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1. Introduction

In the theory of quantum groups, the geometrical objects that one
takes into consideration are affine algebraic Poisson groups and their
infinitesimal counterparts, namely Lie bialgebras. By “quantization”
of either of these, one means a suitable one-parameter deformation of
one of the Hopf algebras associated with them. They are respectively
the algebra of regular function O(G) , for a Poisson group G, and the
universal enveloping algebra U(g), for a Lie bialgebra g . Deformations
of O(G) are called quantum function algebras (QFA), and are often
denoted with Oq(G) , while deformations of U(g) are called quantum
universal enveloping algebras (QUEA), denoted with Uq(g) .

The quantum duality principle (QDP), after its formulation in [9,
10, 11], provides a recipe to get a QFA out of a QUEA, and vice-versa.
This involves a change of the underlying geometric object, according
to Poisson duality, in the following sense. Starting from a QUEA over
a Lie bialgebra g = Lie (G) , one gets a QFA for a dual Poisson group
G∗ . Starting instead from a QFA over a Poisson group G , one gets a
QUEA over the dual Lie bialgebra g∗.

1Partially supported by the University of Bologna, funds for selected research
topics.
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In [3], this principle is extended to the wider context of homoge-
neous Poisson G–spaces. One describes these spaces, in global or in
infinitesimal terms, using suitable subsets of O(G) or of U(g) . In-
deed, each homogeneous G–space M can be realized as G

/
K for some

closed subgroup K of G (this amounts to fixing a point in M : it is
shown in [3], §1.2, how to select such a point). Thus we can deal
with either the space or the subgroup. Now, K can be coded in in-
finitesimal terms by U(k), where k := Lie (K) , and in global terms
by I(K) :=

{
φ ∈ O(G)

∣∣φ(K) = 0
}
, the defining ideal of K . In-

stead, G
/
K can be encoded infinitesimally by U(g) k and globally by

O
(
G
/
K
)
≡ O(G)K , the algebra of K–invariants in O(G) . Note that

U(g)
/
U(g) k identifies with the set of left-invariant differential oper-

ators on G
/
K , or the set of K–invariant, left-invariant differential

operators on G .
These constructions all make sense in formal geometry, i.e. when

dealing simply with formal groups and formal homogeneous spaces, as
in [3]. Instead, if one looks for global geometry, then one construction
might fail, namely the description of G

/
K via its function algebra

O
(
G
/
K
)
= O(G)K . In fact, this makes sense — i.e., O(G)K is enough

to describe G
/
K — if and only if the variety G

/
K is quasi-affine. In

particular, this is not the case if G
/
K is projective, like, for instance,

when G
/
K is a Grassmann variety.

By “quantization” of the homogeneous space G
/
K one means any

quantum deformation (in suitable sense) of any one of the four algebraic
objects mentioned before which describe either G

/
K or K . Moreover

one requires that given an infinitesimal or a global quantization for
the group G, denoted by Uq(g) or Oq(G) respectively, the quantization
of the homogeneous space admits a Uq(g)–action or a Oq(G)–coaction
respectively, which yields a quantum deformation of the algebraic coun-
terpart of the G–action on G

/
K .

The QDP for homogeneous G–spaces (cf. [3]) starts from an infin-
itesimal (global) quantization of a G–space, say G

/
K, and provides a

global (infinitesimal) quantization for the Poisson dual G∗–space. The
latter is G∗/K⊥ (with Lie

(
K⊥) = k⊥ , the orthogonal subspace —

with respect to the natural pairing between g and its dual space g∗ —
to k inside g∗ ). In particular, the principle gives a concrete recipe

Oq

(
G
/
K
)

◦−−−− Oq

(
G
/
K
)∨

=: Uq

(
k⊥
)

in which the right-hand side is a quantization of U
(
k⊥
)
.

However, this recipe makes no sense when Oq

(
G
/
K
)
is not avail-

able. In the non-formal setting this is the case whenever G
/
K is not

quasi-affine, e.g. when it is projective.
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In this paper we show how to solve this problem in the special case
of the Grassmann varieties, taking G as the general linear group and
K = P a maximal parabolic subgroup. We adapt the basic ideas of
the original QDP recipe to these new ingredients, and we obtain a new
recipe

Oq

(
G
/
P
)

◦−−−− ̂Oq

(
G
/
P
)∨

which perfectly makes sense, and yields the same kind of result as pre-

dicted by the QDP for the quasi-affine case. In particular, ̂Oq

(
G
/
P
)∨

is a quantization of U
(
p⊥

)
, obtained through a (q−1)–adic completion

process.

Our construction goes as follows.

First, we consider the embedding of the Grassmannian G
/
P (where

G := GLn or G := SLn , and P is a parabolic subgroup of G ) inside
a projective space, given by Plücker coordinates. This will give us the
first new ingredient:

O
(
G
/
P
)

:= ring of homogeneous coordinates on G
/
P .

Many quantizations Oq

(
G
/
P
)
of O

(
G
/
P
)
already exist in the lit-

erature (see, e.g., [6, 12, 13]). All these quantizations, which are
equivalent, come together with a quantization of the natural G–action
on G/P .

In the original recipe (see [3]) Oq

(
G
/
K
)
◦−−−− Oq

(
G
/
K
)∨

of the QDP (when G
/
K is quasi affine) we need to look at a neigh-

borhood of the special point eK (where e ∈ G is the identity), and at
a quantization of it. Therefore, we shall replace the projective variety
G
/
P with such an affine neighborhood, namely the big cell of G

/
P .

This amounts to realize the algebra of regular functions on the big cell
as a “homogeneous localization” of O

(
G
/
P
)
, say O loc

(
G
/
P
)
, by in-

verting a suitable element. We then do the same at the quantum level,
via the inversion of a suitable almost central element in Oq

(
G
/
P
)
—

which lifts the previous one in O
(
G
/
P
)
. The result is a quantization

O loc
q

(
G
/
P
)
of the coordinate ring of the big cell.

Hence we are able to define Oq

(
G
/
P
)∨

:= O loc
q

(
G
/
P
)∨
, where the

right-hand side is given by the original QDP recipe applied to the big
cell as an affine variety (we can forget any group action at this step).

By the very construction, this Oq

(
G
/
P
)∨

should be a quantization of

U
(
p⊥

)
(as an algebra). Indeed, we prove that this is the case, so we

might think at Oq

(
G
/
P
)∨

as a quantization (of infinitesimal type) of

the variety G∗/P⊥ . On the other hand, the construction does not

ensure that Oq

(
G
/
P
)∨

also admits a quantization of the G∗–action

on G∗/P⊥ (just like the big cell is not a G–space). As a last step,
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we look at ̂Oq

(
G
/
P
)∨
, the (q−1)–adic completion of Oq

(
G
/
P
)∨
. Of

course, it is again a quantization of U
(
p⊥

)
(as an algebra). But in

addition, it admits a coaction of the (q−1)–adic completion of Oq(G)∨

—which is a quantization of U(g∗). This coaction yields a quantization
of the infinitesimal G∗–action on G∗/P⊥. Therefore, in a nutshell,

̂Oq

(
G
/
P
)∨

is a quantization of G∗/P⊥ as a homogeneous G∗–space,
in the sense explained above.

Notice that our arguments could be applied to any projective ho-
mogeneous G–space X , up to having the initial data to start with.
Namely, one needs an embedding of X inside a projective space, a
quantization (compatible with the G–action) of the ring of homoge-
neous coordinates of X (w.r.t. such an embedding), and a quantization
of a suitable open dense affine subset of X . This program is carried
out in detail in a separate work (see [2]).

Finally, this paper is organized as follows.
In section 2 we fix the notation, and we describe the Manin defor-

mations of the general linear group (as a Poisson group), and of its Lie
bialgebra, together with its dual. In section 3 we briefly recall results
concerning the constructions of the quantum Grassmannian Oq

(
G
/
P
)

and its quantum big cell O loc
q

(
G
/
P
)
. These are known results, treated

in detail in [6, 7]. Finally, in section 4 we extend the original QDP

to build Oq

(
G
/
P
)∨
, and we show that its (q− 1)–adic completion is a

quantization of the homogeneous G∗–space G∗/P⊥ dual to the Grass-

mannian G
/
P .
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2. The Poisson Lie group GLn(k) and its quantum
deformation

Let k be any field of characteristic zero.

In this section we want to recall the construction of a quantum
deformation of the Poisson Lie group GLn := GLn(k) . We will also
describe explicitly the bialgebra structure of its Lie algebra gln :=
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gln(k) in a way that fits our purposes, that is to obtain a quantum
duality principle for the Grassmann varieties for GLn (see §4).

Let kq = k
[
q, q−1

]
(where q is an indeterminate), the ring of Lau-

rent polynomials over q , and let k(q) be the field of rational functions
in q .

Definition 2.1. The quantum matrix algebra is defined as

Oq(Mm×n) = kq

⟨
{xij }1≤j≤n

1≤i≤m

⟩/
IM

where the xij’s are non commutative indeterminates, and IM is the
two-sided ideal generated by the Manin relations

xij xik = q xik xij , xji xki = q xki xji ∀ j < k

xij xkl = xkl xij ∀ i < k , j > l or i > k , j < l

xij xkl − xkl xij =
(
q − q−1

)
xkj xil ∀ i < k , j < l

Warning: sometimes these relations appear with q exchanged with q−1 .

For simplicity we will denote Oq(Mn×n) with Oq(Mn) .

There is a coalgebra structure on Oq(Mn) , given by

∆(xij) =
n∑

k=1

xik ⊗ xkj , ϵ(xij) = δij ( 1 ≤ i , j ≤ n )

The quantum general linear group and the quantum special linear
group are defined in the following way:

Oq(GLn) := Oq(Mn)[T ]
/(

TDq − 1 , 1− TDq

)
Oq(SLn) := Oq(Mn)

/(
Dq − 1

)
where Dq :=

∑
σ∈Sn

(−q)ℓ(σ) x1σ(1) · · ·xnσ(n) is a central element,
called the quantum determinant.

Note: We use the same letter to denote the generators xij of
Oq(Mm×n) , of Oq(GLn) and of Oq(SLn) : the context will make clear
where they sit.

The algebra Oq(GLn) is a quantization of the algebra O(GLn) of
regular functions on the affine algebraic group GLn , in the following
sense: Oq(GLn)

/
(q−1)Oq(GLn) is isomorphic to O(GLn) as a Hopf

algebra (over the field k ). Similarly, Oq(SLn) is a quantization of
the algebra O(SLn) of regular functions on SLn . Both Oq(GLn) and
Oq(SLn) are Hopf algebras, that is, they also have the antipode. For
more details on these constructions see for example [1], pg. 215.

By general theory,O(GLn) inherits fromOq(GLn) a Poisson bracket,
which makes it into a Poisson Hopf algebra, so that GLn becomes a
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Poisson group. We want to describe now its Poisson bracket. Recall
that

O(GLn) = k
[
{ x̄ij }i,j=1,...,n

]
[t]
/(

t d− 1
)

where d := det
(
x̄i,j

)
i,j=1,...,n

is the usual determinant. Setting x̄ =

π(x) for π : Oq(GLn) −→ O(GLn) , the Poisson structure is given
(as usual) by{

ā , b̄
}

:= (q − 1)−1 (a b− b a)
∣∣∣
q=1

∀ ā , b̄ ∈ O(GLn) .

In terms of generators, we have{
x̄ij , x̄ik

}
= x̄ij x̄ik ∀ j < k ,

{
x̄ij , x̄ℓk

}
= 0 ∀ i < ℓ , k < j{

x̄ij , x̄ℓj

}
= x̄ij x̄ℓj ∀ i < ℓ ,

{
x̄ij , x̄ℓk

}
= 2 x̄ij x̄ℓk ∀ i<ℓ , j<k{

d−1, x̄ij

}
= 0 ,

{
d , x̄ij

}
= 0 ∀ i, j = 1, . . . , n .

AsGLn is a Poisson Lie group, its Lie algebra gln has a Lie bialgebra
structure (see [1], pg.24). To describe it, let us denote with Eij the ele-
mentary matrices, which form a basis of gln . Define (∀ i = 1, . . . , n−1 ,
j = 1, . . . , n )

ei := Ei,i+1 , gj := Ej,j , fi := Ei+1,i , hi := gi − gi+1

Then
{
ei , fi , gj

∣∣ i = 1, . . . , n − 1, j = 1, . . . , n
}

is a set of Lie
algebra generators of gln , and a Lie cobracket is defined on gln by

δ(ei) = hi ∧ ei , δ(gj) = 0 , δ(fi) = hi ∧ fi ∀ i, j.

This cobracket makes gln itself into a Lie bialgebra: this is the so-called
standard Lie bialgebra structure on gln . It follows immediately that
U(gln) is a co-Poisson Hopf algebra, whose co-Poisson bracket is the
(unique) extension of the Lie cobracket of gln while the Hopf structure
is the standard one.

Similar constructions hold for the group SLn . One simply drops
the generator d−1 , imposes the relation d = 1 , in the description of
O(SLn) , and replaces the gs’s with the hi’s ( i = 1, . . . , n ) when de-
scribing sln .

Since gln is a Lie bialgebra, its dual space gl ∗n admits a Lie bialgebra
structure, dual to the one of gln . Let

{
Eij := E ∗

ij

∣∣ i, j = 1, . . . , n
}

be
the basis of gl ∗n dual to the basis of elementary matrices for gln . As a
Lie algebra, gl ∗n can be realized as the subset of gln ⊕ gln of all pairs

−m11 0 · · · 0
m21 −m22 · · · 0
...

...
...

...
mn−1,1 mn−1,2 · · · 0
mn,1 mn,2 · · · −mn,n

 ,


m11 m12 · · · m1,n−1 m1,n

0 m22 · · · m2,n−1 m2,n
...

...
...

...
...

0 0 · · · mn−1,n−1 mn−1,n

0 0 · · · 0 mn,n






7

with its natural structure of Lie subalgebra of gln ⊕ gln . In fact, the
elements Eij correspond to elements in gln⊕gln in the following way:

Eij
∼=
(
Eij , 0

)
∀ i>j , Eij

∼=
(
−Eij ,+Eij

)
∀ i=j , Eij

∼=
(
0 , Eij

)
∀ i<j

Then the Lie bracket of gl ∗n is given by[
Ei,j , Eh,k

]
= δj,h Ei,k − δk,i Eh,j , ∀ i≤j , h≤k and ∀ i>j , h>k[

Ei,j , Eh,k

]
= δk,i Eh,j − δj,h Ei,k , ∀ i=j , h>k and ∀ i>j , h=k[

Ei,j , Eh,k

]
= 0 , ∀ i<j , h>k and ∀ i>j , h<k

Note that the elements ( 1 ≤ i ≤ n−1 , 1 ≤ j ≤ n )

ei = e ∗
i = Ei,i+1 , fi = f ∗

i = Ei+1,i , gj = g ∗
j = Ejj

are Lie algebra generators of gl ∗n . In terms of them, the Lie bracket
reads[

ei , fj
]
= 0 ,

[
gi , ej

]
= δij ei ,

[
gi , fj

]
= δij fj ∀ i, j .

On the other hand, the Lie cobracket structure of gl ∗n is given by

δ
(
Ei,j

)
=

n∑
k=1

Ei,k ∧ Ek,j ∀ i, j = 1, . . . , n

where x ∧ y := x⊗ y − y ⊗ x .

Finally, all these formulæ also provide a presentation of U
(
gl ∗n

)
as

a co-Poisson Hopf algebra.

A similar description holds for sl ∗n = gl ∗n

/
Z
(
gl ∗n

)
, where Z

(
gl ∗n

)
is the centre of gl ∗n , generated by ln := g1+ · · ·+gn . The construction
is immediate by looking at the embedding sln ↪→ gln .

3.The quantum Grassmannian and its big cell

In this section we want to briefly recall the construction of a quan-
tum deformation of the Grassmannian of r–spaces inside an n–dimensional
vector space and its big cell, as they appear in [6, 7]. The quantum
Grassmannian ring will be obtained as a quantum homogeneous space,
namely its deformation will come together with a deformation of the
natural coaction of the function algebra of the general linear group
on it. The deformation will also depend on a specific embedding (the
Plücker one) of the Grassmann variety into a projective space. This
deformation is very natural, in fact it embeds into the deformation of
its big cell ring. Let’s see explicitly these constructions.

Let G := GLn , and let P and P1 be the standard parabolic sub-
groups

P :=

{(
A B
0 C

)}
⊂ GLn , P1 := P

∩
SLn
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where A is a square matrix of size r , with 0 < r < n .

Definition 3.1. The quantum Grassmannian coordinate ring
Oq

(
G
/
P
)
with respect to the Plücker embedding is the subalgebra of

Oq(GLn) generated by the quantum minors (called quantum Plücker
coordinates)

DI = Di1...ir :=
∑
σ∈Sr

(−q)ℓ(σ) xi1 σ(1) xi2 σ(2) · · · xir σ(r)

for every ordered r–tuple of indices I = {i1 < · · · < ir} .

Remark: Equivalently, Oq

(
G
/
P
)

may be defined in the same way
but with Oq(SLn) instead of Oq(GLn) .

The algebra Oq

(
G
/
P
)
is a quantization of the Grassmannian G

/
P

in the usual sense: the k–algebra Oq

(
G
/
P
)/

(q − 1)Oq

(
G
/
P
)
is iso-

morphic to O
(
G
/
P
)
, the algebra of homogeneous coordinates of G

/
P

with respect to the Plücker embedding. In addition, Oq

(
G
/
P
)
has an

important property w.r.t. Oq(G) , given by the following result:

Proposition 3.2.

Oq

(
G
/
P
) ∩

(q − 1)Oq(G) = (q − 1) Oq

(
G
/
P
)

Proof. By Theorem 3.5 in [13], we have that certain products of
minors {pi}i∈I form a basis of Oq

(
G
/
P
)

over kq . Thus, a generic

element in Oq

(
G
/
P
) ∩

(q−1)Oq(G) can be written as∑
i∈I αi pi = (q − 1)ϕ (3.1)

for some ϕ ∈ Oq(G) . Moreover, the specialization map

πG : Oq(G) −−−� Oq(G)
/
(q − 1)Oq(G) = O(G)

maps {pi}i∈I onto a basis
{
πG(pi)

}
i∈I of O

(
G
/
P
)
, the latter be-

ing a subalgebra of O(G) . Therefore, applying πG to (3.1) we get∑
i∈I αi πG(pi) = 0 , where αi := αi mod (q−1)kq , for all i ∈ I .

This forces αi ∈ (q−1)kq for all i , by the linear independence of the
πG(pi)’s, whence the claim. �

An immediate consequence of Proposition 3.2 is that the canonical
map

Oq

(
G
/
P
)/

(q − 1)Oq

(
G
/
P
)

−−−−→ Oq(G)
/
(q − 1)Oq(G)

is injective. Therefore, the specialization map

πG/P : Oq

(
G
/
P
)

−−−� Oq

(
G
/
P
)/

(q − 1)Oq

(
G
/
P
)
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coincides with the restriction to Oq

(
G
/
P
)
of the specialization map

πG : Oq(G) −−−� Oq(G)
/
(q − 1)Oq(G) .

Moreover — from a geometrical point of view — the key conse-
quence of this property is that P is a coisotropic subgroup of the Pois-
son group G . This implies the existence of a well defined Poisson
structure on the algebra O

(
G
/
P
)
, inherited from the one in O(G) .

Observation 3.3. The quantum deformationOq

(
G
/
P
)
comes nat-

urally equipped with a coaction ofOq(GLn) — or, similarly, ofOq(SLn)
— on it, obtained by restricting the comultiplication ∆ . This reads

∆
∣∣
Oq(G/P )

: Oq

(
G
/
P
)

−→ Oq(G)⊗Oq

(
G
/
P
)

DI 7→
∑

K DI
K ⊗DK

where, for any I = (i1 . . . ir) , K = (k1 . . . kr) , with 1 ≤ i1 < · · · <
ir ≤ n , 1 ≤ k1 < · · · < kr ≤ n , we denote by DI

K the quantum minor

DI
K ≡ Di1...ir

k1...kr
:=

∑
σ∈Sr

(−q)ℓ(σ) xi1 kσ(1)
xi2 kσ(2)

· · ·xir kσ(r)
.

This provides a quantization of the natural coaction of O(G) onto
O
(
G
/
P
)
.

The ring Oq

(
G
/
P
)
is fully described in [6] in terms of generators

and relations. We refer the reader to this work for further details.

We now turn to the construction of the quantum big cell ring.

Definition 3.4. Let I0 = (1 . . . r) , D0 := DI0 . Define

Oq(G)
[
D−1

0

]
:= Oq(G)[T ]

/(
T D0 − 1 , D0 T − 1

)
Moreover, we define the big cell ring O loc

q

(
G
/
P
)
to be the kq–subalgebra

of Oq(G)
[
D−1

0

]
generated by the elements

tij := (−q)r−j D1 ... ĵ ... r i D−1
0 ∀ i , j : 1 ≤ j ≤ r < i ≤ n

(see [7] for more details).

As in the commutative setting, we have the following result:

Proposition 3.5. O loc
q

(
G
/
P
) ∼= Oq

(
G
/
P
)[
D−1

0

]
proj

, where

the right-hand side denotes the degree-zero component of the quotient

ring Oq

(
G
/
P
)
[T ]

/(
TD0 − 1 , D0 T − 1

)
.
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Proof. In the classical setting, the analogous result is proved by this
argument: one uses the so-called “straightening relations” to get rid of
the extra minors (see, for example, [4], §2). Here the argument works
essentially the same, using the quantum straightening (or Plücker)
relations (see [6], §4, [13], formula (3.2)(c) and Note I, Note II). �

Remark 3.6. As before, we have that

O loc
q

(
G
/
P
) ∩

(q − 1)O loc
q (G) = (q − 1)O loc

q

(
G
/
P
)

This can be easily deduced from Proposition 3.2, taking into account
Proposition 3.5. As a consequence, the map

O loc
q

(
G
/
P
)/

(q − 1)O loc
q

(
G
/
P
)

−−−−→ O loc
q (G)

/
(q − 1)O loc

q (G)

is injective, so that the specialization map

π loc
G/P : O loc

q

(
G
/
P
)

−−−� O loc
q

(
G
/
P
)/

(q − 1)O loc
q

(
G
/
P
)

coincides with the restriction of the specialization map

π loc
G : O loc

q (G) −−−� O loc
q (G)

/
(q − 1)O loc

q (G) .

The following proposition gives a description of the algebraO loc
q

(
G
/
P
)
:

Proposition 3.7. The big cell ring is isomorphic to a matrix al-
gebra, via the map

O loc
q

(
G
/
P
)

−→ Oq

(
M(n−r)×r

)
tij 7→ xij ∀ 1 ≤ j ≤ r < i ≤ n

In particular, the generators tij’s satisfy the Manin relations.

Proof. See [7], Proposition 1.9. �

4. The Quantum Duality Principle for quantum
Grassmannians

The quantum duality principle (QDP), originally due to Drinfeld
[5] and later formalized in [9] and extended in [10, 11] by Gavarini, is a
functorial recipe to obtain a quantum group starting from a given one.
The main ingredients are the “Drinfeld functors”, which are equiva-
lences between the category of QFA’s and the category of QUEA’s.
Ciccoli and Gavarini extended this principle to the setting of homo-
geneous spaces. More precisely, in [3] they developed the QDP for
homogeneous spaces in the local setting, i.e. for quantum groups of
formal type (where topological Hopf algebras are taken into account).
If one tries to find a global version of the QDP for non quasi-affine
homogeneous spaces, then problems arise from the very beginning, as
explained in §1. The case of projective homogeneous spaces has been
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solved in [2], where the original version of the Drinfeld-like functor for
which the (global) QDP recipe should fail is suitably modified.

In this section, we apply the general recipe for projective homoge-
neous spaces to the Grassmannian G/P . The result is a quantization
of the homogeneous space dual (in the sense of Poisson duality, see [3])
to G/P , just as the QDP recipe predicts in the setting of [3].

We begin recalling the Drinfeld functor ∨ : QFA −→ QUEA .

Definition 4.1. Let G be an affine algebraic group over k , and
Oq(G) a quantization of its function algebra. Let J be the augmenta-
tion ideal of Oq(G) , i.e. the kernel of the counit ϵ : Oq(G) −→ k . We
define

Oq(G)∨ :=
⟨
(q − 1)−1 J

⟩
=

∞∑
n=0

(q − 1)−n Jn
(
⊂ Oq(G)⊗kq k(q)

)
.

It turns out that Oq(G)∨ is a quantization of U(g∗) , where g∗ is the
dual Lie bialgebra to the Lie bialgebra g = Lie (G) . So Oq(G)∨ is a
QUEA, and an infinitesimal quantization for any Poisson groupG∗ dual
to G , i.e. such that Lie

(
G∗) ∼= g∗ as Lie bialgebras. Moreover, the

association Oq(G) 7→ Oq(G)∨ yields a functor from QFA’s to QUEA’s
(see [10, 11] for more details).

Remark 4.2. Let G = GLn . Then Oq(G)∨ is generated, as a
unital subalgebra of Oq(G)⊗kq k(q) , by the elements

D− := (q − 1)−1 (D−1
q − 1

)
, χij := (q − 1)−1 (xij − δij

)
∀ i, j = 1, . . . , n

where the xij’s are the generators of Oq(G) . As xij = δij+(q−1)χij ∈
Oq(G)∨ , we have an obvious embedding of Oq(G) into Oq(G)∨ .

In the same spirit — mimicking the construction in [3] — we now

want to define Oq

(
G
/
P
)∨

when G
/
P is the Grassmannian.

Let G = GLn , and let P be the maximal parabolic subgroup of §3.

Definition 4.3. Let ϵ′ be the natural extension to O loc
q (G/P ) of

the restriction to Oq(G/P ) of the counit of Oq(G) , and let J loc
G/P :=

Ker (ϵ′ ) . We define (as a subset of O loc
q

(
G
/
P
)
⊗kq k(q) )

Oq

(
G
/
P
)∨

:=
⟨
(q − 1)−1 J loc

G/P

⟩
=

∞∑
n=0

(q − 1)−n (J loc
G/P

)n
.

It is worth pointing out that Oq

(
G
/
P
)∨

is not a “quantum homo-
geneous space” for Oq(G)∨ in any natural way, i.e. it does not admit a
coaction of Oq(G)∨ . This is a consequence of the fact that there is no
natural coaction of Oq(G) on O loc

q

(
G
/
P
)
. Now we examine this more

closely.
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Since Oq

(
G
/
P
)∨

is not contained in Oq(G)∨ , we cannot have a

Oq(G)∨ coaction induced by the coproduct. This would be the case if

Oq

(
G
/
P
)∨

were a (one-sided) coideal of Oq(G)∨ ; but this is not true

because O loc
q

(
G
/
P
)
is not a (right) coideal of Oq(G). This reflects the

geometrical fact that the big cell of G/P is not a G–space itself. Nev-
ertheless, we shall find a way around this problem simply by enlarging
Oq

(
G
/
P
)∨

and Oq(G)∨, i.e. by taking their (q−1)–adic completion
(which will not affect their behavior at q = 1 ).

To begin, we provide a concrete description of Oq

(
G
/
P
)∨

:

Proposition 4.4.

Oq

(
G
/
P
)∨

= kq

⟨
{µij }j=1,...,r

i=r+1,...,n

⟩/
IM

where µij := (q − 1)−1 tij (for all i and j ), IM is the ideal of the

Manin relations among the µij’s, and tij = (−q)r−j D1 ... ĵ ... r i D−1
0 (for

all i and j).

Proof. Trivial from definitions and Proposition 3.7. �

We now explain the relation between Oq

(
G
/
P
)∨

and Oq(G)∨ . The
starting point is the following special property:

Proposition 4.5.

Oq

(
G
/
P
)∨ ∩

(q − 1)Oq(G)∨
[
D−1

0

]
= (q − 1)Oq

(
G
/
P
)∨

Proof. It is the same as for Proposition 3.2. �

Remark 4.6. As a direct consequence of Proposition 4.5, the canon-
ical map

Oq

(
G
/
P
)∨/

(q−1)Oq

(
G
/
P
)∨ −→ Oq(G)∨

[
D−1

0

]/
(q−1)Oq(G)∨

[
D−1

0

]
is in fact injective: therefore, the specialization map

π∨
G/P : Oq

(
G
/
P
)∨ −−−� Oq

(
G
/
P
)∨/

(q − 1)Oq

(
G
/
P
)∨

coincides with the restriction to Oq

(
G
/
P
)∨

of the specialization map

π∨
G : Oq(G)∨

[
D−1

0

]
−−−� Oq(G)∨

[
D−1

0

]/
(q − 1)Oq(G)∨

[
D−1

0

]
.

From now on, let Â denote the (q − 1)–adic completion of any kq–

algebra A . Note that Â and A have the same specialization at q = 1 ,

i.e. A/(q − 1)A and Â/(q − 1) Â are canonically isomorphic. When

A = Oq(G) , note also that Ôq(G) is naturally a complete topological
Hopf kq–algebra.

The next result shows why it is relevant to introduce such comple-
tions.
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Lemma 4.7. Oq(G)∨
[
D−1

0

]
naturally embeds into Ôq(G)∨ .

Proof. By remark 4.2 we have that Oq(G)∨ is generated by the
elements (for all i, j = 1, . . . , n )

D− := (q − 1)−1 (D−1
q − 1

)
, χij := (q − 1)−1 (xij − δij

)
inside Oq(G)⊗kq k(q) . On the other hand, observe that

and
xij = (q − 1)χi,j ∈ (q − 1)Oq(G)∨ ∀ i ̸= j

xℓℓ = 1 + (q − 1)χℓℓ ∈
(
1 + (q − 1)Oq(G)∨

)
∀ ℓ .

Then, if we expand explicitly the q–determinant D0 := DI0 , we imme-
diately see that D0 ∈

(
1+(q−1)Oq(G)∨

)
as well. Thus D0 is invert-

ible in Ôq(G)∨, and so the natural immersion Oq(G)∨ ↪−−→ Ôq(G)∨

canonically extends to an immersion Oq(G)∨
[
D−1

0

]
↪−−→ Ôq(G)∨ . �

Corollary 4.8.
(a) The specializations at q=1 of Oq(G)∨ , Oq(G)∨

[
D−1

0

]
and

Ôq(G)∨ are canonically isomorphic. More precisely, the chain

Oq(G)∨ ↪−−→ Oq(G)∨
[
D−1

0

]
↪−−→ Ôq(G)∨

of canonical embeddings induces at q = 1 a chain of isomorphisms.

(b) Oq

(
G
/
P
)∨

embeds into Ôq(G)∨ via the chain of embeddings

Oq

(
G
/
P
)∨

↪−−→ Oq(G)∨
[
D−1

0

]
↪−−→ Ôq(G)∨

(c) Oq

(
G
/
P
)∨ ∩

(q − 1) Ôq(G)∨ = (q − 1)Oq

(
G
/
P
)∨

.

Proof. Part (a) and (b) are trivial, and (c) follows from them. �

Notice that part (c) of Corollary 4.8 also implies that

Oq

(
G
/
P
)∨∣∣∣

q=1
:= Oq

(
G
/
P
)∨/

(q − 1)Oq

(
G
/
P
)∨

is a subalgebra of

Ôq(G)∨
∣∣∣
q=1

= Oq(G)∨
∣∣∣
q=1

:= Oq(G)∨
/
(q − 1)Oq(G)∨ ∼= U(g∗)

just because the specialization map

π∨
G/P : Oq

(
G
/
P
)∨ −−−� Oq

(
G
/
P
)∨/

(q − 1)Oq

(
G
/
P
)∨

coincides with the restriction to Oq

(
G
/
P
)∨

of the specialization map

π̂∨
G : Ôq(G)∨ −−−� Ôq(G)∨

/
(q − 1) Ôq(G)∨ .
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Now we want to see what is Oq

(
G
/
P
)∨∣∣∣

q=1
inside U

(
gln

∗) . In other

words, we want to understand what is the space that Oq

(
G
/
P
)∨

is
quantizing.

Proposition 4.9.

Oq

(
G
/
P
)∨∣∣∣

q=1
= U

(
p⊥

)
as a subalgebra of Oq(G)∨

∣∣∣
q=1

= U
(
gln

∗) , where p⊥ is the orthogonal

subspace to p := Lie (P ) inside gln
∗ .

Proof. Thanks to the previous discussion, it is enough to show that

π∨
G

(
Oq

(
G
/
P
)∨)

= U
(
p⊥

)
⊆ U

(
gln

∗) = Oq(G)∨
∣∣∣
q=1

.

To do this, we describe the isomorphism Oq(G)∨
∣∣∣
q=1

∼= U
(
gln

∗) (cf. [8]).

First, recall that Oq(G)∨ is generated by the elements (see Remark 4.2)

D− := (q − 1)−1 (D−1
q − 1

)
, χij := (q − 1)−1 (xij − δij

)
(for all i, j = 1, . . . , n ) inside Oq(G) ⊗kq k(q) . In terms of these
generators, the isomorphism reads

Oq(G)∨
∣∣∣
q=1

−−−−→ U
(
gln

∗)
D− 7→ −(E1,1 + · · ·+ En,n) , χi,j 7→ Ei,j ∀ i , j .

where we used notation X := X mod (q − 1)Oq(G)∨ . Indeed, from

χi,j 7→ Ei,j and (q − 1)−1 (Dq − 1
)
∈ Oq(G)∨ , one gets Dq 7→ 1

and (q − 1)−1 (Dq − 1
)
7→ E1,1 + · · · + En,n . Moreover, the relation

Dq D
−1
q = 1 in Oq(G) implies Dq D− = −(q − 1)−1 (Dq − 1

)
in

Oq(G)∨ , so D− 7→ −(E1,1 + · · ·+En,n) as claimed (cf. [8], §3, or [10],
§7). In other words, the specialization π∨

G : Oq(G)∨ −−� U
(
gln

∗) is
given by

π∨
G

(
D−

)
= −(E1,1 + · · ·+ En,n) , π∨

G

(
χi,j

)
= Ei,j ∀ i , j .

If we look at Ôq(G)∨, things are even simpler. Since

Dq ∈
(
1 + (q − 1)Oq(G)∨

)
⊂

(
1 + (q − 1) Ôq(G)∨

)
,

then D−1
q ∈

(
1 + (q − 1) Ôq(G)∨

)
, and the generator D− can be

dropped. The specialization map π̂∨
G/P of course is still described by

formulæ as above.
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Now let’s compute π∨
G/P

(
Oq

(
G
/
P
)∨)

= π̂∨
G

(
Oq

(
G
/
P
)∨)

. Recall

that Oq

(
G
/
P
)∨

is generated by the µij’s, with

µij := (q − 1)−1 tij = (q − 1)−1 (−q)r−j D1 ... ĵ ... r i D−1
0

for i = r+1, . . . , n , and j = 1, . . . , r ; thus we must compute π̂∨
G

(
µij

)
.

By definition, for every i ̸= j the element xij = (q − 1)χij is

mapped to 0 by π̂∨
G . Instead, for each ℓ the element xℓ ℓ = 1+(q−1)χℓ ℓ

is mapped to 1 (by π̂∨
G again). But then, expanding the q–determinants

one easily finds — much like in the proof of Lemma 4.7 — that

π̂∨
G

(
(q−1)−1D1 ... ĵ ... r i

)
=

(
(q−1)−1 ∑

σ∈Sr

(−q)ℓ(σ) x1σ(1) · · ·xr σ(r)

)
=

= π̂∨
G

(
(q−1)−1 ∑

σ∈Sr

(−q)ℓ(σ)
∏ r

k=1

(
δk σ(k) + (q−1)χk σ(k)

))
The only term in (q− 1) in the expansion of D1 ... ĵ ... r i comes from the
product(
1+(q−1)χ1 1) · · ·

(
1+(q−1)χr r

)
(q−1)χi j ≡ (q−1)χi j mod (q−1)2O

(
G
/
P
)

Therefore, from the previous analysis we get

π̂∨
G

(
(q − 1)−1 D1 ... ĵ ... r i

)
= π̂∨

G

(
χi,j

)
= Ei,j

π̂∨
G

(
D0

)
= π̂∨

G

(
1
)

= 1 , π̂∨
G

(
D−1

0

)
= π̂∨

G

(
1
)

= 1

so in the end π̂∨
G

(
µij

)
= (−1)r−j Ei,j , for all 1 ≤ j ≤ r < i ≤ n .

The outcome is that π∨
G/P

(
Oq

(
G
/
P
)∨)

= U(h) , where

h := Span
({

Ei,j

∣∣ r + 1 ≤ i ≤ n , 1 ≤ j ≤ r
})

.

On the other hand, from the very definitions and our description of
gln

∗ one easily finds that h = p⊥ , for p := Lie (P ) . The claim
follows. �

Proposition 4.9 claims that Oq

(
G
/
P
)∨

is a quantization of U
(
p⊥

)
,

i.e. it is a unital kq–algebra whose semiclassical limit is U
(
p⊥

)
. Now,

the fact that U
(
p⊥

)
describes (infinitesimally) a homogeneous space

for G∗ is encoded in algebraic terms by the fact that it is a (left)
coideal of U(g∗) ; in other words, U

(
p⊥

)
is a (left) U(g∗)–comodule

w.r.t. the restriction of the coproduct of U(g∗) . Thus, for Oq

(
G
/
P
)∨

to be a quantization of U
(
p⊥

)
as a homogeneous space we need also

a quantization of this fact: namely, we would like Oq

(
G
/
P
)∨

to be a

left coideal of Oq(G)∨, our quantization of U(g∗) . But this makes no

sense at all, as Oq

(
G
/
P
)∨

is not even a subset of Oq(G)∨ !
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This problem leads us to enlarge a bit our quantizations Oq

(
G
/
P
)∨

and Oq(G)∨ : we take their (q−1)–adic completions, namely ̂Oq

(
G
/
P
)∨

and Ôq(G)∨ . While not affecting their behavior at q = 1 (i.e., their
semiclassical limits are the same), this operation solves the problem.

Indeed, Ôq(G)∨ is big enough to contain Oq

(
G
/
P
)∨

, by Corollary

4.8(b). Then, as Ôq(G)∨ is a topological Hopf algebra, inside it we

must look at the closure of Oq

(
G
/
P
)∨

. Thanks to Corollary 4.8(c)
(which means, roughly, that an Artin-Rees lemma holds), the latter is

nothing but ̂Oq

(
G
/
P
)∨
. Finally, next result tells us that ̂Oq

(
G
/
P
)∨

is a left coideal of Ôq(G)∨, as expected.

Proposition 4.10. ̂Oq

(
G
/
P
)∨

is a left coideal of Ôq(G)∨ .

Proof. Recall that the coproduct ∆̂ of Ôq(G)∨ takes values in the

topological tensor product Ôq(G)∨ ⊗̂ Ôq(G)∨ , which by definition is

the (q−1)–adic completion of the algebraic tensor product Ôq(G)∨ ⊗
Ôq(G)∨ . Our purpose then is to show that this coproduct ∆̂ maps

̂Oq

(
G
/
P
)∨

in the topological tensor product Ôq(G)∨ ⊗̂ ̂Oq

(
G
/
P
)∨

.

By construction, the coproduct of Oq(G)∨, hence of Ôq(G)∨ too, is
induced by that of Oq(G) , say ∆ : Oq(G) −→ Oq(G)⊗Oq(G) . Now,
the latter can be uniquely (canonically) extended to a coassociative
algebra morphism

∆̃ : Oq(G)
[
D−1

I0

]
−−→ Oq(G)

[
D−1

I0

]
⊗̃Oq(G)

[
D−1

I0

]
where ⊗̃ is the J⊗–adic completion of the algebraic tensor product,
with

J⊗ := J ⊗Oq(G) + Oq(G)⊗ J , J := Ker
(
ϵOq(G)

)
.

In fact, since ∆(D0) = D0⊗D0+
∑

K ̸=I0

DI0
K ⊗DK , one easily computes

∆̃(D0) =
(
1 +

∑
K ̸=I0

DI0
K D−1

0 ⊗DKD−1
0

)(
D0 ⊗D0

)
∆̃
(
D−1

0

)
=

(
D0 ⊗D0

)−1
(
1 +

∑
K ̸=I0

DI0
K D−1

0 ⊗DKD−1
0

)−1

=
(
D−1

0 ⊗D−1
0

) ∑
n≥0

(−1)n
( ∑

K ̸=I0

DI0
K D−1

0 ⊗DKD−1
0

)n

Let’s now look at the restriction ∆̃r of ∆̃ to O loc
q

(
G
/
P
)
. We have

∆̃r(tij) = ∆̃r

(
D1 ... ĵ ... r i D−1

0

)
= ∆̃

(
D1 ... ĵ ... r i

)
· ∆̃

(
D0

)−1
=
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=

(∑
L

D1 ... ĵ ... r i
L D−1

0 ⊗DLD−1
0

)
·
∑
n≥0

(−1)n
( ∑

K ̸=I0

DI0
K D−1

0 ⊗DKD−1
0

)n

Now, by Proposition 3.5 we know that each product DLD−1
I0

is a

combination of the tij’s. Hence the formula above shows that ∆̃r maps
O loc

q

(
G
/
P
)
into Oq(G)

[
D−1

0

]
⊗̃O loc

q

(
G
/
P
)
.

By scalar extension, ∆̃ uniquely extends to a map defined on the

k(q)–vector space k(q)⊗kq Oq(G)
[
D−1

0

]
, which we still call ∆̃ . Its re-

striction to the similar scalar extension of O loc
q

(
G
/
P
)
clearly coincides

with the scalar extension of ∆̃r , hence we call it ∆̃r again. Finally, the

restriction of ∆̃ to Oq(G)∨
[
D−1

0

]
and of ∆̃r to Oq

(
G
/
P
)∨

both coincide
— by construction — with the proper restrictions of the coproduct of

Ôq(G)∨ (cf. Corollary 4.8).

In the end, we are left to compute ∆̃r(µij) . The computation above
gives

∆̂(µij) = ∆̃r(µij) = (q−1)−1 ∆̃r(tij) =

= (q−1)−1∑
L

D1 ... ĵ ... r i
L D−1

0 ⊗DLD−1
0 ·

∑
n≥0

(−1)n
( ∑

K ̸=I0

DI0
KD−1

0 ⊗DKD−1
0

)n

Now, each left-hand side factor above belongs to Ôq(G)∨ ⊗̂ ̂Oq

(
G
/
P
)∨

,

because either DL ∈ J loc
G/P (if L ̸= I0 , with notation of §4.3), or

D1 ... ĵ ... r i
L ∈ J (if L = I0 , with J := Ker

(
ϵOq(G)

)
). On right-hand

side instead we have

DK ∈ J loc
G/P ⊆ (q − 1)Oq

(
G
/
P
)∨

, DI0
K ∈ J ⊆ (q − 1)Oq(G)∨

whence — as D−1
0 ∈ Ôq(G)∨ and D−1

0 ∈ ̂Oq

(
G
/
P
)∨

— we get∑
K ̸=I0

DI0
K D−1

0 ⊗DKD−1
0 ∈ (q − 1)2 Ôq(G)∨ ⊗̂ ̂Oq

(
G
/
P
)∨

so that
∑
n≥0

(−1)n
( ∑

K ̸=I0

DI0
K D−1

0 ⊗DKD−1
0

)n

∈ Ôq(G)∨ ⊗̂ ̂Oq

(
G
/
P
)∨

The final outcome is ∆̂(µij) ∈ Ôq(G)∨ ⊗̂ ̂Oq

(
G
/
P
)∨

for all i and

all j . As the µij’s topologically generate ̂Oq

(
G
/
P
)∨

, this proves the
claim. �

In the end, we get the main result of this paper.

Theorem 4.11. ̂Oq

(
G
/
P
)∨

is a quantum homogeneous G∗–space,
which is indeed an infinitesimal quantization of the homogeneous G∗–
space p⊥ .
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Proof. Just collect the previous results. By Proposition 4.9 and by

the fact that ̂Oq

(
G
/
P
)∨∣∣∣

q=1
= Oq

(
G
/
P
)∨∣∣∣

q=1
we have that the spe-

cialization of ̂Oq

(
G
/
P
)∨

is U
(
p⊥

)
. Moreover we saw that ̂Oq

(
G
/
P
)∨

is a subalgebra, and left coideal, of Ôq(G)∨ . Finally, we have

̂Oq

(
G
/
P
)∨ ∩

(q − 1) Ôq(G)∨ = (q − 1) ̂Oq

(
G
/
P
)∨

as an easy consequence of Corollary 4.8 (c). Therefore, ̂Oq

(
G
/
P
)∨

is a quantum homogeneous space, in the usual sense. As Ôq(G)∨ is a

quantization of g∗ , we have that ̂Oq

(
G
/
P
)∨

is in fact a quantum homo-
geneous space for G∗ ; of course, this is a quantization of infinitesimal
type. �

Remark 4.12. All these computations can be repeated, step by
step, taking G = SLn and P = P1 .
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