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1. Introduction

In the theory of quantum groups, the geometrical objects that one
takes into consideration are affine algebraic Poisson groups and their
infinitesimal counterparts, namely Lie bialgebras. By “quantization”
of either of these, one means a suitable one-parameter deformation of
one of the Hopf algebras associated with them. They are respectively
the algebra of regular function O(G), for a Poisson group G, and the
universal enveloping algebra U(g), for a Lie bialgebra g. Deformations
of O(G) are called quantum function algebras (QFA), and are often
denoted with O,(G), while deformations of U(g) are called quantum
universal enveloping algebras (QUEA), denoted with U,(g) .

The quantum duality principle (QDP), after its formulation in [9,
10, 11], provides a recipe to get a QFA out of a QUEA, and vice-versa.
This involves a change of the underlying geometric object, according
to Poisson duality, in the following sense. Starting from a QUEA over
a Lie bialgebra g = Lie(G), one gets a QFA for a dual Poisson group
G* . Starting instead from a QFA over a Poisson group G, one gets a
QUEA over the dual Lie bialgebra g*.

1Partially supported by the University of Bologna, funds for selected research
topics.
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In [3], this principle is extended to the wider context of homoge-
neous Poisson G—spaces. One describes these spaces, in global or in
infinitesimal terms, using suitable subsets of O(G) or of U(g). In-
deed, each homogeneous G—space M can be realized as GG / K for some
closed subgroup K of G (this amounts to fixing a point in M : it is
shown in [3], §1.2, how to select such a point). Thus we can deal
with either the space or the subgroup. Now, K can be coded in in-
finitesimal terms by U(t), where ¢ := Lie(K), and in global terms
by Z(K) = {¢ € O(G)| ¢(K) = 0}, the defining ideal of K. In-
stead, G / K can be encoded infinitesimally by U(g)€ and globally by
O(G/K) = O(G)", the algebra of K-invariants in O(G). Note that
U(g)/U(g)t identifies with the set of left-invariant differential oper-
ators on GG / K, or the set of K—invariant, left-invariant differential
operators on G .

These constructions all make sense in formal geometry, i.e. when
dealing simply with formal groups and formal homogeneous spaces, as
in [3]. Instead, if one looks for global geometry, then one construction
might fail, namely the description of G / K via its function algebra
O(G/K) = O(G)" . In fact, this makes sense — i.e., O(G)" is enough
to describe GG / K — if and only if the variety G / K is quasi-affine. In
particular, this is not the case if G / K is projective, like, for instance,
when G / K is a Grassmann variety.

By “quantization” of the homogeneous space G / K one means any
quantum deformation (in suitable sense) of any one of the four algebraic
objects mentioned before which describe either G / K or K. Moreover
one requires that given an infinitesimal or a global quantization for
the group G, denoted by U, (g) or O,(G) respectively, the quantization
of the homogeneous space admits a U,(g)-action or a O,(G)-coaction
respectively, which yields a quantum deformation of the algebraic coun-
terpart of the G—action on GG / K.

The QDP for homogeneous G—spaces (cf. [3]) starts from an infin-
itesimal (global) quantization of a G—space, say G / K, and provides a
global (infinitesimal) quantization for the Poisson dual G*—space. The
latter is G*/KL (with Lie (Kl) = ¢!, the orthogonal subspace —
with respect to the natural pairing between g and its dual space g* —
to ¢ inside g*). In particular, the principle gives a concrete recipe

0,(G/K) o-———~ 0O,(G/K)" = U, (¢")

in which the right-hand side is a quantization of U (EL) )

However, this recipe makes no sense when O, (G / K ) is not avail-
able. In the non-formal setting this is the case whenever GG / K is not
quasi-affine, e.g. when it is projective.
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In this paper we show how to solve this problem in the special case
of the Grassmann varieties, taking G as the general linear group and
K = P a maximal parabolic subgroup. We adapt the basic ideas of
the original QDP recipe to these new ingredients, and we obtain a new
recipe

0y(G/P) o= 0,(G/P)"

which perfectly makes sense, and yields the same kind of result as pre-

—

dicted by the QDP for the quasi-affine case. In particular, O, (G / P)v
is a quantization of U (pL) , obtained through a (¢—1)—adic completion
process.

Our construction goes as follows.

First, we consider the embedding of the Grassmannian G / P (where
G :=GL, or G:= SL,, and P is a parabolic subgroup of GG) inside
a projective space, given by Pliicker coordinates. This will give us the
first new ingredient:

(’)(G / P) := ring of homogeneous coordinates on G / P

Many quantizations O, (G / P) of O(G / P) already exist in the lit-
erature (see, e.g., [6, 12, 13]). All these quantizations, which are
equivalent, come together with a quantization of the natural G-action

on G/P.

In the original recipe (see [3]) O,(G/K)o————~ Oq(G/K)V
of the QDP (when G / K is quasi affine) we need to look at a neigh-
borhood of the special point eK (where e € GG is the identity), and at
a quantization of it. Therefore, we shall replace the projective variety
G / P with such an affine neighborhood, namely the big cell of G / P.
This amounts to realize the algebra of regular functions on the big cell
as a “homogeneous localization” of O(G/P), say OZOC(G/P), by in-
verting a suitable element. We then do the same at the quantum level,
via the inversion of a suitable almost central element in O, (G / P) —
which lifts the previous one in (’)(G / P) . The result is a quantization
(’)ql"c(G /P) of the coordinate ring of the big cell.

Hence we are able to define O, (G/P)V = O;OC(G/P)V, where the
right-hand side is given by the original QDP recipe applied to the big
cell as an affine variety (we can forget any group action at this step).
By the very construction, this O, (G / P)v should be a quantization of
U (pi) (as an algebra). Indeed, we prove that this is the case, so we
might think at O,(G/ P)v as a quantization (of infinitesimal type) of
the variety G* / P+ . On the other hand, the construction does not
ensure that O, (G / P)V also admits a quantization of the G*—action
on G*/PL (just like the big cell is not a G-space). As a last step,
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we look at O, (G/P)V, the (¢—1)-adic completion of O, (G/P)V. Of
course, it is again a quantization of U(p) (as an algebra). But in
addition, it admits a coaction of the (¢—1)-adic completion of O,(G)Y
— which is a quantization of U(g*). This coaction yields a quantization
of the infinitesimal G*—action on G* / P+. Therefore, in a nutshell,

O, (G/P)v is a quantization of G*/PL as a homogeneous G*—space,
in the sense explained above.

Notice that our arguments could be applied to any projective ho-
mogeneous G—space X, up to having the initial data to start with.
Namely, one needs an embedding of X inside a projective space, a
quantization (compatible with the G—action) of the ring of homoge-
neous coordinates of X (w.r.t. such an embedding), and a quantization
of a suitable open dense affine subset of X . This program is carried
out in detail in a separate work (see [2]).

Finally, this paper is organized as follows.

In section 2 we fix the notation, and we describe the Manin defor-
mations of the general linear group (as a Poisson group), and of its Lie
bialgebra, together with its dual. In section 3 we briefly recall results
concerning the constructions of the quantum Grassmannian O, (G / P)
and its quantum big cell Oql"C(G / P) . These are known results, treated
in detail in [6, 7]. Finally, in section 4 we extend the original QDP
to build O, (G/P)V, and we show that its (¢ — 1)—adic completion is a
quantization of the homogeneous G*—space G* / P+ dual to the Grass-
mannian G / P.
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2. The Poisson Lie group GL,(k) and its quantum
deformation

Let k be any field of characteristic zero.

In this section we want to recall the construction of a quantum
deformation of the Poisson Lie group GL, = GL,(k). We will also
describe explicitly the bialgebra structure of its Lie algebra gl, :=
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gl (k) in a way that fits our purposes, that is to obtain a quantum
duality principle for the Grassmann varieties for GL,, (see §4).

Let k, = ]k[q, q_l] (where ¢ is an indeterminate), the ring of Lau-
rent polynomials over ¢, and let k(g) be the field of rational functions
in q.

DEFINITION 2.1. The quantum matrix algebra is defined as

Ou( M) = k(L NEZ0) [ T

where the z;;’s are non commutative indeterminates, and Ij; is the
two-sided ideal generated by the Manin relations

Tij Tik = q Tk Tij , Tji Ty = 4 Tgi Tj; V <k
Tij Tl = Tt Tij Vi<k,j>lor i>k,j<lI
-1 . .
Tij T — Ty = (@—q ") oy g Vi<k,j<l

Warning: sometimes these relations appear with ¢ exchanged with ¢=! .

For simplicity we will denote O,(M,,,) with O,(M,,) .

There is a coalgebra structure on O,(M,), given by

A(zyy) = ];xik(gxkj ; €(zij) = 0ij (1<i,j<n)

The quantum general linear group and the quantum special linear
group are defined in the following way:

0,(GL,):= Oq(Mn)[T]/(TDq —1,1-TD,)
Oy(SLy) = O,(My) /(D ~ 1)

where D, = > .o (—q)"@ T1(1) " Tnom) IS a central element,
called the quantum determinant.

Note: We use the same letter to denote the generators x;; of
Oy(Myxn) , of Oy(GL,) and of Oy (SL,): the context will make clear
where they sit.

The algebra O,(GL,) is a quantization of the algebra O(GL,,) of
regular functions on the affine algebraic group GL, , in the following
sense: Oy(GL,)/(q—1) Oy(GL,) is isomorphic to O(GL,) as a Hopf
algebra (over the field k). Similarly, O,(SL,) is a quantization of
the algebra O(SL,) of regular functions on SL, . Both O,(GL,) and
O,(SL,) are Hopf algebras, that is, they also have the antipode. For
more details on these constructions see for example [1], pg. 215.

By general theory, O(GL,,) inherits from O,(GL,,) a Poisson bracket,
which makes it into a Poisson Hopf algebra, so that GL,, becomes a
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Poisson group. We want to describe now its Poisson bracket. Recall
that

where d := det (:fm)ij:l . 1s the usual determinant. Setting = =

m(z) for ©: O, GL,) — O(GL,) , the Poisson structure is given
(as usual) by

{a,b} = (g—1)""(ab—ba)

In terms of generators, we have

vV a,be OGL,) .

q=1

{jijajik} = jijjik W j<k}, {fl'j,a_}gk} =0 W i<€,k‘<j
{Zi'ij,ff‘gj} = j}ijli‘gj i i<€, {(Z’Z‘j,i‘gk} = Zfijj}gk A i<£,j</€
{dil,fij}:O, {d,y_c”}:o VZ,]:L,TZ

As GL,, is a Poisson Lie group, its Lie algebra gl,, has a Lie bialgebra
structure (see [1], pg.24). To describe it, let us denote with E;; the ele-
mentary matrices, which form a basis of gl,, . Define (Vi=1,...,n—1,

j=1,...,n)
€ = Lyit1, Gj ::Ej,ja fiiz i+1,0 5 hi3:gi_gz’+1

Then {ei, fis gj | 1=1,....n—1,5 = 1,...,n} is a set of Lie
algebra generators of gl,,, and a Lie cobracket is defined on gl,, by

6(e;) = hiNe; , 6(g;) =0, O0(fi) = hi A\ fi Vi, ]

This cobracket makes gl,, itself into a Lie bialgebra: this is the so-called
standard Lie bialgebra structure on gl, . It follows immediately that
U(gl,) is a co-Poisson Hopf algebra, whose co-Poisson bracket is the
(unique) extension of the Lie cobracket of gl,, while the Hopf structure
is the standard one.

Similar constructions hold for the group SL, . One simply drops
the generator d=!, imposes the relation d =1, in the description of
O(SL,), and replaces the gs's with the h;’s (i = 1,...,n) when de-
scribing sl,, .

Since gl,, is a Lie bialgebra, its dual space gl,; admits a Lie bialgebra
structure, dual to the one of gl, . Let { Ej:=Ej|i,j=1,...,n } be
the basis of gl dual to the basis of elementary matrices for gl,. As a
Lie algebra, gl can be realized as the subset of gl, @ gl,, of all pairs

—mi 0 s 0 mip Mi2 -+ Mip-1 min

ma1 —Mag - 0 0 moy --- man—-1 man
)

Mp—11 Mp-1,2 0 0 0o --- Mp—1n—-1 Mnp-1n

Mna Mp2 - —Mpp 0 0o --- 0 Mpn
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with its natural structure of Lie subalgebra of gl, & gl, . In fact, the
elements E;; correspond to elements in gl, ® gl, in the following way:
Ey(Ey,0)Vi>j, By (—Ey, +E;)Vi=j, E;=(0,Ey;) Vi<j
Then the Lie bracket of gl is given by

[Eij, Eng] =60 Eir— 0k Eny , V i<j, h<k and V i>j, h>k

[Ei,j> Eh,k] :6k,iEh,j_5j,hEi,k , i Z:], h>k and V Z>], h=k

[Em,Eh,k]:o, Vi<j,h>k and V 1>j, h<k
Note that the elements (1 <i<n—-1, 1<j<n)
e =¢e = B, fi = £ = By g = g; = Ej;

are Lie algebra generators of gl . In terms of them, the Lie bracket
reads

i, f5] =0, [g,e] = dyer,  [g ] =058 Vi,
On the other hand, the Lie cobracket structure of gl is given by
6(Ei,j) = ZEi,k/\Ek,j Vl,jzl,,n
k=1

where Ay =2y —yQx.

Finally, all these formulee also provide a presentation of U (g[;) as
a co-Poisson Hopf algebra.

A similar description holds for sl = gl / Z(gly), where Z(gl})

is the centre of gl , generated by [,, := g,+---+g, . The construction
is immediate by looking at the embedding sl,, — gl,, .

3The quantum Grassmannian and its big cell

In this section we want to briefly recall the construction of a quan-
tum deformation of the Grassmannian of r—spaces inside an n—dimensional
vector space and its big cell, as they appear in [6, 7]. The quantum
Grassmannian ring will be obtained as a quantum homogeneous space,
namely its deformation will come together with a deformation of the
natural coaction of the function algebra of the general linear group
on it. The deformation will also depend on a specific embedding (the
Pliicker one) of the Grassmann variety into a projective space. This
deformation is very natural, in fact it embeds into the deformation of
its big cell ring. Let’s see explicitly these constructions.

Let G := GL,, and let P and P, be the standard parabolic sub-

groups
P::{(g1 g)}CGLn , P = PNSL,
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where A is a square matrix of size r, with 0 <r <n.

DEFINITION 3.1. The quantum Grassmannian coordinate ring
O, (G / P) with respect to the Pliicker embedding is the subalgebra of
0O,(GL,) generated by the quantum minors (called quantum Pliicker
coordinates)

T o
D' = Dn o ;S (—q) ( )xilf’(l) Lizo(2) """ Lipo(r)

for every ordered r—tuple of indices [ = {i; <--- <i,}.

Remark:  Equivalently, O, (G / P) may be defined in the same way
but with O,(SL,,) instead of O,(GL,,) .

The algebra O, (G / P) is a quantization of the Grassmannian G / P
in the usual sense: the k-algebra O, (G/P)/(q —-1)0,(G/P) is iso-
morphic to O(G / P) , the algebra of homogeneous coordinates of GG / P

with respect to the Plicker embedding. In addition, O, (G / P) has an
important property w.r.t. O,(G), given by the following result:

PROPOSITION 3.2.
O,(G/P) N (4~ 1)0,(C) = (4-1) 0,(G/P)

Proof. By Theorem 3.5 in [13], we have that certain products of
minors {p;};,.; form a basis of O, (G / P) over k,. Thus, a generic
element in O,(G/P) (N (g—1) Oy(G) can be written as

Ziel aipp = (g—1)¢ (3.1)

for some ¢ € O,(G). Moreover, the specialization map
T O4(G) —— 0,(G)/(a=1)0,(G) = O(G)

maps {p;};c; onto a basis {Wg(pi)}iel of O(G/P), the latter be-
ing a subalgebra of O(G). Therefore, applying mg to (3.1) we get
Y oic; @ima(p;) = 0, where @ = o; mod (¢—1)k,, for all i € I.
This forces «o; € (¢—1)k, for all ¢, by the linear independence of the
7a(pi)’s, whence the claim. d

An immediate consequence of Proposition 3.2 is that the canonical
map

0,(G/P) [(a=1)0,(G/P) —— 0,(G)/(a-1)0,(C)
is injective. Therefore, the specialization map

ram: O,(GIP) —— O,(G/P) [(a-1)0,(G/P)



coincides with the restriction to O, (G / P) of the specialization map
TG Oy(G) —— 0y(G) [(a~1)04(G)

Moreover — from a geometrical point of view — the key conse-
quence of this property is that P is a coisotropic subgroup of the Pois-
son group G'. This implies the existence of a well defined Poisson
structure on the algebra O(G/P), inherited from the one in O(G) .

OBSERVATION 3.3. The quantum deformation O, (G / P) comes nat-
urally equipped with a coaction of O (GL,,) — or, similarly, of O,(SL,,)
— on it, obtained by restricting the comultiplication A . This reads

Moyosm: 0uG/P) — 0,(E)©0,(G/P)
D! — Y .DL®DK

a/p)
where, for any [ = (iy...4.), K = (ky... k), with 1 <43 < -+ <
.<n, 1<k <--- <k, <n, we denote by Dﬂ the quantum minor
I _ i1edr . Lo
DK - D]’Lﬁllllkr T Z‘:S‘ (_q) ( )mll ko’(l) le ko‘(2) e xl’r‘ kcr('r)
oc ™

This provides a quantization of the natural coaction of O(G) onto

O(G/P).

The ring O,(G/P) is fully described in [6] in terms of generators
and relations. We refer the reader to this work for further details.

We now turn to the construction of the quantum big cell ring.
DEFINITION 3.4. Let Iy = (1...7), Dy := D . Define
0,(G)[D;'] = (’)q(G)[T]/(TDO —1,DyT — 1)

Moreover, we define the big cell ring (9;"6 (G / P) to be the k,—subalgebra
of O,(G)[Dy'] generated by the elements

ti; = (—q)" D' i-TiDSt Y i 1<j<r<i<n
(see [7] for more details).

As in the commutative setting, we have the following result:

PROPOSITION 3.5.  O,(G/P) = O,(G/P)[Dg"] .. where
the right-hand side denotes the degree-zero component of the quotient
ring Oy(G/P)IT] /(TDy~1,DoT ~1) .
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Proof. In the classical setting, the analogous result is proved by this
argument: one uses the so-called “straightening relations” to get rid of
the extra minors (see, for example, [4], §2). Here the argument works

essentially the same, using the quantum straightening (or Pliicker)
relations (see [6], §4, [13], formula (3.2)(c) and Note I, Note IT). O

REMARK 3.6. As before, we have that
0,(G/P) N (¢-1)O0;*(G) = (q-1)0,”(G/P)

q
This can be easily deduced from Proposition 3.2, taking into account
Proposition 3.5. As a consequence, the map

01 (G/P) [(4=1) O(G/P) —— OF(G) [(a=1)0,“(G)
is injective, so that the specialization map
Rt O(GIP) —— OM(G/P) [(a—1)0(G/P)
coincides with the restriction of the specialization map

mE T O(G) —— 0(G) [(4=1) 0(C)

q
The following proposition gives a description of the algebra (’)qloc (G / P) :

PROPOSITION 3.7. The big cell ring is isomorphic to a matrix al-
gebra, via the map

O0y*(G/P) — Of(Min-rxr)

In particular, the generators t;;’s satisfy the Manin relations.

Proof. See [7], Proposition 1.9. O

4. The Quantum Duality Principle for quantum
Grassmannians

The quantum duality principle (QDP), originally due to Drinfeld
[5] and later formalized in [9] and extended in [10, 11] by Gavarini, is a
functorial recipe to obtain a quantum group starting from a given one.
The main ingredients are the “Drinfeld functors”, which are equiva-
lences between the category of QFA’s and the category of QUEA’s.
Ciccoli and Gavarini extended this principle to the setting of homo-
geneous spaces. More precisely, in [3] they developed the QDP for
homogeneous spaces in the local setting, i.e. for quantum groups of
formal type (where topological Hopf algebras are taken into account).
If one tries to find a global version of the QDP for non quasi-affine
homogeneous spaces, then problems arise from the very beginning, as
explained in §1. The case of projective homogeneous spaces has been
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solved in [2], where the original version of the Drinfeld-like functor for
which the (global) QDP recipe should fail is suitably modified.

In this section, we apply the general recipe for projective homoge-
neous spaces to the Grassmannian G/P . The result is a quantization
of the homogeneous space dual (in the sense of Poisson duality, see [3])
to G/ P, just as the QDP recipe predicts in the setting of [3].

We begin recalling the Drinfeld functor ¥ : QFA — QUFEA .

DEFINITION 4.1. Let G be an affine algebraic group over k, and

0,(G) a quantization of its function algebra. Let J be the augmenta-
tion ideal of O,(G), i.e. the kernel of the counit e: O,(G) — k. We
define

O,(G) = ((q=1)""T) = > (q= )" J" (C O,(G) @y, kg)) .

n=0
It turns out that O,(G)Y is a quantization of U(g*), where g* is the
dual Lie bialgebra to the Lie bialgebra g = Lie(G). So O, (G) is a
QUEA, and an infinitesimal quantization for any Poisson group G* dual
to G, i.e. such that Lie (G*) >~ g* as Lie bialgebras. Moreover, the
association O,(G) — O,(G)" yields a functor from QFA’s to QUEA’s
(see [10, 11] for more details).

REMARK 4.2. Let G = GL,,. Then O,(G)" is generated, as a
unital subalgebra of O,(G) ®x, k(q), by the elements

D= (q—-1)"" (D' =1) . xy o= (g— 1) (2 — 0y)
Vijg=1,...,n

where the z;;’s are the generators of O,(G). As x;; = 0;;+(¢—1) x45 €
O,(G)Y, we have an obvious embedding of O,(G) into O, (G)" .

In the same spirit — mimicking the construction in [3] — we now
want to define O, (G / P)v when ¢ / P is the Grassmannian.

Let G = GL, , and let P be the maximal parabolic subgroup of §3.

DEFINITION 4.3. Let € be the natural extension to O/°“(G/P) of
the restriction to O,(G/P) of the counit of O,(G), and let Jé"/cp =
Ker(€'). We define (as a subset of O[¢(G/P) @y, k(q))

O[C/P) = ((a— 17" Jp) = > (= 17" (Jp)"

It is worth pointing out that O, (G/P)v is not a “quantum homo-
geneous space” for O,(G)Y in any natural way, i.e. it does not admit a
coaction of O,(G)Y . This is a consequence of the fact that there is no
natural coaction of Oy(G) on O¢(G/P). Now we examine this more
closely.
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Since O,(G/ P)v is not contained in O,(G)", we cannot have a
Oq(G)V coaction induced by the coproduct. This would be the case if
O, (G/P)v were a (one-sided) coideal of O,(G)" ; but this is not true
because O¢(G/P) is not a (right) coideal of Oy(G). This reflects the
geometrical fact that the big cell of G/P is not a G—space itself. Nev-
ertheless, we shall find a way around this problem simply by enlarging
O, (G/P)v and O,(G)", i.e. by taking their (¢—1)-adic completion
(which will not affect their behavior at ¢ =1).

To begin, we provide a concrete description of O, (G / P)v :

PROPOSITION 4.4.
O (G/P)" = ky{{ s Y2h n>/IM

where i = (q—1)""t;; (for all i and j ), Iy is the ideal of the

Manin relations among the p;’s, and ti; = (—q)"~ D'=7-7i D3\ (for
all i and 7).

Proof. Trivial from definitions and Proposition 3.7. O

We now explain the relation between O, (G / P)V and O,(G)" . The
starting point is the following special property:

PROPOSITION 4.5.
0,(G/P)" N (a-1)0(A)'[Dg'] = (4-1)0,(G/P)’

Proof. It is the same as for Proposition 3.2. O

REMARK 4.6. As a direct consequence of Proposition 4.5, the canon-
ical map

0,(G/P)"/ (a=1) 0,(G/P)” — 0,(G)'[D5"] [ (a=1) 0,(G)" [D5"]
is in fact injective: therefore, the specialization map

mép 0y(G/P) —— O(G/P)" [(a=1)0,(G/P)"
coincides with the restriction to O, (G /P)” of the specialization map
78 04(6)[Dy"] —— 0,(G)'[D5"] /la—1) 0,(G) D3]

From now on, let A denote the (¢ — 1)—adic completion of any k,—
algebra A. Note that A and A have the same specialization at ¢ =1,
ie. A/(¢g—1)A and A/(¢—1)A are canonically isomorphic. When

——

A =0,(G), note also that O,(G) is naturally a complete topological
Hopf k,—algebra.

The next result shows why it is relevant to introduce such comple-
tions.
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—

LEMMA 4.7. O,(G)"[Dy'] naturally embeds into O,(G)" .

Proof. By remark 4.2 we have that O,(G)" is generated by the
elements (for all 4,5 =1,...,n)

D, = (q — 1)_1 (D;l — 1) y Xij = (q — 1)_1 (xij — 513)
inside O,(G) ®y, k(g) . On the other hand, observe that

zi; = (q—1)xi; € (q—1)O,G) VYV i#j

2 =1+ (=1 xu € (1+(¢—1)04(G)") VL.

Then, if we expand explicitly the ¢-determinant Dy := D | we imme-
diately see that Dy € (1+(¢—1) O4(G)") as well. Thus Dy is invert-

—

ible in O,(G)", and so the natural immersion O,(G)" —— O,(G)"

canonically extends to an immersion O,4(G)" [Dy'] —— O, (G)" . O

and

COROLLARY 4.8.
(a) The specializations at q=1 of O, (G)", Oq(G)V[DO_l] and

(’)q(G)v are canonically isomorphic. More precisely, the chain

Oy(G)" —— O4(G)'[Dg'] —— 04(G)"
of canonical embeddings induces at ¢ =1 a chain of isomorphisms.
(b) O, (G/P)v embeds into O,(G)" wvia the chain of embeddings

—

0,(G/P) —— 04(G)"[DF'] —— 04(G)"
() OG/P) N (a=1)0,(G)" = (a=1)0y(G/P)"
Proof. Part (a) and (b) are trivial, and (¢) follows from them. O
Notice that part (¢) of Corollary 4.8 also implies that

0u(G/P)"| = 0,(G/P)"[(a~1)0,(G/P)"

q=1
is a subalgebra of

0,@)| = 0,6)

q=1

= 0G) [la-1)0,(G)” = U(g")
just because the specialization map

mp 04(G/P) —— 0y(G/P)" [(a—1)0,(G/P)"

q=1

coincides with the restriction to O, (G / P)V of the specialization map

o — —

TG OfG) —— 04(G) [(4-1)0,(G)"
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Now we want to see what is O, (G/P)V‘ inside U (gl,"). In other
q=1
words, we want to understand what is the space that O, (G / P)V is
quantizing.
PROPOSITION 4.9.

0,(G/P)’

= Ulp)

g=1

as a subalgebra of O,(G)"
subspace to p := Lie(P) inside gl," .

= U(g[n*) , where p* is the orthogonal
1

Proof. Thanks to the previous discussion, it is enough to show that

m5(0u(G/P)") = U(*) € U(gl) = 0,(@)

q=1

To do this, we describe the isomorphism O, (G)"

qzlg U(gl,”) (ct.[8]).
First, recall that O,(G)" is generated by the elements (see Remark 4.2)
D_ = (q — 1)71 (Dq_l — 1) s Xij = (q — 1)71 (Ilfij — 51)

(for all 4,7 = 1,...,n) inside Oy(G) ®x, k(g). In terms of these
generators, the isomorphism reads

0,(G)’

— U(gl,")
q=1

KH_(El,l‘i‘""i‘En,n), XTJ’_)Ei,j VZ,]

where we used notation X := X mod (q — 1) Oq(G)V . Indeed, from
Xi; — Ei; and (¢— 17! (Dq - 1) € 0,(G)", one gets D, — 1
and (q — 1)_1 (Dq — 1) — E11+ -+ + E,n. Moreover, the relation
DyD;' = 1 in Oy(G) implies D, D = —(¢—1)" (D, — 1) in
0,(G) ;50 D_+s —(Ey1+ -+ +E,,) as claimed (cf. [8], §3, or [10],
§7). In other words, the specialization 7y : Oy(G)" — U(gl,") is
given by

Wé(Df) = —(Ei1+--+E,,), W\C/:(Xi,j) = Ei; Vii,j.

—

If we look at O,(G)", things are even simpler. Since

—

Dy € (14(a=1)0,G)) ¢ (1+(a-1)04(6)") ,

then D;! € (1 + (q — 1)Oq(G)V>, and the generator D_ can be

dropped. The specialization map 7, /P of course is still described by
formulee as above.
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Now let’s compute 7, p (Oq (G/P)v> = 7/rg<(9q (G/P)v> . Recall
that O, (G/P)v is generated by the p;;’s, with

iy = (g=1)""ty = (=17 (—=q)" ' DI Dyt

fort=r+1,...,n,and 7 =1,...,r; thus we must compute 7;2(;%) .
By definition, for every i # j the element z;; = (¢ — 1) x;; is
mapped to 0 by 7). Instead, for each ¢ the element xyp = 14+(g—1) x¢¢

is mapped to 1 (by 7% again). But then, expanding the ¢-determinants
one easily finds — much like in the proof of Lemma 4.7 — that

T <<q_1)—1D1A..j~-”’> - (<q_1)_1 Z;g (_Q)Z(U) Lio(1) " 'ITU(T)> -
oc T

—

= g <(q—1)*1 > (_Q)Z(U)HZ:l(éka(k) + (q_l)Xka(k))>

O'EST

r

The only term in (¢ — 1) in the expansion of D! +J+Ti comes from the

product
(1+(g1)x11) -+ (1+(1)xrr) (1) xi5 = (¢-1)xi; mod (¢—1)*O(G/P)

Therefore, from the previous analysis we get

—

me (g = )7 D) = 7 () = By
(Do) = 7e(1) = 1, w5(Dy') = (1) =1
s0 in the end 74 (1) = (=1)" 7 Eij, forall 1<j<r<i<n.
The outcome is that 7%, (Oy(G/P)") = U(h), where

h = Span({Ei,j}r+1§i§n, 1§j§r}) )

On the other hand, from the very definitions and our description of
gl," one easily finds that h = pt, for p := Lie(P) . The claim
follows. O

Proposition 4.9 claims that O, (G / P)v is a quantization of U (pL) ,
i.e. it is a unital k,—algebra whose semiclassical limit is U (pL) . Now,
the fact that U (pL) describes (infinitesimally) a homogeneous space
for G* is encoded in algebraic terms by the fact that it is a (left)
coideal of U(g*); in other words, U(p*) is a (left) U(g*)-comodule
w.r.t. the restriction of the coproduct of U(g*). Thus, for O, (G/P)v
to be a quantization of U (pL) as a homogeneous space we need also
a quantization of this fact: namely, we would like O, (G / P)V to be a
left coideal of O,(G)", our quantization of U(g*). But this makes no
sense at all, as O, (G/P)V is not even a subset of O,(G)"!
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This problem leads us to enlarge a bit our quantizations O, (G / P)v

S —

and O,(G)" : we take their (¢—1)-adic completions, namely O, (G’/P)v

o —

and O,(G)". While not affecting their behavior at ¢ = 1 (i.e., their
semiclassical limits are the same), this operation solves the problem.

—

Indeed, O,(G)" is big enough to contain 0,(G/ P)v, by Corollary

o —

4.8(b). Then, as Oq(G)V is a topological Hopf algebra, inside it we
must look at the closure of O,(G/ P)V. Thanks to Corollary 4.8(c)
(which means, roughly, that an Artin-Rees lemma holds), the latter is

o —

nothing but O,(G/P)". Finally, next result tells us that O,(G/P)"

—

is a left coideal of O (G)", as expected.

PROPOSITION 4.10. O, (G/P)” is a left coideal of Oy(G)" .

—

Proof. Recall that the coproduct A of 0,(G)" takes values in the
topological tensor product OXG\)V @OXC?)V, which by definition is
the (¢—1)—adic completion of the algebraic tensor product ORG\)v ®
O?G\)v. Our purpose then is to show that this coproduct A maps
Oq(/Gﬁ’)v in the topological tensor product OXC?)V ® Oq(/G/\P)V .

—

By construction, the coproduct of Oy(G)", hence of O (G)" too, is
induced by that of O,(G), say A: O (G) — OLG) ® O,(G) . Now,
the latter can be uniquely (canonically) extended to a coassociative
algebra morphism

A 0,(G)[Dy] — 0,(G)[D},'] & O(G)[Dy]]

where ® is the Jg-adic completion of the algebraic tensor product,
with

Jo = JROLUG) + O,(G)® J J = Ker(eo,c)) -
In fact, since A(Dg) = Do®@ Do+ > D@ DX | one easily computes
K#Io
A(Do) = (1+ X DR D;' @ DDy ) (Dy @ Do)
K#Io
~ -1
A(D;Y) = (Do® Do)_1<1 + Y Dlpsle DKDgl)
K#Io
- (piten') ¥ <—1>”< > Dy D51®DKD0‘1)
n>0 K#Iy

Let’s now look at the restriction ﬁr of A to Oql"c(G/P) . We have
~ -1

Ar(tij) _ AT(DL..?...MD(;I) _ &(Dl...;...ri) ~&(D0) _
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_ (Z DleMDal ®DL Dol) . Z (_1)n ( Z D% D61® DKDol)

L n>0 K+£I

Now, by Proposition 3.5 we know that each product D* D;*' is a

Iy
combination of the ¢;;’s. Hence the formula above shows that A maps

OLle(G/P) into O4(G)[Dy'] @ OLe(G/P) .

By scalar extension, A uniquely extends to a map defined on the
k(q)—vector space k(q) ®k, O4(G)[Dy'], which we still call A . Its re-
striction to the similar scalar extension of Oql"C(G / P) clearly coincides
with the scalar extension of AT , hence we call it A, again. Finally, the
restriction of A to Oy (G)" [Dg'] and of A, to O, (G/P)V both coincide
— by construction — with the proper restrictions of the coproduct of

_—

0,(G)" (cf. Corollary 4.8).

In the end, we are left to compute A, (f;5) . The computation above
gives

Alpig) = Ar(py) = (¢=1) " Altyy) =
~ (-1 Dy Dy e Dy S (1) £ ppyte DDy
L n>0 KZIy

—

Now, each left-hand side factor above belongs to Oy (G)" ® O,(G/ P)v
because either DI € Jéo/cp (if L # Iy, with notation of §4.3), or

DIL‘”?'“” e J (if L = Iy, with J := K@T(E@q(g)) ). On right-hand
side instead we have

DX € Jlp C (a=1)0,(G/P)" ., D e JC (4-1)0,G)
whence — as D! € (")q/(C?)v and D,' € (9,J(G/P)v — we get
S DR Dyte DEDFY € (¢-1)°0,(G)" ©0,(G/P)’

K+#Io

n>0 K+£I

sothat 3 (- )(ZDIOD % DXDs ) € 0,(G)'®0,(G/P)"
®

The final outcome is A(,uzj) €O (G) O, (G/P) for all ¢ and

all j. As the p;;’s topologically generate O, (G / P)V , this proves the
claim. 0

In the end, we get the main result of this paper.

THEOREM 4.11. O, (G/P)v s a quantum homogeneous G*—space,
which is indeed an infinitesimal quantization of the homogeneous G*—
space pt
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Proof. Just collect the previous results. By Proposition 4.9 and by

the fact that Oq(/G/\P)V = O, (G/P)V , e have that the spe-
- 4=

cialization of O, (G/P)v is U(pL) . Moreover we saw that O, (G/P)v
is a subalgebra, and left coideal, of Oq(G)V . Finally, we have

O4(G/P) N (a=1)0(G)" = (=10, (G/P)’
as an easy consequence of Corollary 4.8 (c). Therefore, O,(G/ P)v

_

. . Vo
is a quantum homogeneous space, in the usual sense. As O,(G)" is a

—

quantization of g* , we have that O, (G / P) Visin fact a quantum homo-
geneous space for G*; of course, this is a quantization of infinitesimal
type. U

REMARK 4.12. All these computations can be repeated, step by
step, taking G = SL,, and P = P;.
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