 2

γ

)
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Moreover, to unify the notation, xδ(t) will denote, for δ ∈ ∆ , any one of
the three possibilities above, so that t denotes a pair (t, θ) ∈ A0 ×A1 , with
ϑ or t equal to zero — hence dropped — when either δ ∈ ∆0 , or δ ∈ ∆1

with
[
Xδ , Xδ

]
= 0 , i.e. 2 δ ̸∈ ∆ . Finally, for later convenience we shall also

formally write xζ(t) := 1 when ζ belongs to the Z–span of ∆ but ζ ̸∈ ∆ .

Definition 5.6 is modeled in analogy with the Lie supergroup setting (see
Section 2.3): this yields the first half of

Proposition 5.8.
(a) The supergroup functors xα , xβ and xγ in Definition 5.6(a) are

representable, and they are affine supergroups. Indeed, for each A ∈ (salg) ,

xα(A) = Hom
(
k[x], A

)
, ∆α(x) = x⊗ 1 + 1⊗ x

xβ(A) = Hom
(
k[ξ], A

)
, ∆β(ξ) = ξ ⊗ 1 + 1⊗ ξ

xγ(A) = Hom
(
k[x, ξ], A

)
, ∆ γ(x) = x⊗ 1 + 1⊗ x− ξ ⊗ ξ ,

∆ γ(ξ) = ξ ⊗ 1 + 1⊗ ξ

where ∆ δ denotes the comultiplication in the Hopf superalgebra of the one-
parameter subgroup corresponding to the root δ ∈ ∆ .

(b) Every supergroup functor hH in Definition 5.6(b) is representable,
and it is an affine supergroup. More precisely,

hH(A) = Hom
(
k
[
z, z−1

]
, A

)
, ∆

(
z±1

)
= z±1 ⊗ z±1 .

Before we define the Chevalley supergroups, we give the definition of the
reductive group G0 associated to a given classical Lie superalgebra g .

First of all, note that, by construction, any hH(A) and any xα(A) for
α ∈ ∆0 depends only on A0 : thus, these are indeed classical affine groups.
Moreover, the hH(A)’s generate a classical torus T (A0) inside GL

(
Vk(A0)

)
T (A0) :=

⟨
hH(A)

∣∣H∈hZ
⟩
=

⟨
hi(A)

∣∣ i=1, . . . , ℓ
⟩
.

Now, g0 is a reductive Lie algebra (semisimple iff g has no direct sum-
mands of type A ), whose Cartan subalgebra is h . The Chevalley basis of g
contains a basis of g0 which has all properties of a classical Chevalley basis
for g0, except for the fact that the Hi’s are associated to integral weights
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which may not be even (simple) roots. In other words a classical Chevalley
basis for g0 is not a subset of a Chevalley basis for g . In general one can
show that we can always choose a basis for h in such a way that only one of
the Hi’s is associated to an odd root. It is however important to stress that
the integral lattice generated by the elements H1, . . . , Hl inside h is strictly
larger than the lattice generated inside the Cartan by just the even elements,
and this despite the fact that in most cases h = h0 .

By construction the stabilizer of V in g0 is (g0)V = hV
⊕(

⊕α∈∆0 ZXα

)
with hV as in Theorem 5.4 and so we can mimic the classical construction of
Chevalley proceeding in the following way.

Consider the group functor G0 : (alg) → (groups) — where (alg) is the
category of commutative k–algebras — with G0(A0) , for A0 ∈ (alg) , being
the subgroup of GL

(
Vk(A0)

)
generated by the torus T (A0) and the xα(A)’s

with α ∈ ∆0 . By the definition of T (A0) , we can also say that G0(A0) is
generated by the hi(A)’s and the xα(A)’s with α ∈ ∆0 , i.e.

G0(A0) :=
⟨
T (A0) , xα(A)

∣∣∣ α∈∆0

⟩
=

⟨
hi(A) , xα(A)

∣∣∣ i=1, . . . , ℓ; α∈∆0

⟩
By construction, the group-functors G0 and T are subfunctors of the

representable group functor GL(Vk) , hence they both are presheaves (see
Appendix A). Let G0 and T be their sheafification (see Appendix A). Then
T is representable and we shall now show that also G0 is representable.

We consider G0, G0, T0 and T0 as group-functors defined on (salg) which
factor through (alg), setting G0(A) := G0(A0) , and so on.

Consider h0Z := SpanZ
({
Hα

∣∣α∈∆0

})
; this is another Z–form of h , with

h0Z ⊆ hZ . Now define

T ′(A0) :=
⟨
hH(A)

∣∣H∈h0Z
⟩
, G′

0(A0) :=
⟨
T ′(A0) , xα(A)

∣∣∣ α∈∆0

⟩
The assignments A 7→ T ′(A) := T ′(A0) and A 7→ G′

0(A) := G′
0(A0) provide

new group-functors defined on (salg), which clearly factor through (alg), like
T and G0 above; also, they are presheaves too. Then we define the functors
T′ and G′

0 as the sheafifications of T ′ and G′
0 respectively.

On local algebras — in (alg) — the functor G′
0 is isomorphic via a natural

transformation with the functor of points of the Chevalley group-scheme
associated with g0 and V . Therefore, we have that G′

0 is representable.

The groupG′
0(A0) and T (A0) are subgroups of GL(Vk)(A0) , whose mutual

intersection is T ′(A0) . The subgroup G0(A0) , generated by G′
0(A0) and
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T (A0) inside GL(Vk)(A0) , can be seen as the fibered coproduct of G′
0(A0)

and T (A0) over T
′(A0) . In more down-to-earth terms, we can describe it as

follows. Inside GL(Vk)(A0) , the subgroup T (A0) acts by adjoint action over
G′

0(A0) , hence the subgroup G0(A0) , being generated by T (A0) and G
′
0(A0) ,

is a quotient of the semi-direct product T (A0)nG′
0(A0) . To be precise, we

have the functorial isomorphism:

G0(A0) ∼=
(
T (A0)nG′

0(A0)
)/
K(A0)

where A 7→ K(A0) :=
{(
t, t−1

) ∣∣ t ∈ T ′(A0)
}

defines — on (salg), through

(alg) — a subgroup(-functor) of T nG′
0 . Therefore G0

∼=
(
T nG′

0

)/
K as

group-functors, hence G0
∼=

(
T×G′

0

)/
K because TnG′

0
∼= T×G′

0 as set-

valued functors (i.e., forgetting the group structure). Taking sheafifications,

we get G0
∼=

(
T × G′

0

)/
K : as both T and G′

0 are representable, the

direct product T×G′
0 is representable too, hence its quotient

(
T×G′

0

)/
K( ∼= G0

)
is representable as well, i.e. G0 is representable, q.e.d.

We now define the Chevalley supergroups in a superscheme-theoretical
way, through sheafification of a suitable functor from (salg) to (grps) , “gen-
erated” inside GL

(
Vk(A)

)
by the one-parameter supersubgroups given above.

Definition 5.9. Let g and V be as above. We call Chevalley supergroup
functor, associated to g and V , the functor G : (salg) −→ (grps) given by:
— if A∈Ob

(
(salg)

)
we let G(A) be the subgroup of GL

(
Vk(A)

)
generated

by G0(A) and the one-parameter subgroups xβ(A) with β ∈ ∆1 , that is

G(A) :=
⟨
G0(A) , xβ(A)

∣∣∣ β ∈ ∆1

⟩
By the previous description of G0 , we see that G(A) is also generated by the
hi(A)’s and all the one-parameter subgroups xδ(A)’s — δ ∈ ∆ — or even by
T (A) and the xδ(A)’s, that is

G(A) :=
⟨
hi(A) , xδ(A)

∣∣∣ i = 1, . . . , ℓ , δ ∈ ∆
⟩

=
⟨
T (A) , xδ(A)

∣∣∣ δ ∈ ∆
⟩

— if ϕ ∈ Hom(salg)

(
A ,B

)
, then Endk(ϕ) : Endk

(
Vk(A)

)
−→ Endk

(
Vk(B)

)
(given on matrix entries by ϕ itself) respects the sum and the associative
product of matrices. Then Endk(ϕ) clearly restricts to a group morphism
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GL
(
Vk(A)

)
−→ GL

(
Vk(B)

)
. The latter maps the generators of G(A) to

those of G(B), hence restricts to a group morphism G(ϕ) : G(A) −→ G(B) .

We call Chevalley supergroup the sheafification G of G . By Appendix A,
Theorem A.8, G : (salg) −→ (grps) is a functor such that G(A) = G(A)
when A ∈ (salg) is local (i.e., it has a unique maximal homogeneous ideal).

Remark 5.10. The sheafification is already necessary at the classical level,
that is when we construct semisimple algebraic groups (from semisimple Lie
algebras), as it is explained in [11], §5.7. In fact, it is clearly stated in
5.7.6 that in general the one-parameter subgroups and the torus generate
the algebraic group only over local algebras.

5.3 Chevalley supergroups as algebraic supergroups

The way we defined the Chevalley supergroup G does not imply — at least
not in an obvious way — that G is representable, in other words, that G
is the functor of points of an algebraic supergroup scheme. The aim of this
section is to prove this important property.

We shall start by studying the commutation relations of the generators
and derive a decomposition formula for G(A) resembling the classical Cartan
decomposition in the Lie theory, and one reminding the classical “big cell”
decomposition in the theory of reductive algebraic groups.

We begin with some more definitions:

Definition 5.11. For any A ∈ (salg) , we define the subsets of G(A)

G1(A) :=
{∏n

i=1 xγi(ϑi)
∣∣∣ n ∈ N , γ1, . . . , γn ∈ ∆1 , ϑ1, . . . , ϑn ∈ A1

}
G±

0 (A) :=
{∏n

i=1 xαi
(ti)

∣∣∣ n ∈ N , α1, . . . , αn ∈ ∆±
0 , t1, . . . , tn ∈ A0

}
G±

1 (A) :=
{∏n

i=1 xγi(ϑi)
∣∣∣ n ∈ N , γ1, . . . , γn ∈ ∆±

1 , ϑ1, . . . , ϑn ∈ A1

}
G±(A) :=

{∏n
i=1 xβi

(ti)
∣∣∣ n∈N , β1, . . . , βn∈∆±, t1, . . . , tn∈A0×A1

}
=

=
⟨
G±

0 (A) , G
±
1 (A)

⟩
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Moreover, fixing any total order ≼ on ∆±
1 , and letting N± =

∣∣∆±
1

∣∣ , we set

G±,<
1 (A) :=

{ ∏N±
i=1 xγi(ϑi)

∣∣∣ γ1 ≺ · · · ≺ γN± ∈ ∆±
1 , ϑ1, . . . , ϑN± ∈ A1

}
and for any total order ≼ on ∆1 , and letting N :=

∣∣∆∣∣ = N+ +N− , we set

G<
1 (A) :=

{∏N
i=1 xγi(ϑi)

∣∣∣ γ1 ≺ · · · ≺ γN ∈ ∆1 , ϑ1, . . . , ϑN ∈ A1

}
Note that for special choices of the order, one has G<

1 (A) = G−,<
1 (A) ·

G+,<
1 (A) or G<

1 (A) = G+,<
1 (A) ·G−,<

1 (A) .
Similar notations will denote the sheafifications G1 , G

±, G±
0 , G

±
1 , etc.

Remark 5.12. Note that G1(A), G
±
0 (A), G

±
1 (A) and G

±(A) are subgroups
of G(A) , while G±,<

1 (A) and G<
1 (A) instead are not, in general. And similarly

with “G ” instead of “G ” everywhere.

As a matter of notation, when Γ is any group and g, h ∈ Γ we denote
by (g, h) := g h g−1 h−1 their commutator in Γ . Next result will be crucial.

Lemma 5.13.
(a) Let α ∈ ∆0 , γ ∈ ∆1 , A ∈ (salg) and t ∈ A0 , ϑ ∈ A1 . Then there
exist cs∈Z such that(

xγ(ϑ) , xα(t)
)
=

∏
s>0 xγ+s α

(
cs t

sϑ
)

∈ G1(A)

(the product being finite). More precisely, with εk = ±1 and r as in (4.12),(
1 + ϑXγ , xα(t)

)
=

∏
s>0

(
1 +

∏s
k=1 εk ·

(
s+r
r

)
· tsϑXγ+s α

)
where the factors in the product are taken in any order (as they do commute).

(b) Let γ, δ∈∆1 , A∈(salg) , ϑ, η∈A1 . Then (notation of Definition 3.3)(
xγ(ϑ) , xδ(η)

)
= xγ+δ

(
−cγ,δ ϑ η

)
=

(
1−cγ,δ ϑ η Xγ+δ

)
∈ G0(A)

if δ ̸= −γ ; otherwise, for δ = −γ , we have(
xγ(ϑ) , x−γ(η)

)
=

(
1− ϑ η Hγ

)
= hγ

(
1− ϑ η

)
∈ G0(A)

(c) Let α, β ∈ ∆ , A ∈ (salg) , t ∈ U(A0) , u ∈ A0×A1 = A . Then

hα(t) xβ(u) hα(t)
−1 = xβ

(
tβ(Hα) u

)
∈ Gp(β)(A)

where p(β) := s , by definition, if and only if β ∈ ∆s .
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Proof. The result follows directly from the classical results in [29], pg. 22
and 29, and simple calculations, using the relations in §4.2 and the identity
(ϑη)2 = −ϑ2 η2 = 0 . In particular, like in the classical setting, every hα(t)
acts — via the adjoint representation — diagonally on each root vector Xβ ,
with weight tβ(Hα) . Also, we point out that the nilpotency of any ϑ, η ∈ A1

implies that of ϑ η
(
∈A0

)
, which has several consequences.

First we have
(
1−ϑ η

)
,
(
1−2ϑ η

)
∈ U(A0) . Second, we have the identity(

1− ϑ η Hγ

)
= hγ

(
1− ϑ η

)
(since

(
1− ϑ η

)µ(Hγ)
= 1− ϑ η ) as operators

on Vk(A) , which is mentioned (and used) in the second instance of (b).

Remark 5.14. A direct consequence of the previous Lemma is the following.
Assume gj ∈ xδj

(
A

nj

1

)
:=

{
xδj(u)

∣∣u∈Anj

1

}
— cf. §2.1 — for j = 1, 2 and

δ1 in ∆1 . Then we have
(
g1 , g2

)
∈
∏

s>0 xδ1+s δ2

(
An1+s n2

1

)
if δ2 ∈ ∆0 and(

g1 , g2
)
∈ xδ1+δ2

(
An1+n2

1

)
or

(
g1 , g2

)
∈ T

(
A

(n1+n2)
1

)
if δ2 ∈ ∆1 .

Next result is a group-theoretical counterpart of the splitting g = g0⊕g1 .
It is a super-analogue of the classical Cartan decomposition (for reductive
groups). In the differential setting, it was — somewhat differently — first
pointed out by Berezin (see [3], Ch. 2, §2).

Theorem 5.15. Let A ∈ (salg) . There exist set-theoretic factorizations

G(A) = G0(A) G1(A) , G(A) = G1(A) G0(A)

G±(A) = G±
0 (A) G

±
1 (A) , G±(A) = G±

1 (A) G
±
0 (A)

Proof. The proof for G(A) works for G±(A) as well, so we stick to the former.
It is enough to prove either one of the equalities, say the first one. Also,

it is enough to show that G0(A)G1(A) is closed by multiplication, since it
contains all generators of G(A) and their inverses. So we have to show that
g0g1 · g′0g′1 ∈ G0(A)G1(A) , for all g0, g

′
0 ∈ G0(A) , g1, g

′
1 ∈ G1(A) . By the

very definitions, we need only to prove that(
1 + ϑ1Xβ1

)
· · ·

(
1 + ϑn−1Xβn−1

) (
1 + ϑnXβn

)
xα(u) ∈ G0(A)G1(A)(

1 + ϑ1Xβ1

)
· · ·

(
1 + ϑn−1Xβn−1

) (
1 + ϑnXβn

)
hδ(t) ∈ G0(A) G1(A)

for all β1, . . . , βn∈ ∆1 , α∈ ∆0 , δ∈ ∆ , ϑ1, . . . , ϑn∈A1 , u∈A0 , t∈ U(A0) .
This comes from an easy induction on n , via the formulas in Lemma 5.13.
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Lemma 5.16. Let A ∈ (salg) . Then

G1(A) ⊆ G0

(
A

(2)
1

)
G<

1 (A) , G1(A) ⊆ G<
1 (A)G0

(
A

(2)
1

)
G±

1 (A) ⊆ G±
0

(
A

(2)
1

)
G±,<

1 (A) , G±
1 (A) ⊆ G±,<

1 (A)G±
0

(
A

(2)
1

)
Proof. We deal with the first identity, the other ones are similar. Indeed, we
shall prove the slightly stronger result⟨

G1(A) , G•
(
A

(2)
1

)⟩
⊆ G0

(
A

(2)
1

)
G<

1 (A) (5.3)

where
⟨
G1(A) , G•

(
A

(2)
1

)⟩
is the subgroup generated by G1(A) and G•

(
A

(2)
1

)
,

the latter being G•
(
A

(2)
1

)
:=

⟨{
hα(u), xα(t)

∣∣α ∈ ∆0, u ∈ U
(
A

(2)
1

)
, t ∈ A 2

1

}⟩
.

Any element of
⟨
G1(A) , G•

(
A

(2)
1

)⟩
is a product g = g1 g2 · · · gk in which

each factor gi is either of type hαi
(ui) , or xαi

(ti) , or xγi(ϑi) , with αi ∈ ∆0 ,

γi ∈ ∆1 and ui ∈ U
(
A

(2)
1

)
, ti ∈ A2

1 , ϑi ∈ A1 . Such a product belongs

to G0

(
A

(2)
1

)
G<

1 (A) if all factors indexed by the αi ∈ ∆0 are on the left of
those indexed by the γj ∈ ∆1 , and moreover the latter occur in the order
prescribed by ≼ . In this case, we say that the factors of g are ordered. We
shall now re-write g as a product of ordered factors, by repeatedly commuting
the original factors, as well as new factors which come in along this process.

Since we have only a finite number of odd coefficients in the expression
for g , we can assume without loss of generality that A1 is finitely generated
as an A0–module. This implies that An

1 = {0} and A
(n)
1 = 0 for n larger

than the number of odd generators of A1 .

Let us consider two consecutive factors gi gi+1 in g . If they are already
ordered, we are done. Otherwise, there are four possibilities:

— (1) gi = xαi
(ti) , gi+1 = hαi

(ui) , or gi = xγi(ϑi) , gi+1 = hαi
(ui) .

In this case we rewrite

gi gi+1 = xαi
(ti)hαi

(ui) = hαi
(ui) xαi

(t′i)

or gi gi+1 = xγi(ϑi)hαi
(ui) = hαi

(ui) xγi(ϑ
′
i)

with t′i ∈ Ani
1 , ϑ′

i ∈ Ami
1 , if ti ∈ Ani

1 , ϑi ∈ Ami
1 , thanks to Lemma 5.13(c).

In particular we replace a pair of unordered factors with a new pair of ordered
factors. Even more, this shows that any factor of type hαi

(ui) can be flushed
to the left of our product so to give a new product of the same nature, but
with all factors of type hαi

(ui) on the left-hand side.
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— (2) gi = xαi
(ti) , gi+1 = xγi+1

(ϑi+1) . In this case we rewrite
gi gi+1 = gi+1 gi g

′
i with g′i :=

(
gi
−1, gi+1

−1
)
=

(
xαi

(−ti) , xγi+1
(−ϑi+1)

)
so we replace a pair of unordered (consecutive) factors with a pair of ordered
(consecutive) factors followed by another, new factor g′i . However, letting
n1, n2 ∈ N+ be such that ti ∈ An1

1 , ϑi+1 ∈ An2
1 , by Remark 5.14 this g′i is

a product of new factors of type xαj
(t′j) with t′j ∈ A

nj

1 , nj ≥ ni + ni+1 .

— (3) gi = xγi(ϑi) , gi+1 = xγi+1
(ϑi+1) . In this case we rewrite

gi gi+1 = gi+1 gi g
′
i with g′i :=

(
gi
−1, gi+1

−1
)
=

(
xγi(−ϑi) , xγi+1

(−ϑi+1)
)

so we replace a pair of unordered factors with a pair of ordered factors fol-
lowed by a new factor g′i which — again by Remark 5.14 — is again of type

xα(t) or hα(u) with t ∈ A n
1 , u ∈ U

(
A

(n)
1

)
, where n ≥ ni + ni+1 for

n1, n2 ∈ N+ such that ϑi ∈ An1
1 and ϑi+1 ∈ An2

1 .

— (4) gi = xγ(ϑi) , gi+1 = xγ(ϑi+1) . In this case we rewrite
gi gi+1 = xγi(ϑi)xγi+1

(ϑi+1) = xγ(ϑi)xγ(ϑi+1) = xγ(ϑi+ϑi+1)

so we replace a pair of unordered factors with a single factor. In addition, each
of the pairs gi−1 g

′
i and g′i gi+2 respects or violates the ordering according to

what the corresponding old pair gi−1 gi and gi+1 , gi+2 did.

Now we iterate this process: whenever we have any unordered pair of
consecutive factors in the product we are working with, we perform any
one of steps (1) through (4) explained above. At each step, we substitute
an unordered pair with a single factor (step (4)), which does not form any
more unordered pairs than the ones we had before, or with an ordered pair
(steps (1)–(4)), possibly introducing new additional factors. However, any
new factor is either of type xα(t) , with t ∈ A n

1 , or or of type hα(u) ,

with u ∈ U
(
A

(n)
1

)
, for values of n which are (overall) strictly increasing

after each iteration of this procedure. As An
1 = {0} , for n ≫ 0 , after

finitely many steps such new factors are trivial, i.e. eventually all unordered
(consecutive) factors will commute with each other and will be re-ordered
without introducing any new factors. Thus the process stops after finitely
many steps, proving (5.3).

Theorem 5.17. For any A ∈ (salg) we have

G(A) = G0(A)G
<
1 (A) , G(A) = G<

1 (A)G0(A)

Proof. This follows at once from Theorem 5.15 and Lemma 5.16.
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Our aim is to show that the decompositions we proved in the previous
proposition are essentially unique. We need one more lemma:

Lemma 5.18. Let A , B ∈ (salg) , with B being a subsuperalgebra of A .
Then G(B) ≤ G(A) , i.e. G(B) is a subgroup of G(A) .

Proof. This is not in general true for any supergroup functor; however, G
by definition is a subgroup of some GL(V ) , hence the elements in G(A) are
realized as matrices with coefficients in A , and those in G(B) as matrices
with coefficients in B . It is then clear that any matrix in G(B) is in G(A),
and two such matrices are equal in G(B) if and only if they are equal as
matrices in G(A) as well.

We are ready for our main result:

Theorem 5.19. For any A ∈ (salg) , the group product yields bijections

G0(A)×G−,<
1 (A)×G+,<

1 (A) ↪−−−� G(A)

and all the similar bijections obtained by permuting the factors G±,<
1 (A)

and/or switching the factor G0(A) to the right.

Proof. We shall prove the first mentioned bijection. In general, Proposition
5.17 gives G(A) = G0(A)G

<
1 (A) , so the product map from G0(A)×G<

1 (A)
to G(A) is onto; but in particular, we can choose an ordering on ∆1 for which
∆−

1 ≼ ∆+
1 , hence G<

1 (A) = G−,<
1 (A)G+,<

1 (A) , so we are done for surjectivity.
To prove that the product map is also injective amounts to showing that

for any g ∈ G(A) , the factorization g = g0 g− g+ with g0 ∈ G0(A) and
g± ∈ G±,<

1 (A) is unique. In other words, if we have

g = g0 g− g+ = f0 f− f+ , g0 , f0 ∈ G0(A) , g± , f± ∈ G±,<
1 (A)

we must show that g0 = f0 and g± = f± .

To begin with, we write the last factors in our identities as

g± =
∏N±

d=1

(
1 + ϑ±

d Xγ±
d

)
, f± =

∏N±
d=1

(
1 + η±d Xγ±

d

)
for some ti , sj ∈ A0 , and ϑj , ηj ∈ A1 , with N±=

∣∣∆±
1

∣∣ . Here the γ±d ∈ ∆±
1

are all the positive or negative odd roots, ordered as in Definition 5.11.
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Expanding the products expressing g± and f± we get

g± = 1 +
∑N±

d=1 ϑ
±
d Xγ±

d
+

∑N±
k=2

∑
d∈{1,...,N±}k (−1)(

k
2) ϑ±

d Xγ±
d

f± = 1 +
∑N±

d=1 η
±
d Xγ±

d
+

∑N±
k=2

∑
d∈{1,...,N±}k (−1)(

k
2) η±

d
Xγ±

d

where Xγ±
d
:= Xγ±

d1

· · ·Xγ±
dk

, ϑ± := ϑd1 · · ·ϑdk , η
± := ηd1 · · · ηdk , for every

k > 1 and every k–tuple d := (d1, . . . , dk) ∈ {1, . . . , N±}k . For later use,
note that these formulas imply also

f −1
− g− = 1 +

N−∑
d=1

(
ϑ−
d − η−d

)
Xγ−

d
+

2N−∑
k=2

∑
d∈{1,...,N−}k

Φγ−
d

(
ϑ−, η−

)
Xγ−

d
(5.4)

f+ g
−1
+ = 1 +

N+∑
d=1

(
η+d − ϑ+

d

)
Xγ+

d
+

2N+∑
k=2

∑
d∈{1,...,N+}k

Φγ+
d

(
− ϑ+,−η+

)
Xγ+

d
(5.5)

where the Φγ±
d
’s are suitable monomials (in the ϑi’s and ηj’s) of degree k

with a coefficient ±1 , and Φγ+
d
= ±Φγ−

d
.

Note that, letting V be the g–module used in Definition 5.9 to define
G(A) , all the identities above actually hold inside End

(
Vk(A)

)
.

We proceed now to prove the following, intermediate result:

Claim: Let g± , f± ∈ G±,<
1 (A) be such that g− g+ = f− f+ . Then g± = f± .

Indeed, let V = ⊕µVµ be the splitting of V as direct sum of weight spaces.
Root vectors map weight spaces into weight spaces, via Xδ.Vµ ⊆ Vµ+δ (for
each root δ and every weight µ ). An immediate consequence of this and of
the expansions in (5.4–5) is that, for all weights µ and vµ ∈ Vµ \ {0} ,(

f −1
− g−

)
.vµ ∈

⊕
γ−∈N∆−

1
Vµ+γ− ,

(
f+ g

−1
+

)
.vµ ∈

⊕
γ+∈N∆+

1
Vµ+γ+

where N∆±
1 is the N–span of ∆±

1 . In particular, this means that the only
weight space in which both

(
f −1
− g−

)
.vµ and

(
f+ g

−1
+

)
.vµ may have a non-

trivial weight component is Vµ itself, as N∆−
1 ∩ N∆+

1 = {0} . Moreover,
let us denote by

((
f −1
− g−

)
.vµ

)
µ+γ−

d

the weight component of
(
f −1
− g−

)
.vµ

inside Vµ+γ−
d
, and similarly let

((
f+ g

−1
+

)
.vµ

)
µ+γ+

d

be the weight component

of
(
f+ g

−1
+

)
.vµ inside Vµ+γ+

d
. Then, looking in detail at (5.4–5), we find((

f −1
− g−

)
.vµ

)
µ+γ−

d

=
(
ϑ−
d − η−d

)
Xγ−

d
.vµ ∀ d = 1, . . . , N−
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((
f+ g

−1
+

)
.vµ

)
µ+γ+

d

=
(
η+d − ϑ+

d

)
Xγ+

d
.vµ ∀ d = 1, . . . , N+

In fact, this is certainly true for γ±d simple, and one can check directly case
by case that any odd root γ±d can never be the sum of three or more odd
roots all positive or negative like γ±d itself. Now, since by hypothesis we
have g− g+ = f− f+ , so that f−1

− g− = f+ g
−1
+ , comparing the weight

components of the action of both sides of this equation on weight spaces Vµ
— and recalling that g acts faithfully on V , so Xγ±

d
.Vµ ̸= 0 for some µ —

we get right away ϑ±
d = η±d for all d , hence g± = f± , q.e.d. ♢

Let now go on with the proof. By definition of G0(A) , both g0 and f0 are
products of finitely many factors of type xα(tα) and hi(si) for some tα ∈ A0 ,
si ∈ U(A0) — with α ∈ ∆0 , i = 1, . . . , ℓ . We call B the superalgebra of A
generated by all the ϑ±

d ’s, the η
±
d ’s, the tα’s and the si’s. Then B is finitely

generated (as a superalgebra), and B1 is finitely generated as a B0–module.
By Lemma 5.18, G(B) embeds injectively as a subgroup into G(A) ; so the

identity g0 g− g+ = f0 f− f+ also holds inside G(B) . Thus we can switch
from A to B , i.e. we can assume from scratch that A = B . In particular
then, A is finitely generated, hence A1 is finitely generated as an A0–module.

Consider in A the ideal A1 , the submodules An
1 (cf. §2.1), for each n ∈ N ,

and the ideal
(
An

1

)
of A generated by An

1 : as An
1 is homogeneous, we have

also A
/(
An

1

)
∈ (salg) . Moreover, as A1 is finitely generated (over A0), by

assumption, we have An
1 = {0} =

(
An

1

)
for n≫ 0 . So it is enough to prove

g0 ≡ f0 mod
(
An

1

)
, g± ≡ f± mod

(
An

1

)
∀ n ∈ N (5.6)

where, for any A′ ∈ (salg) , any I ideal of A′ with πI : A′ −� A′/I the
canonical projection, by x ≡ y mod I we mean that two elements x and y
in G(A′) have the same image in G

(
A′/I) via the map G(πI) .

We prove (5.6) by induction. The case n = 0 is clear (there is no odd
part). We divide the induction step in two cases: n even and n odd.

Let (5.6) be true for n even. In particular, g± ≡ f± mod
(
An

1

)
: then (see

the proof of the Claim above) we have ϑ±
d ≡ η±d mod

(
An

1

)
for all d , hence

(ϑ±
d − η±d ) ∈

(
An

1

)
∩A1 ⊆

(
An+1

1

)
, for all d , by an obvious parity argument.

Thus g± ≡ f± mod
(
An+1

1

)
too, hence — from g0 g− g+ = f0 f− f+ —

g0 ≡ f0 mod
(
An+1

1

)
as well, i.e. (5.6) holds for n+1 , q.e.d.

Let now (5.6) hold for n odd. Then g0 ≡ f0 mod
(
An

1

)
; but g0, f0 ∈

G0(A) = G0(A0) by definition, hence g0 ≡ f0 mod
(
An

1

)
∩ A0 . Therefore
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g0 ≡ f0 mod
(
An+1

1

)
, because

(
An

1

)
∩ A0 ⊆

(
An+1

1

)
by an obvious parity

argument again. Thus from g0 g− g+ = f0 f− f+ we get also g− g+ ≡ f− f+
mod

(
An+1

1

)
. Then the Claim above — applied to G

(
A
/
(An+1

1 )
)
— eventu-

ally gives g± ≡ f± mod
(
An+1

1

)
, so that (5.6) holds for n+1 .

Corollary 5.20. The group product yields functor isomorphisms

G0 ×G−,<
1 ×G+,<

1

∼=−−→ G , G0 ×G−,<
1 ×G+,<

1

∼=−−→ G

as well as those obtained by permuting the (−)-factor and the (+)-factor
and/or moving the (0)-factor to the right. Moreover, all these induce simi-
lar functor isomorphisms with the left-hand side obtained by permuting the

factors above, like G+,<
1 ×G0×G−,<

1

∼=−→ G , G−,<
1 ×G0×G+,<

1

∼=−→ G , etc.

Proof. The first isomorphism arises from Theorem 5.19. The second one then
is an easy consequence of the first one and of Theorem A.8 of Appendix A,
because G is the sheafification of G . Similarly for the other functors.

Remark 5.21. The functor isomorphisms G−,<
1 ×G0×G+,<

1

∼=−→ G , G+,<
1 ×

G0×G−,<
1

∼=−→ G , G−,<
1 ×G0×G+,<

1

∼=−→ G and G−,<
1 ×G0×G+,<

1

∼=−→ G
can be thought of as sort of a super-analogue of the classical big cell decom-
position for reductive algebraic groups.

Proposition 5.22. The functors G±,<
1 : (salg) −→ (sets) are representable:

they are the functor of points of the superscheme A0|N±
k , with N± =

∣∣∆±
1

∣∣ .
In particular they are sheaves, hence G±,<

1 = G±,<
1 .

Proof. Clearly, by the very definitions, there exists a natural transformation
Ψ± : A0|N±

k −→ G±,<
1 given on objects by

Ψ±(A) : A0|N±
k (A)−→ G±,<

1 (A) , (ϑ1, . . . , ϑN±) 7→
∏N±

i=1 xγi(ti)

Now given g±1 =
∏N±

i=1 xγi(ϑ
′
i) ∈ G±,<

1 (A) , h±1 =
∏N±

i=1 xγi(ϑ
′′
i ) ∈ G±,<

1 (A) ,

assume that g±1 = h±1 , hence h−1 (g−1 )
−1

= 1 . Then we get
(
ϑ′
1, . . . , ϑ

′
N±

)
=(

ϑ′′
1, . . . , ϑ

′′
N±

)
just as showed in the proof of Theorem 5.19. This means that

Ψ± is an isomorphism of functors, which proves the claim.

Finally, we can prove that the Chevalley supergroups are algebraic:
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Theorem 5.23. Every Chevalley supergroup G is an algebraic supergroup.

Proof. We only need to show that the functor G is representable. Now,
Corollary 5.20 and Proposition 5.22 give G ∼= G0 ×G−,<

1 ×G+,<
1 , with

G−,<
1 and G+,<

1 being representable; but G0 also is representable — as it is
a classical algebraic group, see §5.2. But any direct product of representable
functors is representable too (see [7], Ch. 5), so we are done.

Remark 5.24. This theorem asserts that Chevalley supergroup functors
actually provide algebraic supergroups. This is quite remarkable, as some of
these supergroups had not yet been explicitly constructed before. In fact,
giving the functor of points of a supergroup it is by no means sufficient to
define the supergroup: proving the representability — i.e., showing that there
is a superscheme whose functor of points is the given one — can be very hard.

For example using the procedure described above, it is possible to con-
struct the algebraic supergroups corresponding to all of the exceptional clas-
sical Lie superalgebras F (4), G(3) and D(2, 1; a) — for a ∈ Z — and to the
strange Lie superalgebras.

The existence of such groups in the differential and analytic categories is
granted through the theory of Harish-Chandra pairs, in which the category
of supergroups is identified with pairs consisting of a Lie group and a super
Lie algebra, (see [22], [2], [31] for more details on this subject). Our theory
allows to realize such supergroups explicitly and over arbitrary fields.

Another immediate consequence of Corollary 5.20 and Proposition 5.22 is
the following, which improves, for Chevalley supergroups, a more general re-
sult proved by Masuoka (cf. [25], Theorem 4.5) in the algebraic-supergeometry
setting (see also [31], and references therein, for the complex-analytic case).

Proposition 5.25. For any Chevalley supergroup G , there are isomor-
phisms of commutative superalgebras

O(G) ∼= O(G0)⊗O
(
G−,<

1

)
⊗O

(
G+,<

1

) ∼=
∼= O(G0)⊗ k

[
ξ1, . . . , ξN−

]
⊗ k

[
χ1, . . . , χN+

]
where N± =

∣∣∆±
1

∣∣ , the subalgebra O(G0) is totally even, and ξ1, . . . , ξN−

and χ1, . . . , χN+ are odd elements.
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We conclude this section with the analysis of a special case, that of com-
mutative superalgebras A for which A2

1 = {0} . This is a typical situation in
commutative algebra theory: indeed, any such A is nothing but the central
extension of the commutative algebra A0 by the A0–module A1 .

Proposition 5.26. Let G be a Chevalley supergroup functor, and let G be its
associated Chevalley supergroup. Assume A ∈ (salg) is such that A2

1 = {0} .
Then G+

1 (A) , G
−
1 (A) and G1(A) are normal subgroups of G(A) , with

G±
1 (A) = G±,<

1 (A) ∼= A0|N±
k (A) with N± =

∣∣∆±
1

∣∣
G1(A) = G−

1 (A) ·G+
1 (A) = G+

1 (A) ·G−
1 (A)

G1(A) ∼= G−
1 (A)×G+

1 (A)
∼= G+

1 (A)×G−
1 (A)

∼= A0|N−
k (A)× A0|N+

k (A)

(where “ ∼=” means isomorphic as groups), the group structure on A0|N±
k (A)

being the obvious one. In particular, G(A) is the semidirect product, namely

G(A) ∼= G0(A)nG1(A) ∼= G0(A0)n
(
A0|N−

k (A)×A0|N+

k (A)
)
, of the classical

group G0(A0) with the totally odd affine superspace A0|N−
k (A)× A0|N+

k (A) .

Similar results hold with a symbol “G” replacing “G” everywhere.

Proof. The assumptions on A and the commutation formulas in Lemma
5.13(b) ensure that all the 1-parameter subgroups associated to odd roots do
commute with each other. This implies that G−

1 (A)G
+
1 (A) = G+

1 (A)G
−
1 (A) ,

that the latter coincides with G1(A) , that G
±
1 (A) = G±,<

1 (A) , and also that
G±

1 (A) and G1(A) are subgroups of G(A) . Moreover, Lemma 5.13(a) implies
that G±

1 (A) and G1(A) are also normalized by G0(A) . By Theorem 5.15 we
conclude that G±

1 (A) and G1(A) are normal in G(A) .
All remaining details follow from Proposition 5.22 and Theorem 5.23.

The statement for G clearly follows as well.

5.4 Independence of Chevalley and Kostant superal-
gebras

Next question is the following: what is the role played by the representation
V ? Moreover, we would like to show that our construction is independent
of the choice of an admissible Z–lattice M in a fixed g–module (over K ).
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Let G′ and G be two Chevalley supergroups obtained by the same g ,
possibly with a different choice of the representation. We denote with Xα

and with X ′
α respectively the elements of the Chevalley basis in g identified

(as usual) with their images under the two representations of g .

Lemma 5.27. Let ϕ : G −→ G′ be a morphism of Chevalley supergroups
such that on local superalgebras A we have

(1) ϕA

(
G0(A)

)
= G′

0(A)

(2) ϕA

(
1 + ϑXβ

)
= 1 + ϑX ′

β ∀ β ∈ ∆1 , ϑ ∈ A1

Then Ker(ϕA) ⊆ T , where T is the maximal torus in the ordinary
algebraic group G0 ⊆ G (see §5.2).

Proof. For any local superalgebra A we have G(A) = G(A) . Now let g ∈
G(A) = G(A) , g ∈ Ker(ϕA) . By Theorem 5.19 we have g = g−1 g0 g

+
1 with

g0∈G0(A) , g
±
1 ∈G±,<

1 (A) ; but then ϕA

(
g−1

)
ϕA(g0)ϕA

(
g+1

)
= ϕA(g) = e

G′ .
By the assumption (2) and the uniqueness of expression of g , we have that
ϕA

(
g−1

)
= e

G′ = ϕA

(
g+1

)
and g0 ∈ Ker (ϕ0,A) ⊆ T(A) , where ϕ0,A is the

restriction of ϕA to G0(A) . The claim follows.

Let now L0 be the root lattice of g ; also, we let L1 be the weight lattice
of g , defined to be the lattice of weights of all rational g–modules.

For any lattice L with L0 ⊆ L ⊆ L1 , there is a corresponding Chevalley
supergroup. The relation between Chevalley supergroups corresponding to
different lattices is the same as in the classical setting.

Theorem 5.28. Let G and G′ be two Chevalley supergroups constructed
using two representations V and V ′ of the same g over the same field K (as
in §5.1), and let LV , LV ′ be the corresponding lattices of weights.

If LV ⊇ LV ′ , then there exists a unique morphism ϕ : G −→ G′ such
that ϕA

(
1 + ϑXα

)
= 1 + ϑX ′

α , and Ker (ϕA) ⊆ Z
(
G(A)

)
, for every

local algebra A . Moreover, ϕ is an isomorphism if and only if LV = LV ′ .

Proof. As the same theorem is true for the classical partG0 , we can certainly
set up a map ϕ0 : G0 −→ G′

0 and the corresponding one on the sheafification.
Now we define ϕ : G −→ G′ in the following way. For A ∈ (salg) , we set
ϕA

(
1 + ϑXα

)
:= 1 + ϑX ′

α , ϕA(g0) := ϕ0,A(g0) ; then

ϕA

((
1 + ϑ1Xα1

)
· · ·

(
1 + ϑrXαr

)
g0

(
1 + η1Xβ1

)
· · ·

(
1 + ηsXβs

))
=
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=
(
1 + ϑ1X

′
α1

)
· · ·

(
1 + ϑrXαr

)
ϕ0,A(g0)

(
1 + η1X

′
β1

)
· · ·

(
1 + ηsX

′
βs

)
This gives a well-defined ϕA which in fact is also a morphism (i.e., natural
transformation): indeed, ϕA(g h) = ϕA(g)ϕA(h) because all the relations
used to commute elements in G−

1 (A), G0(A) and G+
1 (A) — so to write a

given element in G(A) in the “normal form” as in Corollary 5.20 — do not
depend on the chosen representation, where now A is taken to be local (by
Proposition A.12 in the Appendix A, we have that the natural transformation
ϕ is uniquely determined by its behaviour on local superalgebras).

As a direct consequence, we have the following “independence result”:

Corollary 5.29. Every Chevalley supergroup GV is independent — up to
isomorphism — of the choice of an admissible lattice M of V considered in
the very construction of GV itself.

Proof. Let M and M ′ be two admissible lattices of V . Then consider V ′ :=
V , and consider GV and GV ′ constructed using respectively the two lattices
M and M ′. By construction we have LV = LV ′ , hence Theorem 5.28 give
GV

∼= GV ′ , which proves the claim.

5.5 Lie’s Third Theorem for Chevalley supergroups

Let now k be a field, with char(k) ̸= 2, 3 .

Let G be a Chevalley supergroup scheme over k, built out of a classical
Lie superalgebra g over K as in §5.2. In §5.1, we have constructed the Lie
superalgebra gk := k⊗Z gV over k starting from the Z–lattice gV . We now
show that the algebraic supergroup G has gk as its tangent Lie superalgebra.

We start recalling how to associate a Lie superalgebra to a supergroup
scheme. For more details see [7].

Let A ∈ (salg) and let A[ϵ] := A[x]
/(
x2
)

be the superalgebra of dual
numbers, in which ϵ := x mod

(
x2
)

is taken to be even. We have that

A[ϵ] = A⊕ϵA , and there are two natural morphisms i : A −→ A[ϵ] , a
i7→ a ,

and p : A[ϵ] −→ A , (a+ ϵ a′
) p7→ a , such that p ◦ i = idA .
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Definition 5.30. For each supergroup scheme G , consider the homomor-
phism G(p) : G(A(ϵ)) −→ G(A) . Then there is a supergroup functor

Lie(G) : (salg) −→ (sets) , Lie(G)(A) := Ker (G(p))

Proposition 5.31. (cf. [7], §6.3.) Let G be a supergroup scheme. The func-
tor Lie(G) is representable and can be identified with (the functor of points
of) the tangent space at the identity of G , namely Lie(G)(A) = (A⊗ T1G)0 ,
where T1G is the super vector space mG,1G

/
m2

G,1G
, with mG,1G being the max-

imal ideal of the local algebra OG,1G .

With an abuse of notation we will use the same symbol Lie(G) to denote
both the functor and the underlying super vector space.

Next we show that Lie(G) has a Lie superalgebra structure: this is equiv-
alent to asking the functor Lie(G) : (salg) → (sets) to be Lie algebra valued.

Definition 5.32. Define the adjoint action of G on Lie(G) as

Ad : G −→ GL(Lie(G)) , Ad(g)(x) := G(i)(g) · x ·
(
G(i)(g)

)−1

for all g ∈ G(A) , x ∈ Lie(G)(A) . Define also the adjoint morphism ad as

ad := Lie(Ad) : Lie(G) −→ Lie(GL(Lie(G))) := End(Lie(G))

where GL and End are the functors defined as follows: GL(V )(A) and
End(V )(A) , for a supervector space V , are respectively the automorphisms
and the endomorphisms of V (A) := (A⊗ V )0 .

Finally, we define [x, y] := ad(x)(y) , for all x, y ∈ Lie(G)(A) .

Proposition 5.33. (cf. [7], §6.3.) The functor Lie(G) : (salg) −→ (sets) is
Lie algebra valued, via the bracket [ , ] defined above.

Let us now see an important example.

Example 5.34. We compute the functor Lie(GLm|n) . Consider the map

GLm|n(p) : GLm|n
(
A(ϵ)

)
−→ GLm|n(A) ,

(
p+ ϵ p′ q + ϵ q′

r + ϵ r′ s+ ϵ s′

)
7→

(
p q
r s

)
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with p, p′, s and s′ having entries in A0 , and q, q
′, r and r′ having entries in

A1 ; moreover, p and s are invertible matrices. One can see immediately that

Lie(GLm|n)(A) = Ker
(
GLm|n(p)

)
=

{(
Im + ϵ p′ ϵ q′

ϵ r′ In + ϵ s′

)}
where Iℓ is an ℓ× ℓ identity matrix. The functor Lie(GLm|n) is clearly group
valued and can be identified with the (additive) group functor Mm|n

Mm|n(A) = Hom
(
M(m|n)∗, A

)
= Hom(salg)

(
Sym

(
M(m|n)∗

)
, A

)
where M(m|n) :=

{(
P Q
R S

)}
∼= km2+n2|2mn — with P , Q, R and S being

m×m, m×n, n×m and n×n matrices with entries in k — is a supervector
space. An X ∈M(m|n) is even iff Q = R = 0 , it is odd iff P = S = 0 .

Notice thatM(m|n) is a Lie superalgebra, whose Lie superbracket is given
by [X, Y ] := XY − (−1)p(X)p(Y ) Y X , so Lie(GLm|n) is a Lie superalgebra.

Let us compute explicitly for this special case the morphisms Ad and ad .

Since G(i) : GLm|n(A) −→ GLm|n
(
A(ϵ)

)
is an inclusion, if we identify

GLm|n(A) with its image we can write

Ad(g)(x) = g x g−1 , ∀ g ∈ GLm|n(A) , x ∈ Mm|n(A)

By definition we have Lie
(
GL(Mm|n)

)
(A) =

{
1+ ϵ β

∣∣ β ∈ GL(Mm|n)(A)
}
.

So we have, for a, b ∈ Mm|n(A) ∼= Lie(GLm|n)(A) =
{
1+ ϵ a

∣∣ a ∈ Mm|n(A)
}
,

ad(1 + ϵ a)(b) = (1 + ϵ a) b (1− ϵ a) = b+ (ab− ba) ϵ = b+ ϵ [a, b]

The outcome is ad(1 + ϵ a) = id + ϵ β(a) , with β(a) = [a,– ] .

We are ready for the main theorem of this section.

Theorem 5.35. If G = GV is a Chevalley supergroup built upon g and V ,
then Lie(GV ) = g as functors with values in (Lie-alg) .

Proof. The first remark is that all our arguments take place inside GL(V ),
hence we can argue using the formulas of the previous example. Certainly
we know that the two spaces under exam have the same (super)dimension, in
fact by Theorem 5.23 we know that G = G0 ×G<

1 , hence its tangent space
at the origin has dimension dim(g0)

∣∣dim(g1) . It is also clear by classical
considerations that Lie(GV )0 = g0 . An easy calculation shows that Lie(GV )
contains all the generators of g1 , hence we have the result.
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6 The cases A(1, 1) , P (3) and Q(n)

In this section we examine how some statements and proofs in the theory we
have developed need to be suitably modified in order to obtain the construc-
tion of Chevalley supergroups for the special cases A(1, 1) , P (3) , Q(n) .

The main fact to point out is a special feature of these three cases which
make them different from all other ones: namely, some (odd) roots have
multiplicity greater than one, so the set of (odd) roots itself is no longer fit
to index (odd) root vectors in a basis. This leads us to introduce a different
index set for root vectors, still close to the root set but definitely different.

As to types A(1, 1) and P (3) , according to §3.1 in both cases there exist
linear dependence relations that identify some (odd) positive roots with some
(odd) negative ones. Now, for the common value of such a root we can find a
root vector when considering the root as a positive one, and another, linearly
independent root vector, when looking at the same root as a negative one.
In the end, any such root has exactly multiplicity 2, and we just have to find
out a neat way to index all root vectors in a consistent manner.

The solution is immediate: the same way of indexing root vectors that
we adopted respectively for A(n, n) — n > 1 — and for P (m) — m ̸= 2 —
still works in the present context. Similarly, the description of a Chevalley
basis is (up to using a suitably adapted notation) essentially the same —
both for A(1, 1) and P (3) — as in the general case. Then all our results
— about Kostant algebras, Chevalley groups and their properties — follow:
statements and proofs are the same, just minimal notational changes occur.

For type Q(n) instead, the new, “exotic” feature is that the root set
includes also 0 , as an odd root with multiplicity n , while all other roots
are both even and odd and have multiplicity 2 . Root vectors then must be
indexed by a greater set then the root set. Moreover, all root vectors relative
to the root 0 are odd, while for any root α ̸= 0 there exist an even as well
as an odd root vector attached to α . With such root vectors we can build
up a (suitably defined) Chevalley basis.

All our results again hold true in caseQ(n) too, with the same statements;
however, in this case some proofs need additional arguments, due to the
special behavior of the root 0 and of the root vectors in a Chevalley basis.
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6.1 Chevalley bases and Chevalley superalgebras

Throughout the section g denotes any Lie superalgebra of type A(1, 1) , P (3)
or Q(n) . We begin with the following definition (sort of a generalization of
root system), yielding our tool to index root vectors in a Chevalley basis.

Definition 6.1. We define a set ∆̃ := ∆̃0

⨿
∆̃1 , a map π : ∆̃ −→ ∆∪{0}

and two partial operations on ∆̃ (“partial” in the sense that ∆̃ is not closed

with respect to them) + : ∆̃× ∆̃ 99K ∆̃ , − : ∆̃ 99K ∆̃ , as follows.

(a) if g = A(1, 1) , we set ∆̃±
0 := ∆±

0 and ∆̃0 := ∆̃+
0 ∪ ∆̃−

0 = ∆0 .
The latter can be described by subsets of pairs indexing the (even) positive
or negative roots — in the (classical) root system of type A(1) × A(1) —

namely ∆̃0 := ∆̃+
0

⨿
∆̃−

0 with ∆̃+
0 := ∆+

0 =
{
(1, 2), (3, 4)

}
, ∆̃−

0 := ∆−
0 ={

(2, 1), (4, 3)
}
; with these identifications, one has −(i, j) = (j, i) for the

opposite of a root. Similarly, we define ∆̃+
1 :=

{
(1, 3), (1, 4), (2, 3), (2, 4)

}
,

∆̃−
1 :=

{
(3, 1), (4, 1), (3, 2), (4, 2, )

}
, and eventually ∆̃1 := ∆̃+

1

⨿
∆̃−

1 .

The partial operations − and + on ∆̃ are given by

−(r, s) := (s, r) , (i, j) + (h, k) := δj,h(i, k)− (−1)ε(i,j) ε(h,k)δk,i(h, j)

where ε(t, l) := 1 if t, l ≥ 2 or t, l > 2 , and ε(t, l) := −1 otherwise.
Now, the set ∆1 of odd roots of g identifies with the quotient space

∆1 = ∆̃1

/
∼ , where the equivalence relation ∼ between pairs given by

(1, 4) ∼ (3, 2) , (1, 3) ∼ (4, 2) , (2, 3) ∼ (4, 1) , (2, 4) ∼ (3, 1)

(note that the partition into ∼–equivalence classes is “transversal” to the

partition ∆̃1 := ∆̃+
1

⨿
∆̃−

1 ). We define π : ∆̃ = ∆̃0

⨿
∆̃1 −→ ∆ ∪ {0} as

the identity map on ∆̃0 = ∆0 and as the quotient map on ∆̃1 .

(b) if g = P (3) , we set ∆̃±
0 := ∆±

0 and ∆̃0 := ∆̃+
0 ∪ ∆̃−

0 = ∆0 . The
latter can be described by subsets of pairs indexing the (even) positive or

negative roots — in the (classical) root system of type A(3) — namely ∆̃0 :=

∆̃+
0

⨿
∆̃−

0 with ∆̃+
0 := ∆+

0 =
{
(i, j)

}
1≤i<j≤4

, ∆̃−
0 := ∆−

0 =
{
(j, i)

}
1≤i<j≤4

,

with −(r, s) = (s, r) . Then we define ∆̃1 := ∆̃+
1

⨿
∆̃−

1 with ∆̃+
1 :={

[h, k]
}
1≤h≤k≤4

and ∆̃−
1 :=

{
[q, p]

}
1≤p<q≤4

.

The partial operations − and + on ∆̃ are defined as follows. Let us
consider in the free Z–module Z4 the canonical basis, whose elements are
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ε1 := (1, 0, 0, 0) , ε2 := (0, 1, 0, 0) , ε3 := (0, 0, 1, 0) , ε4 := (0, 0, 0, 1)

and let us consider the embedding of ∆̃ into Z4 given by

(r, s) 7→ (εr − εs) , [h, k] 7→ (εh + εk) , [q, p] 7→ −(εq + εp)

for all r ̸= s , h ≤ k , p � q . Then we define the partial operations − and

+ on ∆̃ as being the restrictions of the same name operations in Z4, taking
the former as defined (on ∆̃ ) whenever the result belongs to ∆̃ itself.

Let ∼ be the equivalence relation in ∆̃1 given by

[1, 2] ∼ [4, 3] , [1, 3] ∼ [4, 2] , [1, 4] ∼ [3, 2] ,

[2, 3] ∼ [4, 1] , [2, 4] ∼ [3, 1] , [3, 4] ∼ [2, 1] ;

then the set ∆1 of odd roots of g identifies with the quotient space ∆1 =
∆̃1

/
∼ . We define π : ∆̃ = ∆̃0

⨿
∆̃1 −→ ∆ ∪ {0} as the identity map on

∆̃0 = ∆0 and as the quotient map on ∆̃1 .

(c) if g = Q(n) , then ∆ = ∆1 = ∆0

⨿
{0} ; we define ∆̃±

0 :=

∆±
0 × {(0, 1)} and ∆̃0 := ∆̃+

0 ∪ ∆̃−
0 . Then we fix any partition I+n

⨿
I−n =

{1, . . . , n} of {1, . . . , n} , and we set ∆̃±
1 :=

(
(∆±

1 \{0})×{(1, 1)}
)⨿(

{0}×
{(1, i)}i∈I±n

)
, and ∆̃1 := ∆̃+

1

⨿
∆̃−

1 . Note that ∆̃0 ∩ ∆̃1 = ∅ (by defini-
tion!), whereas ∆0 ∩∆1 = ∆0 ̸= ∅ instead.

As ∆̃ ⊆
(
∆ × {0, 1} × In

)
, the map π : ∆̃ −→ ∆ ∪ {0} = ∆ is just

the restriction to ∆̃ of the projection onto the first factor, and the operator
− : ∆̃ −→ ∆̃ is given by taking the opposite on the left-hand factor. Finally,
the partial operation

(
α, β

)
7→ α+ β is given by(

α , (p , i)
)
+

(
β , (q , j)

)
:=

(
α+ β , ( p+ q (mod 2) , i ∧ j )

)
Note that this operation has a neutral element 0̃ , namely 0̃ = (0, (0, 1)) .

We are now ready to give the definition of Chevalley basis. We invite the
reader to look and compare with Definition 3.3 that holds for classical Lie
superalgebras different from A(1, 1) , P (3) and Q(n) to notice the differences.

Definition 6.2. Let g be as above. We call Chevalley basis of g any homo-
geneous K–basis B =

{
Hi

}
1,...,t

⨿{
Xα̃

}
α̃∈∆̃ with the following properties.
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(a)
{
H1, . . . , Hℓ

}
is a K–basis of h ; moreover, with Hα∈ h as in §3.1:

if g ̸= Q(n) , hZ := SpanZ
(
H1, . . . , Hℓ

)
= SpanZ

({
Hα

∣∣α∈∆∩(−∆)
})

;

if g = Q(n) , hZ := SpanZ
(
H1, . . . , Hℓ

)
=

{
h ∈ h

∣∣ (h , hα) ∈ Z ∀ α∈∆
}
;

(b)
[
Hi , Hj

]
= 0 ,

[
Hi , Xα̃

]
= π

(
α̃
)
(Hi)Xα̃ , ∀ i, j∈{1, . . . , ℓ} , α̃∈∆̃ ;

(c. ̸Q) if g ̸= Q(n) , then[
Xα̃ , X−α̃

]
= σα̃Hπ(α̃) ∀ α̃ ∈ ∆̃ ∩

(
− ∆̃

)
,

with Hπ(α̃) as in (a), and σα̃ := −1 if α̃ ∈ ∆̃−
1 , σα̃ := 1 otherwise;

(c.Q) if g = Q(n) , then[
X(α,(0,1)) , X(−α,(0,1))

]
= Hα ∀ α∈∆\{0} , with Hα as in (a) ;[

X(α,(1,1)) , X(−α,(1,1))

]
= Hα′ ∀ α∈∆\ {0} , with Hα′ ∈ hZ ;[

X(α,(0,1)) , X(−α,(1,1))

]
= X(0,(1,α)) ∀ α∈∆\ {0} ,

with X(0,(1,α)) :=
∑n

k=1 eα;kX(0,(1,k)) if Hα =
∑n

k=1 eα;kHk ;[
X(0,(1,i)) , X(0,(1,j))

]
= 2Hi,j ∀ i, j = 1, . . . , n , with Hi,j ∈ hZ ;

(d)
[
Xα̃ , Xβ̃

]
= cα̃,β̃ Xα̃+β̃ ∀ α̃, β̃ ∈ ∆̃ : α̃ ̸= −β̃ , β̃ ̸= −α̃ , with

(d.1) if
(
α̃+ β̃

)
̸∈ ∆̃ , then cα̃,β̃ = 0 , and Xα̃+β̃ := 0 ,

(d.2) if
(
π(α̃), π(α̃)

)
̸= 0 or

(
π(β̃), π(β̃)

)
̸= 0 , and (cf. Definition 3.2)

if Σ
π(α̃)

π(β̃)
:=

{
π
(
β̃
)
− r π

(
α̃
)
, . . . , π

(
β̃
)
+ q π

(
α̃
)}

is the π
(
α̃
)
–string through

π
(
β̃
)
, then cα̃,β̃ = ±(r + 1) , with the following exceptions:

(d.2-I) if g = P (3) , and α̃ = [i, j] , β̃ = (i, j) — notation of 6.1(3) —
then cα̃,β̃ = ±(r + 2) ;

(d.2-II) if g = Q(n) , and α̃ =
(
0, (1, k)

)
, β̃ =

(
ϵi − ϵj, (1, 1)

)
—

using the standard notation for the classical root system of type An — then
cα̃,β̃ = (ϵi + ϵj)(αk) ;

(d.3) if
(
π(α̃), π(α̃)

)
= 0 =

(
π
(
β̃
)
, π
(
β̃
))
, then cα̃,β̃ = ±π

(
β̃
)(
Hπ(α̃)

)
.

Here again, for notational convenience, we shall write Xδ := 0 whenever
δ belongs to the Z–span of ∆̃ but either δ ̸∈ ∆̃ , or δ ∈ ∆̃ and π

(
δ
)
= 0 .
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Remarks 6.3.

(1) The Chevalley superalgebra (of g) is defined again just like in the
other cases, namely as gZ := Z–span of B , where B is any Chevalley basis
of g . Again, it is a Lie superalgebra over Z , independent of the choice of B .

(2) If
(
π(α̃), π(α̃)

)
= 0 =

(
π(β̃), π(β̃)

)
then π

(
β̃
)(
Hπ(α̃)

)
= ±(r+1) .

Therefore, condition (d.3) in Definition 6.2 reads just like (d.2).

Now we show how to prove the existence of Chevalley bases — as claimed
in Theorem 3.7 — in the present cases. We proceed by direct construction
of explicit bases; on the other hand, it is worth stressing that the “uniform
argument” sketched in Remark 3.8 does apply again to case A(1, 1), and even
to case Q(n), up to a few, obvious changes.

A(1, 1) , P (3) : In case A(1, 1) , the description of an explicit Chevalley

basis given in the proof of Theorem 3.7 for A(n, n) — n ̸= 1 — works again,
verbatim. Similarly the description of a Chevalley basis for P (n) — n ̸= 3
— applies again to P (3) , up to reading (notation as in Definition 6.1(3))
αi,j := (i, j) , βh,k := [h, k] , βq,p := [q, p] , γi := [i, i] , for all 1 ≤ i ̸= j ≤ 4 ,
1 ≤ h < k ≤ 4 , 1 ≤ p < q ≤ 4 .

Q(n) : In this case a Chevalley basis is a variation of the basis given in

[13], §2.49 (we change the Cartan generators); we now describe it explicitly.
First consider the Lie superalgebra (sub-superalgebra of gl(n+1|n+1) )

Q̃(n) :=

{(
A B
B A

)
∈ gl(n+1|n+1)

∣∣∣∣ A ∈ gl(n+1) , B ∈ sl(n+1)

}
such that, by definition, Q(n) := Q̃(n)

/
KI2(n+1) . Take in Q̃(n) the elements

Li := ei,i + ei+n+1,i+n+1 , Kt := et,t+n+1 − et+1,t+n+2 + et+n+1,t − et+n+2,t+1

Ei,j := ei,j + ei+n+1,j+n+1 , Fi,j := ei,j+n+1 + ei+n+1,j

for all i, j = 1, . . . , n+ 1 , t = 1, . . . , n , i ̸= j . Then{
Li

}
i=1,...,n+1

∪ {
Ei,j

}i̸=j

i,j=1,...,n+1

∪ {
Kt

}
t=1,...,n

∪ {
Fi,j

}i̸=j

i,j=1,...,n+1

is a homogeneous K–basis of Q̃(n) , the Li’s and the Ei,j’s being even, the
Kt’s and the Fi,j’s being odd. As I2(n+1) = L1+ · · ·+Ln+1 , the quotient Lie

superalgebra Q(n) := Q̃(n)
/
KI2(n+1) has homogeneous K–basis

61



B :=
{
Li

}
i=1,...,n

∪ {
Ei,j

}i ̸=j

i,j=1,...,n+1

∪ {
Kt

}
t=1,...,n

∪ {
Fi,j

}i ̸=j

i,j=1,...,n+1

where we use again the same symbols to denote the images of elements of
Q̃(n) inside Q(n) . In terms of these, the multiplication table of Q(n) reads[

Li, Lj

]
= 0 ,

[
Li, Kt

]
= 0[

Kr , Ks

]
= 2

(
δr,s − δr,s+1

)
Lr + 2

(
δr,s − δr+1,s

)
Lr+1[

Lk , Ei,j

]
= αi,j(Lk)Ei,j ,

[
Lk , Fi,j

]
= αi,j(Lk)Fi,j[

Kt , Ei,j

]
= αi,j(Lt−Lt+1)Fi,j ,

[
Kt , Fi,j

]
= α̃i,j(Lt−Lt+1)Ei,j[

Ei,j , Ek,ℓ

]
= δj,k Ei,ℓ − δℓ,iEk,j ∀ (i, j) ̸= (ℓ, k)[

Ei,j , Fk,ℓ

]
= δj,k Fi,ℓ − δℓ,i Fk,j ∀ (i, j) ̸= (ℓ, k)[

Fi,j , Fk,ℓ

]
= δj,k Ei,ℓ + δℓ,iEk,j ∀ (i, j) ̸= (ℓ, k)[

Ei,j , Ej,i

]
= Li − Lj ,

[
Ei,j , Fj,i

]
=

∑j−1
t=1 Kt ,

[
Fi,j , Fj,i

]
= Li + Lj

where the αi,j’s are the non-zero roots of Q(n) , forming the classical root
system of type An (namely αi,j = ϵi−ϵj , where the ϵℓ’s form the dual basis to
the canonical basis of the diagonal matrices in gl(n+1) ), while α̃i,j := ϵi+ϵj .

In particular, this shows that the Li’s ( i = 1, . . . , n ) form a K–basis of
the Cartan subalgebra of Q(n) — which is the image in Q(n) of the subspace

of diagonal matrices in Q̃(n) — each Ei,j , resp. each Fi,j , is a root vector
(the former being even, the latter odd) for the root αi,j , and the Kt’s form
a K–basis of the (totally odd) zero root space, namely gα=0 ∩ g1 . Now set

Hk := Lk , X(0,(1,k)) := Kk , X(αi,j ,(0,1)) := Ei,j , X(αi,j ,(1,1)) := Fi,j

for all k = 1, . . . , n and i, j = 1, . . . , n+1 with i ̸= j . Then the above
formulas eventually show that B :=

{
Hk

}
k=1,...,n

⨿{
Xα̃

}
α̃∈∆̃ is a Chevalley

basis of g = Q(n) in the sense of Definition 3.3, by direct check.

Remark 6.4. For g of type Q(n) — to be precise, of type Q̃(n) — a Cheval-
ley basis was given also in [4], Lemma 4.3.
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6.2 Kostant superalgebras

In §4.1, the Kostant’s superalgebra KZ(g) was defined as the subalgebra of
U(g) generated by divided powers of the root vectors attached to even roots,
root vectors attached to odd roots, and binomial coefficients in the elements
of the Chevalley basis which belong to h . We perform exactly the same
construction for A(1, 1) , P (3) and Q(n) : thus the definition of KZ(g) for
the present cases reads essentially like Definition 4.3, the only difference is
that root vectors are indexed by elements of ∆̃ instead of ∆ .

The commutation rules among generators of KZ(g) are very close to those
in §4.2. Nevertheless, some differences occur, which we now point out.

(1) Even generators only: These relations involve only the Hi’s and their
binomial coefficients, and root vectors relative to even roots. Then they are
just the same as in §4.2, just reading ∆̃0 instead of ∆0 , X±α̃ instead of X±α ,
Xβ̃ instead of Xβ , π

(
α̃
)
(H) instead of α(H) and Hπ(α̃) instead of Hα .

(2) Odd and even generators (also involving the Xγ̃’s, γ̃ ∈ ∆̃1 ):

Xγ̃ f(H) = f
(
H − π

(
γ̃
)
(H)

)
Xγ̃

∀ γ̃ ∈ ∆̃1 , h ∈ h , f(T ) ∈ K[T ]

X−γ̃ Xγ̃ = −Xγ̃ X−γ̃ + Hγ̃ ∀ γ̃ ∈ ∆̃1 ∩
(
− ∆̃1

)
with Hγ̃ :=

[
Xγ̃ , X−γ̃

]
∈ hZ , l

Xγ̃ Xδ̃ = −Xδ̃Xγ̃ + cγ̃,δ̃Xγ̃+δ̃ , ∀ γ̃, δ̃ ∈ ∆̃1 , π
(
γ̃
)
+ π

(
δ̃
)
̸= 0

with cγ̃,δ̃ as in Definition 6.2,

X(α,(0,1))X(−α,(1,1)) = X(−α,(1,1))X(α,(0,1)) + X(0,(1,α)) , ∀ α ∈ ∆

with X(0,(1,α)) :=
∑n

k=1eα;kX(0,(1,k)) as in Definition 6.2(c.Q),

X(0,(1,i))X(0,(1,j)) = −X(0,(1,j))X(0,(1,i)) + 2Hi,j , ∀ i , j
with Hi,j :=

[
X(0,(1,i)) , X(0,(1,j))

]
∈ hZ as in Definition 3.3(c.Q),

X
(n)
α̃ Xγ̃ = Xγ̃ X

(n)
α̃ +

∑n
k=1

(∏k
s=1 εs

)(
r+ k
k

)
Xγ̃+k α̃X

(n−k)
α̃

∀ n ∈ N , ∀ α̃ ∈ ∆̃0 , γ̃ ∈ ∆̃1 : α̃ ̸= ±2 γ̃ , α̃ ̸= (0, (1, i)) , for any i ,

63



with σα̃
γ̃ =

{
γ̃ − r α̃ , . . . , γ̃ , . . . , γ̃ + q α̃

}
, Xγ̃+k α̃ := 0 if

(
γ̃+k α̃

)
̸∈ ∆̃ ,

and εs = ±1 such that
[
Xα , Xγ+(s−1)α

]
= εs (r + s)Xγ+s α ,

X
(n)
(α,(0,1))X(0,(1,k)) = X(0,(1,k))X

(n)
(α,(0,1)) − α(Hk)X

(n−1)
(α,(0,1))X(α,(1,1))

∀ n ∈ N , ∀ α ∈ ∆0 , ∀ k ,

Xγ̃ X
(n)
α̃ = X

(n)
α̃ Xγ̃ , X−γ̃ X

(n)
−α̃ = X

(n)
−α̃ X−γ̃

X−γ̃ X
(n)
α̃ = X

(n)
α̃ X−γ̃ + zγ̃ π

(
γ̃
)
(Hγ̃) X

(n−1)
α̃ Xγ̃

Xγ̃ X
(n)
−α̃ = X

(n)
−α̃ Xγ̃ − zγ̃ π

(
γ̃
)
(Hγ̃) X

(n−1)
−α̃ X−γ̃

∀ n ∈ N , ∀ γ̃ ∈ ∆̃1 , α̃ = 2 γ̃ ∈ ∆̃0 , zγ̃ := cγ̃,γ̃/2 = ±2

Using these relations, one proves the PBW-like theorem for KZ(g), i.e.
Theorem 4.7, with the same arguments as in the other cases. What changes
is only the statement, as root vectors are now indexed by elements of ∆̃ .

A similar comment applies to the Corollary 4.9 and the Remarks after it.

6.3 Chevalley supergroups and their properties

The construction of Chevalley supergroups of types A(1, 1) , P (3) and Q(n)
follows step by step that of other cases in §5. Like for the previous steps, one
essentially has only to change root vectors indexed by elements of ∆ with
root vectors indexed by ∆̃ .

The ingredients and the strategy are exactly the same, in particular a
Chevalley basis to start with. The second ingredient is the notion of admis-
sible lattices: their definition, existence and description of their stabilizers
are dealt with just like in §5.1.

Using an admissible lattice, we define supergroup functors xδ̃ , hH and

hi , associated to each δ̃ ∈ ∆̃ , H ∈ hZ and i = 1, . . . , ℓ , just like in Definition
5.6. The analysis carried on about such objects in §5.2 — in particular,
Proposition 5.8 — extends to the present context too. Then we introduce the
direct analogue of Definition 5.9, where the xδ̃ ’s replace the xδ’s, thus getting
the notions of Chevalley supergroup functor G and Chevalley supergroup G .
Similarly, all definitions and considerations aboutG0 andG0 (the latter being
a classical Chevalley-like algebraic group) also extend to the present case.
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To extend the construction and analysis carried on in §5.3, we can repeat
the same definitions, up to replacing ∆ with ∆̃ , ∆± with ∆̃±, α with α̃ , etc.
Thus we have subsets G±,<

1 (A) and subgroups G1(A), G
±
0 (A), G

±
1 (A) and

G±(A) of G(A) , and similarly with “G ” instead of “G ”.
The first modification we have to do is in Lemma 5.13, which now reads

Lemma 6.5.

(a) Let α̃ =
(
α, (0, 1)

)
∈ ∆̃0 , γ̃ ∈ ∆̃1 , A ∈ (salg) and t ∈ A0 , ϑ ∈ A1 .

If γ̃ ̸∈
{(

−α, (1, 1)
)
,
(
0, (1, i)

)}
, there exist cs∈Z such that(

xγ̃(ϑ) , xα̃(t)
)
=

∏
s>0 xγ̃+s α̃

(
cs t

sϑ
)

∈ G1(A)

(the product being finite). More precisely (cf. §6.2 for the notation),(
1 + ϑXγ̃ , xα̃(t)

)
=

∏
s>0

(
1 +

∏s
k=1 εk ·

(
s+r
r

)
· tsϑXγ̃+s α̃

)
where the factors in the product are taken in any order (as they do commute).

If γ̃ = −
(
α, (1, 1)

)
, then — with notation of Definition 6.2(c.Q) —(

xγ̃(ϑ) , xα̃(t)
)
= x(0,(1,α)(−t ϑ) :=

(
1− t ϑX(0,(1,α)

)
=

=
∏

k

(
1− eα;k t ϑX(0,(1,k))

)
=

∏
k x(0,(1,k))(−eα;k t ϑ) ∈ G1(A)

where the factors in the product are taken in any order (as they do commute).

If instead γ̃ =
(
0, (1, i)

)
for some i , then(

xγ̃(ϑ) , xα̃(t)
)
= xγ̃+α̃

(
α(Hi) t ϑ

)
=

(
1 + α(Hi) t ϑX(α,(1,1))

)
∈ G1(A)

(b) Let γ̃, δ̃∈∆̃1 , A∈(salg) , ϑ, η∈A1 . Then (notation of Definition 6.2)(
xγ̃(ϑ) , xδ̃(η)

)
= xγ̃+δ̃

(
−cγ̃,δ̃ ϑ η

)
=

(
1−cγ̃,δ̃ ϑ η Xγ̃+δ̃

)
∈ G0(A)

if π
(
γ̃
)
+ π

(
δ̃
)
̸= 0 ; otherwise, for γ̃=

(
γ,(1,1)

)
, δ̃=

(
−γ,(1,1)

)
=:−γ̃ ,(

xγ̃(ϑ) , x−γ̃(η)
)

=
(
1− ϑ η Hγ̃

)
= hHγ̃

(
1− ϑ η

)
∈ G0(A)

and eventually, for γ̃ =
(
0, (1, i)

)
, δ̃ =

(
0, (1, j)

)
,(

x(0,(1,i))(ϑ) , x(0,(1,j))(η)
)

=
(
1−2 ϑ η Hi,j

)
=: hα

Hi,j

(
1−2 ϑ η

)
∈ G0(A)

with α
Hi,j

∈ h∗ corresponding to Hi,j ∈ h — notation of §6.2.
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(c) Let α̃, β̃ ∈ ∆̃ , A ∈ (salg) , t ∈ U(A0) , u ∈ A0×A1 = A . Then

hα̃(t) xβ̃(u) hα̃(t)
−1 = xβ̃

(
tπ(β̃)(Hπ(α̃)) u

)
∈ Gp(β̃)(A)

where p(β̃) := r , by definition, if and only if β̃ ∈ ∆̃r .

The proof of the above follows right the same arguments as before.

Then all results from Theorem 5.15 to Proposition 5.26 extend to the
present case, both for statements and proofs — more or less verbatim indeed.
In particular, we have factorizations G ∼= G0 × G<

1 and G ∼= G0 ×G<
1

— as well as the “big cell”-type ones — the latter implying that the group
functor G is representable, thus it is an algebraic supergroup.

Finally, all the content of §5.4 and §5.5 extends to the present context,
without any change. This means that all our construction still are indepen-
dent of specific choices, and that the algebraic supergroups thus obtained do
have the original Lie superalgebras as their tangent Lie superalgebras.

A Sheafification

In this Appendix we discuss the concept of sheafification of a functor in super-
geometry. Most of this material is known or easily derived from known facts.
We include it here for completeness and lack of an appropriate reference.

Hereafter we shall make a distinction between a superscheme X and its
functor of points, that we shall denote by hX or, if X = Spec (A) , by hA .

We start by defining local and sheaf functors. For their definitions in the
classical setting see for example [9], pg. 16, or [10], ch. VI.

Definition A.1. Let F : (salg) −→ (sets) be a functor. Fix A ∈ (salg) .
Let {fi}i∈I ⊆ A0 ,

(
{fi}i∈I

)
= A0 and let ϕi : A→ Afi , ϕij : Afi → Afifj

be the natural morphism, where Afi := A
[
f−1
i

]
. We say that F is lo-

cal if for any A ∈ (salg) for any family {αi}i∈I , αi ∈ F (Afi) , such that
F (ϕij)(αi) = F (ϕji)(αj) for all i and j, there exists a unique α ∈ F (A) such
that F (ϕi)(α) = αi for all possible families {fi}i∈I described above.

66



We want to rewrite this definition in more geometric terms in order to
show that this is essentially the gluing property appearing in the usual defi-
nition of sheaf on a topological space.

We first observe that there is a contravariant equivalence of categories
between the category of commutative superalgebras (salg) and the category
of affine superschemes (aschemes), i.e. those superschemes that are the spec-
trum of some superalgebra (see Section 2 for more details). The equivalence
is realized by A 7→ Spec (A) and it is explained in full details in [7], Obser-
vation 5.1.6. Hence a functor F : (salg) −→ (sets) can also be equivalenty
regarded as a functor F : (aschemes)◦ −→ (sets) . With an abuse of notation
we shall use the same letter to denote both functors.

Let F be a local functor, regarded as F : (aschemes)◦ −→ (sets) , and
let FA be its restriction to the affine open subschemes of Spec (A) . Then FA

is a sheaf in the usual sense; we must just forget the subscheme structure
of the affine subschemes of Spec (A) and treat them as open sets in the
topological space Spec (A), their morphisms being the inclusions. Then FA

being a functor means that it is a presheaf in the Zariski topology, while the
property detailed in Definition A.1 ensures the gluing of any family of local
sections which agree on the intersection of any two parts of an open covering.

The most interesting — for us — example of local functor is the following:

Proposition A.2. ([7], Proposition 5.3.5) If X is a superscheme, its functor

of points (salg)
hX−→ (sets) , A 7→ hX(A) := Hom

(
Spec (A) , X

)
, is local.

We now turn to the following problem. If we have a presheaf F on a
topological space in the ordinary sense, we can always build its sheafification,
which is a sheaf F̃ together with a sheaf morphism α : F −→ F̃ . This is the
(unique) sheaf, which is locally isomorphic to the given presheaf and has the
following universal property: any presheaf morphism ϕ : F −→ G , with G a
sheaf, factors via α (for more details on this construction, see [16], Ch. II).
We now want to give the same construction in our more general setting.

The existence of sheafification of a functor from the category of algebras
to the category of sets is granted in the ordinary case by [9], ch. I, §1, no. 4,
which is also nicely summarized in [9], ch. III, §1, no. 3. The proof is quite
formal and one can carry it to the supergeometric setting. We however prefer
to introduce Grothendieck topologies and the concept of site and to construct
the sheafification of a functor from (salg) to (sets) through them. In fact, as
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we shall see, very remarkably Grothendieck’s treatment is general enough to
comprehend supergeometry. For more details one can refer to [15] and [32].

Definition A.3. We call a category C a site if it has a Grothendieck topology,
i.e. to every object U ∈ C we associate a collection of so-called coverings of
U , i.e. sets of arrows {Ui −→ U}, such that:
i) If V −→ U is an isomorphism, then the set {V −→ U} is a covering;
ii) If {Ui −→ U} is a covering and V −→ U is any arrow, then the fibered

products {Ui×U V } exist and the collection of projections {Ui×U V } −→ V
is a covering;
iii) If {Ui −→ V } is a covering and for each index i we have a covering

{Vij −→ Ui} , then the collection {Vij −→ Ui −→ U} is a covering of U .

One can check that (salg), (aschemes) and their ordinary correspondents
are sites (for the existence of fibered products in such categories see [7], ch. 5).

Definition A.4. Let C be a site. A functor F : C◦ −→ (sets) is called sheaf
if for all objects U ∈ C , coverings {Ui −→ U} and families ai ∈ F (Ui) we
have the following. Let p 1

ij : Ui ×U Uj −→ Ui , p
2
ij : Ui ×U Uj −→ Uj denote

the natural projections and assume F (p1ij)(ai) = F (p2ij)(aj) ∈ F (Ui ×U Uj)
for all i, j . Then ∃ ! a ∈ F (U) whose pull-back to F (Ui) is ai , for every i .

We are ready for the sheafification of a functor in this very general setting.

Definition A.5. Let C be a site and let F : C◦ −→ (sets) be a functor (in
a word, it is a set-valued “presheaf” on C◦ ). A sheafification of F is a sheaf

F̃ : C◦ −→ (sets) with a natural transformation α : F −→ F̃ , such that:

i) for any U ∈ C and ξ, η ∈ F (U) such that αU(ξ) = αU(η) in F̃ (U),
there is a covering {σi : Ui −→ U} such that F (σi)(ξ) = F (σi)(η) in F (Ui) ;

ii) for any U ∈ C and any ξ ∈ F̃ (U) , there is a covering {σi : Ui −→ U}
and elements ξi ∈ F (Ui) such that αUi

(ξi) = F̃ (σi)(ξ) in F̃ (Ui) .

The next theorem states the fundamental properties of the sheafification.

Theorem A.6. (cf. [32]) Let C be a site, F : C◦−→ (sets) a functor.

i) If F̃ is a sheafification of F with α : F −→ F̃ , then any morphism

ψ : F −→ G , with G a sheaf, factors uniquely through F̃ .
ii) F admits a sheafification F̃ , unique up to a canonical isomorphism.

We shall use this construction for C=(aschemes), or equivalently C◦=(salg) .
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Observation A.7. Let F : (aschemes)◦ −→ (sets) be a functor, F̃ its

sheafification. Then F̃A is the sheafification of FA in the usual sense, that
is the sheafification of F as sheaf defined on the topological space Spec (A).
In particular, since a sheaf and its sheafification are locally isomorphic, we
have that FA,p

∼= F̃A,p , i.e. they have isomorphic stalks (via the natural map

α : F −→ F̃ ) at any p ∈ Spec (A) , for all superalgebras A . To ease the
notation we shall drop the suffix A and write just Fp instead of FA,p .

The rest of this section is devoted to prove the following result:

Theorem A.8. Let F,G : (salg) −→ (sets) be two functors, with G sheaf.
Assume we have a natural transformation F −→ G , which is an isomor-
phism on local superalgebras, i.e. F (R) ∼= G(R) (via this map) for all local

superalgebras R . Then F̃ ∼= G . In particular, F ∼= G if also F is a sheaf.

Lemma A.9. Let F : (salg) −→ (sets) be a functor; for p ∈ Spec (A) , let
Fp = lim−→F (R) , where the direct limit is taken for the rings R corresponding
to the open affine subschemes of Spec (A) containing p . Then Fp = F (Ap) .

Proof. By Yoneda’s Lemma, we have

Fp = lim−→F (R) = lim−→Hom(hR,F ) = Hom(hlim−→R,F ) = Hom(hAp ,F ) = F (Ap)

as lim−→ and Hom commute (cf. [23], p. 141) and Ap = lim−→R (cf. [1], p. 47).

Lemma A.10. Let A ∈ (salg) , p ∈ Spec (A0) . Then Ap (= the localization
at p of A as an A0–module) is a local superalgebra, whose maximal ideal is
m=

(
m0, (A1)p

)
, where m0 is the maximal ideal in the algebra (A0)p = (Ap)0 .

Proof. From A = A0 ⊕ A1 we get Ap = (A0)p ⊕ (A1)p , and clearly this is
a superalgebra with (Ap)0 = (A0)p , (Ap)1 = (A1)p . Now let us consider

m :=
(
m0, (A1)p

)
= m0 + (A1)p . By the above, m ̸= Ap = (A0)p ⊕ (A1)p .

Now take x ̸∈ m : then x = x0 + x1 with x0 ∈ (A0)p , x1 ∈ (A1)p , so x0 is
invertible in (A0)p ⊆ (A1)p and x1 is nilpotent, hence x is invertible.

Proposition A.11. Let F,G : (salg) −→ (sets) be local functors and let α :
F −→ G be a natural transformation. Assume that FA

∼= GA via α, where
FA and GA denote the ordinary sheaves corresponding to the restrictions of
F and G to the category of open affine subschemes in Spec (A) (morphisms
given by the inclusions). Then α is an isomorphism, hence F ∼= G .
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Proof. We can certainly write an inverse for αA for every object A, the prob-
lem is to see if it is well behaved on the arrows. However, this is true because
α is a natural transformation.

We are ready for the proof of Theorem A.8:

Proof of Theorem A.8. Assume first F and G are sheaves. Since F (R) ∼=
G(R) for all local algebras R , by Lemma A.9 this implies that Fp

∼= Gp for
all p ∈ Spec (A) , for all superalgebras A . Hence FA

∼= GA by [16], ch. II,
§1.1. By Proposition A.11, we have that F ∼= G (all isomorphisms have to

be intended via the natural transformation α : F −→ F̃ ).

Now assume F is not a sheaf. We have α : F −→ F̃ −→ G by Theorem
A.6. If A ∈ (salg) , restricting our functors to the open affine sets in Spec (A)

we get FA → F̃A → GA . By Observation A.7, FA and F̃A are locally iso-
morphic via α, so Fp

∼= F̃A,p . By hypothesis F (R) ∼= G(R) , so Fp
∼= Gp by

Proposition A.9, hence F̃p
∼= Gp . Arguing as before, we get the result.

Along the same lines, the reader can prove the following proposition:

Proposition A.12. Let ϕ : F −→ G be a natural transformation between
two local functors from (salg) to (sets). Assume we know ϕR for all local
superalgebras R . Then ϕ is uniquely determined.
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