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THE GLOBAL QUANTUM DUALITY PRINCIPLE
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Universita degli Studi di Roma “Tor Vergata” — Dipartimento di Matematica
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ABSTRACT. Let R be an integral domain, let & € R\ {0} be such that k := R/hR is a field, and
let H.A be the category of torsionless (or flat) Hopf algebras over R. We call H € HA a “quantized
function algebra” (=QFA), resp. “quantized restricted universal enveloping algebras” (=QrUEA), at k
if — roughly speaking — H/hH is the function algebra of a connected Poisson group, resp. the
(restricted, if R/hR has positive characteristic) universal enveloping algebra of a (restricted) Lie
bialgebra. Extending a result of Drinfeld, we establish an “inner” Galois’ correspondence on ‘H.A, via
two endofunctors, ( )V and ( )/, of H.A such that HY is a QrUEA and H' is a QFA (for all He HA).
In addition: (a) the image of ( )V, resp. of ( )’, is the full subcategory of all QrUEAs, resp. of all
QFAs; (b) if p := Char(k) = 0, the restrictions ( )V’QFAS and ( )’|QrUEAS yield equivalences inverse
to each other; (¢) if p = 0, starting from a QFA over a Poisson group G, resp. from a QrUEA over a
Lie bialgebra g, the functor ( )V, resp. ( )/, gives a QrUEA, resp. a QFA, over the dual Lie bialgebra,
resp. the dual Poisson group. Several, far-reaching applications are developed in detail in [Ga2—4].

“Dualitas dualitatum
et omnia dualitas”
N. Barbecue, “Scholia”

Introduction

Generalized “symmetries” in mathematics are described by Hopf algebras. Among these, the
“geometrical” ones are of type H = F[G], the algebra of regular functions over an algebraic group
G, and H = U(g) (= u(g)), the (restricted, if the ground field k has positive characteristic)
universal enveloping algebra of a (restricted) Lie algebra g. These notions of “geometrical sym-
metries” are generalized by quantum groups: roughly, these are Hopf algebras H depending on
a parameter A such that, setting & = 0, the Hopf algebra one gets is either of the type F[G] —
hence H is a quantized function algebra, in short QFA — or of the type U(g) or u(g) (according
to the characteristic of k) — hence H is a quantized restricted universal enveloping algebra, in
short QrUEA. When a QFA exists whose specialization at A = 0 is F[G], the algebraic group G
inherits a structure of Poisson (algebraic) group. Similarly, if a QrUEA exists whose specialization
is U(g) or u(g), the (restricted) Lie algebra g inherits a structure of Lie bialgebra. Then, by general
Poisson group theory, Poisson groups G* dual to G and a Lie bialgebra g* dual to g exist.

In this setting, three basic questions rise at once:

— (1) How can we produce quantum groups?

— (2) How can we characterize quantum groups (of either kind) among Hopf algebras?

— (3) What kind of relationship, if any, does exist between quantum groups over mutually dual

Poisson groups, or mutually dual Lie bialgebras?
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2 FABIO GAVARINI

A first answer to (1) and (3) is given, for Char(k) = 0, by the “quantum duality principle”,
formulated by Drinfeld in terms of formal quantum groups (cf. [Dr], §7, and [Gal]): it is a functorial
recipe to get, out of a QFA over GG, a QrUEA over g*, and a QFA over G* out of a QrUEA over g.

In this paper I provide a global version of this principle, which answers questions (1) through
(3). Indeed, I push Drinfeld’s original method as far as possible, so to apply it to the category H.A
of Hopf algebras which are torsion-free (or flat) over some integral domain, say R, and to do it for
each h € R\ {0} such that k := R/AR is a field. In fact, I extend Drinfeld’s recipe so to define
endofunctors of HA. The image of either functor is contained in a category of quantum groups
(one gives QFAs, the other QrUEAs) so we answer question (1). If k has zero characteristic, when
restricted to quantum groups these functors yield equivalences inverse to each other. Moreover,
these equivalences exchange the types of quantum group (switching QFA with QrUEA) and the
underlying Poisson symmetries (interchanging G or g with G* or g*), thus solving (3). Other
details show that these functors endow H.A with a (inner) Galois’ correspondence, in which QFAs
on one side and QrUEAs on the other side are the subcategories (in H.A) of “fixed points” for the
composition of both Drinfeld’s functors (in suitable order): in particular, this answers question
(2). Let me point out that, as my “Drinfeld’s functors” are defined for each element i € R as
above, for any such h and for any H in ‘H.A they yield two quantum groups, a QFA and a QrUEA,
w.r.t. h itself. Thus we have a method to get, out of any single H € HA, several quantum groups.

Further aspects, examples and applications of the main result are presented in [Ga2—4].
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§ 1 Notation and terminology

1.1 The classical setting. Let k be a fixed field of any characteristic. We call “algebraic
group” the maximal spectrum G associated to any commutative Hopf k—algebra H ; then H is
called the algebra of regular functions on G, denoted F[G]. We say that G is connected if F[G]
has no non-trivial idempotents. We denote by m. the defining ideal of the unit element e € G
(it is the augmentation ideal of F[G]); the cotangent space of G at e is g* := m, / m.2, which

is naturally a Lie coalgebra. The tangent space of G at e is the dual space g := (gx)* to g*,
which is a Lie algebra. By U(g) we mean the universal enveloping algebra of g: it is a connected
cocommutative Hopf algebra, and there is a natural Hopf pairing (see §1.2(a)) between F[G] and
U(g). If Char(k) =p >0, then g is a restricted Lie algebra, and u(g) := U(g)/({ aP —alPl},e)
is the restricted universal enveloping algebra of g. To unify notation and terminology, when
Char (k) = 0 we call any Lie algebra g “restricted”, by its “restricted universal enveloping algebra”
we mean U(g), and we write U(g) := U(g) if Char(k) =0 and U(g) :=u(g) if Char(k) > 0.
Let H be a Hopf algebra over an integral domain D. We call H a “function algebra” (FA in
short) if it is commutative, with no non-trivial idempotents, and such that, if p := Char(k) > 0,
then nP? = 0 for all n in the kernel of the counit of H . If D is a field, an FA is the algebra of regular
functions of an algebraic group-scheme over D which is connected and, if Char(k) > 0, is zero-
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dimensional of height 1; conversely, if G is such a group-scheme then F'[G] has these properties.
Instead, we call H a “restricted universal enveloping algebra” (=rUEA) if it is cocommutative,
connected, and generated by its primitive part. If D is a field, an rUEA is the restricted universal
enveloping algebra of some (restricted) Lie algebra over D ; conversely, if g is such a Lie algebra,
then U(g) has these properties (see, e.g., [Mo], Theorem 5.6.5, and references therein).

Now assume G is a Poisson group (for this and other notions hereafter see [CP], but within an
algebraic geometry setting). Then F[G] is a Poisson Hopf algebra, whose Poisson bracket induces
on g* a Lie bracket which makes it into a Lie bialgebra; hence U(g*) is a co-Poisson Hopf algebra
too. Also, g is a Lie bialgebra (in topological sense, if G is infinite dimensional) too, and U(g) is
a (maybe topological) co-Poisson Hopf algebra. The Hopf pairing between F[G] and U(g) then is
compatible with these additional co-Poisson and Poisson structures. Moreover, the perfect (=non-
degenerate) evaluation pairing g x g* — k is compatible with the Lie bialgebra structure on either
side (see §1.2(b)): so g and g* are Lie bialgebras dual to each other. In the sequel, we denote by G*
any connected algebraic Poisson group with g as cotangent Lie bialgebra, and say it is dual to G .

If H is a Hopf algebra we denote its Hopf operations by A (the coproduct), € (the counit) and
S (the antipode), and we use standard o—notation A(z) =3, z1) ® z(2) forall z € H.

Definition 1.2.

(a) Let H, K be Hopf algebras (maybe in topological sense) over a ring R. A Hopf (algebra)
pairing between H and K is a pairing ( , ): HxK — R such that <;1:,y1 y2> = (A(z), 11 ®ya) =
2w (T y1) (22)92) s (2172,9) = (21 @22, Ay)) 1= Ly (21,90) (22, 9(2)) 5 (1) = e(@),
(Ly) =ely), (S),y)=(z,5()), for all z, 1,30 € H, y,y1,y2 € K.

(b) Let g, b be Lie bialgebras (maybe in topological sense) over a ring k. A Lie bialgebra
pairing between g and b is a pairing ( , ): gxbh —k such that (z,[y1,y2]) = (0(z), y1 Qys) :=
Z[x]<x[1]ay1> <l‘[2]ayz> , <[x1,m2],y> = <$1®l‘275(?/)> = Z[y}<$1,y[1}> <$2ay[2]> , forall z,x1, 20 €
g and y,y1,y2 € b, with 6(z) = Zm T @) and 6(y) = Z[y] Y @ Ypa) -

1.3 The quantum setting. Let R be an integral domain, F' = F(R) its field of quotients. Let
M be the category of torsion-free R—modules, H.A the category of all Hopf algebras in M . Let Mg
be the category of F—vector spaces, HAp the category of all Hopf algebras in Mpg; for M € M,
set Mp:=F(R)®r M. A subset H C H € HAf is called an R—integer form (or an R—form) of
Hiff H is a Hopf R-subalgebra of H (hence in particular H € HA) and Hp := F(R)QrH = H.

Let h € R\ {0} be prime (fixed throughout), and k := R/(h) = R/hR. For any R-module

M, set Mh‘h = M/hM =k ®pr M (the specialization of M at h=0) and M., := :i% R M .

€ h—0
Finally, for any HeHA, let I, := Ker(H —»Ri»lk) , and set [, := JT“;OO " .

Definition 1.4. (“Global quantum groups”) Let h € R\ {0} be a prime, and k:= R/hR .
(a) We call quantized restricted universal enveloping algebra (at h) — in short, QrUEA — any
U e HA such that uﬁ‘h:o = Z/{h/huh is a restricted universal enveloping algebra (an rUEA) over k.
We call QrUEA the full subcategory of H.A whose objects are all the QrUEAs (at h).
(b) We call quantized function algebra (at h) — in short, QFA — any Fy € HA such that
Fh‘h:O:: Fy/lFy, is a function algebra (an FA) over k, and (Fy), = I, (notation of §1.3).
We call QFA the full subcategory of H.A whose objects are all the QFAs (at h).
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Remark 1.5: If Uy is a QrUEA (at i) then uﬁ’h:o is a co-Poisson Hopf algebra, w.r.t. the
Poisson cobracket § defined as follows: if z € uh‘h:o and z’ € Up gives x = 2’ mod hidy, then
5(x) == (h~' (A(2') —A°P(2))) mod ki (Un @U) . So, if k is a field, then Up|, _, =U(g) for some
Lie algebra g, and by [Dr], §3, the restriction of § makes g into a Lie bialgebra; then I shall write
Up = Up(g) . Similarly, if Fy is a QFA at A, then Fy|,
bracket { , } defined as follows: if z, y € Fﬁ‘hzo and 2/, y € Fy give =2’ mod hFy, y=19'
mod A Fy, then {z,y} := (h"*(2'y' — y'2’)) mod hFy. Thus, if k is a field, Fj = F[G] for

some connected Poisson algebraic group G': in this case I shall write Fj = F;[G].

is a Poisson Hopf algebra, w.r.t. the Poisson

lh=o

Definition 1.6.

(a) Let R be an integral domain, and let F be its field of fractions. Given two F-modules A,
B, and an F-bilinear pairing A x B — F, for any R—submodule A C A and B CB we define
A* ::{bEIB%HA, b>§R} and B*® ::{aeA‘<a,B>§R}.

(b) Let R be an integral domain. Given H, K € HA, we say that H and K are dual to each
other if there exists a perfect Hopf pairing between them for which H = K* and K = H® .

§ 2 The global quantum duality principle

2.1 Drinfeld’s functors. (Cf. [Dr], §7) Let R, F', HA and h € R\ {0} be as in §1.3. For

any HeHA, let T=1, = Ker<H—€»Rﬂ»R/hR=k> :Ker(Hﬂ»H/hH—e»k), as

in §1.3, where € denotes the counit of H ‘h:o . I define

HY = ano R = ano(h_ll)n = Unzo(h_ll)n (ng)

If J=J, :=Ker(e) then I=J+hR-1,,s0 H' =% A "J"=3 -, (h_lJ)n too.

Given any Hopf algebra H, for every n € N define A™: H — H®n by_A0 =€, Al :=id,,
and A" := (A@idg("_m) o A"~ if n > 2. For any ordered subset ¥ = {i1,...,ix} C {1,...,n}
with iy < --- < i}, define the morphism jy : H®* — H®" by ju(a1 ®-- - ®ag) :=b1®@---Qby,
with b; == 1 if i ¢ ¥ and b;,, = a,, for 1 < m < k. Set Asg := jyoAF, Ay := A°, and
0s == sicx (—1)n_|2/’Ag/ , 0p := €; this admits the inverse formula Ay =) ;5 0w . We shall
use notation dg := dg, 6, := 0412, n}, and the useful formula 6, = (id; — e)@mo_A” (neNy).

Now consider again any H € HA and h € R\ {0} as in §1.3. Then I define

H = {a€H|b(a) e "H®",VneN} (CH).

Now I can state the main result of the paper:

Theorem 2.2. (“The Global Quantum Duality Principle”) Assume that k := R/hR is a field.
(a) The assignment H — HY | resp. H — H', defines a functor ()': HA —— HA, resp.
(): HA —— HA, whose image lies in QrUEA, resp. in QFA. Moreover, for all He HA we
have H C (HV), and HD (H’)V , hence HY = ((Hv)/)v and H' = ((H’)V)/ . In addition, if
H e HA is flat, then HY and H' are flat as well.
(b) Assume that Char(k) =0. Then for any H € HA we have
H=(H") &= HecQFA and H=(H) <= Hec QrUéA

thus ()" and () restrict to equivalences, inverse to each other, between QFA and QrUEA.
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(c) (“Quantum Duality Principle”) Assume that Char(k) =0. Then

RIG| = RG] [hRIGY = U), Une)| _ =Un(e) /hUn(@) = F[G"]

(cf. §81.1, 1.5) where the choice of G* (among all the connected Poisson algebraic groups with
tangent Lie bialgebra g*) depends on the choice of Un(g). In other words, Fy[G]' is a QrUEA
for the Lie bialgebra g, and Uh(g)/ 1s a QFA for the Poisson group G*.
(d) Assume that Char(k) = 0. Let Fy € QFA, Uy € QrUEA be dual to each other (w.r.t.
some pairing). Then Fy' and Uy’ are dual to each other (w.r.t. the same pairing).
(e) Assume that Char(k) =0. Then for any H € HAp the following are equivalent:
(e-1) H has an R-integer form H sy which is a QFA at h;
(e-2) H has an R-integer form H,y which is a QrUEA at h.

Remarks 2.3: (a) In [Ga2] the effect of Drinfeld’s functors on some popular quantum groups
or other Hopf algebras is studied in detail. An important application to “classical” Hopf algebras
is explained in [Ga3]: a special case of it, regarding the Nottingham group, is studied in [Ga4].

(b) Theorem 2.2 can be still partially generalized, see §4.10 at the end of the paper.

§ 3 General properties of Drinfeld’s functors

We begin with a few technicalities, then pass to the first relevant results. Fix R and & as in §1.3.

Lemma 3.1. Let H € HA, and set H := H/H,, (notation of §1.3). Then:

(a) Ho= (H"),,, Hoo C (HV)OO , Hoo is a Hopf ideal and subcoalgebra of H , and (H)OO: {0}.
Moreover, there are natural isomorphisms (F )v ~ HY/H, and (F)/ = H’/HC>o .

(b) HeHA, and ﬁ‘h:o = H}hzo . In particular, if H is a QFA, then H is a QFA too, and
if H is a QrUEA, then H is a QrUEA too. [

Lemma 3.2. ([KT], Lemma 3.2) Let H € HA, a, be H, and ® CN q finite subset. Then

(a) do(ab) = 3 puy—p Oa(a) oy (b) ;

(b) if L0, then dp(ab—1ba)=3 Sa(a) 8y (b) — Oy (b) da(a)) . O

AUY =0 (
ANY #0

From now on, we make the following assumption: k := R/hR is a field.

Proposition 3.3. H — H" and H — H' gives well-defined endofunctors of HA, which preserve
v /
flatness. They enjoy HC (HY)', H2 (H')", so HY = ((H")'), H'=((H')"), for all H € HA.

Proof. Given H € HA, clearly HY and H’ are torsion-free, hence HY, H' € M. Moreover,
flatness is preserved when taking submodules and/or localizing, so HY and H' are flat is H is flat.
Since J := Ker(¢;) is a Hopf ideal of H, we see at once that HY € HA also.
On the other hand, H’ is a unital R—subalgebra of H thanks to Lemma 3.2(a) and the very
definitions. Moreover, A™ o S = S®" o A™ implies d, 0 S = S®" 0§, (n € N), which yields
S(H') = H’'. Thus we still need only to prove that H' is a subcoalgebra, namely A(H') C H'@H'.
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Consider D/, :={z€ H®H | (6, ®6,)(z) € A" *H® @ H®*, Vr,s € N} . The coassociativity
of A yields (6, ® 65) o A = 6,45, whence we get A(H') C D/, . Therefore, the claim will follow
once we prove the identity D/ = H' @ H' . The key point is to prove that D} C H' ® H' , the
converse inclusion being trivial; to this end, we shall resort to completions. Note that, by Lemma
3.1, we can reduce to prove the main statement for H'. Even more, one clearly has D/, = H' @ H'
if and only if D/ = H' @ H' . Therefore, we can assume that Ho, = {0}.

Let R and H respectively be the hA—adic completion of R and H: then H is a separated
complete topological }A%fmodule, hence it is topologically free, and is a topological Hopf algebra.
Its coproduct takes values into the h-adic completion H@ H of H® H, and H® H = H®H=
H®H. As H embeds into H (because Ho, = {0} ), we identify H itself with a (dense) Hopf
R-subalgebra of H. Then h"H = H(\ (h"H) and ﬁ/h"ﬁ = H/h”H, for all n € N.

Let H' := {a cH ‘ on(a) € AH®™ Y € N}. Then clearly H' = H'(H . Similarly, define
(m )/ simply taking H ® H instead of H , and define D }il just mimicking the definition of D/, .

Now, Proposition 2.1 in [EH] proves that DIi{ = (Im )/ ; to be precise, the statement in
[EH] is for quantized universal enveloping algebras, but the arguments used therein can be easily
modified as to apply to our H as well. In addition, one has also (m )/ = 0ol , Where
® denotes a topological tensor product (w.r.t. the weak topology, see [EH| or [Gal] for details),
hence one gets (@)/ﬂ (HoH) = (f[’@f[’) NH®H) = (f[’ﬂ H)® (f[’ﬂ H)=H ®H'.
But then, noting that D/, = Dé N (H ® H), the identity DILJ = (m)/ eventually yields
Dy=D:N(HoH)=(HeH) N (HeH)=H oH, qed.

The outcome is that H' € HA, hence ( )’ is well defined on objects and takes values into H.A .

As to morphisms, let ¢ € Mor;, 4(H,K). Then its scalar extension pp(g) defines ¢ :=
©F(R) }HV € Mor, . (HY, KY); similarly one defines ¢ := go‘H, € Mor, 4 (H', K') as well.

Finally, let H € HA. For n € N we have 6,(H) C J,®" (see §2.1), thus 6,(H) C J,*" =
(B 0,) " i (HY) ™", which gives H C (H")'. For the rest, let I'i= Ker( H'~» R~ k);
as (H’)v = UZO:O (h_ll’)n, to show that H D (H’)v it is enough to prove that H 2D A~'I’'. So
let 2’ € I': then §(2') € hH, hence 2’ = 61(2') +e(2') € hH, thus h™la’ € H.

In the end, the last two identities follow directly from the inclusions that we just proved. O

Theorem 3.4. Let H e HA. Then HY € QrUEA.

Proof. By definition H" is generated by JV := A~'J, hence H v‘h:o is generated by JV ‘h:o' Now
pick 7V € JY and j:=hjY € J; then A(j) =02(j)+i@1+1®j—€(j) 1®1 € jR1+1Qj+JRJ,
therefore A(j¥) € jV@1+1®jY+h™JV®JY, whence A(jV) =;V@1+105Y for j¥ :=jV
mod hHY € HY|,_, . o)
is cocommutative. Even more, this fact enables us to apply Lemma 5.5.1 in [Mo] to HY
which then proves that H v|h:0 is connected (as a Hopf algebra). Thus HY ’h:o
connected and generated by its primitive part: that is, it is an TUEA, so that HY € QrUEA. O

Thus HY|, _ is generated by its primitive part P(HY hence it

‘5:0 ’
is cocommutative,

Theorem 3.5. Let H e HA. Then H' € QFA.

Proof. First, H'|,_, is commutative as a consequence of Lemma 3.2(b) (cf. [KT], Proposition 3.5).
Second, we show that (H')_ = (I')™ . For later use, set I:=1I,, J:=Jy, J:=Jy , I':=1I, .
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By definition h H' CI’, whence H_ := :;:6 h”H’gﬂ;ﬁ% (I’)n =: (I’)Oo, ie. (H’)Oog (I’)oo.
Conversely, I' = hH' + J' with hH C hH and J = 6;(J') C hH: thus I' C hH, hence
(I’)OO CNIX h"H =: Hy, . Now definitions give Ho, C H' and hHy, = Hy, for all £ € Z, so
(1) Ch "Hoo = Hoo CH' hence (I')° Ch"H' for all n € N, thus finally (I')™ C (H')_.

Third, we prove that H’
mod h H' € Hl’h:o
ay :=61(a), and co:=€(c), ¢ :=01(c); as a, c € H' we have a1, c; € hHNJ =hJ. Applying

6p to a? = a+ hc we get > da(a)dy(a) = 0,(a®) = 0,(a) + hd,(c) (for all n € Ny),
AUY={1,...,n}
thanks to Lemma 3.2(a). Since a, c € H' we have §,(a), §,(c) € ""H®™ (for all n), hence

has no non-trivial idempotents. Let a € H' be such that @ :=a
2

=0

is idempotent, i.e. @®> = @: then a? = a+hc forsome c € H'. Set ag := €(a),

on(a) = S Oala)dy(a) = 260(a)d,(a) + 3. da(a)dy(a) mod A"HIH®E™
ALY ={L,...,n} AUY={1,...,n}
ALY £0

for all n € Ny, which, recalling that ag := do(a), gives (for all n € N;)

(1-2ag) 6n(a) = X Ay da(a) oy (a) mod A" H®™ (3.1)

AUY ={1,...,n}

Now, applying € to a? = a+hc gives ai® = ag+hco. This implies (1—2@0) ¢ h H. In fact, if
(1—2a0) =ha (a € hH), then h?a? = (1 — 2a0)2 =1—4ap+4as®> =1+4hcy, which entails
1 € AR, a contradiction. From (1 —2a0) ¢ hH and (3.1), for all n € N, an easy induction gives
Sn(a) € A"TLH®™ for all n. Now take a; = a—ag = ha for some a € hJ: then §p(a) = e(a) =0
and §,(a) = h=19,(a) € A"H®" (for all n), hence o € H'. Thus a =ag+ha=ay mod hH',
whence @ =ag € H’|h:0; then a@p? =ap € k gives us ag € {0,1}, hence @ =ap € {0,1}, q.e.d.

Finally, assume that p := Char(k) > 0; then we have to show that 77”7 = 0 for each 7P €

JH"h:O?
P
A™and A™(n) =" acq1,. .y Oa(n) (cf. §2.1) we get that A™(n?) = (ZAQ{I,--.JL} 6A(77)> belongs

n—1
to  Moam'+ X (P X Ihasam*+h Y X e+ 0"
AC{1,...,n} €1,eenrep<P ApC{1,...,n},VEk k=0 gc{1,.. n}
eit-ep=p | ¥ |=k

because 9, (n) EjA<J ®|A|) (forall AC{1,...,n})and [J,,J | ChJ, . Then

H' H!'?YH!

or simply n? € hJy for each n € Jy . Indeed, for any n € N by the multiplicativity of

0" () = (idy— )" (A" (7)) € Su()” + X (ef0) 2 Ihcioam)™ + ha, 2"
€1, rep<P UpAr={1,...,n}
ertep=p

Now, 6"(n)* € (R"H®")” C A"TLH®" since n € H'; similarly [[}_, da, (7)™ € h2or Mulex gon C
RrH®™ if (Jp_; Ay = {1,...,n}. Moreover, (61 P e,,) (with €1, ..., e, <p)iszeroin k = R/ﬁR,
Le. (61,.1.)4,61)) € hR: then Zel,...,ep<p (61,4].).,617) ZUkAk:{l,...,n} Hi:l 5Ak (77)% e W"T1TH®" . Fi-

61+"'€p:P

nally, J, C i J, implies i J *" C A"t H®" . Thus 6,(nP) € A1 H®" foralln,son € hH'. O
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§ 4 Drinfeld’s functors on quantum groups

Lemma 4.1. Let Fy € QFA, with Fh‘h o e reduced. Let I := I, , let Fh be the I-adic completion
of Fy,, R the h-adic completion ofR and I the I-adic closure of I™ in Fh , forall n e N.

(a) Ey is isomorphic as an R-module to a formal power series algebra, say R[[{Yb}bes]]
(b) Use a section v:k — R of the quotient map R — R/hR =:k to zdentzfy (set-theo-

retically) Fp = H{Yb}bes]] with v(k)[[{Yo} U{Ys}yes]], where B =Yy . Then (IA)n and 1"
coincide with the set of all formal series of (least) degree n in the Y;’s (i € {0}US ), for all n € N.
(¢c) Let p: Fp — Fn be the natural map. Then w(Fr) ﬂI = u(I™) for all n € N.

Proof. Let F[G] = ‘h 0= = Fj, /L Fy,, and let F[G] F[[G]] be the m-adic completion of F[G],
with m:=m,=Ker (eF[G) (see §2.1). Then I=7n"1(m), where 7 is the e map 7 : Fh—»Fh/hF =
F[G], and so 7 induces a continuous (specialization) epimorphism 7 : F, — F[[G]].

By construction Fj, is a topological R-module with (f’h )OO = {0}. Set also J := Ker (e, ).

(a) Let {yp},cs be a k-basis of m/m2 =: g*; then F[[G]] 2 k[[{Ys},cs]] since F[G] is re-
duced. For each b € S, picka j, € 7 (y,) () J and fix a section v: k — R asin (b). Now define
a continuous morphism of B-modules W : EH{Yb}bes]] — F), mapping Y ¢ := [Toes ng(b) to
7€ =1Iles jbg(b) for all e € N‘? :={0€N® | g(b) = 0 for almost all b€ S} (hereafter, monomials
like these are ordered w.r.t. any fixed order of the set S'). Using v, we can set-theoretically identify
R v(k)[[Yo]] (with 7 =2Yy), whence a bijection v(k)[[YoU{Y},cs]] = }A%[[{Yb}besﬂ arises.

Is is easy to check that V¥ is surjective. To show that it is injective too, look at graded rings,
namely Gp(Fp) = &2 (hth /h"“Fh) ~ k[ 7] ®k(Fﬁ / hFh> =~ (F[[G]))[Yo] . In addition, there
is an epimorphism of R—modules ¥ : R@yF|[[G]] — F, which induces an isomorphism of graded
k-algebras Gy, (R @ F[[G]]) = Gh(Fh) : then (cf. [Bo], Ch. III, §2.8) ¥ is an isomorphism too.

(b) Since I = 7 (Ker (€pyay)) = Ker (ez) + hFy, each element of I is expressed, via U, by
a series of degree at least 1; moreover, for all b, d € § we have jyjq — jaj» = hjs+ for some
Jj+ € Ker(eg). Therefore when multiplying n factors from T expressed by n series of positive
degree, we can reorder the unordered monomials in the y;’s occurring in the multiplication process
and eventually get a formal series — with ordered monomials — of degree at least n .

(¢) The analysis above shows that the natural map u : Fp, — ﬁ’; induces k-module isomor-

~\m f s ntl | TSn [ St L 7 [ Tt = .
phisms (I) /(I) A (I) /(I) + %’I”/I + (neN), so GI(FE) = G;(Fh), these being
the graded algebras associated to the I-adic and the T-adic filtration. Moreover, the given descrip-

o~ o +OO — —
tion of the I"™’s implies G7(Fp, ) := @ I”/I”Jrl =~ k[Yo, {¥},cs] as k-modules, and the same
n=0

for Gr(Fy) . Tt follows that Fy/I" = Fj, / T", whence p(I") =I" (\p(Fy), as claimed. O

Lemma 4.2. Let I € QFA, and assume that Fh‘h:o 1s reduced. Then:

(a) if p€Fy and BB € I, (s,n€N), then p €I, °;

(b) if y €I, \Ir, then h™ly & hFy ;

(¢) (Fy)o=(Fn) (=157)
Proof. (a) Set I := I . Consider I* := +°° o I™ and the quotient Hopf algebra Fp = Fh/IOO:
then I := Iz, = I/Ioo. By Lemma 31(a) Fh is again a QFA, with Fh{h 0= Fh}h o, and
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I°:=Iz> ={0}. Now, ¢ € I* <= p €I’ forall ¢ € Fy,, L €N, with ¢ := ¢+ > € F}.
So it is enough to prove the claim for F',, hence we can assume I* = {0}; then the natural map
from Fj to its I—adic completion Fh is injective. By the proof of Lemma 4.1 one. has Tt NFn = 1Y,
for all ¢: then, thanks to Lemma 4.1(b), ¢ € F;, and h*p € I™ imply ¢ € In—s N\ Frp=1""°%.
(b) Let y € I, \Ip”. Assume h~'y = hn for some n € F,"\{0}. As F,’ :=Upsoh V1" we
have n = h~ iy for some N € N, , iy € IFhN. Then h~'y = A'Niyn, so hN_ly; = hiy: but
the r.-h.-s. belongs to IFHNH, whilst the 1.-h.-s. cannot belong to IFENH, due to (a) and y & IFF? .

(c) Fyn C Fy' implies (Fh)oo - (Fhv)oo- Conversely, by definition (Fh)oo is a two-sided ideal of
Fﬁ and Fhv, and Fﬁv = (Fh/(Fh)oo>v = Fhv/(Fh)oo7 SO (Fhv)oo mod (Fh)oo g (Fﬁv) with
Fp = Fh/IF;’O = Fh/ (Fh)oo (a QFA, by Lemma 3.1(a)). So it’s enough to show <Fhv> = {0}.

—~ _ — _ —~V
Let pu: Fp — Fj be as above: it embeds F' into F}, and gives Fhv CFy = UnZO h~
SO (Fhv) - (Ev> . By Lemma 4.1, }/7;\/ is contained in the R-subalgebra of F(R) ®p ﬁ'\h
o oo v -
generated by {h_ljb}bes, which is polynomial; then (Fﬁ ) = {0}, so (Fﬁv) = {0} too. O

Proposition 4.3. Let Char(k) =0. Let Fy, € QFA. Then (Fhv)/: Fy .

Proof. Proposition 3.3 gives Fj C (Fhv)/, and we must prove the converse. Let Fj := Fh/(Fh)oo ;
then (F) = (Fa), by Lemma 4.2(c), so (F)" = F'/ () _, and ((F)") = () /().
Thus, if the claim is true for F} then Fﬁ/(Fh)oo = Fj = ((Fﬁ)v), = (Fﬁv)//(Fﬁ)oo7 hence
(Fhv)/ = F}, . So a proof for F}, is enough, thus we assume I = (Fp) o= (Fhv)oo: {0}, for I:=1, .
Let 2’ € (Fﬁv),; since (Fj),, = {0} thereare n € N and 2V € F,"\h F},’ such that 2/ = h"z" .
By Theorem 3.4, F,” is a QrUEA with Fhv|h:0: U(g), g=1"/(hF'NIY), and IV :==h'I.
Fix an ordered k-basis {bx},c, of g, a subset {:cX}/\GA of I,/ such that =y mod hFy’ = by
forall A€ A, and set x) = hay € J, forall A\. If d:= 9(Z) is the degree of T w.r.t. the standard
filtration of U(g), then (by [EK], Lemma 4.12, or [KT], §3.8) d := 9(Z) < n. So we can write 2V as
a polynomial P({b,\}AGA) of degree d < n; hence z¥ = P({:E\/\/}AGA) —I—hx[vl] for some x[vl} € Fy.
Now o' = W"P({z}}c,) + W" "1y, with A"P({a)}, ) € Fh since P has degree d < n;
as Fy Q(Fhv)/ (by Proposition 3.3), # := a2’ —~h"P({z}},_,) € (Fhv)/ and z}= "1y Ty ]— "ty
for some n; € N, n; > n, and zy € FY \ﬁFhv. We repeat this construction with ) instead
of 2/, ny instead of n, etc.: iterating, we get an increasing sequence {ns}s N and a sequence
{P, ({XA}AGA)}seN such that 2’ =3 h”SPs({x}\/}/\eA) and the degree of P;({X)},.,) is at
most ns . By construction A™s P ({a:i\/}/\eA) €I forall s, so ) _h" Ps ({xX})\eA) € ﬁ\h (the
I, ~adic completion of Fy), o' = > " P, ({xX }AeA) is an identity in I , and 2’ € (Fh\/)/ N Fr.
Now consider the specialization map w: Fp —» Fh‘h:o = F|G] and the embedding p: Fj, — ﬁ\h:
then 7 extends to 7 : Fj —» }4{[5] = F[[G]], and p|,_,: FIG] = Fs|,_, —— ﬁ;|h:0 = F[|G]]
is injective too. Since Ker(m) = h F}, and Ker(7) = hP/E, this implies Fj, hﬁ’; = h Fy, whence
we get Fhﬂhfﬁ = h'F}, for all £ € N. Getting back to z’ € (Fhv),ﬂl/?;, we have 2/ = h™ "y
for some n € N and y € Fj; therefore y = h"a' € Fhﬂh"f\’h = h"Fy, so eventually 2’ € Fy,. O
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Proposition 4.4. Let H K€ HA, and ( , ):H x K —— R be a Hopf pairing. Then
(a) HY C (K’). and K'C (HV). (and viceversa), and the above induces a pairing Hx K'— R.
(b) If the pairing and its specialization at h = 0 are both perfect, and K=H® , then K'= (Hv). .

Proof. (a) Scalar extension and restriction give a pairing between HY and K': we must prove it
is R—valued. Let I =1, . Pick ¢1,...,¢c, €1, ye K': then ([[/ ¢, y)=(Q ¢, A"(y)) =
Z\Pg{l,...,n} <®?=1Ci ) 5\1/(y)> = E‘I/Q{l,...,n} <®ie\I/Ci , 6\‘P\(y)>'Hj§Z\I/<Cj 1) € Z\I/g{l,...,n} Y R.
BYIR = k"R . The outcome is <I”,K’> C "R, whence <h‘”[",K’> C R, for all n € N; then
HY C (K’). and K’ C (HV). , hence HY x K/ — F(R) takes values into R, q.e.d.

(b) Let 9 € (HV)': then (h=*I*,¢) € R, so (I*,¢) € h*R, for all s. For s =0 we get
(H,¢) € R, thus ¢ € H* = K, and so 6,(¢) € K®" for all n. Now, H® = K implies
(H®”). = K®" w.r.t. the induced pairing H®" x K®"* —— R. Moreover, since <1H ,JK> =0
and 6, (¢) € J &, inverting the previous argument we find (H®", 6, (¢)) = (I,&", 6,(¢)) C h"R
(for all n): thus A", (y) € (H®")® = K®" ie §,(1) € "K®" for all n, whence ¢ € K'. [

Proposition 4.5. Let Char(k) =0. Let Uy € QrUEA. Then (Uy') = Uy .

Proof. 1f the claim holds for Uy, i= Uy / (Us) . then Un = ((Tn)")"= (U")/(Us).,, by Lemma

3.1(a), thus (Uy' )v = Uy . Therefore a proof for Up, is enough, and we may assume (Uﬁ)oo ={0}.

Our plan is to mimic the proof of the same result for quantum groups “a la Drinfeld” in [Gal],
Proposition 3.4 (now we drop the hypothesis dim(g) <+oco, with U(g) = U, /R Uy, by [Gal], §3.9).

To simplify notation, set H := Uy, . Let H and R be the h-adic completion of H and R. Then
His a topological Hopf Z/%—algebra, whose coproduct takes values into H®H:=H®H , the h—
adic completion of H ® H ; clearly H embeds into H as a (topological) Hopf R—subalgebra. Set
also H' := {ne f[’(?n(n) e mHE" }, and (JE\I’)X = U,so P " 5" (g Q(ﬁ) ®p fl) , where
I .= Ker(ez) + h- . Finally, let (I;T’)V be the Ai—adic completion of (ﬁ]’)X .

Now consider K := H* = Homg (fAI, ﬁ) : it is a complete topological Hopf }A%falgebra, w.I.t.
the weak topology, in perfect Hopf pairing with H. Weset KX := Yoo IR (g Q(}A%) ®§f( ),
where J := Ker(ez), we let KV be the A-adic completion of K*, and we define (IA(V), in the
obvious way. With the same arguments as for Proposition 4.3, one proves (]A( V)/ — K. Like in
[Gal], one shows (as for Proposition 4.4) H’ = (I?V). and KV C (I;T’).; moreover H = K*,
hence KV = (ﬁ’)o . Using this and (IA(V)/ — K one proves (PAI')V — H too (see [Gal] for details).

Definitions imply ﬁ/h”fl = H/h“H, thus h”flﬂH = h"H, for all n € N; similarly
h"f]@ﬂH@Z = R"H®* for all n, ¢ € N, whence ﬁ’ﬂH = H’'. The description of H' in
[Gal], §3.5 (which holds for dim(g) = co too), tells us that H' (\h"H = I, , and also (acting like
in the proof of Lemma 4.1), since Iy, (\H' = Iz (\H = Iy, that I, (VH = I, for all n € N.

Finally, take n € H \ h H. We can show that there is an 1’ € Ig@ (notation of the proof of
Lemma 4.2) such that n’ = ha(ﬁ)n—i—nﬁr for some 7/, € Igfﬁ)H , just like in [Gal], §3.5. Roughly, we
consider any basis of H | heo = H ‘ h—o Containing 77, we look at the dual basis inside K ’ heo and lift
it to a topological basis of K, then rescale the latter (dividing out each element by a proper power
of h) to sort a topological basis of KV: the dual basis of H’ will contain an element 7’ as required.
Then R0y =n'—n/, € Igfﬁ) N H = 190 | by the previous analysis: so n € A= 19(M) C (H’)V :

Then H C (H ! )v , whereas the reverse inclusion follows from Proposition 3.3. [



THE GLOBAL QUANTUM DUALITY PRINCIPLE 11

Corollary 4.6. Let Char(k)=0. Let U, € QriUEA. Then (Uh’)F = (Un)p

Proof. Definitions give H'r=Hp for all H, so (Uh') = <(UEI)V>F: (Un) by Proposition 4.5. [

Theorem 4.7. Let Fh[ | e QFA (notation of Remark 1.5) such that F}|G]| is reduced. Then

we have Fj[G]"

‘h:O
= Fy|G /hFh = U(g*) as co-Poisson Hopf algebras (see §1.1).

Proof. Set for short Fj, := Fj[G], Fy:= Fh/hFﬁ = F[G], and Fp’ = FE[G]V, FyY = Fhv/hFhV .
By Theorem 3.4, Fy’ = U(t) for some £ (since k is a field!), and we want to improve this result.
Again, (Fh)oo = (Fhv)o<> by Lemma 4.2(c); then FyY o= Fhv/(Fhv)oo = Fhv/(Fh)oo = (E)v
by Lemma 3.1(a), and so Fﬁv‘hzoz Fihv|h:0: (Fr )v‘h:o by Lemma 3.1(b). Thu/s\it is enough to
prove the claim for F, i.e. we can assume (Fy)__ ={0}. Let I :=I,_, and let Fj; be the I-adic
completion of Fj; as [ = (Fh)oo = {0}, the natural map F, —— ﬁh is a monomorphism.

Let J := Ker(er,) and JY = h='J C F’. Let {p}pes be a k-basis of JO/JOQ, with
Jo := Ker (€p) , and lift it to {jp},c5 C J. Using notation of Lemma 4.1, I" /I = fR/I/”ﬁ
(for all n); then Lemma 4.1(b) implies that I /1" has k-basis { #°j¢ mod I"*! | ¢y € N,e €
NP, eo+lef =n} with |e| := Y, cse(b). As hI"T = h- A=V = 0 mod hFy’, we
argue that A~"I" mod hF’ is k-spanned by {h‘|§|j§ mod h F’ ‘ ec N]‘?, le] <n } . we claim
this is a basis of A~"I" mod h Fy’ . If not, we find a non-trivial linear combination which is zero:
multiplying by k" yields 7, € I" \ I"*! with A~"y, =0 mod hFy’; then h~"v, € h-h~*I* for
some £ € N, so hfy, = AlTI* C [+ then Lemma 4.2(a) yields v, € I"*!, a contradiction.

Now let jy := hljg for all B € §. Since juj, — juju € hJ, for any p,v € S, we have
Judv = Juiu = hz,eescﬁjﬁ + h%y; + hya for some cg € R, 1 € J and 72 € J?, whence
[jl,jl\,/] =gy Jy =3 Y =2 pescpiy mod J+JVJ: but J+JVJ = h(JV+JYJIY) ChEy,
SO [jl,jl] =) pescpiy mod hFy’, hence h:=JY mod hFy’ is a Lie subalgebra of Fy’. But
the latter has k—basis {(jv)i mod h Fy’ ‘ ec€ N}S } , hence the PBW theorem gives Fy’ = U(h)
as algebras. Also, the proof of Theorem 3.4 gives A(jv) =7V®1+1®7Y mod h (F )®2
jVeJV,s0 A(j)=j®1+1®]j for j€bh, whence Fy' = U(h) as Hopf algebras too.

Now, the specialization 7V: Fy,Y —» FyY = U(h) restricts to n: JY —» b := JVmod hFy’ =
JV/Jv N (hFhV) = JV/(J+ Jth), for JV N (hFhV) =J'N h_llpf = Jn + JVJ, by Lemma
4.2(b). Let p: Jyg —» JO/J02 =: g* be the projection, and v: g~ —— Jy a section of p. The
specialization 7: Fp —» Fy restricts to #’: J —» J/(J NhEy) = Jﬁ/h Jn = Jo: we fix a section

for

v: Jo — Jp of m'. Also, multiplication by A~! yields an R-module isomorphism p: J =, JV.
The composition o :=nopuo~yorv :g* — b is a vector space isomorphism, independent of
the choice of v and «v: we show it is also a Lie bialgebra isomorphism. Pull-back via ¢ the Lie
bialgebra structure of b onto g*, and denote it by (gx,[ , ].,5.); also, denote by (gx,[ , ]X,dx)
the Lie bialgebra structure dual to that of g: we shall prove that these two structures coincide.

First, for all x1, zo € g* we have [ml,xg] = [.Z'l,fl,'g} Indeed, let f; :=v(x;), @i :=v(f:),

o) = u(ei), yi=n(p)) (i=12). Then [z1,22], := o ([o(21),0(z2)],) = o~ ([y1,92]) =
(porou ™) ([Y,05]) = (pon’) (B g1, p2]) = p({fl,fz}) =: (w1, 2]
The case of Lie cobrackets is similar, using maps vg = v®%, g := 72, etc., and notation

Xo = Neo tg = mou)® and V:= A — AP, Now, for all z € g% we have 0q(z) = 0x(z).
Indeed, let f = v(z), ¢ :=7(f), ¢V = pu(p), y:=n(¢"). Then du(z):= 05 ' (dy(0(2))) =
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o5 (0 (1(¢Y))) = 05 (e (h71V(9Y))) = og H(no 1)y, (V()) = pe(V(¥(2) = dx(z)
where the last equality holds because dx (x) is characterized in gX ® g* by (u1 ®uy, 0x(x))
<[u1,u2] , :1:> for all uq,us €g, while <[u1,u2 x> = < [u1, us), > = <U1®U2 ,p®(V( (x)))>

ool

Theorem 4.8. Let Char(k) =0. Let Up(g) € QrUUEA (notation of Remark 1.5). Then we have
Uh(g) /hUh = F[G*] as Poisson Hopf algebras (see §1.1).

Proof. By Theorem 3.5, Up(g)’ is a QFA, with Uﬁ(Q)lﬂ} F[H]; we must show H = G*. Theo-

rem 4.7 applied to Uy (g)" yields (Uh(g),)vﬂ)(](hx)  then U(g) <=2 U (g) = (Uh(g)’)vﬂ Uh”)
by Proposition 4.5, thus h* = g: therefore b := (bx)* =g*, whence H =G*, q.ed. O

Theorem 4.9. Let Char(k) = 0. Let ( , ):Fy x Uy, —— R be a perfect Hopf pairing with
FreQFA, Upoec QrUEA, Fy = Uﬁ., Up = Fh.. Then Uﬁ/ = (Fﬁv). and Fﬁv = (Uﬁ/). .

Proof. The assumptions imply that the specialized Hopf pairing Fj — k is perfect

‘h:o x Uﬁ‘h:o
as well: then by Proposition 4.4 we have only to prove the inclusion Fj’ D (U h/). .

Let ¢ € (Uh')., chosen so that <<p,Uh'> = R. Since (Uh/). C F(R)®g Fr, = F(R) ®gr Fy’,
there is ¢ € R\ {0} such that ¢, = cp € Fy' \ hFy': it follows that (¢ ,Uy') = cR. If
Fy = F3|G], U = Un(g), then Theorems 4.7-8 give Fy,'|, _, = U(g*) and Uy/|,_, = FIG*].
Thus there is 7 € F[G*] such that <g0+‘h20,n> = 1, hence there is n € Uy’ (a lift of ) such
that <g0+ ,77> =1+ hk for some k € R; but <<p+ ,77> € cR, thus ¢ divides (1 + hk) in R.

As ¢, € FyY wehave ¢, = h™"pg forsome n € N and ¢q € IFZ ; therefore <g00, Uh’> =ch"R.
On the other hand, as Uy = (Uh')v (Proposition 4.5) each y € Uy can be written as y = Ay’ for
some ¢ € N and y' € Uy'; then (po,y) = chi"*(p,y’) € R(ch" R because {po,y) € R and
{p,y') € R. Now, if i"~“(¢,y’) ¢ R then n—{ < 0 and so h divides c. Since ¢ divides (1+hk)
we get an absurd, unless ¢ is invertible in R: then ¢ = ¢ '@, € Fy”. Otherwise, we have always
h"*Z<<p,y’> € R, hence <g00,y> € cR for all y € Uy; thus ¢ lyy € Up® = Fy,. Let F\h be the
I, —adic completion of F}: the natural map p: Fj, — Fy, has kernel Iy = (Fn)y = {0} (for
Fy € QFA, and (F},),, is contained in the trivial left radlcal of the perfect palrlng between F} and
Up;so Iy C Fﬁ Now ¢ lyy € Fj, C Fh and g € I - I : then ¢ty € I . by Lemma 4. 1(a)-

(b), hence ¢~ gaoel N Fr = F,byLemma41(c) Thus o=cth™ <p0€h "Iy CFy . O

At last, we can gather our partial results to prove the main result, i.e. Theorem 2.2:

Proof of Theorem 2.2. Claim (a) is proved in §§3.3-5, (b) follows from Propositions 4.3 and 4.5,
(c¢) holds by Theorems 4.7-8, whereas Theorem 4.9 proves (d). Finally, assume Char(k) =0 and
consider H € HAp . If Hyy€ QFA (for some prime h € R\ {0} ) is an R-integer form of H, then
H (Vf) is an integer form too (by the very definitions) and a QrUEA (at &), by Proposition 3.3. Con-
versely, if H(,)€ QriUUEA (for some prime h € R\ {0}) is an R-integer form of H, then H(,, is an
integer form too (by Corollary 4.6) and a QFA (again at ), by Proposition 3.5. This proves (e). O

4.10 Final remarks:

(a) The Global Quantum Duality Principle as a “Galois correspondence” theorem. Theorem
2.2 says that Drinfeld’s functors set mutually inverse Galois-like correspondences from H.A to itself.
When (%) is maximal, the subcategories of quantum groups then are those of fixed objects for the
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composition of these correspondences. Namely, the composed operator (( )\/)/ = () o ()" plays
the role of a “closure operator”, and (( ),)v = ()Y o()" plays the role of a “taking-the-interior op-
erator”: then QFAs may be thought of as “closed objects” and QrUEAs as “open objects” in H.A.

(b) Duality between Drinfeld’s functors. For n € N let p,: J,°" «— H®" ™" H be the
composition of the embedding of J,®" into H®" with the n—fold multiplication (in H): then s,
is the “Hopf dual” to 0, . As HY := 3 lin (h_”JH®") and H' := (), ey 5n_1(h+”JH®”) , the
two functors are built up as “dual” to each other (cf. also part (d) of Theorem 2.2).

(¢) Ambivalence QrUEA <> QFA in HAp. Part (e) of Theorem 2.2 means that some Hopf
algebras over F(R) might be thought of both as “quantum function algebras” and as “quantum
enveloping algebras”: examples are Ur and Fg for U € QridEA and F € QFA.

(d) Drinfeld’s functors for algebras, coalgebras and bialgebras. The definition of either of Drin-
feld functors requires only half of the notion of Hopf algebra. In fact, one can define ( )V for all
“augmented algebras” (i.e., roughly speaking, “algebras with a counit”) and ( )’ for all “coaug-
mented coalgebras” (roughly, “coalgebras with a unit”), and in particular for bialgebras: this yields
nice functors, and neat results extending the global quantum duality principle (cf. [Ga2]).

(e) Generalizations. A good deal of the results about Drinfeld’s functors can be extended to the

case when R/hR is not a field, i.e. the (prime) ideal (%) is not maximal. Similar considerations
hold for remark (d) too.
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