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PRESENTATION BY BOREL SUBALGEBRAS AND CHEVALLEY

GENERATORS FOR QUANTUM ENVELOPING ALGEBRAS

Fabio Gavarini

Università degli Studi di Roma “Tor Vergata” — Dipartimento di Matematica
Via della Ricerca Scientifica 1, I-00133 Roma — ITALY

Abstract. We provide an alternative approach to the Faddeev-Reshetikhin-Takhtajan pre-
sentation of the quantum group Uq(g), with L–operators as generators and relations ruled by

an R–matrix. We look at Uq(g) as being generated by the quantum Borel subalgebras Uq(b+)
and Uq(b−), and use the standard presentation of the latters as quantum function algebras.
When g = gln these Borel quantum function algebras are generated by the entries of a trian-
gular q–matrix, thus eventually Uq(gln) is generated by the entries of an upper triangular and

a lower triangular q–matrix, which share the same diagonal. The same elements generate over
k
[
q, q−1

]
the unrestricted k

[
q, q−1

]
–integer form of Uq(gln) of De Concini and Procesi, which

we present explicitly, together with a neat description of the associated quantum Frobenius
morphisms at roots of 1. All this holds, mutatis mutandis, for g = sln too.

Introduction

Let g be a semisimple Lie algebra over a field k . Classically, it has two standard

presentations: Serre’s one, which uses a minimal set of generators, and Chevalley’s one,

using a linear basis as generating set. If g instead is reductive a presentation is obtained by

that of its semisimple quotient by adding the center. When g = gln , Chevalley’s generators

are the elementary matrices, and Serre’s ones form a distinguished subset of them; the

general case of any classical matrix Lie algebra g is a slight variation on this theme. Finally,

both presentations yield also presentations of U(g), the universal enveloping algebra of g .

At the quantum level, one has correspondingly a Serre-like and a Chevalley-like presen-

tation of Uq(g), the quantized universal enveloping algebra associated to g after Jimbo and

Lusztig (i.e. defined over the field k(q), where q is an indeterminate). The first presentation

is used by Jimbo (cf. [Ji1]) and Lusztig (see [Lu2]) and, mutatis mutandis, by Drinfeld too;
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in this case the generators are q–analogues of the Serre’s generators, and starting from them

one builds quantum root vectors via two different methods: iterated quantum brackets, as

in [Ji2] — and maybe others — or braid group action, like in [Lu2]; see [Ga2] for a com-

parison between these two methods. The second presentation was introduced by Faddeev,

Reshetikhin and Takhtajan (in [FRT]): the generators in this case, called L–operators, are

q–analogues of the classical Chevalley generators; in particular, they are quantum root

vectors themselves. An explicit comparison between quantum Serre-like generators and

L–operators appears in [FRT], §2, for the cases of classical g ; on the other hand, in [No],

§1.2, a similar comparison is made for g = gln between L–operators and quantum root

vectors (for any root) built out of Serre’s generators.

The first purpose of this note is to provide an alternative approach to the FRT presen-

tation of Uq(g) : it amounts to a series of elementary steps, yet the final outcome seems

noteworthy. As a second, deeper result, we give an explicit presentation of the k
[
q, q−1

]
–

subalgebra of Uq(g) generated by L–operators, call it Ũq(g) . By construction, this is

nothing but the unrestricted k
[
q, q−1

]
–integer form of Uq(g) , defined by De Concini and

Procesi (see [DP]), whose semiclassical limit is Ũq(g)
/
(q−1) Ũq(g) ∼= F

[
G∗] , where G∗

is a connected Poisson algebraic group dual to g (cf. [DP], [Ga1] and [Ga3], §7.3 and §7.9):
our explicit presentation of Ũq(g) yields another, independent (and much easier) proof of

this fact. Third, by [DP] we know that quantum Frobenius morphisms exist, which em-

bed F
[
G∗] into the specializations of Ũq(g) at roots of 1: then our presentation of Ũq(g)

provides an explicit description of them.

This analysis shows that the two presentations of Uq(g) correspond to different behaviors

w.r.t. to specializations. Indeed, let Ûq(g) be the k
[
q, q−1

]
–algebra given by Jimbo-Lusztig

presentation over k
[
q, q−1

]
. Its specialization at q = 1 is Ûq(g)

/
(q−1) Ûq(g) ∼= U(g)

(up to technicalities), with g inheriting a Lie bialgebra structure (see [Ji1], [Lu2], [DL]). On

the other hand, the integer form Ũq(g) mentioned above specializes to F
[
G∗] , the Poisson

structure on G∗ being exactly the one dual to the Lie bialgebra structure on g . So the

existence of two different presentations of Uq(g) reflects the deep fact that Uq(g) provides,

taking suitable integer forms, quantizations of two different semiclassical objects (this is a

general fact, see [Ga3–4]). To the author’s knowledge, this was not known so far, as the

FRT presentation of Uq(g) was never used to study the integer form Ũq(g) .

Let’s sketch in short the path we follow. First, we note that Uq(g) is generated by

the quantum Borel subgroups Uq(b−) and Uq(b+) (where b− and b+ are opposite Borel

subalgebras of g), which share a common copy of the quantum Cartan subgroup Uq(t) .

Second, there exist Hopf algebra isomorphisms Uq(b−) ∼= Fq

[
B−

]
and Uq(b+) ∼= Fq

[
B+

]
,

where Fq

[
B−

]
and Fq

[
B+

]
are the quantum function algebras associated to b− and b+

respectively. Third, when g is classical we resume the explicit presentation by generators

and relations of Fq

[
B−

]
and Fq

[
B+

]
, as given in [FRT], §1. Fourth, from the above we
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argue a presentation of Uq(g) where the generators are those of Fq

[
B−

]
and Fq

[
B+

]
, the

toral ones being taken only once, and relations are those of these quantum function algebras

plus some additional relations between generators of opposite quantum Borel subgroups.

We perform this last step in full detail for g = gln and, with slight changes, for g = sln

as well. Fifth, we refine the last step to provide a presentation of Ũq(g) .

As an application, our results apply also (with few changes) to the Drinfeld-like quan-

tum groups U~(g) : in particular we get a presentation of an ~–deformation of F [G∗] ,

say Ũ~(g) =: F~[G
∗] . An explicit gauge equivalence between this F~[G

∗] and the ~–
deformation provided by Kontsevitch’ recipe is given in [FG].
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§ 1 The general case

1.1 Quantized universal enveloping algebras. Let k be a fixed field of zero char-

acteristic, let q be an indeterminate, and let g be a semisimple Lie algebra over k . Let

Uq(g) be the quantum group à la Jimbo-Lusztig defined over k(q) : we define it after the

conventions in [DP], or [DL], or [Ga1] (for φ = 0 ). Actually, we can define a quantum

group like that for each latticeM between the root lattice Q and the weight lattice of P of

g , thus we shall write UM
q (g) . Roughly, UM

q (g) is the unital k(q)–algebra with generators

Fi , Λ
±1
i , Ei for i = 1, . . . , r =: rank (g) and relations as in [DP], [Ga1], which depend

on the Cartan datum of g and on the choice of the lattice M ; in particular, the Λi’s are

“toral” generators, roughly q–exponentials of the elements of a Z–basis of M . Here we

only recall the relation

EiFj − FjEi = δij
Ki −K−1

i

q − q−1
∀ i, j = 1, . . . , r (1.1)

where Ki is a q–analogue of the coroot corresponding to the i-th node of the Dynkin

diagram of g (in fact, it is a suitable product of Λ±1
k ’s). Also, we consider on UM

q (g) the

Hopf algebra structure given in [DP] or [Ga1].

The quantum Borel subalgebra UM
q (b+) is simply the unital k(q)–subalgebra of UM

q (g)

generated by Λ±1
1 , . . . , Λ±1

r , E1 , . . . , Er , and UM
q (b−) the one generated by F1 , . . . ,

Fr , Λ
±1
1 , . . . , Λ±1

r . In fact, both of these are Hopf k(q)–subalgebras of UM
q (g) . It follows

that UM
q (g) is generated by UM

q (b+) and U
M
q (b−) , and every possible commutation relation

between these two subalgebras is a consequence of (1.1) and the commutation relations be-

tween the Λ±1
i ’s and the Fj ’s or the Ej ’s. Finally, we call U

M
q (t) the unital k(q)–subalgebra

of UM
q (g) (and of UM

q (b±) ) generated by all the Λi’s (i = 1, . . . , n), which also is a Hopf

subalgebra.



4 FABIO GAVARINI

Mapping Fi 7→ Ei , Λ
±1
i 7→ Λ∓1

i and Ei 7→ Fi (for all i = 1, . . . , n ) uniquely defines an

algebra automorphism and coalgebra antiautomorphism of UM
q (g), that is a Hopf algebra

isomorphism Θ : UM
q (g)

∼=
↪−−� UM

q (g)
op

, where hereafter given any Hopf algebra H we de-

note byHop the same Hopf algebra asH but for taking the opposite coproduct. Restricting

Θ to quantum Borel subalgebras gives Hopf algebra isomorphisms UM
q (b±)

∼= UM
q (b∓)

op .

1.2 Quantum function algebras. LetM be a lattice between Q and P as in §1.1, and
define M ′ :=

{
ψ ∈ P

∣∣ ⟨ψ, µ⟩ ∈ Z , ∀µ ∈ Z
}

where ⟨ , ⟩ is the Q–valued scalar product on

P induced by scalar extension from the natural Z–valued pairing between Q and P . Such

M ′ is again a lattice, said to be dual to M . Conversely, M is dual to M ′, i.e. M =M ′′ .

We define quantum function algebras after Lusztig. To start with, lettingM andM ′ be

mutually dual lattices as above, we define FM′
q

[
G
]
as the unital k(q)–algebra of all matrix

coefficients of finite dimensional UM
q (g)–modules which have a basis of eigenvectors for

all the Λi’s (i = 1, . . . , n) with eigenvalues powers of q . Starting from UM
q (b+) or U

M
q (b−)

instead of UM
q (g) the same recipe defines the Borel quantum function algebras FM′

q

[
B+

]
and

FM′
q

[
B−

]
respectively. All these quantum function algebras are in fact Hopf algebras too.

Finally, the Hopf algebra monomorphisms j± : UM
q (b±) ↪−→ UM

q (g) induce Hopf algebra

epimorphisms π± : FM′
q

[
G
]
−−� FM′

q

[
B±

]
. See [DL] and [Ga1] for details.

1.3 Isomorphisms between QUEA’s and QFA’s over Borel subgroups. Let M

and M ′ be mutually dual lattices as in §1.2. According to Tanisaki (cf. [Ta]) there exist

perfect (i.e. non degenerate) Hopf pairings UM
q (b+)

op⊗ UM′
q (b−) −→ k(q) , UM

q (b−)
op⊗

UM′
q (b+) −→ k(q) ; this implies UM

q (b+)
op ∼= FM

q

[
B−

]
and UM

q (b−)
op ∼= FM

q

[
B+

]
. Com-

posing the latters with the isomorphisms UM
q (b+)

∼= UM
q (b−)

op and UM
q (b−)

∼= UM
q (b+)

op

in §1.1 it follows that UM
q (b+)

∼= FM
q

[
B+

]
and UM

q (b−)
∼= FM

q

[
B−

]
as Hopf k(q)–algebras.

1.4 Generation of UM
q (g) by quantum function algebras. We said in §1.1 that

UM
q (g) is generated by UM

q (b−) and U
M
q (b+), whose mutual commutation is a consequence

of (1.1). In particular, we have a k(q)–vector space isomorphism UM
q (g) =

(
UM
q (b−) ⊗

UM
q (b+)

)/
J , where J is the two-sided ideal of UM

q (b−)⊗UM
q (b+) — with the standard ten-

sor product structure — generated by
(
{Kµ ⊗ 1− 1⊗Kµ}µ∈M

)
, while the multiplication

is a consequence of the internal commutation rules of UM
q (b±) and by (1.1). Now, thanks to

the isomorphisms in §1.3, we describe UM
q (g) as being generated by FM

q

[
B−

]
and FM

q

[
B+

]
,

with mutual commutation being a consequence of the commutation formulas corresponding

to (1.1) under those isomorphisms. So we have a k(q)–vector space isomorphism UM
q (g)

∼=(
FM
q

[
B−

]
⊗FM

q

[
B+

])/
I , where I is the ideal of FM

q

[
B−

]
⊗ FM

q

[
B+

]
corresponding to J ,

while commutation rules are the internal ones of FM
q

[
B±

]
and those corresponding to (1.1).

1.5 Relation with L–operators. Tracking carefully the construction of UM
q (g) pro-

posed in §1.4 above one realizes that this is just an alternative way to introduce UM
q (g) via
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L–operators as made in [FRT]. Such a comparison is essentially the meaning — or a possi-

ble interpretation — of the analysis carried on in [Mo]. Moreover, the latter analysis also

shows that L–operators in [FRT] do correspond to suitable matrix coefficients in FM
q

[
B−

]
and FM

q

[
B+

]
(embedded inside FM

q

[
G
]
); such matrix coefficients then correspond to quan-

tum root vectors in UM
q (b+)

op
and UM

q (b−)
op

via the isomorphisms FM
q

[
B−

] ∼= UM
q (b+)

op

and FM
q

[
B+

] ∼= UM
q (b−)

op
in §1.3, and finally to quantum root vectors in UM

q (b−) and

UM
q (b+) via the isomorphisms UM

q (b+)
op ∼= UM

q (b−) and UM
q (b−)

op ∼= UM
q (b+) in §1.1.

1.6 Integer k
[
q, q−1

]
–forms, specializations, quantum Frobenius morphisms.

In order to look at “specializations of a quantum group at special values of the parameter

q ”, one needs the given quantum group to be defined over a subring of k(q) whose elements

are regular, i.e. have no poles, at such special values. As it is typical, we choose as ground

ring the Laurent polynomial ring k
[
q, q−1

]
. Then instead of UM

q (g) we must consider integer

forms of UM
q (g) over k

[
q, q−1

]
, i.e. Hopf k

[
q, q−1

]
–subalgebras of UM

q (g) which give back all

of UM
q (g) by scalar extension from k

[
q, q−1

]
to k(q): if U M

q (g) is such a k
[
q, q−1

]
–form, its

specialization at q = c ∈ k is the quotient Hopf k–algebra U
M

c (g) := U
M

q (g)
/
(q−c)U M

q (g) .

There are essentially two main types of k
[
q, q−1

]
–integer forms: one is ÛM

q (g) (the quan-

tum analogue of Kostant’s Z–integer form of g ) introduced by Lusztig in [Lu1], generated

by q–binomial coefficients and q–divided powers); the second one is ŨM
q (g) , introduced by

De Concini and Procesi in [DP], generated by rescaled quantum root vectors; see [Ga1]

for details. When q is specialized to any value in k which is not a root of 1, the choice of

either of these two integer forms is irrelevant, because the corresponding specialized Hopf

k–algebras are mutually isomorphic. If instead q is specialized to ε ∈ k which is a root of

1, then the specialized algebra changes according to the choice of integer form.

Indeed, the behavior of ÛM
q (g) and ŨM

q (g) w.r.t. specializations at roots of 1 is pretty

different, even opposite. In particular, one has semiclassical limits ÛM
1 (g)

∼= U(g) , the

universal enveloping algebra of g , and ŨM
1 (g)

∼= F
[
G∗

M

]
, the regular function algebra of

G∗
M , where G∗

M is a connected Poisson algebraic group with fundamental group isomorphic

to P
/
M and dual to g , the latter endowed with a structure of Lie bialgebra, inherited

from ÛM
q (g) . Moreover, specializations of an integer form of either type at a root of 1, say

ε ∈ k , are linked to its semiclassical limit by the so-called quantum Frobenius morphisms

ÛM

ε (g) −−−� ÛM

1 (g)
∼= U(g) , F

[
G∗

M

] ∼= ŨM

1 (g) ↪−−−→ ŨM

ε (g) . (1.2)

Such a situation occurs exactly the same — mutatis mutandis — for the quantum Borel

subalgebras UM
q (b−) and UM

q (b+) . In short, one has two types of k
[
q, q−1

]
–integer forms

ÛM
q (b±) and Ũ

M
q (b±), and quantum Frobenius morphisms

ÛM

ε (b±) −−−� ÛM

1 (b±)
∼= U(b±) , F

[
B∗

±
] ∼= ŨM

1 (b±) ↪−−−→ ŨM

ε (b±) . (1.3)
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By construction, ÛM
q (g) is generated by ÛM

q (b+) and Û
M
q (b−), and similarly ŨM

q (g) is gener-

ated by ŨM
q (b+) and Ũ

M
q (b−). It follows that the morphisms in (1.3) can also be obtained

from (1.2) by restriction to quantum Borel subalgebras; conversely, the quantum Frobenius

morphisms in (1.2) are uniquely determined — and described — by those in (1.3).

By duality, the like happens also for quantum function algebras: in particular, there

exist two k
[
q, q−1

]
–integer forms F̂M

q

[
G
]
and F̃M

q

[
G
]
of FM

q

[
G
]
, which are dual respectively

to ÛM
q (g) and Ũ

M
q (g) in Hopf theoretical sense, for which the dual of (1.2) holds, namely

F
[
G
] ∼= F̂M

1

[
G
]
↪−−−→ F̂M

ε

[
G
]

, F̃M

ε

[
G
]
−−−� F̃M

1

[
G
] ∼= U(g∗) . (1.4)

Similarly, the dual of (1.3) holds for quantum function algebras of Borel subgroups, namely

F
[
B±

] ∼= F̂M

1

[
B±

]
↪−−−→ F̂M

ε

[
B±

]
, F̃M

ε

[
B±

]
−−−� F̃M

1

[
B±

] ∼= U(b∗±) , (1.5)

which follow from (1.4) via the maps FM
q

[
G
] π±
−−�FM

q

[
B±

]
in §1.2. See [Ga1] for details.

The point we want to stress now is the relation between the isomorphisms of Hopf

k(q)–algebras UM
q (b+)

∼= FM
q

[
B+

]
and UM

q (b−)
∼= FM

q

[
B−

]
in §1.3 and the k

[
q, q−1

]
–

integer forms on both sides. The key fact is that the previous isomorphisms restrict to

isomorphisms of Hopf k
[
q, q−1

]
–algebras ÛM

q (b±)
∼= F̃M

q

[
B±

]
and ŨM

q (b±)
∼= F̂M

q

[
B±

]
.

Therefore, looking at UM
q (g) as generated by FM

q

[
B−

]
and FM

q

[
B+

]
as explained in §1.4 one

argues that the first, resp. the second, quantum Frobenius morphisms in (1.2) are uniquely

determined (and described) by the second ones, resp. the first ones, in (1.5).

§ 2 The case of gln

2.1 q–matrices. Let
{
tij

∣∣ i, j = 1, . . . , n
}

be a set of elements in any k(q)–algebra
A , ideally displayed inside an (n × n)–matrix they are the entries of. We’ll say that

T :=
(
tij

)
i,j=1,...,n

is a q–matrix if the tij ’s enjoy the following relations

tij tik = q tik tij , tik thk = q thk tik ∀ j < k , i < h ,

til tjk = tjk til , tik tjl − tjl tik =
(
q − q−1

)
til tjk ∀ i < j , k < l .

in the algebra A. In this case, the so-called “quantum determinant”, defined as

detq

((
tk,ℓ

)
k,ℓ=1,...,n

)
:=

∑
σ∈Sn

(−q)l(σ)t1,σ(1) t2,σ(2) · · · tn,σ(n)

commutes with all the ti,j ’s. If in addition A is a k(q)–bialgebra, we shall also require that

∆(tij) =
n∑

k=1

tik ⊗ tkj , ϵ(tij) = δij ∀ i, j = 1, . . . , n .
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In this case, the quantum determinant is group-like, that is ∆(detq) = detq ⊗ detq and

ϵ(detq) = 1 . Finally, if A is a Hopf algebra we call Hopf q–matrix any q–matrix like above

whose entries are such that detq is invertible in A ; then S
(
det±1

q

)
= det∓1

q .

For later use we also recall the following compact notation. Let T1 := T ⊗ I , T2 :=

I ⊗ T ∈ A ⊗ Matn
(
k(q)

)⊗2 ∼= A ⊗ Matn2

(
k(q)

)
, where I is the identity matrix, and

T :=
(
tij

)
i,j=1,...,n

is thought of as an element of Matn
(
A
) ∼= A⊗Matn

(
k(q)

)
; consider

R :=
∑n

i,j=1 q
δij eii ⊗ ejj +

(
q − q−1

)∑
1≤i<j≤n eij ⊗ eji ∈ Matn2

(
k(q)

)
where eij :=

(
δih δjk

)n
h,k=1

is the (i, j)–th elementary matrix. Then T is a q–matrix if and

only if the identity RT2 T1 = T1 T2R holds true in A⊗Matn2

(
k(q)

)
; in detail, for the ma-

trix entry in position
(
(i, j), (kl)

)
this reads

n∑
m,p=1

Rij,mp tpk tml =
n∑

m,p=1
tim tjp Rmp,kl .

In the bialgebra case T is a q–matrix if in addition ∆(T ) = T ⊗̇T , ϵ(T ) = I , and in the

Hopf algebra case also T S(T ) = I = S(T )T , i.e. S(T ) = T−1 ; see [FRT] and [No] for

notations — we use assumptions and normalizations of the latter — and further details.

2.2 Presentation of F P
q

[
G
]
, F P

q

[
B−

]
and F P

q

[
B+

]
for G = GLn . Let’s look at

G = GLn . After [APW], Appendix, we know that F P
q

[
GLn

]
has the following presenta-

tion: it is the unital associative k(q)–algebra with generators the elements of
{
tij

∣∣ i, j =
1, . . . , n

}∪{
det−1

q

}
and relations encoded by the requirement that

(
ti,j

)
i,j=1,...,n

be a

q–matrix; in particular, det±1
q belongs to the centre of F P

q

[
GLn

]
. Moreover, F P

q

[
GLn

]
has

the unique Hopf algebra structure such that
(
ti,j

)
i,j=1,...,n

be a Hopf q–matrix.

Similarly, F P
q

[
B−

]
and F P

q

[
B+

]
are defined in the same way but with the additional

relations ti,j = 0 (i, j = 1, . . . , n; i > j) for F P
q

[
B−

]
and ti,j = 0 (i, j = 1, . . . , n; i < j)

for F P
q

[
B+

]
. Otherwise, we can say that F P

q

[
B−

]
, respectively F P

q

[
B+

]
, is generated by

the entries of the q–matrix


t1,1 0 · · · 0 0
t2,1 t2,2 · · · 0 0
...

...
...

...
...

tn−1,1 tn−1,2 · · · tn−1,n−1 0
tn,1 tn,2 · · · tn,n−1 tn,n

 , resp.


t1,1 t1,2 · · · t1,n−1 t1,n
0 t2,2 · · · t2,n−1 t2,n
...

...
...

...
...

0 0 · · · tn−1,n−1 tn−1,n

0 0 · · · 0 tn,n


and by the additional element

(
t1,1 t2,2 · · · tn,n

)−1
. Moreover, both F P

q

[
B−

]
and F P

q

[
B+

]
are Hopf algebras, the Hopf structure being given by the assumption that their generating

matrices be Hopf q–matrices. See also [PW] for all these definitions.

By the very definitions, the Hopf algebra epimorphisms π+ : F P
q

[
GLn

]
−−� F P

q

[
B+

]
and π− : F P

q

[
GLn

]
−−� F P

q

[
B−

]
mentioned in §1.2 are given by π+ : tij 7→ tij (i ≤ j) ,

tij 7→ 0 (i > j) and π− : tij 7→ tij (i ≥ j) , tij 7→ 0 (i < j) respectively.
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2.3. The quantum algebras UM
q (g), U

M
q (b−) and U

M
q (b+) for g = gln , M ∈ {P,Q} .

We recall (cf. for instance [GL]) the definition of the quantized universal enveloping algebra

UP
q (gln): it is the associative algebra with 1 over k(q) with generators

F1 , F2 , . . . , Fn−1 , G
±1
1 , G±1

2 , . . . , G±1
n−1 , G

±1
n , E1 , E2 , . . . , En−1

and relations

GiG
−1
i = 1 = G−1

i Gi , G±1
i G±1

j = G±1
j G±1

i ∀ i, j

GiFjG
−1
i = qδi,j+1−δi,jFj , GiEjG

−1
i = qδi,j−δi,j+1Ej ∀ i, j

EiFj − FjEi = δi,j
GiG

−1
i+1 −G−1

i Gi+1

q − q−1
∀ i, j

EiEj = EjEi , FiFj = FjFi ∀ i, j : |i− j| > 1

E2
i Ej − [2]qEiEjEi + EjE

2
i = 0 , F 2

i Fj − [2]qFiFjFi + FjF
2
i = 0 ∀ i, j : |i− j| = 1

with [2]q := q + q−1 . Moreover, UP
q (gln) has a Hopf algebra structure given by

∆ (Fi) = Fi ⊗G−1
i Gi+1 + 1⊗ Fi , S (Fi) = −FiGiG

−1
i+1 , ϵ (Fi) = 0 ∀ i

∆
(
G±1

i

)
= G±1

i ⊗G±1
i , S

(
G±1

i

)
= G∓1

i , ϵ
(
G±1

i

)
= 1 ∀ i

∆(Ei) = Ei ⊗ 1 +GiG
−1
i+1 ⊗ Ei , S (Ei) = −G−1

i Gi+1Ei , ϵ (Ei) = 0 ∀ i .

The algebra UQ
q (gln) — defined as in [Ga1], §3 — can be realized as a Hopf subalgebra.

Namely, define Li := G1G2 · · ·Gi , Kj := GjG
−1
j+1 for all i = 1, . . . , n , j = 1, . . . , n− 1 .

Then UQ
q (gln) is the k(q)–subalgebra of UP

q (gln) generated by
{
F1, . . . , Fn−1,K

±1
1 , . . . ,

K±1
n−1, L

±1
n , E1, . . . , En−1

}
. The quantum Borel subalgebra UP

q (b+), resp. U
P
q (b−), is the

subalgebra of UP
q (gln) generated by

{
G±1

1 , . . . , G±1
n

}
∪
{
E1, . . . , En−1

}
, resp. by

{
G±1

1 , . . . ,

G±1
n

}
∪
{
F1, . . . , Fn−1

}
. Similar definitions hold for UQ

q (b±), but with the set
{
K±1

1 , . . . ,

K±1
n−1, L

±1
n

}
instead of

{
G±1

1 , . . . , G±1
n

}
. All these are in fact Hopf subalgebras.

2.4. The Hopf isomorphisms ζ−:U
P
q (b−)

∼= F P
q

[
B−

]
, ζ+:U

P
q (b+)

∼= F P
q

[
B+

]
. The

Hopf algebra isomorphisms of §1.3 are given explicitly by ( i = 1, . . . , n; j = 1, . . . , n− 1 )

ζ− : UP

q (b−)
∼=−−→F P

q

[
B−

]
, G±1

i 7→ t ∓1
i,i , Fj 7→ +

(
q − q−1

)−1
t −1
j+1,j+1 tj+1,j

ζ+ : UP

q (b+)
∼=−−→F P

q

[
B+

]
, G±1

i 7→ t ±1
i,i , Ej 7→ −

(
q − q−1

)−1
tj,j+1 t

−1
j+1,j+1

and their inverse are uniquely determined by

ζ −1
− : F P

q

[
B−

] ∼=−−→UP

q (b−) , t ±1
i,i 7→ G∓1

i , tj+1,j 7→ +
(
q − q−1

)
G −1

j+1 Fj

ζ −1
+ : F P

q

[
B+

] ∼=−−→UP

q (b+) , t ±1
i,i 7→ G±1

i , tj,j+1 7→ −
(
q − q−1

)
Ej G

+1
j+1 .

A straightforward computation shows that all the above are isomorphisms as claimed.
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Theorem 2.5. (“short” FRT-like presentation of UP
q (gln) )

UP
q (gln) is the unital associative k(q)–algebra with generators the elements of the set{

βi,j
}
1≤i≤j≤n

∪ {
γj,i

}
1≤i≤j≤n

and relations

βi,i+1 γj+1,j − γj+1,j βi,i+1 =
(
δi,j+1

(
1− q−1

)
+ δi,j−1 (1− q)

)
βi,i+1 γj+1,j −

− δij
(
q − q−1

)(
αi α

−1
i+1 − α−1

i αi+1

) (2.1)

βk,k γk,k = 1 (2.2)

(for all i, j = 1, . . . , n−1 , k = 1, . . . , n ) plus the relations encoded in the requirement that

the triangular matrices B :=
(
βij

)n
i,j=1

and Γ :=
(
γij

)n
i,j=1

be q–matrices. Moreover,

this algebra has the unique Hopf algebra structure such that these are Hopf q–matrices.

Proof. This follows directly from §1.4 and the isomorphisms in §2.4. Indeed, in the given

presentation the βh,k’s generate a copy of F P
q

[
B+

]
, with βh,k ∼= th,k , isomorphic to UP

q (b+)

via §2.4; similarly, the γr,s’s generate a copy of F P
q

[
B−

]
, with γr,s ∼= tr,s , isomorphic to

UP
q (b−). The additional set of “mixed” relations (2.1) involving simultaneously the βi,i+1’s

and the γj+1,j ’s then correspond to the set of relations (1.1) — or to the third line of the

set of relations in §2.3 — via the isomorphisms ζ± of §2.4; indeed, these isomorphisms give

βi,i+1
∼= −

(
q − q−1

)
EiG

+1
i+1 , βk,k

∼= Gk , and γj+1,j
∼= +

(
q − q−1

)
G −1

j+1 Fj , γk,k ∼= G−1
k ,

whence computing −
(
q−q−1

)2 [
EiG

+1
i+1 , G

−1
j+1 Fj

]
in UP

q (gln) we get formula (2.1). As to

the Hopf structure, it is determined by that of the Hopf subalgebras UP
q (b+) and U

P
q (b−):

thus the claim follows from the previous discussion. �

2.6 Remark: note that any other commutation relation between a generator βh,k

(h < k) and a generator γr,s (r > s) can be deduced from the ones between the βi,i+1’s

and the γj+1,j ’s using repeatedly the relations

βi,j =
(
q − q−1

)−1 (
βi,k βk,j − βk,j βi,k

)
β −1
k,k ( ∀ i < k < j )

which spring out of the relations βi,k βk,j − βk,j βi,k =
(
q−q−1

)
βk,k βi,j for the q–matrix

B , and the relations

γj,i =
(
q − q−1

)−1 (
γk,i γj,k − γj,k γk,i

)
γ +1
k,k ( ∀ j > k > i )

which arise from the relations γk,i γj,k − γj,k γk,i =
(
q−q−1

)
γk,k γj,i for the q–matrix Γ .

2.7 Quantum root vectors and L–operators. In this subsection we describe the

generators of UP
q (gln) considered in Theorem 2.5 in terms of generators of the Faddeev-

Reshetikhin-Takhtajan (FRT in short) presentation, the so-called L–operators, — in [FRT].
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Our comparison “factors through” that with quantum root vectors built upon the Jimbo-

Lusztig generators given in §2.3. For any x, y, a, let [w, y]a := x y − a y x . Define

E±
i,i+1 := Ei , E±

i,j :=
[
E±

i,k , E
±
k,j

]
q±1 ∀ i < k < j

F±
i+1,i := Fi , F±

j,i :=
[
F±
j,k , F

±
k,i

]
q∓1 ∀ j > k > i

as in [Ji]: all these are quantum root vectors, in that in the semiclassical limit at q = 1 they

specialize to root vectors for gln , namely the elementary matrices eij with i ̸= j . As a mat-

ter of notation, set also Ė±
i,j :=

(
q − q−1

)
E±

i,j and Ḟ±
j,i :=

(
q − q−1

)
F±
j,i for all i < j .

For the L–operators, introduced in [FRT], we recall from [No], §1.2, the formulas

L+
ii := G+1

i , L+
ij := +G+1

i Ḟ+
j,i , L+

j,i := 0 ∀ i < j

L−
ii := G−1

i , L−
ji := −Ė+

i,j G
−1
i , L−

i,j := 0 ∀ i < j
(2.3)

to define them; setting L+ :=
(
L+
ij

)n
i,j=1

and L− :=
(
L−
ij

)n
i,j=1

, the relations

RL+
1 L

+
2 = L+

2 L
+
1 R , RL−

1 L
−
2 = L−

2 L
−
1 R , RL+

1 L
−
2 = L−

2 L
+
1 R (2.4)

express in compact form their mutual commutation properties (with notation as in §2.1).
Indeed, the FRT presentation amounts exactly to claim that UP

q (gln) is the unital associa-

tive k(q)–algebra with generators L±
i,j (for all i, j = 1, . . . , n ) and relations (2.4) and

L+
k,k L

−
k,k = 1 = L−

k,k L
+
k,k ∀ k = 1, . . . , n (2.5)

and it has the unique Hopf algebra structure such that

∆(Lε) = Lε ⊗̇Lε , ϵ(Lε) = I , S(Lε) =
(
Lε

)−1 ∀ ε ∈
{
+ ,−

}
(2.6)

where L+ and L− are the upper or lower triangular matrices whose non-zero entries are

the L+
i,j ’s and the L−

j,i’s respectively, I is the (n× n)–identity matrix and we use standard

compact notation as in [FRT] or [CP].

Now, using the identifications ζ ±1
+ we get identities

βi,i = G+1
i , βi,j = +(−q)j−i

G+1
j Ė−

i,j ∀ i < j . (2.7)

Indeed, the identities βii = G+1
i and βi,j = −q G+1

j Ė−
i,j = − Ė−

i,j G
+1
j for j = i+1 come

out directly from the description of ζ −1
+ and the identifications βi,i ∼= ti,i , βi,i+1

∼= ti,i+1 .

In the other cases the result follows easily by induction on j − i , using the relations

βi,j =
(
q − q−1

)−1 (
βi,k βk,j − βk,j βi,k

)
β −1
k,k (for i < k < j ) given in §2.6.

Formulas (2.7) tell that the βi,j ’s are quantum root vectors too, for positive roots.

Similarly, for negative roots the γj,i’s are involved. Namely, the identifications ζ ±1
− yield

γi,i = G−1
i , γj,i = −(−q)i−j

Ḟ−
j,iG

−1
j ∀ i < j (2.8)



CHEVALLEY GENERATORS FOR QUANTUM ENVELOPING ALGEBRAS 11

which are the analogues of (2.7). Again this is proved by induction on j − i : the cases

j−i ≤ 1 are direct consequence of the description of ζ −1
− and the identifications γi,i ∼= ti,i ,

γi+1,i
∼= ti+1,i , while the inductive step follow easily by means of the relations γj,i =(

q − q−1
)−1 (

γk,i γj,k − γj,k γk,i
)
γ +1
k,k (for j > k > i ) given in §2.6.

In order to compare (2.3) with (2.7) and (2.8) we must be able to compare quantum root

vectors with opposite superscripts. The tool is the unique k(q)–algebra antiautomorphism

Ψ : UP

q (gln)
∼=

↪−−� UP

q (gln) , Ei 7→ Ei , Fi 7→ Fi , G±1
j 7→ G∓1

j ∀ i, j

which is clearly an involution; a straightforward computation shows that

Ψ
(
E±

i,j

)
= (−q)∓(i−j+1)

E∓
i,j , Ψ

(
F±
j,i

)
= (−q)±(i−j+1)

F∓
j,i ∀ i < j . (2.9)

Now comparing (2.3) with (2.7) and (2.8) using (2.9) we get

L+
ij = Ψ

(
γ −1
j,j γj,i γ

+1
i,i

)
, L−

j i = Ψ
(
β +1
i,i βi,j β

−1
j,j

)
∀ i ≤ j , (2.10)

γj,i = Ψ
(
(L+

ii)
−1 L+

ij L
+
jj

)
, βi,j = Ψ

(
L−
jj L

−
ji (L

−
ii)

−1
)

∀ i ≤ j . (2.11)

2.8 Presentation of ŨP
q (g) . Let again G := GLn . It is well known that the k

[
q, q−1

]
–

integer form F̂ P
q

[
G
]
has the same presentation as F P

q

[
G
]
, but over k

[
q, q−1

]
instead of k(q) .

The same holds similarly for F̂ P
q

[
B+

]
and F̂ P

q

[
B−

]
. In addition, F̂ P

q

[
B±

] ∼= ŨP
q (b±) and

ŨP
q (g) is generated by ŨP

q (b+) and ŨP
q (b−). Therefore, the previous analysis implies that

ŨP
q (g) as a k

[
q, q−1

]
–algebra is generated by the entries of the q–matrices B and Γ of

Theorem 2.5. The latter provides explicitly some relations (over k
[
q, q−1

]
, that is inside

ŨP
q (g) itself) among such generators, but these do not form a complete set of relations: the

general mixed ones among βi,j ’s and γr,s’s are missing, as the ones in §2.6 do not make

sense inside ŨP
q (g) . However, since we know the relationship between these generators and

L–operators and we do know all relations among the latter, we can eventually write down a

complete set of relations for the given generators! This leads to the following presentation:

Theorem 2.9. (FRT-like presentation of ŨP
q (gln) )

ŨP
q (gln) is the unital k

[
q, q−1

]
–algebra with generators the entries of the triangular

matrices B :=
(
βij

)n
i,j=1

and Γ :=
(
γij

)n
i,j=1

and relations

RB2B1 = B1B2R , RΓ2 Γ1 = Γ1 Γ2R (2.12)

Rop ΓD

1 B
D

2 = BD

2 Γ
D

1 R
op , Dβ ·Dγ = I = Dγ ·Dβ (2.13)

where R :=
∑n

i,j=1 q
δij eii⊗ejj +

(
q−q−1

)∑
1≤i<j≤n eij⊗eji , X1 := X⊗I , X2 := I⊗X

(like in §2.1), Rop :=
∑n

i,j=1 q
δij eii ⊗ ejj +

(
q − q−1

)∑
1≤i<j≤n eji ⊗ eij , and Dβ :=

diag
(
β1,1, . . . , βn,n

)
, Dγ := diag

(
γ1,1, . . . , γn,n

)
, BD := D+1

β ·B·D−1
β , ΓD := D−1

γ ·Γ ·D+1
γ .
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The first (compact) relation in (2.13) above is also equivalent to

n∑
i,k=1

qδi,k (ei,i⊗I)
(
Rop Γ−

1 B
+
2

)
(I⊗ek,k) =

n∑
j,s=1

qδj,s (ej,j⊗I)
(
B−

2 Γ
+
1 R

op
)
(I⊗es,s) (2.14)

where X± :=
(
q±δh,kχh,k

)
for all X ∈ {B,Γ} (and χ ∈ {β, γ}), and in explicit, expanded

form it is equivalent to the set of relations (for all i, k, j, s = 1, . . . , n)

qδi,j γi,k βj,s + δi>j

(
q − q−1

)
qδi,s−δjk γj,k βi,s =

= qδk,s βj,s γi,k + δs>k

(
q − q−1

)
qδi,s−δjkβj,k γi,s

(2.15)

where obviously δh>k := 1 if h > k and δh>k := 0 if h ̸> k .

Furthermore, ŨP
q (gln) has the unique Hopf algebra structure given by

∆(X) = X ⊗̇X , ϵ(X) = I , S(X) = X−1 ∀ X ∈
{
B,Γ

}
. (2.16)

Proof. The commutation formulas in (2.12) and the Hopf formulas in (2.16) are just the

compact way to say that B and Γ are Hopf q–matrices. The second half of (2.13) instead

is nothing but another way of writing (2.2).

Moreover, the first half of (2.13) arises from the similar compact relation for L–operators

and the link between the latter and the present generators. Indeed, merging (2.10) in the

last identity in (2.4) we get

R · Ψ
(
D−1

γ Γ TD+1
γ

)
1
· Ψ

(
D+1

β BTD−1
β

)
2

= Ψ
(
D+1

β BTD−1
β

)
2
· Ψ

(
D−1

γ Γ TD+1
γ

)
1
·R

(where a superscript T means “transpose”). Using the fact that Ψ is an algebra antiauto-

morphism and extending its action to Ψ(R) = R we then argue

Ψ
((
D+1

β BD−1
β

)
2
·
(
D−1

γ Γ D+1
γ

)
1
·Rop

)
= Ψ

(
Rop ·

(
D−1

γ Γ D+1
γ

)
1
·
(
D+1

β BD−1
β

)
2

)
whence eventually (2.13) follows at once because Ψ2 = id .

Finally, expanding (2.13) one gets explicitly (for all i, k, j, s = 1, . . . , n)

qδi,j γ −1
i,i γi,k γ

+1
k,k β

+1
j,j βj,s β

−1
s,s + δi>j

(
q − q−1

)
γ −1
j,j γj,k γ

+1
k,k β

+1
i,i βi,s β

−1
s,s =

= qδk,s β +1
j,j βj,s β

−1
s,s γ

−1
i,i γi,k γ

+1
k,k + δs>k

(
q − q−1

)
β +1
j,j βj,k β

−1
k,k γ

−1
i,i γi,s γ

+1
s,s .

From this, making repeated use of all the relations encoded in (2.12) and in the second

half of (2.13) one can cancel out all “diagonal” factors, i.e. those of type βℓ,ℓ or γℓ,ℓ . The

outcome is (for all i, k, j, s = 1, . . . , n)

qδi,j γi,k βj,s + δi>j

(
q − q−1

)
qδi,s−δjk γj,k βi,s =

= qδk,s βj,s γi,k + δs>k

(
q − q−1

)
qδi,s−δjkβj,k γi,s
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that is exactly the set of relations (2.15). As a last step, manipulating a bit the exponents

of q one gets (for i, k, j, s = 1, . . . , n)

q2 δi,k
(
qδi,j

(
q−δi,k γi,k

) (
q+δj,sβj,s

)
+ δi>j

(
q − q−1

) (
q−δj,k γj,k

) (
q+δi,sβi,s

))
=

= q2 δj,s
(
qδk,s

(
q−δj,sβj,s

) (
q+δi,k γi,k

)
+ δs>k

(
q − q−1

) (
q−δj,kβj,k

) (
q+δi,s γi,s

)) (2.15)

when written in compact form yields exactly (2.14). �

Remark: the argument used to argue formulas (2.13) from the last identity in (2.4) may

be also applied to the first two identities therein. This yields relations among the βij ’s and

among the γji’s which are different from, but equivalent to, formulas (2.12).

Corollary 2.10. The Poisson-Hopf k–algebra ŨP
1 (gln) is the polynomial, Laurent-polyno-

mial algebra in the variables
{
βi,j

}
1≤i≤j≤n

∪{
γj,i

}
1≤i≤j≤n

, the βℓℓ’s and γii’s being

invertible, with relations β ±1
ii = γ ∓1

ii ( ∀ i), Hopf structure given (in compact notation) by

∆
(
X

)
= X ⊗̇X , ϵ

(
X

)
= I , S

(
X

)
= X

−1 ∀ X ∈
{
B,Γ

}
(with B and Γ as in Theorem 2.9) and with the unique Poisson structure such that{
xi,h , xi,ℓ

}
= xi,h xi,ℓ ,

{
xh,j , xℓ,j

}
= xh,j xℓ,j ,

{
xh,h , xℓ,ℓ

}
= 0 (h < ℓ ){

xi,j , xh,k
}
= 0 ( i < h , j > k ) ,

{
xi,j , xh,k

}
= 2 xi,k xh,j ( i < h , j < k )

(2.17)

with either all xp q’s being βp q’s (and βp q := 0 for all p > q ) or all xp q’s being γp q’s (and

γp q := 0 for all p < q ), and{
βj,s , γi,k

}
= (δi,j − δk,s) · βj,s γi,k + 2 δi>j · γj,k βi,s − 2 δs>k · βj,k γi,s . (2.18)

In particular ŨP
1 (gln)

∼= F
[
(GLn)

∗
P

]
as Poisson Hopf algebras, where (GLn)

∗
P is the alge-

braic group of pairs of matrices
(
Γ,B

)
where Γ , resp. B, is a lower triangular, resp. upper

triangular, invertible matrix, and the diagonals of Γ and B are inverse to each other, with

the Poisson structure dual to the Lie bialgebra of gln .

Proof. If we write x := x mod (q − 1) ŨP
q (gln) for every x ∈ ŨP

q (gln) , then setting

q = 1 in the presentation of ŨP
q (gln) of Theorem 2.9 yields a presentation for ŨP

1 (gln) .

The latter is a commutative, polynomial Laurent-polynomial algebra as claimed, whence

ŨP
1 (gln)

∼= F
[
(GLn)

∗
P

]
as algebras, via an isomorphism which for all i ≤ j maps βij := βij

mod (q − 1) ŨP
q (gln) to the matrix coefficient corresponding to the (i, j)–th entry of the

matrix B in a pair (Γ,B) as in the claim, and maps γji := γji mod (q − 1) ŨP
q (gln) to

the matrix coefficient corresponding to the (j, i)–th entry of the matrix Γ in a pair (Γ,B).

The formulas for the Hopf structure in ŨP
q (gln) imply that this is also an isomorphism of
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Hopf algebras, for the Hopf structure on right hand side induced by the group structure

of (GLn)
∗
P .

Since ŨP
1 (gln) is commutative, it inherits from ŨP

q (gln) the unique Poisson bracket given

by the rule
{
x , y

}
:=

x y − y x

q − 1
mod (q − 1) ŨP

q (gln) , for all x, y ∈ ŨP
q (gln) . Then the

Poisson brackets in (2.18) come directly from (2.15), while all those in (2.17) spring out of

the commutation formulas among the βij ’s and among the γji’s in (2.11).

Finally, checking that this Poisson structure on the algebraic group (GLn)
∗
P is exactly

the one dual to the Lie bialgebra structure of gln is just a matter of bookkeeping. �

2.11 The quantum Frobenius morphisms F
[
(GLn)

∗
P

] ∼= ŨP
1 (gln) ↪−−−→ ŨP

ε (gln) .

Let kε be the extension of k by a primitive ℓ–th root of 1, say ε . Since ŨP
q (gln) is generated

by copies of ŨP
q (b+)

∼= F̂ P
q

[
B+

]
and ŨP

q (b−)
∼= F̂ P

q

[
B−

]
, taking specializations the same is

true for ŨP
ε (gln) ; in particular the latter is presented like in Theorem 2.9 but with q = ε .

In addition, the quantum Frobenius morphisms F
[
GLn

] ∼= F̂ P
1

[
GLn

]
↪−−→ F̂ P

ε

[
GLn

]
and F

[
B±

] ∼= F̂ P
1

[
B±

]
↪−−→ F̂ P

ε

[
B±

]
have a pretty neat description, as they are given by

ti,j 7→ t ℓi,j (hereafter we denote by the same symbol an element in a quantum algebra and

its corresponding coset after any specialization); see, for instance, [PW] for details. As we

mentioned in §1.6, the morphism F
[
(GLn)

∗
P

] ∼= ŨP
1 (gln) ↪−−−→ ŨP

ε (gln) is determined

by its restriction to the quantum Borel subalgebras, hence to the copies of F̂ P
1

[
B+

]
and

F̂ P
1

[
B−

]
which generate ŨP

1 (gln). When reformulated in light of Theorem 2.9, this implies

Theorem 2.12. The quantum Frobenius morphism F
[
(GLn)

∗
P

] ∼= ŨP
1 (gln) ↪−−→ ŨP

ε (gln)

is given by βi,j 7→ β ℓ
i,j , γj,i 7→ γ ℓ

j,i , for all i ≤ j . �

§ 3 The case of sln

3.1 From gln to sln . In this section, we consider g = sln and G = SLn . The con-

structions and results of §2 about gln essentially duplicate into the like for sln , up to minor

details. In this section we shall draw these results, shortly explaining the changes in order.

First, the ideal generated by (Ln−1) in UP
q (gln) is a Hopf ideal: then we define UP

q (sln)

as the quotient Hopf k(q)–algebra UP
q (sln) := UP

q (gln)
/(
Ln − 1

)
. With like notation (see

§2.3) for generators of UP
q (gln) and their images in UP

q (sln), we define UQ
q (sln) as the

k(q)–subalgebra of UP
q (sln) generated by

{
Fi,K

±1
i , Ei

}
i=1,...,n−1

; this is also the image of

UQ
q (gln) when mapping UP

q (gln) onto U
P
q (sln). In this setting, UP

q (b+), resp. U
P
q (b−), is the

k(q)–subalgebra of UP
q (sln) generated by

{
L±1
i , Ei

}
i=1,...,n−1

, resp.
{
Fi, L

±1
i

}
i=1,...,n−1

,

whereas UQ
q (b+), resp. UQ

q (b−), instead is the k(q)–subalgebra of UQ
q (sln) generated by{

K±1
i , Ei

}
i=1,...,n−1

, resp.
{
Fi,Ki

}
i=1,...,n−1

. All these are Hopf subalgebras of UP
q (sln)



CHEVALLEY GENERATORS FOR QUANTUM ENVELOPING ALGEBRAS 15

and UQ
q (sln), and Hopf algebra quotients of the similar quantum Borel algebras for gln .

In this context, we can repeat step by step the construction made for gln , up to minimal

details (namely, taking into account everywhere the relation Ln = 1 ); in particular, in

quantum function algebras the additional relation t1,1 t2,2 · · · tn,n = 1 has to be taken

into account. Otherwise, the results for the sln case can be immediately argued from the

corresponding results for gln . The first of these results — analogue to Theorem 2.5 — is

Theorem 3.2. (“short” FRT-like presentation of UP
q (sln) )

UP
q (sln) is the quotient algebra of UP

q (gln) modulo the two-sided ideal I generated by(∏n
i=1 βii − 1

)
(or by

(∏n
j=1 γjj − 1

)
, which gives the same). Moreover, I is a Hopf

ideal of UP
q (gln), therefore UP

q (sln) inherits from UP
q (gln) a structure of quotient Hopf

algebra, given by formulas like in Theorem 2.5 (with the obvious, additional simplifica-

tions). In particular, UP
q (sln) has the same presentation as UP

q (gln) in Theorem 2.5 plus

the additional relation β1,1 β2,2 · · ·βn,n = 1 , or γ1,1 γ2,2 · · · γn,n = 1 . �

3.3 Quantum root vectors, L–operators and new generators for ŨP
q (sln).

Definitions imply that the Hopf algebra epimorphism UP
q (gln) −� UP

q (sln) maps any

quantum root vector — say Ei,j or Fj,i — in UP
q (gln) onto a corresponding quantum root

vector in UP
q (sln) , for which we use the like notation. A similar result clearly holds for

each L–operator — in UP
q (gln) — too, whose image in UP

q (sln) we still denote by the same

symbol. The discussion in §§2.7–9 can then be repeated verbatim, in particular formulas

(2.3) through (2.11) hold true within UP
q (sln) as well. The outcome then is the analogue

of Theorem 2.9 — which can also be deduced directly from the latter, since ŨP
q (gln) maps

onto ŨP
q (sln) — and its immediate corollary, namely

Theorem 3.4. (FRT-like presentation of ŨP
q (sln) )

ŨP
q (sln) is the unital k

[
q, q−1

]
–algebra with generators the entries of the triangular

matrices B :=
(
βij

)n
i,j=1

and Γ :=
(
γij

)n
i,j=1

and relations (notations as in Theorem 2.9)

RB2B1 = B1B2R , RΓ2 Γ1 = Γ1 Γ2R (3.1)

Rop ΓD

1 B
D

2 = BD

2 Γ
D

1 R
op , Dβ ·Dγ = I = Dγ ·Dβ (3.2)

det (Dβ) = 1 = det (Dγ) (3.3)

The first (compact) relation in (2.13) above is equivalent to

n∑
i,k=1

qδi,k (ei,i⊗I)
(
Rop Γ−

1 B
+
2

)
(I⊗ek,k) =

n∑
j,s=1

qδj,s (ej,j⊗I)
(
B−

2 Γ
+
1 R

op
)
(I⊗es,s) (3.4)

and in expanded form it is equivalent to the set of relations (for all i, k, j, s = 1, . . . , n)

qδi,j γi,k βj,s + δi>j

(
q − q−1

)
qδi,s−δjk γj,k βi,s =

= qδk,s βj,s γi,k + δs>k

(
q − q−1

)
qδi,s−δjkβj,k γi,s .

(3.5)
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Furthermore, ŨP
q (sln) has the unique Hopf algebra structure given by

∆(X) = X ⊗̇X , ϵ(X) = I , S(X) = X−1 ∀ X ∈
{
B,Γ

}
. � (3.6)

Corollary 3.5. The Poisson-Hopf k–algebra ŨP
1 (sln) is the polynomial algebra in the

variables
{
βi,j

}
1≤i≤j≤n

∪{
γj,i

}
1≤i≤j≤n

modulo the relations β1,1 β2,2 · · ·βn,n = 1 ,

γ1,1 γ2,2 · · · γn,n = 1 , βi,i γi,1i = 1 (for all i = 1, . . . n ), Hopf structure given by

∆
(
X

)
= X ⊗̇X , ϵ

(
X

)
= I , S

(
X

)
= X

−1 ∀ X ∈
{
B,Γ

}
(with B and Γ as in Theorem 3.4) and with the unique Poisson structure such that{

xi,h , xi,ℓ
}
= xi,h xi,ℓ ,

{
xh,j , xℓ,j

}
= xh,j xℓ,j ,

{
xh,h , xℓ,ℓ

}
= 0 (h < ℓ ){

xi,j , xh,k
}
= 0 ( i < h , j > k ) ,

{
xi,j , xh,k

}
= 2 xi,k xh,j ( i < h , j < k )

(3.7)

with either all xp q’s being βp q’s (and βp q := 0 for all p > q ) or all xp q’s being γp q’s (and

γp q := 0 for all p < q ), and{
βj,s , γi,k

}
= (δi,j − δk,s) · βj,s γi,k + 2 δi>j · γj,k βi,s − 2 δs>k · βj,k γi,s . (3.8)

In particular ŨP
1 (sln)

∼= F
[
(SLn)

∗
P

]
as Poisson Hopf algebras, where (SLn)

∗
P is the alge-

braic group of pairs of matrices
(
Γ,B

)
where Γ , resp. B, is a lower, resp. upper, triangular

matrix with determinant equal to 1, and the diagonals of Γ and B are inverse to each other,

with the Poisson structure dual to the Lie bialgebra of sln . �

3.7 The quantum Frobenius morphisms F
[
(SLn)

∗
P

] ∼= ŨP
1 (sln) ↪−−−→ ŨP

ε (sln) .

Once again, for quantum Frobenius morphisms one can repeat verbatim the discussion

made for UP
q (gln) for the case of UP

q (sln) as well, via minimal changes where needed.

Otherwise, the results in the gln case induce similar results in the sln case via the defining

epimorphism UP
q (gln) −� UP

q (sln) . Indeed, the latter is clearly compatible (in the obvious

sense) with specializations at roots of 1; therefore, the specializations of the epimorphism

itself yield the following commutative diagram

F
[
(GLn)

∗
P

] ∼= ŨP
1 (gln) −−−−→ ŨP

ε (gln)y y
F
[
(SLn)

∗
P

] ∼= ŨP
1 (sln) −−−−→ ŨP

ε (sln)

(for ε any root of 1) in which the vertical arrows are the above mentioned specialized

epimorphisms and the horizontal ones are the quantum Frobenius (mono)morphisms.

This yields at once the following analogue of Theorem 2.12:
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Theorem 3.8. The quantum Frobenius morphism F
[
(SLn)

∗
P

] ∼= ŨP
1 (sln) ↪−−→ ŨP

ε (sln)

is given by βi,j 7→ β ℓ
i,j , γj,i 7→ γ ℓ

j,i , for all i ≤ j . �
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