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ABSTRACT. We provide an alternative approach to the Faddeev-Reshetikhin-Takhtajan pre-
sentation of the quantum group Uy (g), with L—operators as generators and relations ruled by
an R—matrix. We look at Uq(g) as being generated by the quantum Borel subalgebras U, (by)
and Ug(b_), and use the standard presentation of the latters as quantum function algebras.
When g = gl,, these Borel quantum function algebras are generated by the entries of a trian-
gular g—matrix, thus eventually Uq(gl,,) is generated by the entries of an upper triangular and
a lower triangular g—matrix, which share the same diagonal. The same elements generate over
k[q, q_l] the unrestricted k [q, q_l]finteger form of Uq(gl,,) of De Concini and Procesi, which
we present explicitly, together with a neat description of the associated quantum Frobenius
morphisms at roots of 1. All this holds, mutatis mutandis, for g = sl,, too.

Introduction

Let g be a semisimple Lie algebra over a field k. Classically, it has two standard
presentations: Serre’s one, which uses a minimal set of generators, and Chevalley’s one,
using a linear basis as generating set. If g instead is reductive a presentation is obtained by
that of its semisimple quotient by adding the center. When g = gl,, , Chevalley’s generators
are the elementary matrices, and Serre’s ones form a distinguished subset of them; the
general case of any classical matrix Lie algebra g is a slight variation on this theme. Finally,
both presentations yield also presentations of U(g), the universal enveloping algebra of g.

At the quantum level, one has correspondingly a Serre-like and a Chevalley-like presen-
tation of U,(g), the quantized universal enveloping algebra associated to g after Jimbo and
Lusztig (i.e. defined over the field k(g), where ¢ is an indeterminate). The first presentation
is used by Jimbo (cf. [Jil]) and Lusztig (see [Lu2]) and, mutatis mutandis, by Drinfeld too;
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in this case the generators are g—analogues of the Serre’s generators, and starting from them
one builds quantum root vectors via two different methods: iterated quantum brackets, as
in [Ji2] — and maybe others — or braid group action, like in [Lu2]; see [Ga2] for a com-
parison between these two methods. The second presentation was introduced by Faddeev,
Reshetikhin and Takhtajan (in [FRT]): the generators in this case, called L-operators, are
g—analogues of the classical Chevalley generators; in particular, they are quantum root
vectors themselves. An explicit comparison between quantum Serre-like generators and
L—operators appears in [FRT], §2, for the cases of classical g; on the other hand, in [No],
§1.2, a similar comparison is made for g = gl,, between L-operators and quantum root
vectors (for any root) built out of Serre’s generators.

The first purpose of this note is to provide an alternative approach to the FRT presen-
tation of U,(g): it amounts to a series of elementary steps, yet the final outcome seems
noteworthy. As a second, deeper result, we give an explicit presentation of the k[q, q_l}—
subalgebra of U,(g) generated by L-operators, call it ﬁq(g). By construction, this is
nothing but the unrestricted k[q, q_l}finteger form of U,(g), defined by De Concini and
Procesi (see [DP]), whose semiclassical limit is ﬁq(g)/(q—l) (N]q(g) >~ F[G*], where G*
is a connected Poisson algebraic group dual to g (cf. [DP], [Gal] and [Ga3], §7.3 and §7.9):
our explicit presentation of ﬁq(g) yields another, independent (and much easier) proof of
this fact. Third, by [DP] we know that quantum Frobenius morphisms exist, which em-
bed F[G*] into the specializations of ﬁq(g) at roots of 1: then our presentation of ﬁq(g)
provides an explicit description of them.

This analysis shows that the two presentations of U, (g) correspond to different behaviors
w.r.t. to specializations. Indeed, let U,(g) be the ]k[q, q_l]falgebra given by Jimbo-Lusztig

~

presentation over k[q,q~']. Its specialization at ¢ = 1 is ﬁq(g)/(q—l) T/J\q(g) >~ Ulg)
(up to technicalities), with g inheriting a Lie bialgebra structure (see [Jil], [Lu2], [DL]). On
the other hand, the integer form ﬁq(g) mentioned above specializes to F' [G*} , the Poisson
structure on G* being exactly the one dual to the Lie bialgebra structure on g. So the
existence of two different presentations of U, (g) reflects the deep fact that U,(g) provides,
taking suitable integer forms, quantizations of two different semiclassical objects (this is a
general fact, see [Ga3—4]). To the author’s knowledge, this was not known so far, as the
FRT presentation of U,(g) was never used to study the integer form qu(g) .

Let’s sketch in short the path we follow. First, we note that U,(g) is generated by
the quantum Borel subgroups U, (b_) and U,(by) (where b_ and b are opposite Borel
subalgebras of g), which share a common copy of the quantum Cartan subgroup U,(t).
Second, there exist Hopf algebra isomorphisms Uqy(b_) = F,[B_] and U,(b) = F,[B],
where Fj, [B_] and Fj, [BJF} are the quantum function algebras associated to b_ and b,
respectively. Third, when g is classical we resume the explicit presentation by generators
and relations of F [B_} and £ [BJF}, as given in [FRT], §1. Fourth, from the above we
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argue a presentation of U,(g) where the generators are those of F [B_} and F [BJF}, the
toral ones being taken only once, and relations are those of these quantum function algebras
plus some additional relations between generators of opposite quantum Borel subgroups.
We perform this last step in full detail for g = gl,, and, with slight changes, for g = sl,
as well. Fifth, we refine the last step to provide a presentation of ﬁq(g) .

As an application, our results apply also (with few changes) to the Drinfeld-like quan-
tum groups Up(g): in particular we get a presentation of an h-deformation of F[G*],
say Un(g) =: FrlG*]. An explicit gauge equivalence between this F,[G*] and the -
deformation provided by Kontsevitch’ recipe is given in [FG].
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§ 1 The general case

1.1 Quantized universal enveloping algebras. Let k be a fixed field of zero char-
acteristic, let ¢ be an indeterminate, and let g be a semisimple Lie algebra over k. Let
U,(g) be the quantum group a la Jimbo-Lusztig defined over k(g): we define it after the
conventions in [DP], or [DL], or [Gal] (for ¢ = 0). Actually, we can define a quantum
group like that for each lattice M between the root lattice () and the weight lattice of P of
g, thus we shall write Uj/(g) . Roughly, Uj/(g) is the unital k(g)-algebra with generators
F;y, AFf' ) B; for i = 1,...,r =: rank(g) and relations as in [DP], [Gal], which depend
on the Cartan datum of g and on the choice of the lattice M ; in particular, the A;’s are
“toral” generators, roughly g—exponentials of the elements of a Z-basis of M. Here we
only recall the relation
K, — K !

q—q*
where K; is a g—analogue of the coroot corresponding to the i-th node of the Dynkin

EZ'Fj —FjEi = 5@']’ \ Z,j = 1,...,7‘ (11)

diagram of g (in fact, it is a suitable product of A¥'’s). Also, we consider on U,'(g) the
Hopf algebra structure given in [DP] or [Gal].

The quantum Borel subalgebra Uj/(by) is simply the unital k(q)-subalgebra of U;(g)
generated by AL', ..., AF'  Ey, ..., E., and U,(b_) the one generated by F1, ...,
F,., Afl , ..., Af!1 . In fact, both of these are Hopf k(g)-subalgebras of U,'(g) . It follows
that U,(g) is generated by U, "(by) and U,/(b_ ), and every possible commutation relation
between these two subalgebras is a consequence of (1.1) and the commutation relations be-
tween the Aiﬂ’s and the Fj’s or the E;’s. Finally, we call Uj(t) the unital k(g)-subalgebra
of Uj'(g) (and of Uy(by)) generated by all the A;’s (i = 1,...,n), which also is a Hopf
subalgebra.
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Mapping F; — E; , AZ-il — A and E; — F; (forall i = 1,...,n) uniquely defines an
algebra automorphism and coalgebra antiautomorphism of U *(g), that is a Hopf algebra

isomorphism ©: U *(g) < »U é”(g)Op , where hereafter given any Hopf algebra H we de-
note by H°P the same Hopf algebra as H but for taking the opposite coproduct. Restricting
© to quantum Borel subalgebras gives Hopf algebra isomorphisms Uj/(bs) = Uy’ (b)P.

1.2 Quantum function algebras. Let M be a lattice between ) and P as in §1.1, and
define M’ :={y € P|(s,pu) € Z,Vpu € Z} where (, ) is the Q-valued scalar product on
P induced by scalar extension from the natural Z—valued pairing between ) and P. Such
M’ is again a lattice, said to be dual to M. Conversely, M is dual to M’ i.e. M = M".

We define quantum function algebras after Lusztig. To start with, letting M and M’ be
mutually dual lattices as above, we define F,” '[G] as the unital k(g)-algebra of all matrix
coefficients of finite dimensional U,"(g)-modules which have a basis of eigenvectors for
all the A;’s (i = 1,...,n) with eigenvalues powers of ¢. Starting from U,/(by) or U"(b_)
instead of U2(g) the same recipe defines the Borel quantum function algebras F*'[ B, ] and
F ’[B_] respectively. All these quantum function algebras are in fact Hopf algebras too.

Finally, the Hopf algebra monomorphisms j : U (b+) — U (g) induce Hopf algebra
epimorphisms w1 : F}'[G] — F}'[B] . See [DL] and [Gal] for details.

1.3 Isomorphisms between QUEA’s and QFA’s over Borel subgroups. Let M
and M’ be mutually dual lattices as in §1.2. According to Tanisaki (cf. [Ta]) there exist
perfect (i.e. non degenerate) Hopf pairings U}(by)P® UM'(b_) — k(q), UM(b_)P®
UM (by) — k(g); this implies UX(by)°?= FM[B_] and UM(b_)*= FM[By]. Com-
posing the latters with the isomorphisms U /(by ) = U}(b_)°? and U (b_) = U (b, )P
in §1.1 it follows that UM(by) = F*[B.] and UM(b_) = F}"[B_] as Hopf k(q)-algebras.

1.4 Generation of U;/(g) by quantum function algebras. We said in §1.1 that
U,'(g) is generated by U, *(b_) and Uj/(by ), whose mutual commutation is a consequence

of (1.1). In particular, we have a k(g)-vector space isomorphism UM(g) = (UM(b_) ®
Ué”(b+))/J, where J is the two-sided ideal of U (b )®@U (by.) — with the standard ten-

sor product structure — generated by ({K, ®1—-1® KM},uEM) ,
is a consequence of the internal commutation rules of U (b+) and by (1.1). Now, thanks to

while the multiplication

the isomorphisms in §1.3, we describe U, *(g) as being generated by F;”[B_} and FqM[BjL},
with mutual commutation being a consequence of the commutation formulas corresponding

[

to (1.1) under those isomorphisms. So we have a k(g)-vector space isomorphism U "(g) =
(FqM[B_] ®FqM[B+D/I, where [ is the ideal of Fé”[B_} ® FqM[Bq corresponding to J,
while commutation rules are the internal ones of £} [Bi] and those corresponding to (1.1).

1.5 Relation with L—operators. Tracking carefully the construction of Uj/(g) pro-
posed in §1.4 above one realizes that this is just an alternative way to introduce U, qM(g) via
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L—operators as made in [FRT]. Such a comparison is essentially the meaning — or a possi-
ble interpretation — of the analysis carried on in [Mo]. Moreover, the latter analysis also
shows that L-operators in [FRT] do correspond to suitable matrix coefficients in F}* [B_}
and F” [B+] (embedded inside F, v [G] ); such matrix coefficients then correspond to quan-
tum root vectors in U(by)” and UM(b_)*" via the isomorphisms F}[B_] = UM(b )"
and FM[By] = UMb_)°® in §1.3, and finally to quantum root vectors in U2(b_) and
U}(b,.) via the isomorphisms U}(b; )" = UM(b_) and U}(b_)*" = U}(b,) in §1.1.

1.6 Integer ]k[q,q_l}—forms, specializations, quantum Frobenius morphisms.
In order to look at “specializations of a quantum group at special values of the parameter
q”, one needs the given quantum group to be defined over a subring of k(q) whose elements
are regular, i.e. have no poles, at such special values. As it is typical, we choose as ground
ring the Laurent polynomial ring k[q, ¢~ *]. Then instead of U, ;'(g) we must consider integer
forms of U (g) over k[q, q_l}, i.e. Hopf k[q, q_l]—subalgebras of U}(g) which give back all
of U,'(g) by scalar extension from k[q, q_l} to k(q): if UqM(g) is such a k[q, q_l}fform, its
specialization at ¢ = ¢ € k is the quotient Hopf k-algebra U, (g) := UqM(g) / (g—c) UqM(g) .

There are essentially two main types of k [q, qil}—integer forms: one is U é‘”(g) (the quan-
tum analogue of Kostant’s Z-integer form of g) introduced by Lusztig in [Lul], generated
by g-binomial coefficients and g—divided powers); the second one is U 4 '(g) , introduced by
De Concini and Procesi in [DP], generated by rescaled quantum root vectors; see [Gal]
for details. When ¢ is specialized to any value in k which is not a root of 1, the choice of
either of these two integer forms is irrelevant, because the corresponding specialized Hopf
k—algebras are mutually isomorphic. If instead ¢ is specialized to € € k which is a root of
1, then the specialized algebra changes according to the choice of integer form.

Indeed, the behavior of [7qM(g) and [7(;‘”(9) w.r.t. specializations at roots of 1 is pretty
different, even opposite. In particular, one has semiclassical limits (7{”(9) = U(g), the
universal enveloping algebra of g, and (711”(9) = F [Gm , the regular function algebra of
G%,, where G7, is a connected Poisson algebraic group with fundamental group isomorphic
to P / M and dual to g, the latter endowed with a structure of Lie bialgebra, inherited
from U, 4'(g) . Moreover, specializations of an integer form of either type at a root of 1, say
e € k, are linked to its semiclassical limit by the so-called quantum Frobenius morphisms

UMg) — Ui'(g) = U(g) , F[Gy] = Ug) — UMg) . (1.2)

Such a situation occurs exactly the same — mutatis mutandis — for the quantum Borel
subalgebras U, /(b_) and U,'(by). In short, one has two types of ]k[q, q_l}finteger forms

ﬁé”(bi) and ﬁé‘”(bi), and quantum Frobenius morphisms

UM(by) — U(bs) = Uby) ., F[Bi] = UM(by) — UMbs) . (1.3)
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By construction, U ;'(g) is generated by T/J\é”(bJr) and [7;‘”([1_), and similarly U ;'(g) is gener-
ated by U, 4 (by) and U 4 (b_). Tt follows that the morphisms in (1.3) can also be obtained
from (1.2) by restriction to quantum Borel subalgebras; conversely, the quantum Frobenius
morphisms in (1.2) are uniquely determined — and described — by those in (1.3).

By duality, the like happens also for quantum function algebras: in particular, there
exist two k [q, q_l}finteger forms 0 [G} and F . [G} of £} [G} , which are dual respectively
to ﬁé”(g) and (N]é”(g) in Hopf theoretical sense, for which the dual of (1.2) holds, namely

~

F[G) = FY[G] —— FX[6] . FM[G] — RG] =Ug) . (14)
Similarly, the dual of (1.3) holds for quantum function algebras of Borel subgroups, namely
F[By] = FY[By] —— FM[By] ,  F¥[Bi] —— FM[By] = UbL) , (1.5)

which follow from (1.4) via the maps F}[G] =, F)[B+] in §1.2. See [Gal] for details.

The point we want to stress now is the relation between the isomorphisms of Hopf
k(q)-algebras UX(by) = FM[By] and U}M(b_) = FMB_] in §1.3 and the k|g,¢" ']~
integer forms on both sides. The key fact is that the previous isomorphisms restrict to
isomorphisms of Hopf k[q,q_l]falgebras ﬁf(bi) = ﬁé‘”[Bi} and ﬁy(bi) = ﬁé”[Bi} )
Therefore, looking at U)(g) as generated by F[B_] and F[By] as explained in §1.4 one
argues that the first, resp. the second, quantum Frobenius morphisms in (1.2) are uniquely

determined (and described) by the second ones, resp. the first ones, in (1.5).

§ 2 The case of gl,,

2.1 g—matrices. Let {tij ‘i,j =1,... ,n} be a set of elements in any k(gq)-algebra
A, ideally displayed inside an (n X n)-matrix they are the entries of. We'll say that

T .= (tij).

ii=l..m is a ¢-matrix if the t;;’s enjoy the following relations

tijtik = qlig tij , tik thie = qthk tik V o j<k,i<h,
tintje =tk ta , tintiy — tatie = (q—q ") tatj Voi<g, k<l.
in the algebra A. In this case, the so-called “quantum determinant”, defined as

(o
detq <(tkz€)k,€:1,-..,n> = Yoes, (0" t00) 20 o

commutes with all the t; ;’s. If in addition A is a k(g)-bialgebra, we shall also require that

n
A(tij) = p 1tik®tkj, €(tij) = dij Vij=1,...,n.
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In this case, the quantum determinant is group-like, that is A(det,) = det, ® det, and
e(det,) = 1. Finally, if A is a Hopf algebra we call Hopf g—matrix any ¢-matrix like above
whose entries are such that det, is invertible in A; then S (det;tl) = det, L

For later use we also recall the following compact notation. Let T} ;=T ® I, Th :=
I®T € A® Matn(]k(q))®2 =~ A ® Mat,2(k(q)), where I is the identity matrix, and
T := (tij)i,j:1 ., is thought of as an element of Matn(A) ~2AQ Matn(k(q)) ; consider

.....

where e;; 1= (6Z~h 5jk)Z o1 is the (i, 7)—th elementary matrix. Then T is a g—matrix if and

only if the identity RTy T = T1 T R holds true in A®Matnz(k(q)) ; in detail, for the ma-

trix entry in position ((i,j), (kl)) this reads > Rijmp tpktmi = Y. timtjp Rmp ki -
m,p=1 m,p=1

In the bialgebra case T is a ¢-matrix if in addition A(T) =T ®T, €(T) =1, and in the

Hopf algebra case also T S(T) =1=S(T)T, ie. S(T) =T"1; see [FRT] and [No| for

notations — we use assumptions and normalizations of the latter — and further details.

2.2 Presentation of qu[G}, F;[B_} and F;[B@ for G = GL, . Let’s look at
G = GL, . After [APW], Appendix, we know that F’ [GL,J has the following presenta-
tion: it is the unital associative k(q)—algebra with generators the elements of {tij | 1,] =
1,... ,n} U {detq_l} and relations encoded by the requirement that (ti7j)i,jz1,...,n be a
g—matrix; in particular, detq:tl belongs to the centre of F’ [GLH}. Moreover, F.’ [GLn] has

the unique Hopf algebra structure such that (t@ j) ., be a Hopf g-matrix.

i,j=1,...,

Similarly, F;’ [B_} and F [B+] are defined in the same way but with the additional
relations ¢, ;, =0(i,5 =1,...,n;i > j) for F;[B_} and t;; =00i,j=1,...,n;i < j)
for F/ [BJF} . Otherwise, we can say that F’ [B_}, respectively F/ [B+}, is generated by

the entries of the g—matrix

t1,1 0 e 0 0 t1g1 ti2 - tip-t t1,n
2,1 too - 0 0 0 22 -+ tan-1 ton
. : . . resp. . ) }
th—11 th—12 - tp—in-1 O 0 0 - tn_in-1 tn-in
tn,l 7fn,2 e tn,n—l tn,n 0 0 e 0 tn,n

and by the additional element (t171 too - -tn,n)fl . Moreover, both F;[B_} and qu[BJF}
are Hopf algebras, the Hopf structure being given by the assumption that their generating
matrices be Hopf g—matrices. See also [PW] for all these definitions.

By the very definitions, the Hopf algebra epimorphisms . : F/ [G’Ln} — F/ [B+]
and m_: FqP[GLn] —» FqP[B_} mentioned in §1.2 are given by 7y : t;; — t;; (1 < j),
tij =0 (i>j) and m_ : t;; — t;; (i > j), tij — 0 (i < j) respectively.



8 FABIO GAVARINI

2.3. The quantum algebras U (g), U, (b_) and U'(b, ) for g =gl,,, M € {P,Q}.
We recall (cf. for instance [GL]) the definition of the quantized universal enveloping algebra
U,(gl,,): it is the associative algebra with 1 over k(g) with generators

+1 +1 +1 +1
F17F27"';Fn—17G1 ,GQ 7"'7G Gn 7E17E27"'7En—1

n—1>

and relations

GiGi'=1=G;'G;, GF'Gy'=GH'Gf! Vi, j
GiF;G;! = im0, GE;G7t = ¢oi %R, Vi, j
GG Y — GG,
EiF; — FjE; = 6;; —— 41 ~i T Vi, j
q—q
EiEj = E]'EZ', FzFJ = F]FZ \V/Z,jli—j|>1

E?E; — [2|,E;E;E; + E;E} = 0, F’F;,—[2|,FiF;F;+F;F? =0 Vij:li—jl=1

with [2], :== ¢+ ¢~ . Moreover, U, 4 (8l,,) has a Hopf algebra structure given by

AF)=F,0G Gy +1eF;, S (F;) Z—FiGiG[jl, e(F)=0 Vi
A(GH) =G @G, s (GH) =G7, e(GE) =1 Vi
A(Ez) :Ei®1+GiGi_+11 ®Ei7 S<Ez) = _G;lGH—lEi, E(Ez) =0 Y.

The algebra Ug(gl,,) — defined as in [Gal], §3 — can be realized as a Hopf subalgebra.
Namely, define L; := G1Gy -+~ G, K; := G;G; forall i=1,....,n, j=1,...,n—1.
Then UZ(gl,) is the k(g)-subalgebra of U/(gl,) generated by {Fi,... JF,_ 1 KEY L
Kf_ll,Lfl,El, . ,En_l}. The quantum Borel subalgebra U (b, ), resp. Us(b_), is the
subalgebra of U (gl,,) generated by {Glﬂ, ..,GEYU{Es, ... Ey 1}, resp. by {Glﬂ, ey
fol} U {Fl, e ,Fn_l} . Similar definitions hold for UZ(b), but with the set {Klil, el
K LE'Y instead of {GT',...,GF'}. All these are in fact Hopf subalgebras.

n—1»

2.4. The Hopf isomorphisms (_:UJ(b_) = FF[B_], (4:UF(by) = F7[By]. The
Hopf algebra isomorphisms of §1.3 are given explicitly by (¢ =1,...,n;j=1,...,n—1)

= + —1\—1, —

C— U;(b—)—>F;[B_] , Gz 1 '-)tz’fl , FJ |—>+(q—q 1) tj+11,j+1tj+17j
o~ —_1\—1 _

Cy U;([H—) —>FqP[B+] ) Gzil = tiﬁl , B —(q -9 1) ljj+1 tj+11,j+1

and their inverse are uniquely determined by

C__l : F;[B_} i> U(f(b_) , t,i%l — G;Fl y o tir1j -l-(q - q_l) qu_ll Fj
FUEB] U)o G e = (a0 B G

A straightforward computation shows that all the above are isomorphisms as claimed.
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Theorem 2.5. (“short” FRT-like presentation of U;(gl,,) )
U,/(gl,,) is the unital associative k(q)-algebra with generators the elements of the set

{5i,j}1§i§j§n U {'Vj,i}lgigjgn and relations

Biit1 Vi1, — Vit Biitr = (Bijar (1 =a7") + dijo1 (1= ) Biiv1vj+1,5 —

- - - (2.1)
= dij (g—a7") (o — a7l aig)
Brk Yek = 1 (2.2)
(forall i,57=1,...,n—1, k=1,...,n ) plus the relations encoded in the requirement that
the triangular matrices B := (Bij)?jzl and I' = (%j)?jzl be q—matrices. Moreover,

this algebra has the unique Hopf algebra structure such that these are Hopf q—matrices.

Proof. This follows directly from §1.4 and the isomorphisms in §2.4. Indeed, in the given
presentation the 3}, ;,’s generate a copy of Ff[B+] , with By, =ty 1 , isomorphic to U (b)
via §2.4; similarly, the ~, s’s generate a copy of F/ [B_}, with v, ¢ = 1, ¢, isomorphic to
U, (b_). The additional set of “mixed” relations (2.1) involving simultaneously the 3; ;y1’s
and the ;41 ;s then correspond to the set of relations (1.1) — or to the third line of the
set of relations in §2.3 — via the isomorphisms (1 of §2.4; indeed, these isomorphisms give
Biit1 2 —(a— ¢ VE;GL, Bex 2 G, and vjp1; = +(q— q_l)ijrll Fi, mr =G,
whence computing —(q—q_1)2 [EZ Gz——"l_—ll ij:rl1 Fj] in U7 (gl,,) we get formula (2.1). As to
the Hopf structure, it is determined by that of the Hopf subalgebras U (by.) and U (b_):
thus the claim follows from the previous discussion. [

2.6 Remark: note that any other commutation relation between a generator By
(h < k) and a generator v, s (r > s) can be deduced from the ones between the 3; ;+1’s
and the ;41 ;’s using repeatedly the relations

Bij = (g— qfl)_l (Bik Brj — Br,j Bik) k,_kl (Vi<k<yj)
which spring out of the relations f; 1, Br,; — Br,j Bix = (q—qil) Bk,k Bi,; for the g—matrix
B, and the relations

Yii = (q - q_l)_l (%,i Yik — Vik ’Vk,i) kakl (Vi>k>1)
which arise from the relations vy ; vjx — Vjk Vi = (q—q_l) Y,k V4, for the g-matrix I".

2.7 Quantum root vectors and L—operators. In this subsection we describe the
generators of U;(gl,,) considered in Theorem 2.5 in terms of generators of the Faddeev-
Reshetikhin-Takhtajan (FRT in short) presentation, the so-called L-operators, — in [FRT].
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Our comparison “factors through” that with quantum root vectors built upon the Jimbo-
Lusztig generators given in §2.3. For any =z, y, a, let [w,y], := 2y —ayx. Define

Ef,, =E, Ef=[E, Ef] . Vi<k<j
Fih = F; Fjil — [ka ,F,fi]qul Vi>k>i

as in [Ji]: all these are quantum root vectors, in that in the semiclassical limit at ¢ = 1 they

specialize to root vectors for gl,, , namely the elementary matrices e;; with 7 # j. As a mat-

ter of notation, set also Ezi] = (q — q_l) Ezij and FjiZ = (q — q_l) Fﬁ for all 1 < 7.
For the L—operators, introduced in [FRT], we recall from [No|, §1.2, the formulas

Ly =G, Lft=+GMF", Lt :=0 Vi<j
PR A e R = (2.3)
L, =G, Lji = —EZ-J- G, Li’j =0 Vi<y
to define them; setting LT := (L;;):j:l and L~ := (Li_j)zjzl, the relations
RLILy =LJL{R, RL{L,=L,LiR, RL{L, =L,LfR (24)

express in compact form their mutual commutation properties (with notation as in §2.1).
Indeed, the FRT presentation amounts exactly to claim that U;7(gl,,) is the unital associa-
tive k(g)—algebra with generators ij (for all i,7 =1,...,n) and relations (2.4) and

LiwLow =1 =L, Ly Yk=1,....n (2.5)
and it has the unique Hopf algebra structure such that
ALF) = IFOLF, oI5 =1, S({I)=(LF)" Veel{+,-} (26)

where Lt and L~ are the upper or lower triangular matrices whose non-zero entries are
the L;Tj’s and the L;,’s respectively, I is the (n x n)—identity matrix and we use standard
compact notation as in [FRT] or [CP].

Now, using the identifications Cfl we get identities

Bii = G, By = +(—q) G E Vi<j. (2.7)

Indeed, the identities 8; = G;'' and B;; = —¢ Gj+1 E;j = — E;j G;r1 for j =i+1 come
out directly from the description of C+_1 and the identifications 5;; = t;;, Bii+1 = tiit1 -
In the other cases the result follows easily by induction on j — i, using the relations
Bii = (a—a) " (Bik B — BrBik) Box (for i <k < j) given in §2.6.

Formulas (2.7) tell that the §;;’s are quantum root vectors too, for positive roots.
Similarly, for negative roots the v, ;’s are involved. Namely, the identifications ¢ yield

vii=Gi', = —(—q) 7 F,G; Vi<j (2.8)
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which are the analogues of (2.7). Again this is proved by induction on j —i: the cases

Vi+1,i = tiy1,;, while the inductive step follow easily by means of the relations =;;
1\ -1 . N .
(q —q 1) (%,z’ Yik — Vi.k Vk,i) kakl (for j >k > i) given in §2.6.
In order to compare (2.3) with (2.7) and (2.8) we must be able to compare quantum root
vectors with opposite superscripts. The tool is the unique k(g)—algebra antiautomorphism

v UNgl,) — Ulal,), Ei—E, FeF, Gf'—GF Vij
which is clearly an involution; a straightforward computation shows that

v(EL) = (—¢)T Y BT U(FE) = (YR vi<j. (29

2V

Now comparing (2.3) with (2.7) and (2.8) using (2.9) we get

Ly =9y v ), Ly =985 8 8;)  Yi<j, (210)
Yji = W((L;g)_lej L), Bij = W(L;; L; (L;)™") Vi<j. (2.11)

2.8 Presentation of ﬁ;(g) . Let again G := GL,,. It is well known that the k[q, qil}—
integer form F v [G} has the same presentation as F/ [G} , but over k [q, q_l} instead of k(q) .
The same holds similarly for ﬁ;[Bt] and ﬁqP[B_]. In addition, F\;[Bi} = ﬁ;(bi) and
[Z 4 (9) is generated by U;(by) and U/ (b_). Therefore, the previous analysis implies that
U/(g) as a ]k[q, q_l]falgebra is generated by the entries of the ¢g—matrices B and I of
Theorem 2.5. The latter provides explicitly some relations (over k[q, q_l}, that is inside
U 4 (@) itself) among such generators, but these do not form a complete set of relations: the
general mixed ones among f; ;’s and 7, ,’s are missing, as the ones in §2.6 do not make
sense inside U H (g) . However, since we know the relationship between these generators and
L—operators and we do know all relations among the latter, we can eventually write down a
complete set of relations for the given generators! This leads to the following presentation:

Theorem 2.9. (FRT-like presentation of [7; (gl,,))
ﬁ;(g[n) s the unital k[q,q_l}falgebm with generators the entries of the triangular

matrices B = (ﬁij):jzl and I' = (%J'):jzl and relations
RBy;B, = BiB: R , RILZI} =111I5R (2.12)
R°I'Y BY = BST'{ R® Dg-Dy, =1 = D,-Dg (2.13)

where R := szzl gl €; Qe + (q—q_l) Zl§i<j§n eij®ej, X1 :=X®I, Xo:=1®X
(like in §2.1), R°P := Y"1 ¢ e @ej5 + (40— 07") Yycicicn @i © €5, and Dg :=
diag(Bi1,-- - Ban)s Dy = diag(y1,1,- s Ynn), BP = Dgl-B-Dgl, re.=p;t.r-pit.
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The first (compact) relation in (2.13) above is also equivalent to
n

> g% (1) (R T BY ) (Ioer,) = 3 ¢ (ej500) (B3 IT RP) (Ie,,)  (2.14)

i,k=1 7,s=1

where X+ = (qi‘ghvkxh’k) forall X € {B,T'} (and x € {5,7}), and in explicit, expanded

form it is equivalent to the set of relations (for all i,k,j,s=1,...,n)

¢ g B + Gisi (4 —a71) @00y B

L1\ 6, s, (2.15)
= ¢ Bis Yik + Os>k (q —q 1) g’ 6Jkﬁj,k Vi,s
where obviously op~i =1 if h >k and dp~i :=0 iof h f k.
Furthermore, U;(gl,) has the unique Hopf algebra structure given by
AX) =XoX, (X)) =1, S(X)=X"1 VXe{BI}. (2.16)

Proof. The commutation formulas in (2.12) and the Hopf formulas in (2.16) are just the
compact way to say that B and I" are Hopf g—matrices. The second half of (2.13) instead
is nothing but another way of writing (2.2).

Moreover, the first half of (2.13) arises from the similar compact relation for L-operators
and the link between the latter and the present generators. Indeed, merging (2.10) in the
last identity in (2.4) we get

-1 +1 +1 -1\ _ +1 —1 -1 +1

R-!P(D,y I'"D; )1 'W(DB BTDB )2 = @(D/8 BTDB )Q-EP(D7 I'"D; )1 ‘R
(where a superscript 7' means “transpose”). Using the fact that ¥ is an algebra antiauto-
morphism and extending its action to ¥(R) = R we then argue

v((p B0, (D7 DY), R) < w(Fr (DT D), (D7 BD;),)

whence eventually (2.13) follows at once because ¥? = id .
Finally, expanding (2.13) one gets explicitly (for all i,k,j,s =1,...,n)

qsi’j /yz,_zl ik ,ylj,_li Bj—,’_jl 5j:5 68?81 + 5i>j (q - q_l) Vj,_jl Vik 7]::; 51—;1 51',5 BSTSI =
= " B B Bl v ik v n + Ossk (@ —a) B Bk Bg Vi i Vel
From this, making repeated use of all the relations encoded in (2.12) and in the second
half of (2.13) one can cancel out all “diagonal” factors, i.e. those of type B¢ or 7. The
outcome is (for all i, k,j,s=1,...,n)
¢° ik s + Gisj (0 —a71) @70 yyn Bis =
= ¢ BjsYik + ok (0= a) @7 Bk Yis
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that is exactly the set of relations (2.15). As a last step, manipulating a bit the exponents
of q one gets (for i,k,j,s =1,...,n)

q> ok (q‘”'j (7%  yix) (@7 Bs) + disj (a— a7 ") (a%* vjx) (q”“SBi,s)) =

(2.15)
= ¢*% (q‘s’“ (7% B,5) (a7 * vik) + 0smn (g — a7 ") (¢ % Byn) (¢ %,s))

when written in compact form yields exactly (2.14). O

Remark: the argument used to argue formulas (2.13) from the last identity in (2.4) may
be also applied to the first two identities therein. This yields relations among the 3;;’s and
among the 7;;’s which are different from, but equivalent to, formulas (2.12).

Corollary 2.10. The Poisson-Hopf k—-algebra ﬁf(g[n) 1s the polynomial, Laurent-polyno-

mial algebra in the variables {B the Bee’s and v;;’s being

i,j}lgigjgn U {7j,i}1§i§j§n ’
invertible, with relations ﬁi:itl = ;71 (Vi), Hopf structure given (in compact notation) by

—1

AX)=X6X, «X)=1, 8(X)=X v X e {B,T}

(with B and I' as in Theorem 2.9) and with the unique Poisson structure such that

{Zin Tie} = TinTiv, {Tnj T} =7Tn;Te;, {Tapn.Tee}=0 (h<{)

L . . o o , . (2.17)
{xm,xh,k}:() (i<h,j>k), {xtj,xh,k}:Qa:i,kxh,j (i<h,j<k)

with either all x,4’s being Bpq’s (and Byq :=0 forall p> q ) or all x,4’s being vp4’s (and
Ypq =0 forall p<gq), and

{Bj75 ’ii,k} = <5%J - 6k73) ’ Bj,s Wi,k + 2 5i>j : 7]’7]@ Bi,s -2 5s>k : Bj,k 71'78 . (218)

In particular UF(gl,,) = F[(GLy):] as Poisson Hopf algebras, where (GLy,)% is the alge-
braic group of pairs of matrices (F, B) where I', resp. B, is a lower triangular, resp. upper
triangular, invertible matriz, and the diagonals of I' and B are inverse to each other, with

the Poisson structure dual to the Lie bialgebra of gl,, .

Proof. If we write T := x mod (¢ — 1) ﬁ;(g[n) for every z € ﬁf(g[n), then setting
g = 1 in the presentation of (7; (gl,,) of Theorem 2.9 yields a presentation for U{(gl, ).
The latter is a commutative, polynomial Laurent-polynomial algebra as claimed, whence
Ur(gl,) = F[(GL,)%] as algebras, via an isomorphism which for all i < j maps B;; := By
mod (¢ — 1) ﬁ;(g[n) to the matrix coefficient corresponding to the (i, j)-th entry of the
matrix B in a pair (I, B) as in the claim, and maps 7j; := v;; mod (¢ — 1) ﬁ;(g[n) to
the matrix coefficient corresponding to the (j,4)-th entry of the matrix I" in a pair (I, B).
The formulas for the Hopf structure in U, 4 (gl,) imply that this is also an isomorphism of
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Hopf algebras, for the Hopf structure on right hand side induced by the group structure
of (GL,)% .
Since U{(gl,,) is commutative, it inherits from U,(gl,,) the unique Poisson bracket given

by the rule {z,7} := @ mod (¢ — 1) ﬁ;(g[n) , forall z,y € ﬁ;(g[n) . Then the
Poisson brackets in (2.18) come directly from (2.15), while all those in (2.17) spring out of
the commutation formulas among the j;;’s and among the v;;’s in (2.11).

Finally, checking that this Poisson structure on the algebraic group (GL,,)% is exactly
the one dual to the Lie bialgebra structure of gl,, is just a matter of bookkeeping. [J

2.11 The quantum Frobenius morphisms F[(GL,)%] = Ul(gl,) — UZX(gl,).
Let k. be the extension of k by a primitive /~th root of 1, say . Since U 4 (gl,,) is generated
by copies of ﬁ;(m_) = ﬁ;[B+] and ﬁ;(b_) = ﬁ;[B_} , taking specializations the same is
true for [75’3 (gl,,); in particular the latter is presented like in Theorem 2.9 but with ¢ = €.

In addition, the quantum Frobenius morphisms F [GLH} = 131’” [GLn} — }fip [GL,J
and F [Bi} = ﬁlp [Bi] — ﬁsp [Bi} have a pretty neat description, as they are given by
tij tifj (hereafter we denote by the same symbol an element in a quantum algebra and
its corresponding coset after any specialization); see, for instance, [PW] for details. As we
mentioned in §1.6, the morphism F[(GL,)%] = Ur(gl,) — UXgl,) is determined
by its restriction to the quantum Borel subalgebras, hence to the copies of F i [B@ and
F F[B—-] which generate UP(gl,). When reformulated in light of Theorem 2.9, this implies

Theorem 2.12. The quantum Frobenius morphism F[(GL,)%] = Ur(gl,) — UX(gl,,)
is given by [B;; — ﬁif]j » Vi ’yjﬂ- , forall i <j5. O

§ 3 The case of sl,

3.1 From gl, to sl,,. In this section, we consider g = sl,, and G = SL,,. The con-
structions and results of §2 about gl,, essentially duplicate into the like for sl,, , up to minor
details. In this section we shall draw these results, shortly explaining the changes in order.

First, the ideal generated by (L, —1) in U;(gl,,) is a Hopf ideal: then we define U(sl,)
as the quotient Hopf k(g)-algebra U;(sl,,) := U;(g[n)/(Ln — 1) . With like notation (see
§2.3) for generators of U/(gl,) and their images in U;(sl,), we define UJ(sl,) as the
k(q)-subalgebra of U (sl,,) generated by {Fj, KE Ei}z‘:1 .5 this is also the image of
Ug(gl,,) when mapping U (gl,,) onto U (sl,). In this setting, U (b, ), resp. U;(b_), is the
k(g)-subalgebra of U, (sl,) generated by {Liﬂ’Ei}z‘:L..,,nq’ resp. {Fi’L’Ztl}izl,...,nfl’
whereas U2(by ), resp. UZ(b_), instead is the k(q)-subalgebra of UZ(sl,) generated by
.1 - All these are Hopf subalgebras of U (sl,)

..........
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and Uf(s[n), and Hopf algebra quotients of the similar quantum Borel algebras for gl,, .
In this context, we can repeat step by step the construction made for gl,, , up to minimal
details (namely, taking into account everywhere the relation L, = 1); in particular, in
quantum function algebras the additional relation ¢; 1t22---¢,, = 1 has to be taken
into account. Otherwise, the results for the sl,, case can be immediately argued from the
corresponding results for gl, . The first of these results — analogue to Theorem 2.5 — is

Theorem 3.2. (“short” FRT-like presentation of U;(sl,) )

U, (slyn) is the quotient algebra of Uj(gl,,) modulo the two-sided ideal I generated by
<H?:1 Bii — 1) (or by <H;-L:1 Vi — 1) , which gives the same). Moreover, I is a Hopf
ideal of Uj(gl,,), therefore U (sl,) inherits from U;(gl,) a structure of quotient Hopf
algebra, given by formulas like in Theorem 2.5 (with the obvious, additional simplifica-
tions). In particular, U/ (sl,) has the same presentation as U;(gl,,) in Theorem 2.5 plus
the additional relation B11 P22 Bpn =1, or yi,1Y22 - Ynn=1. 0O

3.3 Quantum root vectors, L—operators and new generators for U 4 (8ln)-
Definitions imply that the Hopf algebra epimorphism U;(gl,) — U,(sl,) maps any
quantum root vector — say E; ; or F;; — in U/ (gl,,) onto a corresponding quantum root
vector in U/(sl,), for which we use the like notation. A similar result clearly holds for
each L-operator — in U;(gl,,) — too, whose image in U (sl,,) we still denote by the same
symbol. The discussion in §§2.7-9 can then be repeated wverbatim, in particular formulas
(2.3) through (2.11) hold true within U/ (sl,) as well. The outcome then is the analogue
of Theorem 2.9 — which can also be deduced directly from the latter, since U 4 (gl,,) maps

onto (N]; (sl,) — and its immediate corollary, namely

Theorem 3.4. (FRT-like presentation of [7; (sly) )
ﬁqp(sln) s the unital k[q,q_l}falgebm with generators the entries of the triangular

matrices B := (ﬁ”)n and I' := (%-j)?jzl and relations (notations as in Theorem 2.9)

2,7=1
RByBy = Bi B2 R, RILI, = NG R (3.1)
R I'? BY = BYTPR® | Ds-D, =1 = D, -Dg (3.2)
det(Dg) = 1 = det(D.) (3.3)

The first (compact) relation in (2.13) above is equivalent to

S @ik (e, 1) (ROP 7 B;)(I®ek,k) = 3 ¢% (e;;01) (BE ry ROP)(I®68,S) (3.4)

i,k=1 7,8s=1

and in expanded form it is equivalent to the set of relations (for all i,k,j,s=1,...,n)

0" ik Bis + 0isj (0 —q71) @0 ik Bis =

_ ‘ (3.5)
= ¢ BisYik + Ossk (0 —q7) @ 70 By ki
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Furthermore, ﬁ;(sln) has the unique Hopf algebra structure given by

AX) = X®X, «X) =1, S(X)=XxX"1 VXe{BI}. O (36)

Corollary 3.5. The Poisson-Hopf k-algebra (71”(5[”) s the polynomial algebra in the

vartables {B’L:J}ISZSJSn U {73,71}1§2§j§n

Y1122 Vnn =1, Bmﬁz‘,li =1 (forall i=1,...n), Hopf structure given by

modulo the relations 3171 3272 X Bnn =1,

—1

AX)=X6X, «X)=1, 8(X)=X v X e{B,T}

(with B and I' as in Theorem 3.4) and with the unique Poisson structure such that

{ZTin Tie} = TinTiv, {Thj T} =7n;Tej, {Tan.Tee}=0 (h<l)

L . ) T o . , (3.7)
{a:i,j,xh,k}:o (i<h,j>k), {xi,j,xh,k}:2xi,kxhyj (i<h,j<k)

with either all x, ,’s being Bpq’s (and Bpq :=0 for all p > q ) or all x,,’s being v, 4’s (and
Ypq =0 forall p<gq), and

{Bj,s 771',]43} = (517] - 5’6,5) : Bj,s ﬁi,k + 2 57,>_7 : 7]716 B'L’,s — 2 (55>]€ . Bj,k 71-,5 . (38)

In particular UF(sl,) = F|[(SLy):] as Poisson Hopf algebras, where (SLy)% is the alge-
braic group of pairs of matrices (F, B) where I', resp. B, is a lower, resp. upper, triangular
matriz with determinant equal to 1, and the diagonals of I' and B are inverse to each other,

with the Poisson structure dual to the Lie bialgebra of sl,, . U

3.7 The quantum Frobenius morphisms F[(SL,)%] = Ur(sl,) —— UX(sl,).
Once again, for quantum Frobenius morphisms one can repeat wverbatim the discussion
made for Ug(gl,) for the case of Uj(sl,) as well, via minimal changes where needed.
Otherwise, the results in the gl,, case induce similar results in the sl,, case via the defining
epimorphism U (gl,,) — U;(sl,) . Indeed, the latter is clearly compatible (in the obvious
sense) with specializations at roots of 1; therefore, the specializations of the epimorphism
itself yield the following commutative diagram

F[(GLy):] = Uf(gl,) — UX(gl,)

l l

F[(SLn)t] = Uf(sl,) —— UZ(sly)

(for € any root of 1) in which the vertical arrows are the above mentioned specialized
epimorphisms and the horizontal ones are the quantum Frobenius (mono)morphisms.
This yields at once the following analogue of Theorem 2.12:
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Theorem 3.8. The quantum Frobenius morphism F[(SLy,)%] = Ul(sly,) — UF(sl,)
is given by B;; — ﬁifj » Vi 'yjfi , forall i <j5. O
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