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ABSTRACT. Within the quantum function algebra Fy[SLs], we study the subset F4[SLa] —
introduced in [Gal] — of all elements of Fy[SLz] which are Z[q,q~']-valued when paired with
Uq(sl2), the unrestricted Z[q, q_l}fintegral form of Uq(sl2) introduced by De Concini, Kac and
Procesi. In particular we yield a presentation of it by generators and relations, and a nice
Z[q, qil}fspanning set (of PBW type). Moreover, we give a direct proof that F4[SL2] is a Hopf

subalgebra of Fy[SL»], and that fq[SLg]‘ 1% Uz(slg*). We describe explicitly its specializa-
q:
tions at roots of 1, say €, and the associated quantum Frobenius (epi)morphism (also introduced

in [Gal]) from F.[SLa] to Fi[SLa] =2 Uz(slo*). The same analysis is done for F4[GL3], with
similar results, and also (as a key, intermediate step) for Fq[M2] .

Introduction

Let G be a semisimple, connected, simply connected affine algebraic group over C, and
g its tangent Lie algebra. Let U,(g) be the Drinfeld-Jimbo quantum group over g, defined
over the field Q(q), where ¢ is an indeterminate. There exist two integral forms of U,(g) over
Z[q, q_l], the restricted one, say ,(g), and the unrestricted one, say U, (g) — see [CP] and
references therein. Both of them bear so called “quantum Frobenius morphisms”, namely
Hopf algebra morphisms linking their specialisations at 1 with their specialisations at roots
of 1. In particular, #,(g) for ¢ — 1 specializes to Uz(g) , the Kostant Z-form of U(g); so g
becomes a Lie bialgebra, and G a Poisson group. Also, U,(g) for ¢—1 specializes to F7[G*],
a Z—form of the function algebra on a Poisson group G* dual to G .

Dually, one constructs a Hopf algebra Fj[G| of matrix coefficients of U,(g). It has two
Z|q,q ] forms, say §,[G] and F,[G], defined to be the subset of Fy[G] of all Z[g,q ']~
valued functions on H,(g), respectively on U,(g). At ¢ = 1, F,[G] specializes to Fz[G],
while ,[G] specializes to Uz(g*) , a Kostant-like Z—form of U(g*) — cf. [Gal] for details.
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Moreover, both §,[G] and F,[G] bear quantum Frobenius morphisms (relating their special-
isations at 1 with those at roots of 1), which are dual to those of H,(g) and U,(g) .

The aim of this paper is to describe F,[G], its specializations at roots of 1 and its quantum
Frobenius morphisms when G = SLs. Moreover, as the construction of these objects makes
sense for G = GLy and G = My := Maty as well, we find similar results for them.

By [Gal], F4[M>] should resemble l,(gl,). Indeed, this is the case: F,[Ms] is generated
by quantum divided powers and quantum binomial coefficients, a PBW-like theorem hold for
Fy[Ms], and the quantum Frobenius morphisms are given by an “/~th root operation”, if ¢
is the order of the root of unity. Similar (weaker) results hold for F,[G L] and F,[SLs].

The general case of M, := Mat,, , GL,, and SL,, is studied in [GR2], exploiting the same
key ideas already developed here and the present results for n = 2.

Warning: an expanded, more detailed version of this paper is available on line, cf. [GR1];
the quotations in [GR2] about the present work refer in fact to [GR1].

DEDICATORY
This work grew out of a cooperation supported by an official agreement between the
Department of Mathematics of the University of Rome “Tor Vergata” and the Faculty of
Mathematics of the University of Belgrade in the period 2000-2003. Such agreement was
the outcome of a common wish of peaceful, fruitful partnership, as an answer to the military
aggression of NATO countries to the Federal Republic of Yugoslavia, which started in springs
of 1999. This paper is dedicated to the memory of all victims of that war.

§ 1 Geometrical background and ¢—numbers

1.1 Poisson structures on linear groups. Let g := gl,(Q), with its basis given by

the elementary matrices e := (8 é) , g1 = ((1) 8) R <8 ?) , f = (? 8) . Then g has a

natural structure of Lie algebra, and a Lie cobracket is defined on it by d(e) = h®e—e®h,
d(gr) =0 (for k=1,2), 0(f) =h® f— f®h, where h := g; — go; this makes g into a
Lie bialgebra. It follows that U(g) is naturally a co-Poisson Hopf algebra, whose co-Poisson
bracket is the extension of the Lie cobracket of g. Finally, Kostant’s Z—-integral form of U(g)
— called also hyperalgebra in literature — is the unital Z-subalgebra Uyz(g) of U(g) generated

by the “divided powers” f(™  e(™ and the binomial coefficients <gn’f> (for £ = 1,2, and

n € N), where we use notation z(™ := m”/n! and <Z> = t(t_l)"ﬁ(!t_nﬂ) . Again, this is

a co-Poisson Hopf Z-algebra; it is free as a Z—module, with PBW-like Z-basis the set of
ordered monomials {e(") (gi) (gi)f(‘/’) ’ 7,71,72, ¢ € N } ; see e.g. [Hu], Ch. VII.

A similar description holds for g := sl(Q), taking A instead of g; and go . The Kostant’s
Z—~form Ugz(sly) of U(sl2(Q)) is generated as above but for replacing the gi’s with h. Then
Uy (5[2) is a co-Poisson Hopf subalgebra of Uy, (9[2) , free as a Z—module with PBW Z-basis
as above but with & instead of the gx’s. Finally, sl>(Q) is a Lie sub-bialgebra of gl,(Q), and
the embedding sly —— gl, is a section of the natural Lie bialgebra epimorphism gl, — sls .

As gl,(Q) is a Lie bialgebra, by general theory G := GLy(Q) is then a Poisson group.
Explicitly, the algebra F[G] of regular functions on G is the unital associative commutative

b

Q-algebra with generators a, b, ¢, d and D~', where D := det (g J> is the determinant.
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The group structure on G yields on F'[G] the natural Hopf structure given by matrix product,
while the Poisson structure is given by

{a,b} =ba, {a,c} =ca, {bc} =0, {db}=-bd, {dc}=-cd, {ad}=2bc.
We shall consider also the Poisson group-scheme G7 associated to G Lo, for which a like

analysis applies: in particular, its function algebra F'[G7] is a Poisson Hopf Z-algebra with
the same presentation as F'[G] but over the ring Z.

Similar constructions hold for SLy(Q) and the associated group-scheme (just set D = 1).

Finally, the subalgebra of F[(GLs)z| generated by the @, b, ¢ and d is a Poisson subbial-

gebra of F[(GLs)z] : indeed, it is the algebra F[(M2)z] of regular functions of the Z-scheme
associated to the Poisson algebraic monoid My of all (2 x 2)-matrices.

1.2 Dual Lie bialgebras and dual Poisson groups. By general theory, if g := gl,(Q)
bears a Lie bialgebra structure then the dual space g* is a Lie bialgebra on its own. Let
{e*, 917, 95, f*} be the dual basis to the basis of elementary matrices for g, and let e := f*/2 ,
g1 =9y, g =95, [:= e*/2; then {e,g1 , €2 ,f} is a basis of g*. The Lie bracket of g*
is given by [g1,g2] =0, [g1,f] = +f, [g2,f] = —1f, [g1,e] = +e, [g2,e] = —e¢,
[f,e] =0, and its Lie cobracket by §(f)= (g1 —g2) Af, d(g1)=4-fAe, §(g2)=4-eNf,
d(e)=eA(g1 —g2), where zAy :=x®y—y®z. These formula also provide a presentation
of U(g*) as a co-Poisson Hopf algebra. Finally, we can define the Kostant’s Z—integral form,
or hyperalgebra, Uz (g*) of U(g*) as the unital Z—subalgebra generated by the divided powers

f(m) e and binomial coefficients (i’:) (for all n € N and all £ = 1,2). This again is a
co-Poisson Hopf Z-algebra, free as a Z-module, with PBW-like Z-basis the set of ordered

monomials {e(") <7g111) <7gé)f(“’) ‘ n,n1,N2,p €N } .

A like description holds for sl,(Q)*: indeed, one has sl3(Q)" = gl,(Q)" / (g1+g2), dually
to sl3(Q) — sl2(Q), hence one simply has to set h := gy = —gs in the presentation above.
All formulee involving h follow from h = +g; =2 —gs mod (g1+ gg) . In particular Uy (5[2* )
is the Z-subalgebra of U (5[2 (Q)*) generated by divided powers and binomial coefficients as
above but taking h instead of the gi’s. Then Uy (5[2* ) is a co-Poisson Hopf Z-subalgebra of
Uz (9[2*) , with PBW Z-basis as above but with h instead of the g ’s.

If g = gl,, asimply connected algebraic Poisson group with tangent Lie bialgebra g* is the
subgroup sG* of G x G made of all pairs (L, U ) € G x G such that L is lower triangular, U
is upper triangular, and their diagonals are inverse to each other. This is a Poisson subgroup
of G x G; its centre is Z := {(zI, z_ll) ‘ z2€Q)\ {0}} , hence the associated adjoint group
is ,G* := SG*/ Z . The same construction defines Poisson group-schemes ;G and ,G7 . If
g = sly the construction of dual Poisson group-schemes ;G and ,G7 is entirely similar, just
taking G := SLy instead of GLs in the previous recipe.

1.3 ¢—numbers, ¢—divided powers and ¢g—binomial coefficients. Let ¢ be an inde-
terminate. For all s,n € N, let (n), := 1 (e 7[q)), (n),! = Il=(r),, (") =
q

qg—1 r=1 s

(”)q! g™ " — n n
@ty (€ Zla). and [l = S (€ Z[g.q7)), [l = TDL b, 7 =
% (€ Z[g,q7']). Furthermore, we set (;") = (—1)%77187(9% (€ Z[q]) for

a’ q’ q q

all n,s € N, and (2k) !1:=[]F_, (2r),, 2k —1) M :=]]F_, (2r —1),, forall k€N, .
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If A is any Q(g)—algebra, g—divided powers and g-binomial coefficients are: X () .=

iC n etl-sx_ iC T st [ scts
X”/[n]q! , <Xn’ > =l % ; also, {fr} = >0 q( 2 )<S>q- (Xn’_j> (for
every X € A, n,r € N, ¢ € Z). Furthermore, if Z € A is invertible we define also

Z;C L H,n qc+1—sZ+1_qs—1—cZ—1
n «— 8:1 q+s_qfs

for every n e N and ce€ Z.

For later use, we remark that the ¢g—binomial coefficients in X € A satisfy the relations
[T (0 =) (%) = T (@ +ex = 1)
Xsce\(X;e—t) _ (t+s c X;c+1 t{X;c) _ (X;c
(o) () = (), Ge) - () = () = ()
Xi;ce\ (X ;s X;ec <ct (e— X;0
(o) () = () () - (i) =t () () o

(=1 (%)= z; S G N o)

<X;tc+1>_<xt; c> — ot <1 Y (g— 1)<X1; 0)) (i(_;f)

Similarly, the g—divided powers in X € A satisfy the relations
X x() — [+} Xtrts)  x(0) =1 (1.2)
q

Finally, let ¢ € N; be odd, set Z. := Z[q]/(qﬁg(q)) where ¢y(q) is the ¢-th cyclotomic
polynomial in ¢, and let ¢ := G, a (formal) primitive ¢-th root of 1 in Z.. Similarly

let Q. := @[q]/(qbg(q)) , the field of quotients of Z.. If M is a module over Z[q,q_l] or
Q[g,q7*] we shall set M, := M/ (¢¢(q)) M, which is a module over Z. or over Q. .

§ 2 Quantum groups

2.1 Quantum enveloping algebras U,(gl,) and U,(slz), their integral forms and
specializations. Let U,(gl,) be the unital Q(¢)-algebra with generators F, G;, G2, Gy Y,
Gg_l, FE and relations

G1G3 '— GGy
q—q!
Glzl:lF _ q:FlFGlil, GQ:I:IF _ qilFGQil, Glzl:lE — qilEGl:tl, G2:|:1E _ q:FlEG2:t1

GF'GF' =1=GT'G* (i=1,2), GiGo=G2Gy, EF-FE =

Moreover, U,(gly) is also a Hopf algebra with A(F) = F® Gy 'Go + 1@ F, ¢(F) =0,
S(F) = —FG1Gy™' , A(G') = G @ G, €(GF') =1, S(GT') = GF' (for
i=1,2), A(E)=E®1+GGy'®F, ¢(E)=0, S(E)=-G, 'G, E

Now let K*':= GF'GJ'. The unital Q(q)-subalgebra of U,(gl,) generated by F, K+
and E is the well-known Drinfeld-Jimbo’s quantum algebra U,(slz). From the presentation
of U,(gly) one argues one of U,(sl2) too, and also sees that the latter is a Hopf subalgebra of
the former; indeed, it is also a quotient via F +— F, G1— K, Go— K~ ', E— E.

The quantum version of the PBW theorem for U,(gl,) claims that the set of ordered
monomials BY := {E"G{" G3 F?|n,0 €N, y,72 €Z} is a Q(q)-basis of Uy(gly).
Similarly, the set B*:={ E"K~*F?|n,9o €N,k € Z} is a Q(q)-basis of Uy(slz).
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As to integral forms, let U4 (gly) be the unital Z[q, ¢~ *]-subalgebra of Uy(gl,) generated
by F™), Gfl, (Gl;c), G;El, <an;c>, EM) for all m € N and ¢ € Z. This U,(gly) is a

m

Z[q, q_l]fintegral form of U,(gl,) as a Hopf algebra, and specializes to Uz(gly) for ¢ — 1,
that is U, (gly) / (g — 1)U,(gly) = Uz(gly) as co-Poisson Hopf algebras; therefore we call

iU, (gly) a quantum (or quantized) hyperalgebra. Finally, for every root of 1, say ¢, of odd
order £, a quantum Frobenius morphism Stgztn : U (gly) — Z. @7 Uz(gl,,) exists (a Hopf
algebra epimorphism): the left-hand side is U.(gly) := (Ug(gly))., and Stgztn is defined on
generators by “dividing out by ¢” the order of each quantum divided power and each quantum
binomial coefficient, if this makes sense, and mapping to zero otherwise.

Similarly, one defines the integral form of U,(sly), say ,(slz), replacing the Gfl’s by

K*1, and the (an; c) ’s by the (Knéc> ’s; totally similar results then hold (see [DL], [Gal]).

As to unrestricted integral forms and their specializations, first set X := (q — q_l)X as
notation. We define U, (gl,) to be the unital Z[q, ¢~ *]-subalgebra of U,(gl,) generated by
{F, G, GEY, E'} . From the presentation of U,(gl,) one argues a presentation for U (gl,)
as well, and then sees that the latter is a Hopf subalgebra of the former. Moreover, U, (gl,)
is a free Z[q,q_l}—module with basis BY := {F¢G¥1 ngﬁn ‘ ©,V1,Y2,M € N} . Note that

U,(gly) is another Z[q, q_l]fintegral form of U,(gl,), as a Hopf algebra, in that it is a Hopf
Z[q,q "] -subalgebra such that Q(q) ®z(q,q-1] Uq(aly) = Uy(gly) -

Adapting results in [DP], [Gal] and [Ga3-4], one has that U,(gl,) is a quantization of
F|((sGL3"),], ie. U(gly) := (Uy(gly)), = F[(sGLs");| as Poisson Hopf algebras, where on
left-hand side we consider the standard Poisson structure inherited from U, (gl,) . Finally, let
¢ and e be as in § 1.3. Set U(gly) := (Uy(gly)).: then there is a Hopf algebra monomorphism

* ~ : Nl =4
ngZIQ : F[(SGLQ )Z} > Z.®zUi(gly) — U:(gl,) given by F|q:1»—> F , Gkil‘q:1|—>

q=€

E ‘Q:l — B (k =1,2). Thisis the quantum Frobenius morphism for sGLy" .

Gk:té |q:E ,

Again, the same cons%ructions can be done with sl too. One defines the unrestricted
Z[q, q_l]—integral form U, (sly) of U,(slz), simply following the recipe above but replacing
the G¥'’s with K*'. Then similar results to those for U, (gly) hold for U, (sly) as well, e.g.
Uy(sly) is a quantization of F[(,SLs"),], that is Ui(sle) := (Uy(sla)), = F[(aSL2*),]| as
Poisson Hopf algebras (like above). See [Gal] and references therein for further details.

The embedding U,(sly) — U,(gly) restricts to Hopf embeddings U, (slz) — U, (gly)
and U,(sly) — Uy(gly) . The specializations of the latter ones at ¢ = ¢ and at ¢ =1 are
compatible (in the obvious sense) with the quantum Frobenius morphisms.

2.2 Quantum function algebras F,[M,], F,,|GLs| and F;,[SL;], their integral forms
and specializations. Let F,[M;] be the well-known quantum function algebra over M,
introduced by Manin. Namely, F,[M,] is the unital associative Q(gq)-algebra with generators
a, b, ¢, d and relations

ab=gqba, ac=gqca, bd=qdb, cd=qdc, bc=cb, ad-—da= (q—q_l)bc.
This is also a Q(g)—bialgebra (yet not a Hopf algebra), with coalgebra structure given by

Ala)=a®a+b®c, ea)=1, ADb) =ax®b+bd, €b)=0
Ale)=c®atdec, €c)=0, Ald)=cobt+dad, ed)=1.
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In particular, the quantum determinant D, := ad—qbc € F,[Ms] is central and group-like
in the bialgebra F,[Ms]. Finally, it follows from definitions that Fj,[Ms] admits as Q(q)-basis

the set of ordered monomials By, := {bﬁao‘d‘sc“ B,a,0,k €N } )

We define §,[Mz] to be the unital Z[q,q_l]fsubalgebra of F,[Ms] generated by a, b, ¢
and d; this in fact is a sub-bialgebra, and admits the same presentation as Fy,[Ms] but over
Z[q, q_l] . It follows that By, is also a Z[q, q_l]fbasis of §4[Ms], hence §4[Ms]isaZ [q, q_l} -
integral form of F,[M,]. From its presentation one sees that §,[Ms] is a quantization of
F[(M2)z], i.e. §1[Ma] := (F4[Ms]), = F[(M2)z] as Poisson bialgebras (where on left-hand
side we consider the standard Poisson structure inherited from §,[M2]); using notation of
§ 1.1, the isomorphism is given by 3:|q:1 >~z for all z € {a,b,c,d}.

Let Fy[GLs] := (Fy[Ma]) [qul] , the extension of Fj[M;] by a formal inverse to D, .
Then F,[GLo| is the unital associative Q(g)-algebra with generators a, b, ¢, d and Dq_l,
and relations like for F,[Ms] plus those saying that qul is central and inverse to D, . This
F,|GLs] is a Hopf algebra, whose coproduct and counit on the generators is given by the
formulae in § 2.2 and by those saying that D, ' is group-like plus S(a) = d D, ', S(b) =
—q_lqu_1 , S(e) = —q+1ch_1 , S(d) = aDq_l and S(Dq_l) =ab—qbc=D, .

It follows that F,[GLs] is Q(¢)-spanned by Bgr, = {bﬁao‘d‘sc’{Dq*” Bya,0,k,mn €N} .

Let §4[GLs] be the unital Z[g, ¢ !]-subalgebra of F,[GLs] generated by a, b, ¢, d and
Dq_1 (note that Dy € §4[M2]). This in fact is a Hopf Z[q, q_l]fsubalgebra, and admits the
same presentation as Fy[GLy] but over Z[q,¢™*]. Then Bgy, is also a Z|[q, ¢~ *]-spanning
set of F4[GLo], hence §4[GLy) is a Z|q,q '] -integral form of Uy(gly). Also, Fo[GLo] is a
quantization of F[(GLs)z] as a Poisson Hopf algebra, with Dqﬂ‘qzl ~ D+l

Let F,[SLs] be the quotient F,[SLs] := F,[GLs] / (Dy — 1) = F,[My)] / (Dy — 1) where
(Dg — 1) is the two-sided ideal of F,[GLy] or of F,[M>] generated by the central element
D, —1 . This is a Hopf ideal of F,[GLs|, so F,[SLs| is a Hopf algebra too: it admits
the like presentation as Fy[Ms] or F,[GLs] but with the additional relation D, —1 =0 .
Moreover, F,[SLy] has the Hopf structure given as for F,[GLy] but setting D, ' = 1 .
It also follows that F,[SLs| admits Bgp, := {bﬁao‘d‘sc” ’ﬁ,a,&ﬁ e N,0 € {a,é}} as
PBW-like basis over Q(q). The definition of the integral form §,[SLo]|, as well as its proper-
ties, are exactly like those of §4[G L], up to switching “gl” with “sI” and “GL” with SL”.

Another description of §,[Mz], §4[GL2] and §,[SL2] is possible. Indeed, using a char-
acterization as algebra of matrix coefficients, Fj,[Ms]| naturally embeds into U,(gly)*. In
particular, there is a perfect (=non-degenerate) Hopf pairing between F,[Ms] and U,(gl,),
which we denote by (, ):F,[Ms] x Uy(gly) —— Q(g) (see e.g. [No| for details). Then

§qlMs] = {f € Fy[M)] | { f,4(aly)) C Z]q, q_l]} . This leads us to define (cf. [Gal])

F] = {f € FyM] | (£.Uy(sh)) € Z[a.q7"]} -

The arguments in [Gal], mutatis mutandis, prove also that Q ®z F,[Ms] is a Q[q, q_l}f
integral form of Fj[Ms]. Moreover, the analysis therein together with [Ga3], § 7.10, proves
that Q- Fy[Ms] is a quantization of U(gly), ie. (Q® Fy[Ms]), = U(gly) as co-Poisson
bialgebras (taking on left-hand side the co-Poisson structure inherited from Q ® F,[Ma] ).

The perfect Hopf pairing between F,[M,] and U, (gl,) uniquely extends to a similar pairing
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()i Fy[GLa xUp(gly) — Qla), and §,[GLs] = {f € F[GL] | (f44(sh)) € Z[g.q7'] }
This gives the idea (like in [Gal]) to define

FGLa) = {f € RG] | (f.Uy(9)) S Z[a.a 7]} -

Again, Q®z Fy[GLs] is a @[q, q_l}fintegral form of F,[GLs], and that Q ®z F,[GLs]
is a quantization of U(gly), i.e. (Q®z Fy[GLs]), 2 U (gly) as co-Poisson Hopf algebras.

The pairing between F,[Ms] (or Fy[GLs|) and U,(gl,) induces a perfect pairing between
F,[SLs] and U,(sly), giving §4[SLs] = {fEF [SLo] ’<f, (sl2)) C Z[q,q7 '] } . Then

FylSLs| = {f € F,[SLy] ’ <f7 p 5[2)> C Z[q,q_l] }

and similar results to those for F,[GLs] hold for F,[SLs| too — see [Gal].

Finally, let ¢ € Ni be odd, and let ¢ be a (formal) primitive ¢-th root of 1 as in § 1.3.
Set F.[Ma] := (Fy[Mz])_: then again [Gal] and [Ga3] show there is an epimorphism

fT‘MQ Qe ®z. Fe[Ms] —— Q. ®7 Uz(gly) = Q. ®q U(gly) (2.1)
of bialgebras, which we call quantum Frobenius morphism for gl . Similarly, there exist
ngLQ : Qe ®z, Fe|GLy] — Q. ®z F1[GLs] = Q. ®g U(gly) (2.2)

a Hopf algebra epimorphism extending F rgg, the quantum Frobenius morphism for gl,",
and a Hopf algebra epimorphism, uniquely induced by Fr ]%4 or F rg Ly

FT?L Q- ®z, Fe[SLy] — Q. ®z Uz (sly) = Q. ®q U(sly) (2.3)
where F_[SLy] := (F4[SLs])_, which we call quantum Frobenius morphism for sl5".

By construction a bialgebra and a Hopf algebra epimorphism F,[M;] — F,[SLs] and
F,|GLy] — F,[SLs] exist, dual to U,(slz) — U,(gl,), and similarly there are epimor-
phisms §,[Ms] —> §4[SL2] and F,[GLa| — F4[SLa| dual to ,(sly) — L, (gly) .

2.3 Dual quantum enveloping algebras. The linear dual U,(sl2)" of U,(slz) can be
seen again (cf. [Gal]) as a quantum group on its own: indeed, we set U, (sly") := U,(sls)",
a notation used because U, (5[2*) stands for the Lie bialgebra sl,; just like U,(sl2) stands for
sly . Namely, U, (5[2*) is a topological Hopf QQ(q)-algebra, with two integral forms &I, (5[2*)
and Uy (slo") which play for Uy (sly") the same role as U, (slo) and Uy (sly) for Uy(sly) .

The construction goes as follows. Let HJ be the unital associative Q(g)-algebra with
generators F, Afl, A2ﬂ, E and relations

EF=FE, A7'A=1=MNAT" AFAT =ATIAFY ATIAT = ATATY Vi
AF'E = ¢P'EAEY ) AF'F =@ FAEY, AF'E=¢T EASY, AS'F=¢TIFEAS.

Let also Hy be the obtained from H adding the relation AjA;=1.
The set of PBW-like ordered monomials B : {E"AMA’\QFQ" }n,)\l,)\g,go € N} is a
Q(q)-basis for H] ; similarly Bj := {E”A’\IF“’ |n,peN, A\ € Z} is a Q(q)-basis for H .
One defines U, ( lo ) as a suitable completion of Hq so that U, (5[2 ) is a topological Q(q)—
algebra topologically generated by Hy , and B is a Q(q)-basis of U, (5 [2*) in topological sense.
Then U, (sly") is also a topological Hopf Q(g)-algebra (see [Gal]). The same construction
makes sense with HJ instead of Hy and yields the definition of U, (9[2*), a topological Hopf

Y
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algebra with BY as (topological) Q(q)-basis. Then by construction U, (sly") is a quotient of
U,y (gly") , as a topological Hopf algebra, via U, (5[2*)q = U, (9[2*)/(1\11\2 -1).
The restricted integral form 4, (slo") of Uy (sly") is, by definition, a dense Hopf Z[q, ¢~ ']~

subalgebra of the subset of linear functionals in U, (5[2*) which are Z[q,qil}fvalued onto
Uy, (5[2*) . In order to describe it, set L*! .= Alil , and let $); be the Z[q, q_l]fsubalgebra

of Hy generated by all the Fm)g  p(m)g [+l and <L7;c) 's (for m € N, ¢ € Z): then
Bi = {E(") (LZO) L~ Ent(1/2) p(e) ‘ n,l,ngN} is a Z[gq,q '] -Dbasis of 9, while &, (slo") is

the topological closure of §;, and B is a topological Z [q, qil}—basis of Y, (5[2*) )
Similarly, for the integral form i, (gl,") of U,(gl,"), take the Ay’s (h = 1,2) instead of

L and B :— {E(") (A;;()) A B0 (A;;O) A B po) | ) A Ay, € N} instead of

B . By construction ) is a quotient algebra of §J — restricting Hg/(AlAg —1) = Hj to

H9 —so Y, (5[2*) is a quotient of i, (g[z*) , as a topological Hopf algebra.
We can describe §; rather explicitly: it is the unital associative Z[q, q_l}falgebra with
generators F(m) E(m) [+l <LW;LC) — for m € N, ¢ € Z — and relations
relations (1.1) for X =L, LL ' =1=L"'L, relations (1.2) for X € {F,E}
L:I:l F(m) _ q:I:m F(m) L:I:l ’ E(T)F(s) _ F(S)E(T) , L:I:l E(m) _ q:I:m E(m) L:I:l
L;c m) __ m) (L;c+m L;c m) __ m) (L;c+m
(e =B () (e = e ().
Similarly, $J is the unital associative Z [q, q_l}falgebra with generators F(™) E(m) Akﬂ,
<A’;n; c) (for me N, ce€Z, k €{1,2}) and relations
AkAlzl — 1 — A];lAk <Ah;c>(Ak;s> — (Ak;s>(Ah;c>
relations (1.1) for all X € {A1,A2} relations (1.2) for all X € {F,E}
ENEG) = p g Akil y(m) = #0k1=0k,2)m y(M)Akil VY e {F,E}
Ak c m) __ m) [(Ak; c+(0k,1—0k,2) m
(Me)yim = ym (Mictbu=tam) vy e (F, B}
In this paper we do not need the Hopf structure of (5[2*) and i, (5[2*) (cf. [Gal]).

i, (5[2*) is a quantization of Uy, (5[2"‘)7 for Lll(slg*) = (il,q (5[2*))1 =y (5[2*) as co-Poisson
Hopf algebras, with on left-hand side the co-Poisson structure inherited from &, (5[2*) . In

terms of generators (notation of § 1.2) this reads F(m){q_l =~ f(m), (L,rilo) = (2),
— =1
L _ =1, BEW| _ =el™ for m e N. Similarly th(gly) = Uz(gly), with FO™| _ =
f(m), (A’;n;o) q:1% (i’i) , Aki1|q:1’£ 1, E(m)‘qzl% e for meN and k € {1,2}.
Finally, let £ and € be as in § 1.3. Set 116(5[2*) = (ilq(slg*))s and 9?2 := (f)s)g. Then
(cf. [Gal], § 7.7) the embedding $? —— (. (sl,*) is an isomorphism, thus . (sls") = H5.
Similarly (with like notation) ilg(g[;) = 99 . Also, there are Hopf algebra epimorphisms
S’CSZ[; : ng(s[g) = ﬁ: —» L Q7 57)“; = 7. 7y, ﬂl(ﬁ[g*) = 7. Q7 Uz(s[g*) (2.4)
Stgz[; cio(gly) = 97— Z. Rz 9] = L @2, U4(gly") = Z. @7 Uz (gly) (2.5)
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= (%) if ¢
q=¢
()s, and Yﬂ‘ — 1, with (X,x) € {(F.f),(E,e)}, and (Y,k) = (L,h) in the sl, case,
4=
(Y,k) € {(As, gi)}z‘:l , for gl, . These are quantum Frobenius morphism for sl,,;” and gl,,".

— 0 if

q=¢

S S

defined by X(S)’qza,_> x (5/0) (Y;O)

s, XO| o0, (V9

The above epimorphism 7, : U, (gly") — Uy (slo") of topological Hopf Z[q, ¢! |-algebras
is compatible with the quantum Frobenius morphisms, in the obvious sense.

To finish with, the natural evaluation pairing ( , ):U,(g*) x Uy(g) — Q(q) (for g €
{sl2, gl5} ) is uniquely determined by its values on PBW bases: we have them via

<E(n) (Ll; 0) L—Ent(l/2) F(Lp) 7 Ff K" Ee> _ (_1)77 6@@ 5f,77 (7)(] q—/{Ent(l/Q) (26)

<E(n) (A/l\l;o> Al—Ent(A1/2) <A§;0> AQ—Ent(Ag/2) P Ffol G;2F6> _

2

= (1) b 0 (31) (32) g mme /D mnaBnt0a/2)
q q

2.4 Embedding quantum function algebras into quantum enveloping algebras.
Let G € {SL;,GLy} and g := Lie(G). By definition F,[G] embeds into U,(g*) :=
U,(g)", via a monomorphism ¢&: F,[G] — U,(g*) of topological Hopf Q(q)-algebras.
Moreover F,[G] = 71 (ilq(g*)) , 80 & restricts to a monomorphism E: FyG] — Ugy(g*)
too, and similarly €: 3qlG] — Uy(g*) . These verify &(F,[G]) € H; and g(]-"q [G]) € 9
(with x € {s, g}, according to the type of G) so F,[G] = ¢~ 1(H,) and F,[G] = EH(H) .
Furthermore, E is compatible with specializations and quantum Frobenius morphisms, that is
<id<@5 ®zE |q:1) oFrl = (id@e ®z. gtg%) ° (id@e ®z. E\qzs) . As F,[My] embeds into F,[GLs),
restricting &: Fy[GLa] — Ug(gly") yields an embedding &: Fy[Ms] — U,(gly"), and simi-
larly we have an embedding £: Fy[Ms] — U4(gly") , which factors through Fy[GLo] (and
similarly £: Fq[Ms] — Uy (gly") , which factors through §y[GLs]).

In [Gal], Appendix, embeddings £ and E as above are described for S Ly, namely given by
£:a—L—-FL'E, b— —FL™' c¢— +L7'E, dw~ L™ . Similarly (and exploiting the
analysis in [Ga2], §§ 5.2/4), we find an analogous & for G Lo, namely &: Fy[GLo] — U,y(gly") ,
ar— AN —FAE, b— —FAy, c— +AsFE, d— Ay, Dq_1 — (AlAg)_l . The same formulse
describe &: F4[GLo] — U,(gly") . Discarding D' (AlAg)_l they describe also the
embedding &: F,[M3] — Uq(g[2*) ,a— AN —FAsE, b —FAy, ¢c— +A3E, d— Asy,
obtained restricting &: Fy[GLa] — Ug(gly"), and its restriction £: FqlMa] — U, (gly") .

Finally, the various embeddings £ and their restrictions to integral forms also are com-

patible — in the obvious sense — with the epimorphisms U, (9[2*) — U, (5[2*) and
F,|GLy] — F,[SLs] or F,[Ms] — F,[SLs] and their restrictions to integral forms.

§ 3 The structure of F,[My], F,|GL2] and F,[SLs],
their specializations and quantum Frobenius epimorphisms.

We need some more notation. First set b := (q — qil)flb and c:= (q — qil)flc. Then
for all n € N, we set b := b"/In]y!, c™:=c"/[n],! — like in § 1.2.
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Theorem 3.1.
(a) FylMs) is a free Z[q,q~*]-module, with basis the set of ordered monomials

BM2 — {b(ﬁ) <a(;0> (déO) C(rg) Oz,ﬁ, KJ,(S c N}
(a PBW-like basis). Similarly, any other set obtained from By, via permutations of factors
(of the monomials in Bu,) is a Z[q,q '] ~basis of Fo[M>) as well.
(b) Fy|GLs] is the Z[q, q_l] —span of the set of ordered monomials

Sar, = { B (2%) (%) e D,
Similarly, any other set obtained from Sgr, via permutations of factors (of the monomials in
Scr,) is a Z|q,q7 ] —spanning set for F4[GLs] as well. Moreover, if f € Fy[GLo] then f

can be expanded into a Z[q,q_l] ~linear combination of elements of Sgr, which all bear the
same exponent v ; similarly for the other spanning sets mentioned above.

(c) FqlSLo] is the Z[q, q_l] —span of the set of ordered monomials

Ssr, = {b(ﬁ) (acl(J) (dg()) c(r)

Similarly, any other set obtained from Sgr., via permutations of factors (of the monomials in
Ssr,) is a Z[q,q ] -spanning set for F4[SLs] as well.

Oé,ﬁ,/ﬂ,é,l/GN}

a,ﬁ,m,éEN}

Proof. (a) For all «,(3,k,6 € N, let My grs;= b (a(;o) (dgo) ¢ . Due to the formulee
for &: Fy[Ms] < U,y (gly") in § 2.4 and to Lemma 4.2(b) later on, one has

f(Moz,[B,n,(S) _ <—FA2)(ﬁ) . <A1—F;\2E;O> . (Agé;O) . <+A2E)(H) _ Z?:O (_1)ﬁ+rx

X q(;)_(g)_(;)_T(a"'l) (q — q—l)r [r]q! [ﬁg—r] [“:T] F(B+7) {/;1 779} <A26;0) A2B+fr+f~c F(r+r)
q q ’

so that f(/\/laﬁ,,w;) € 97, which implies, thanks to Fy[G] = E_l(i)x) (see §2.4),
Ma,ﬂwﬁ S gil(ﬁg)qu[Mﬂ - }—q[Mﬂ . (3~1)

This proves that By, C F,[Maz], hence the Z[q, q_l}fspan of By, is contained in F,[Ma] .
Now pick f € F,[Ms]. Clearly By, is a Q(g)-basis of Fj[Ms], hence there is a unique
expansion f = Zaﬁ’m;eN XoB,1,6 Ma, s with all coefficients xq.5,.6 € Q(q); we must
show that these belong to Z[q, q_l]. Let [y and kg in N be the least indices such that
Xa,fo,r0,6 7 0 for some a,8 € N. The previous description of £(Ma,g,4,6) and (2.7) yield

<Moz,ﬁ,f$,5 s FnGl’hGQ’y2 F¢> =0 if n < B or p <Kk

S

Ma,B.x.6 E’Gmas Fﬁ> = (1) q(g)—(§)+(ﬁ+ﬁ)72 (w) (v;)
q q

«

«

This gives <f, EBOG{YIGQWFHO> = C](KQO)_(BQO)+(ﬁ0+,€0)fy2 Za,& Xa,B0,k0,0 (71)q (752)(1 : By

assumption the last term belongs to Z[q7 q_l}, whence also
Y = Z Xa,B0,k0,0 (E) <ZIS2> S Z[Qaq_l} V 11,72 €Z,a,6d €N. (32)
a,0 q q

Using as indices the pairs (a,d) € N? and (y1,72) € N2, the set of identities (3.2) can be
read as a change of variables from {Xaﬂoﬁoﬁ}(a,a)ew to {%1,72 }(71772)6N2 : fixing in N? any
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total order < such that (m,n) < (m/,n’) if m <m or m’ <n', the (infinite size) matrix

ruling this change of variables, i.e. ((71)q (752

[e%

, has entries in Z[q, ¢~ '] and
)q>(71772),(a,6)eN2 [q q ]

is lower triangular unipotent. Thus it is invertible and its inverse also is lower triangular
unipotent with entries in Z[q, q_l}, SO Xa,B0,k0,5 € Z[q, q_l} for all a,d € N.

The previous analysis gives f':= f — 3> 5 Xa.80,50,6 Ma,Bo,m0,6 € Fq[M2]; moreover, by
construction the expansion of f’ as a Q(g)-linear combination of elements of By, has less
non-trivial summands than f: then we can apply the same argument, and iterate till we find
that all coefficients xq,3,x,5 in the original expansion of f do belong to Z[q, q_l} .

Finally, the last observation about other bases is clear.

(b) By claim (a), every monomial of type b?) <a(;0> (d(§0> c® s Z[q,q_l]—integer—

valued on U,(gl,); on the other hand, the same is true for D, " (V v € N), because
D, € §,IGLy] and §,[GLs] C Fy[GLs] since U, (gly) 2 U,(gly) . Finally,

<b(ﬂ) (a&0><d30> c®) D7V, Uq(g[2)> = <b(6) (agé())(déo) c® & DY, A(Uq(g[g))> -

(B () (1%) e, Uy(gly) ) - (D™, Uylgl)) < Z[a,q7"]
so b (“(;0) (dgo)c(”)Dq_” € F4|GLs], and the Z[q,q']-span of Sgr, sits inside F,[G L] .
Conversely, let f € F,[GLz]. Then there exists N € N such that fD,N € F,[My].
In addition, (fDg", Uy(gly)) = (f @ DN, A(Uy(gly))) C (f, Uy(aly)) - (DY, Uy(aly)) C
Z[q,qil] because f, DqN € Fy|GLso]. Thus fDqN € Fy[Ms]; then, by claim (a), fDqN
belongs to the Z[q, q_l}fspan of Bpr, , whence the claim follows at once.
Finally, the last observation about other spanning sets is self-evident.
(c) The projection epimorphism Fy[Mo] —ﬁ»Fq[M2]/(Dq) = F,[SLs] (given by re-
striction from U,(gly) to U,(slz) ) maps Bays, onto Sgr,, : it follows directly from definitions
that W(fq[Mg]) C F4lSLs], hence in particular (thanks to claim (a)) the Z[q,q_l}fspan

of Ssr, is contained in F,[SLs]. Conversely, let f € F,[SLs]. Since Bgr, in §2.2 is a
Q(g)-basis of F,[SLs] it follows that any f € F,[SLs] has a unique expansion

f= Y pnren Xé‘,m'b”)a“c(“) + 25 55N nﬁé,n'b(mdéc(m) =
— Z b(ﬁ) (Z @ a4 + Z é dS) C(n)
B,wEN aeN X,k @ ¥ 5eN 18,k
for some Xg,mng’mgo € Q(g). Since D, := ad — qbc = 1 in F,[SLy|, we can rewrite

33)as f = S bW ( > X5Ra® DS+ oD+ Y ngmd‘s-Dq”_é) c®) | where
B,REN a€EN SEN

4 = max {(5 eN ’ 77/3,,{ # O} . Now consider the element of F,[M,]
f= 26,neN bt (ZaGN XG0 - D' + 0 D" + 3 5en ’75,% d’- un_(S) c®

By construction, 7(f’) = f; moreover, a straightforward check shows that

(7 E"K* G ) = v (f B"KSF € Zlaq]
(for all n,¢o € N, k,7 € Z) because f € F,[SLs] by hypothesis. Since the monomials
E"K"Gy F” form a Z[q,q ] -basis of Uy(gly) (by §2.1, as K := G1Gy 1), it follows
that f’ € F,[Ms]. Then claim (a) and the fact that n(f’) = f imply that f lies in the
Z[q, qil]—span of Sgr,. Finally, the last observation about other bases is clear. [J

(3.3)



12 FABIO GAVARINI, ZORAN RAKIC

Theorem 3.2.
(a) Fo[Ms) is the unital associative Z|q,q~ ]| ~algebra with generators
. d .
<a,r), b™ e ( ’8> VmneN, rseZ
n m

and relations
b e®) — ¢&p™

relations (1.1) for X € {a,d} , relations (1.2) for X € {b,c}

a:;r d:s nAm. j ; d:s . S (axr
) )| = 3 () =(n+m)+(2) (o — =) 151 10 D () pl) J @5
() (0)] - & Dg—a ) Ul { 0 b eno {0
air) pm) _ o (@ AiTY ) — o) (@7 T
t t ’ t t
d;s LM — ™) d;s—n d;s o™ — o) di;s—n .
t t ’ t t
Moreover, F4[Ms] is a Z[q,q_l} —bialgebra, whose bialgebra structure is given by
a;r _ n k(r—n) 1 k . (k) ) a®a; 7"—]{7 ) (k)
A (( i )) kgo q (q q ) k]! (b ® 1) { ok (1 ®c )
A (b(n)> _ i g HOR) L gk (k) g (k) gn—k

k=0

A <C(n)> — i q—k(n—k) B gk g gk o(n—k)
k=0
d;S _ S k(s—m) -1 k . (k) | d®d;8—k’ . (k)
() - B o) {4250 o

()0, 0 ) () (), e

(notation of § 1.2) where a = 1+ (q — 1)(“{0) , d=14(q— 1)<di0) , and terms like

<$®x“’> (with x € {a,d}, 0 € Z and t € Ny ) must be expanded following the rule

t
rT®x;2T B e [T T ;T\ . s s[T5T 5T
() = (7)o (V)= X () (7))

r+s=v r+s=v
r@x;21+1Y (=) (T3 T r;T+1\ —(1—r)s, s (T3 TH] 5T

according to whether o is even (= 27) or odd (=27 + 1), and consequently for {m®f f} .
In particular, Fy[M,) is a Z|q,q~*] ~integral form (as a bialgebra) of Fy[M,].
(b) F4|GLsg] is the unital associative Z[q, q_l] —algebra with generators

(a;r)7 NN ON (d;r), D, ! VneN,reZ
n
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and relations as in claim (a), plus the additional relations

D! (xnr> _ (an> DY, DOy™ =y D (yedbielreZ, neN)

_ a;0 _ d;0 _

a;0\ [/d;0 _ 102 _
+(q_1)2< 1 )( 1 )Dq —q(a—q ) pWeW Dt =1

Moreover, F4[GLs] is a Hopf Z[q,q_l]falgebm, whose Hopf algebra structure is given by
the same formule as in claim (a) for A and € plus the formule

S ((anr» _ (qunl; r) | g (b(n)) _ (1)rgmb® p,
v, s(80)- (70

A(Dq_l) = Dq_1 ®Dq_1 ) 5(Dq_1) =1, S(Dq_l) = Dy .

In particular, F4|GLso] is a Z[q,q_l} —integral form (as a Hopf algebra) of Fy|GLs] .

(c) FqlSLs] is generated, as a unital associative Z[q,q_l}falgebm, by generators as in
claim (a). These generators enjoy all relations in (a), plus some additional relations, spring-
ing out of the relation Dy =1 in F,[SLs|. Moreover, F,[SLs| is a Hopf Z[q,q_l] —algebra,
whose Hopf algebra structure is given as in (a) and (b), but setting Dy = 1.

In particular, F4[SLo) is a Z[q,q "] ~integral form (as a Hopf algebra) of Fy[SLs].

Proof. (a) Thanks to Theorem 3.1(a), the set of elements considered in the statement does
generate F,[Ms]. As for relations, the third line ones are those springing out of the relation
ad—da = (q — q_l) be in F,[Ms]; those in fourth and fifth line are the ones following from
the relations ab = qba, ac =qdc, bd = gqdb and c¢d = qdc; the first line ones follow
from bc = c¢b, and those in second line are obvious. The sole non-trivial relations are the
third line ones, which we shall now prove, by induction on m .

We set A7 ;= {‘; 2} , Dy oy = {gl; Sh} . The basis of induction (m = 1) follows from

[At d} = gt (q - q71)2 c b(l)Afz,k;H (3.4)

n,k s

which in turn is easily proved by induction on k using the commutation formula
a; —u _1\2
(). d] = ¢ (a—a ) b0, 3.5)

that directly follows from definitions and the relation ad — da = (q — q_l) be.
For the general case (m > 1), using formulee (3.4-5) we get

a;r d;s o a;r d;s dq®~ ™" —1 d;s a;r dqg°~™m—-1 | _
() (i) = [C3) ()] st + () () st =
m -1 n/\m'rs—nm —1\J (2 . s s— j j 1) AT
— (g™ 1) (Z g ()=t (g =Y qG) (] 1D, L (¢~ 1) D bW AT

j=1

nAm i ((r+s)—(n+m i —1\¢+1 . r+i+s( i —1i S 1 A r
i )=t m () (1) ] 1 (g g ) DS el b “)An,m)
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Comparing the previous result with the expected formula for (m + 1), we see that the latter
holds if and only if the following identity holds

P D3 (A1) 4 (P 1) Dy = (@)D,

m,j—1

which is just a special case of Lemma 4.5 (a) later on.

The previous analysis shows that the given relations do hold in F,[Ms]; in order to prove
the claim, we must show that these generate the ideal of all possible relations. This amounts
to show that the algebra enjoying only the given relations is in fact isomorphic to F,[Ma].
To this end, it is enough to prove the following. Let B’ be any one of the PBW-like bases
provided by Theorem 3.1(a): then the given relations are enough to expand any product of
the given generators as a Z[q, q_l]flinear combination of the monomials in B’ .

Now, if B = { (d(go) c(®) p® (a&()) ‘ a, B, Kk, 6 € N}, then the given relations clearly

allow to write any product of the generators as an element of the Z [q, q_l}fspan of B.
As to the bialgebra structure, everything is just a matter of computation. Yet we can
point out just one key detail: namely, by definition we have

A((a;r>> _ (A(?L);r> _ <a®a+2®c; r> _ <a®a+(q—q:)2b®c; r)

and then one gets the formula in the claim via Lemma 4.2; similarly for A ((dn;f» .

(b) The fact that F,[G L] admits the given presentation is a direct consequence of claim
(a) and of Theorem 3.1(b), but for the additional relations in first line. The latter mean that
Dq_1 is central (because D, is) while the second line relation is a reformulation of the relation
D, qul = 1. The statement on the Hopf structure also follows from claim (a) and Theorem
3.1(b) and from the formulae for the antipode in F,[GLs] (cf. § 2.2), but for the formulee for
D, ! which follow from A(D,) = Dy ® Dy, £(Dg) =1, S(D,) =Dy ".

Now, the formule for A and e show that F,[GLs] is a Z[q, ¢~ ']-subbialgebra of F,;[GLs)].

For the antipode, <S(fq[GL2]),L{q(g[2)> - <fq[GL2], S(Uq(glz))> C Z[g,q"1], which
gives S(Fy[GLo]) € F4|GLs) . The claim follows.
(¢) This follows again from claim (a) and Theorem 3.1. [

Corollary 3.3. For every X € {M,GL}, let (Dq — 1) be the two-sided ideal of Fy[Xs]
generated by (Dq — 1), and let D(X5) := (Dq — 1) NFq[X2], a two-sided ideal of F,[Xo] .

(a) The epimorphism Fy[M,] —7T>'>Fq[M2]/(Dq —1) = F,[SLy] restricts to an epi-
morphism Fq[Ma)] —ﬂ»]:q[MQ]/D(MQ) >~ F4lSLs] of Z[q,q '] -bialgebras.

(b) The epimorphism F,[GLs)] —W»Fq[GLg]/(Dq — 1) = F,[SLy] restricts to an
epimorphism Fy[GLo] —7T>‘>.7'—q[GL2]/D(GL2) >~ F4[SLs] of Hopf Z[q,q '] -algebras. O

3.4 Remarks: (a) Besides those given in Theorem 3.2, there are several other (equivalent)

commutation relations between the (“;f) ’s and the (dn;f> 's — see [GR1], § 3.3, for details.

(b) One should compute an expression for S ((a”)) = (qu;I;T> and S ((ﬁ’")) =

n

<“ b ‘1;1 : T> in terms of the generators in Theorem 3.2! In fact, this is a very tough task.
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3.5 Relations in F,[SLy]. By Theorem 3.2(c), in F,[SLs] the generators <“?ibr> , b

c™ and (‘tf) — for all n € N, r € Z — enjoy the same relations as in Theorem 3.2 plus
some additional ones, springing out of the relation ad —gbc = 1 in F,[SLs].
A first (set of) relation(s) is the following (for all a,6 € N, r,s € Z):

(@), ), (57) (%57) + (@), () (&3) +
+0), (20 (5°) + @—a—s+r+s), (20) (E3) +
gt (g-1) (2)7 - (217) bW e (£53) = 0

A second (set of) relation(s) is (for all h,n e N, r,s € Z):

; 2 a0 -0 G0, (), (), (57) (5) = s, +

(4,£)#(0,0)

+ gt hgé 0”& =) (=g ) 0,1, () (7). () B e
(3,)#(0,0)

5 5@ 0@ 002 (), (), () () = e,
(4,6)#(0,0)

rsn_hh 24 (t i— —1)\2t /. — s
S ) () g 00, () (1), b e ()
i=0t=0 q\"/q
(i,6)#(0,0)
where the first identity holds for all A > n and the second for all h < n.
A third (set of) relation(s) is for all n € Ny,

(450) + (40) = Siars®e® 5 (459 (1) + (1) ()

h<i

with (for all 1 <h <i<n)

" (n),! (g=1"
n—h—i+1

n — i—n h q! i
Bpi = —(1+dn) LT (g - <n_h)q

(n—1),!

~n 2 n—h-+1 -1 2h n
ap = ")y 2 e ) (2(nh)>q(2(n_h)_1)q”

All these formulae are proved in detail in [GR1].

Further byproducts of Theorem 3.2 concern the specializations of F,[Ms], F,|GL2| and
F41SLo] at roots of unity, including the case ¢ =1, as follows:
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Corollary 3.6.
(a) There exists a Z-bialgebra isomorphism Fi[Ma] = Uz (gly") given by

a;0 (n) (n) (n) ()
<n>‘q:1H (gn1>7 b q= 1Hf ’ ¢ He ( )‘ < >
In particular F1[Ms] is a Hopf Z—algebra, zsomorphzc to Uy (912

(b) There exists a Hopf Z—algebra isomorphism F1[|GLs] = Uy (9[2) , which is uniquely
determined by the formule in claim (a).

(c) There exists a Hopf Z-algebra isomorphism F1[SLo] = Uz (sls) given by the same
formule as in claim (a), where one must read gy =h, go = —h. O
Proof. At ¢ = 1, Theorem 3.2(a) provides a presentation for Fi[Ms]; a straightforward

comparison then shows that the latter is the standard presentation of Uz (9[2*) , following the
correspondence given in the claim (actually, in the first presentation one also has the special-

Tir)o

ization at ¢ = 1 of the < ) s — with = € {a,d} — but these are generated by the special-

an)

izations of the ( . This yields a Z-algebra isomorphism: a moment’s check shows that it

is one of Z-bialgebras too. This proves (a) and, with minimal changes, (b) and (¢) too. O

Proposition 3.7. Let ¢ be a root of unity, of odd order, and apply notation of §1.3.

(a) The specialization F.[Ma] — $H? at q =€ of the embedding Fy[Ma] — 99 is a
ZLe—algebra isomorphism.

(b) The embedding F.[Ms] — F.|GLs| of Z.-bialgebras is an isomorphism. In partic-
ular, F-[Ms] and $HY both are Hopf Z.—algebras isomorphic to F.[GLs] .

(c) The specialization F.[SLs| is a Hopf Z.—algebra, isomorphic to $ via the specializa-
tion of the embedding Fy[SLa] — $; .
Proof. The embedding F,[Ms] — F,[GL2| induces an embedding F.[Ms] — F.[GLo].
Then (a) will follow by proving that D, := D, mod (g — ) F4[M>] is invertible in F.[M].

Let ¢ be the (multiplicative) order of e. Lemma 4.3 gives a® = 1 in F.[My], so a is
invertible in F.[M,] with o' = o'~ € F.[My], and also b® = 0 € F.[M,], so b’ =
(5—»3_1)£bZ = 0 in F.[Ms]. Similarly, d ! = d*~! € F.[Ms] and ¢’ = 0. The power
series expansion of (1 —z)™" then gives

D! = ( —ebd—la! )—1d—1 -1 _ Z en bn(de 1,6 1) ndl=la!~t e F[Ms)] .

As to the second part, note that the embeddlng § 1 Fy[GLy] — HYJ extends to an
identity Fy[GLo][d™'] = HJ: this comes from [DL], § 1.8 (adapted to the case of GLy) or

directly from the explicit descrlptlon of £ in §2.4. This yields also $J = Fy G Ls] [d } .
In fact, if n € 99 = Fy[GLo][d™!] then there is n € N such that nd" € Fy[GLy|, a

also (nd™, Ug(gly)) = <77®d®" A (Y, (gly) )> C {n, Uy(gly)) - {d, Uy(gly))" C Z[q,q_l]
because 7,d € H9. Thus nd" € Fy[GLy] (99 = Fo[GLy], whence n € Fo[GLy][d™']; the

outcome is $9 C Fo[GLy][d!], and the converse is clear. Now §? = F. [GLQ][ 5 but
we found d=t € F.[Ms] = F.[GLo], so $¢ = F.[GLy][d™ ] = F.[GLo] = Fe[Mo].

The above proves claim (a) and (b), noting that F.[GLs| is clearly a Hopf Z.—algebra.
Similarly, (¢) can be proved like (a), or deduced from the latter. [
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Theorem 3.8. Let € be a root of unity, of odd order ¢ .

(a) The quantum Frobenius morphism (2.1) is defined over Z., i.e. it restricts to an
epimorphism of Z.-bialgebras .7-"7“]%42 s FelMy) —— Ze ®p F1[Ms] = Z: ®z Uz(g[Q*) ,
coinciding, via Corollary 3.6 and Proposition 3.7, with (2.5), and given on generators by

§ (a;LO) s (C:;/S)‘q_l: (f/lg) if Ln, (aﬁo) - 0 if t)n
b(n) N b(n/é) — f(n/0) if fn, b(n) = 0 if lfn
Fri == 9=1 a=¢
Mo C(n) €|—> c(”/e)’ 1: e(’n/ﬁ) Zf gn’ C(n) E}_) 0 @f 0 In
- = —
\ (d;LO) - (m)’q_l: (ng/zg) if tn, <d7;0> 0 it

(b) The quantum Frobenius morphism (2.2) is defined over Z., i.e. it restricts to an
epimorphism of Z.-bialgebras ]—"TCZ;LZ : Fo|GLg) — Ze @7 F1|GLg| =2 Z. ®z Uy (9[2*)
coinciding, via Corollary 3.6 and Proposition 3.7, with (2.5) and with .7:7*]%‘,2 in (a).

(¢) The quantum Frobenius morphism (2.3) is defined over Z., i.e. it restricts to an

epimorphism of Z.-bialgebras Frgh s FolSLy) — Z. ®y F1[SLa) & Z: @z Uy (5[2*)
coinciding, via Corollary 3.6 and Proposition 3.7, with (2.4), and described by formule like
in (a) with g1 = +h and go = —h.
Proof. By definition (cf. [Gal]) the morphism Frj\%z : Qe ®z. Fe[M2] — Q. ®z Uy, (9[2*)
is the restriction (via ¢ : FqlMz] — 9 at ¢ = ¢ and q = 1) of the similar epimorphism
S’tg; : Qe @z, H7 — Q. ®z HY obtained by scalar extension from (2.5). From this, direct
computation (taking into account that [¢(]. = 0) gives, thanks to Lemma 4.2(a-1),

e (€, ((0)],2)) = e (7)) =

{—1

= kZ::0 c—kn—(3) (et _g)k[k]elgrg@ (F<k)> FeZ. (A2k> el <E(k:)> 5 (({ 215}) _
(i), ) - s ) - { Bl )

0 if EXn
by the very description of Stgz[z* ; on the other hand, we also have E — ((%2) q:1> =
_FAE - (— —kn—(* _ k .
(TR L = (T O -9t w Foak e {55 1)] -
(1)
n/l
E!q:E el (idQE ®z. S"tgz*) = (idQE ®z. E|q:1) o frg (see §2.4) give ]—"r%b <<a;LO>

P (5 8t st ()
g=1

q=1

= ( f/lg) by Corollary 3.6(a) and Lemma 4.2(a-1) again. This together with
q=1

) -

> =0, as claimed. Similarly,

q=¢

(1)) = o () -
(—1)”5_(3) . f(n/6)

Frgts (5

q

= (=1)"%e () . £/

q=1

= (—)"e () gl (FO) §el (A7) = { 0
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where the upper identity holds if /¢ ’n and the lower line holds if not. On the other hand
5‘ (b(n/z)|q_1> = (—1)”“5_(“2/@) -F("/e)’ = (—1)”“5_(“2/2) ~£(/8)  and a moment’s
q=1 - q=1

check shows that (—1)”5_(3) = (—1)71/66_(”2/[) whence we conclude. Similarly

5o (€, (<) = {

where the upper identity holds if /¢ ‘n and the lower line if not, while 5

— (3) . o/
qg=1

(3) . pn/o

0

q=1 (c(n/«@) |q:1> -

z—:<n2/e) e/ and again one checks that s(g) = 5(n2/z> so the claim for ¢(™ follows. Finally,
Az; 0 = ( &2 if ¢ | n
Q (2 d;0 _ 7 ([(A2;0 _ <"/£>‘ =1 (”/e) !
sege (€],((00)],2)) = 3w ((0)],2) - q .
0 if ¢ /fn

while 2‘(}21((%;/2) ‘q:1> _ <Anz/;£0>‘ = (ffe) due to Corollary 3.6 (a), so ‘7:7“1%42«%0) ‘q:) =

g=1

(5?/2) ‘q:1: <ng/2£> whenever ¢|n, and otherwise Frj ((dé(’) ‘q:) = 0.
All this accounts for claim (a). Claims (b) and (¢) can be proved with the same arguments,
or deduced from (a) in force of Proposition 3.7 and of Corollary 3.3. [

§ 4 Miscellanea results on ¢—numbers and ¢—functions.

In several steps along the present work we need special, technical results about g—numbers
and their combinatorics. We collect them in the present section, referring to [GR1] for proofs.

Lemma 4.1. For all k € N, let I} := (¢ — 1)k(k)q! and (z;k) =1l - (9”,;()) . Then

Lemma 4.2. Let A be any Q(q)-algebra, and let z,y,z,w € A be such that rw = ¢>wz,
rxy=qyx, vz=qzx and yz=2zy. Then for all n € N and t € Z we have

(a—]) (ac+(q—q_1)2w;t) — i qr(t—n)(q_q_l)r' w(r){w;t}
r=0 T

(0/-2) = i qT(t—n) <q _ q—l)r . {x;rf—fr} w™
r=0 ’

—1)2 ; " —-n —1\T7" r x;t—r r
) (e ) = S T g e {0
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Lemma 4.3. Let §2 be any Z[q,q_l] —algebra, € be a (formal) primitive £-th root of 1, with
teN,, and (2. = Q/(q — ) 2 the specialization of 2 at ¢ =¢. Then for each x,y € {2

- ¢ , ¢ :
253 ( éo> = (o _)'=1me, 0349 = @4 _)=0nn0. O
Lemma 4.4. For all n € N, the identity a™d" = ) il <Z> , b* ' holds in F,[SLy]. O
k=0 q

Lemma 4.5. The following identities holds (notation of § 1.2):

w e en s @ - {n) = @ )
(b) q(g) (Z)q — ’il (_1)j—1 q(sgj) (?)q (2:?)(1

J

(c) éjo (—1) q(2) (’;‘§?>q2 (?)q = ¢ (-1 (2"k>q(2k ~1)1 Vk<n

Proof. To give an idea, we sketch the proof of (¢) — the complete proof is in [GR1]. First

we fix some more notation: for all s,k,n € N set (s), = qqu'll EECIRESS -, (r)g

n <n>q! . . n —s . o n —s
<k>q = Ty o @iy = 1 (@d "= 1), (win)g = [T (w¢' 7" + 1) . The
following identities then are clear from definitions:

(1), = @), ), 0),62),= ), 0, ¢),= o
[ =T (@ 1) = (a%m), - I e= T (@0 +1) = (asm), - () = Gy
Using them, we transform a bit both sides of (¢). Namely, we get
Sieo 17 (33), (7). = Sheo (07D ) (1) (5), =
= o (079 (1), (3), 65, = (), Do 6), G5),

for the L.h.s., and similarly for the r.h.s. we find
2 k n 2 E (n), (n-1) - (n—2k+1) 2 (n n—k I,
¢ (g—1) a:(%)q (2k=1) 1! = ¢ (¢-1) B = ¢" <k>q< )q- i

k
In light of this, we must prove that Z?:o (—1)j q(%) (k> <Z:§> = qk2 (n;k) . gi{ , or
q q q k

J

éo(_l)k—jq@zj) (), (@ si) (dsk=d), = " @ k), @)

To this end, we shall prove a more general identity. Let

k—j

fe o= Timo GO g (5) (), (6 k)

we shall prove that

; (4.2)

q

Ry = ¢ (%5 t) (@5 k), (4.3)
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Note that, by definition, (4.3) for ¢ = 0 yields exactly (4.1), so the latter is just a special case
of the former. The proof of (4.3) follows easily by induction on k from the following identity:

e = —d" (@ )R + Ry (Vhitn) . (44)

Let us prove now the above identity. We have

k k 4 k+1—j . . . 3
Rinye = S50 ((0F g5 (490) (bt ), (@ k1), =
q

k+1 , i

= k=g (M7 k i (k Ck—14j . - k14t . AN

= J;O (_1) ]q( 2 )<<j_1>q+ qJ <j>q><qn 1+]’t+~]>q<q++t7k+1_]>q—
k—j

k k—j Ny . .
= =" 35 (-1) 9q(2)(§->q<q P ) (T kL=

i (k+1—j . . .
F GO T (R) (@ ) (T k), =

S (q1+k+t 4 1) Z?:o (_1)k—j q(k;j) (1;)(1 <q(n—1)fk+j : t+j>q <qk+t; L _j>q+
I Z?:o (_1)#3' q(k;j) (1;)(1 <qnfk+j; (t + 1) 4+ >q <qk+(t+1) k—j >q _

= =" (T + )R+ R qed

Now the induction on k to prove (4.3) goes as follows. For all n € N, and all ¢t € N, the
right hand sides of (4.2) and (4.3) are equal, because in that case (4.4) gives

— ("4 (@D (@ )+ (D) (D) =
— (qn_1+1)"'(qn_t+1) (qn+1_qt+1_1) — qt+1 (qn_1+1)"'(qn_t+1) (qn—t—l_l) .

This sets the basis of induction. For the inductive step, assume the r.h.s.’s of (4.2) and (4.3)
be equal for all t € N and k',n € N, with &’ <k, for some k€ N., k <n. Then
(1)t = — " (qk+t+1 +1) RZ,? + Ry =
_ qk: (qk+t+1 + 1) qk(kz—l-t) <qn—1—k 3t>q (qn—l—k—t : k)q +
+ qk(k+(t+1)) <qn—k; t+ 1>q (qn—k—t—l : k)q _
— _ Rt <<qk+t+1+1) (gn1k 3t>q (qankft;k)q + g™kt 1>q (ankftq;k)q) _
_ qk(k+(t+1)) <qn—1—k §t>q (qn—l—k—t : k)q (qn—kz +1-1-— qk+t—|—1) _
_ qk2+k (t+1)+k+t+1 <qn—1—k 5t>q (qn—l—k—t ; k)q (qn—2(k+1)—t+1 . 1) _
= gD (k+1)+1) <qn—(k+1) ;t>q (qn—(k+1)—t k+ 1)q

which gives exactly (4.3) with k + 1 instead of k. O
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