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Abstract. We develop a quantum duality principle for coisotropic subgroups of a (formal)
Poisson group and its dual: namely, starting from a quantum coisotropic subgroup (for a
quantization of a given Poisson group) we provide functorial recipes to produce quantizations
of the dual coisotropic subgroup (in the dual formal Poisson group). By the natural link
between subgroups and homogeneous spaces, we argue a quantum duality principle for Poisson
homogeneous spaces which are Poisson quotients, i.e. have at least one zero-dimensional
symplectic leaf. As an application, we provide an explicit quantization of the homogeneous
SLn

∗–space of Stokes matrices, with the Poisson structure given by Dubrovin and Ugaglia.

Introduction

The natural semiclassical counterpart of the study of quantum groups is the theory of
Poisson groups: indeed, Drinfeld himself introduced Poisson groups as the semiclassical
limits of quantum groups. Therefore, it should be no surprise to anyone, anymore, that
the geometry of quantum groups gain in clarity and comprehension when its connection
with Poisson geometry is more transparent. The same can be observed when referring to
homogeneous spaces.

In fact, in the study of Poisson homogeneous spaces, a special rôle is played by Poisson
quotients. These are those Poisson homogeneous spaces whose symplectic foliation has at
least one zero-dimensional leaf, so they can be thought of as pointed Poisson homogeneous
spaces, just like Poisson groups themselves are pointed by the identity element. When
looking at quantizations of a Poisson homogeneous space, one finds that the existence is

Keywords: Quantum Groups, Poisson Homogeneous Spaces, Coisotropic Subgroups.
2000 Mathematics Subject Classification: Primary 17B37, 20G42, 58B32; Secondary 81R50.

Typeset by AMS-TEX

1



2 NICOLA CICCOLI, FABIO GAVARINI

guaranteed only if the space is a quotient (cf. [EK2]). Thus the notion of Poisson quotient
shows up naturally also from the point of view of quantization (see [Ci]).

Poisson quotients are a natural subclass of Poisson homogeneous G–spaces (G a Poisson
group), best adapted to the usual relation between homogeneous G–spaces and subgroups
of G : they correspond to coisotropic subgroups. The quantization process for a Poisson
G–quotient then corresponds to a like procedure for the attached coisotropic subgroup of
G. Also, when following an infinitesimal approach one deals with Lie subalgebras of the
Lie algebra g of G , and the coisotropy condition has its natural counterpart in this Lie
algebra setting; the quantization process then is to be carried on for the Lie subalgebra
corresponding to the initial homogeneous G–space.

When quantizing Poisson groups (or Lie bialgebras), a precious tool is the quantum
duality principle (QDP). Loosely speaking this guarantees that any quantized envelop-
ing algebra can be turned (roughly speaking) into a quantum function algebra for the
dual Poisson group; viceversa any quantum function algebra can be turned into a quan-
tization of the enveloping algebra of the dual Lie bialgebra. More precisely, let QUEA
and QFSHA respectively be the category of all quantized universal enveloping algebras
(QUEA) and the category of all quantized formal series Hopf algebras (QFSHA), in Drin-
feld’s sense. After its formulation by Drinfeld (see [Dr1], §7) the QDP establishes a cate-
gory equivalence betweenQUEA andQFSHA via two functors, ( )′:QUEA −→ QFSHA
and ( )∨:QFSHA −→ QUEA , such that, starting from a QUEA over a Lie bialgebra
(resp. from a QFSHA over a Poisson group) the functor ( )′ (resp. ( )∨ ) gives a QFSHA
(resp. a QUEA) over the dual Poisson group (resp. the dual Lie bialgebra). In a nutshell,
U~(g)′ = F~[[G∗]] and F~[[G]]∨ = U~(g∗) for any Lie bialgebra g . So from a quantization
of any Poisson group this principle gets out a quantization of the dual Poisson group too.

In this paper we establish a similar quantum duality principle for (closed) coisotropic
subgroups of a Poisson group G, or equivalently for Poisson G–quotients, sticking to the for-
mal approach which is best suited for dealing with quantum groups à la Drinfeld. Namely,
given a Poisson group G assume quantizations U~(g) and F~[[G]] of it are given; then any
formal coisotropic subgroup K of G has two possible algebraic descriptions via objects
related to U(g) or F [[G]], and similarly for the formal Poisson quotient G

/
K . Thus the

datum of K or equivalently of G
/
K is described algebraically in four possible ways: by

quantization of such a datum we mean a quantization of any one of these four objects.
Our “QDP” now is a series of functorial recipes to produce, out of a quantization of K or
G

/
K as before, a similar quantization of the so-called complementary dual of K , i.e. the

coisotropic subgroup K⊥ of G∗ whose tangent Lie bialgebra is just k⊥ inside g∗ , or of the
associated Poisson G∗–quotient, namely G∗

/
K⊥ .

We would better stress that, just like the QDP for quantum groups, ours is by no means
an existence result: instead, it can be thought of as a duplication result, in that it yields
a new quantization (for a complementary dual object) out of one given from scratch.

As an aside remark, let us comment on the fact that the more general problem of
quantizing coisotropic manifolds of a given Poisson manifold, in the context of deformation
quantization, has recently raised quite some interest (see [BGHHW,CF]).

As an example, in the last section we show how we can use this quantum duality
principle to derive new quantizations from known ones. The example is given by the
Poisson structure introduced on the space of Stokes matrices by Dubrovin (see [Du]) and
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Ugaglia (see [Ug]) in the framework of moduli spaces of semisimple Frobenius manifolds.
It was Boalch (cf. [Bo]) that first gave an interpretation of Dubrovin–Ugaglia brackets in
terms of Poisson–Lie groups. We will rather follow later work by Xu (see [Xu]) where it
was shown how Boalch construction may be equivalently interpreted as quotient Poisson
structure of the dual Poisson-Lie group G∗ of the standard SLn(k). In more detail the
Poisson space of Stokes matrices G∗

/
H⊥ is the dual Poisson space to the Poisson space

SLn(k)
/
SOn(k) . It has to be noted that the embedding of SOn(k) in SLn(k) is known

to be coisotropic but not Poisson. Starting, then, from results obtained by Noumi in
[No] related to a quantum version of the embedding SOn(k) ↪−→ SLn(k) we are able to
interpret them as an explicit quantization of the Dubrovin-Ugaglia structure. We provide
explicit computations for the case n = 3 , and draw a sketch with the main guidelines for
the general case.

Finally, another, stronger formulation of our QDP for subgroups and homogeneous
spaces can be given in terms of quantum groups of global type, see [CG].

§ 1 The classical setting

In this section we introduce the notions of Poisson geometry we shall need in the follow-
ing: coisotropic subgroups and Poisson quotients, also called Poisson homogeneous spaces
of group type. Our aim is to stress their algebraic characterization.

1.1 Formal Poisson groups. As already explained, the setup of the paper is formal
geometry. Recall that a formal variety is uniquely characterized by a tangent or a cotangent
space (at its unique point), and is described by its “algebra of regular functions” — such
as F [[G]] below — which is a complete, topological local ring which can be realized as a
k–algebra of formal power series. Hereafter k is a field of zero characteristic.

Let g be a finite dimensional Lie algebra over k , and let U(g) be its universal enveloping
algebra (with the natural Hopf algebra structure). We denote by F [[G]] the algebra of
functions on the formal algebraic group G associated to g (which depends only on g itself);
this is a complete, topological Hopf algebra. One has F [[G]] ∼= U(g)∗ so that there is a
natural pairing of (topological) Hopf algebras — see below — between U(g) and F [[G]] .

In general, if H, K are Hopf algebras (even topological) over a ring R , a pairing
〈 , 〉 : H×K −→ R is called a Hopf pairing if

〈
x, y1 ·y2

〉
=

〈
∆(x), y1⊗y2

〉
,

〈
x1 ·x2, y

〉
=〈

x1⊗x2, ∆(y)
〉
, 〈x, 1〉 = ε(x) , 〈1, y〉 = ε(y) ,

〈
S(x), y

〉
=

〈
x, S(y)

〉
for all x, x1, x2 ∈ H ,

y, y1, y2 ∈ K . Moreover, a pairing is called perfect if it is non-degenerate.
Now assume G is a formal Poisson (algebraic) group. Then g is a Lie bialgebra, U(g)

is a co-Poisson Hopf algebra, F [[G]] is a topological Poisson Hopf algebra, and the Hopf
pairing above respects these additional co-Poisson and Poisson structures. Furthermore,
the linear dual g∗ of g is a Lie bialgebra as well, so a dual formal Poisson group G∗ exists.

Notation: hereafter, the symbol Ė stands for “coideal”, ≤1 for “unital subalgebra”,
≤̇ for “subcoalgebra”, ≤P for “Poisson subalgebra”, ĖP for “Poisson coideal”, ≤H for
“Hopf subalgebra”, EH for “Hopf ideal”, and the subscript ` stands for “left”. Everything
has to be meant in topological sense if necessary.
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1.2 Subgroups and homogeneous G–spaces. A homogeneous left G–space M
corresponds to a closed subgroup K = KM , which we assume to be connected, of G such
that M ∼= G

/
K . Actually, in formal geometry K may be replaced by k := Lie(K) as

well. Then the whole geometrical setting established by the pair
(
K,G/K

)
is algebraically

encoded by any one of the following data:
(a) the set I = I(K) ≡ I(k) of all (formal) functions vanishing on K , that is to say

I =
{
ϕ∈F [[G]]

∣∣ ϕ(K)=0
}

: this is a Hopf ideal of F [[G]] , in short I EHF [[G]] ;
(b) the set of all left k–invariant functions, namely C = C(K) ≡ C(k) = F [[G]]K : this

is a unital subalgebra and left coideal of F [[G]] , in short C ≤1 Ė` F [[G]] ;
(c) the set I = I(K) ≡ I(k) of all left-invariant differential operators on F [[G]] which

vanish on F [[G]]K , that is I = U(g) · k (via standard identifications of the set of left-
invariant differential operators with U(g) ): this is a left ideal and (two-sided) coideal of
U(g) , in short I(k) = I E` Ė U(g) ;

(d) the universal enveloping algebra of k , denoted C = C(K) ≡ C(k) := U(k) : this is
a Hopf subalgebra of U(g) , i.e. C ≤HU(g) .

In this way any formal subgroup K of G , or the associated homogeneous G–space G
/
K ,

is characterized — via k and g — by any one of the following algebraic objects:

(a) I EHF [[G]] (b) C ≤1 Ė` F [[G]] (c) I E` Ė U(g) (d) C ≤HU(g) (1.1)

Clearly (a) and (d) in (1.1) ideally focus on the subgroup K , whereas (b) and (c) focus
more on the formal homogeneous G–space G

/
K . Nevertheless, these four algebraic data

are all equivalent to each other. To express this algebraically, we need some more notation.
For any Hopf algebra H , with counit ε , and every submodule M ⊆ H , we set: M+ :=

M ∩Ker (ε) and HcoM :=
{

y ∈ H
∣∣ (

∆(y)− y⊗ 1
) ∈ H ⊗M

}
(the set of M–coinvariants

of H ). Letting A be the set of all subalgebras left coideals of H and K be the set of all
coideals left ideals of H , we have well-defined maps A −→ K , A 7→ H ·A+ , and K −→ A ,
K 7→ HcoK (cf. [Ma], and references therein).

Then the above mentioned equivalence stems from the following relations, which starting
from any one of the four items in (1.1) allow one to reconstruct the remaining ones:

— (1) orthogonality relations — w.r.t. the natural pairing between F [[G]] and U(g) —
namely I = C⊥, C = I⊥, linking (a) and (d), and C = I⊥, I = C⊥, linking (b) and (c);

— (2) subgroup-space correspondence, namely I = F [[G]] ·C+ , C = F [[G]]coI , linking
(a) and (b), and I = U(g) · C+ , C = U(g)coI , linking (c) and (d). Moreover, the maps
A −→ K and K −→ A considered above are inverse to each other in the formal setting.

1.3 Coisotropic subgroups and Poisson quotients. When G is a Poisson group,
a distinguished class of subgroups — the coisotropic ones — is of special interest.

A closed formal subgroup K of G with Lie algebra k is called coisotropic if its defining
ideal I(k) is a (topological) Poisson subalgebra of F [[G]] . The following are equivalent:

(C-i) K is a coisotropic formal subgroup of G ;
(C-ii) δ(k) ⊆ k ∧ g , that is k is a Lie coideal of g ;
(C-iii) k⊥ is a Lie subalgebra of g∗

(see [Lu]). Clearly (C-ii) and (C-iii) characterize coisotropic subgroups in algebraic terms.
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As for homogeneous spaces, recall that a formal Poisson manifold (M,ωM ) is a Poisson
homogeneous G–space if there is a smooth homogeneous action φ: G×M → M which is
a Poisson map with respect to the product Poisson structure.

In addition, (M, ωM ) is said to be of group type (after Drinfeld [Dr2]), or simply a
Poisson quotient, if there exists a coisotropic closed Lie subgroup KM of G such that
G

/
KM ' M and the natural projection π: G −→ G

/
KM ' M is a Poisson map.

The following is a characterization of Poisson quotients (cf. [Za]):
(PQ-i) there exists x0 ∈ M such that its stabilizer Gx0 is coisotropic in G ;
(PQ-ii) there exists x0 ∈ M such that φx0 : G −→ M , g 7→ φ(g, x0) , is a Poisson

map, that is M is a Poisson quotient;
(PQ-iii) there exists x0 ∈ M such that ωM (x0) = 0 .

Remark: in Poisson geometry, the usual relationship between closed subgroups of G
and G–homogeneous spaces does not hold anymore. In fact, in the same conjugacy class
one can have Poisson subgroups, coisotropic subgroups and non-coisotropic subgroups. We
saw above that Poisson quotients correspond to Poisson homogeneous spaces in which at
least one of the stabilizers is coisotropic; many such examples can be found, for instance,
in [LW]. On the other hand many interesting Poisson homogeneous spaces are not of group
type, as it is the case for covariant (in particular invariant) symplectic structures. ♦
Definition 1.4.

(a) If K is a formal coisotropic subgroup of G, we call complementary dual of K the
formal subgroup K⊥ of G∗ whose tangent Lie algebra is k⊥ (with G∗ as in §1.1).

(b) If M ∼= G
/
KM is a formal Poisson G–quotient, with KM coisotropic, we call

complementary dual of M the formal Poisson G∗–quotient M⊥ := G∗
/
K ⊥

M .

1.5 Remarks: (a) The fact to be highlighted in the above definition is that a subset
k of g is a Lie coideal if and only if k⊥ is a Lie subalgebra of g∗ . This is why we have dual
Poisson quotients. Even more, by (C-i,ii,iii) in §1.3, the complementary dual subgroup to
a coisotropic subgroup is coisotropic too, and taking twice the complementary dual gives
back the initial subgroup. Similarly, the Poisson homogeneous space which is complemen-
tary dual to a Poisson homogeneous space of group type is in turn of group type as well,
and taking twice the complementary dual gives back the initial manifold. So Definition
1.4 makes sense, and the notion of complementary duality is self-dual, in both cases.

(c) The notion of Poisson homogeneous G–spaces of group type was first introduced by
Drinfeld in [Dr2]: here the relation between such G–spaces and Lagrangian subalgebras of
Drinfeld’s double D(g) = g⊕ g∗ is also explained. This is further developed in [EL].

(d) We denote by coS(G) the set of all formal coisotropic subgroups of G , which is as
well described by the set of all Lie subalgebras, Lie coideals of g . This is a lattice w. r. t.
set-theoretical inclusion, hence it can (and will) also be thought of as a category. ♦

1.6 Algebraic characterization of coisotropic subgroups. Let K be a formal
coisotropic subgroup of G. Taking I, C, I and C as in §1.2, coisotropy corresponds to

(a) I ≤P F [[G]] , (b) C ≤P F [[G]] , (c) I ĖP U(g) , (d) C ĖP U(g)

Thus a formal coisotropic subgroup of G is identified by any one of the algebraic objects

(a) I EH≤P F [[G]] , (b) C ≤1 Ė` ≤P F [[G]] , (c) I E` Ė ĖP U(g) , (d) C ≤H ĖP U(g) . (1.2)
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Note also that K being coisotropic reflects the fact that the distinguished point eK
(where e ∈ G is the identity element) in the formal Poisson G–space G

/
K is a zero-

dimensional leaf. Then the algebra of regular functions on G
/
K , already realized as

F [[G]]K , will be also denoted by F
[[

G
/
K

]]
. Moreover, we can always choose a sys-

tem of parameters for G , say
{
j1, . . . , jk, jk+1, . . . , jn

}
such that k = dim(K) , n =

dim(G) , F [[G]]K = k[[jk+1, . . . , jn]] (the topological subalgebra of F [[G]] generated by{
jk+1, . . . , jn

}
) and I(K) =

(
jk+1, . . . , jn

)
(the ideal of F [[G]] generated by

{
jk+1, . . . , jn

}
).

§ 2 The quantum setting

This section is devoted to recall quantum groups and Drinfeld’s QDP for quantum
groups, to introduce our concept of quantization for coisotropic subgroups and Poisson
quotients, and to explain the basic idea of our QDP for the latters.

2.1 Topological k[[~]]–modules and tensor structures. Let k[[~]] be the topolog-
ical ring of formal power series in the indeterminate ~ . If X is any k[[~]]–module, we set
X0 := X

/
~X = k⊗k[[~]] X , the specialization of X at ~ = 0 , or semiclassical limit of X .

Let T b⊗ be the category whose objects are all topological k[[~]]–modules which are
topologically free and whose morphisms are the k[[~]]–linear maps (which are automatically
continuous). It is a tensor category for the tensor product T1 ⊗̂T2 defined as the separated
~–adic completion of the algebraic tensor product T1 ⊗k[[~]] T2 (for all T1, T2 ∈ T b⊗ ). We
denote by HA b⊗ the subcategory of T b⊗ whose objects are all the Hopf algebras in T b⊗ and
whose morphisms are all the Hopf algebra morphisms in T b⊗ .

Let P e⊗ be the category whose objects are all topological k[[~]]–modules isomorphic to
modules of the type k[[~]]E (with the Tikhonov product topology) for some set E , and
whose morphisms are the k[[~]]–linear continuous maps. It is a tensor category w.r.t. the
tensor product P1 ⊗̃P2 defined as the completion of the algebraic tensor product P1⊗k[[~]]
P2 w.r.t. the weak topology: thus Pi

∼= k[[~]]Ei (i = 1, 2) yields P1 ⊗̃P2
∼= k[[~]]E1×E2

(for all P1, P2 ∈ P e⊗ ). We call HA e⊗ the subcategory of P e⊗ whose objects are all the
Hopf algebras in P e⊗ and whose morphisms are all the Hopf algebra morphisms in P e⊗ .

Definition 2.2. (cf. [Dr1, § 7])
(a) We call QUEA any H ∈ HA b⊗ such that H0 := H

/
~H is a co-Poisson Hopf

algebra isomorphic to U(g) for some finite dimensional Lie bialgebra g (over k); in this
case we write H = U~(g) , and say H is a quantization of U(g). We call QUEA the full
tensor subcategory of HA b⊗ whose objects are QUEA, relative to all possible g (see also
Remark 2.3 below).

(b) We call QFSHA any K ∈ HA e⊗ such that K0 := K
/
~K is a topological Poisson

Hopf algebra isomorphic to F [[G]] for some finite dimensional formal Poisson group G
(over k); then we write H = F~[[G]] , and say K is a quantization of F [[G]]. We call
QFSHA the full tensor subcategory of HA e⊗ whose objects are QFSHA, relative to all
possible G (see also Remark 2.3 below).

Remarks 2.3: If H ∈ HA b⊗ is such that H0 := H
/
~H as a Hopf algebra is isomorphic

to U(g) for some Lie algebra g, then H0 = U(g) is also a co-Poisson Hopf algebra w.r.t. the
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Poisson cobracket δ defined as follows: if x ∈ H0 and x′ ∈ H gives x = x′ + ~H , then
δ(x) :=

(
~−1

(
∆(x′)−∆op(x′)

))
+~H ⊗̂H ; then (by [Dr1, §3, Theorem 2]) the restriction

of δ makes g into a Lie bialgebra. Similarly, if K ∈ HA e⊗ is such that K0 := K
/
~K

is a topological Poisson Hopf algebra isomorphic to F [[G]] for some formal group G then
K0 = F [[G]] is also a topological Poisson Hopf algebra w.r.t. the Poisson bracket { , }
defined as follows: if x, y ∈ K0 and x′, y′ ∈ K give x = x′ + ~K, y = y′ + ~K, then
{x, y} :=

(
~−1(x′ y′ − y′ x′)

)
+ ~K ; then F [[G]] is (the algebra of regular functions on)

a Poisson formal group. These natural co-Poisson and Poisson structures are the ones
considered in Definition 2.2 above.

2.4 Drinfeld’s functors. Let H be a (topological) Hopf algebra over k[[~]]. For each
n ∈ N , define ∆n: H −→ H⊗n by ∆0 := ε , ∆1 := idH , and ∆n :=

(
∆⊗id

⊗(n−2)
H

)◦∆n−1

if n ≥ 2 . For any ordered subset E = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik , define
the morphism jE : H⊗k −→ H⊗n by jE(a1 ⊗ · · · ⊗ ak) := b1 ⊗ · · · ⊗ bn with bi := 1
if i /∈ Σ and bim := am for 1 ≤ m ≤ k ; then set ∆E := jE ◦ ∆k , ∆∅ := ∆0 and

δE :=
∑

E′⊂E

(−1)n−|E′|∆E′ , δ∅ := ε . The inverse formula ∆E =
∑

Ψ⊆E δΨ holds too. We

shall also use the notation δ0 := δ∅ , δn := δ{1,2,...,n} . Then we define

H ′ :=
{

a ∈ H
∣∣ δn(a) ∈ hnH⊗n ∀n ∈ N} ( ⊆ H

)
.

Note that the useful formula δn = (idH − ε)⊗n ◦ ∆n holds, for all n ∈ N+ . Since
H splits as H = k[[~]] · 1H ⊕ JH , and (id − ε) projects H onto JH := Ker (ε) , from
δn = (idH − ε)⊗n ◦∆n we get δn(a) = (idH − ε)⊗n(

∆n(a)
) ∈ JH

⊗n for all a ∈ H , n ∈ N .
For later use, we recall that ([KT, Lemma 3.2]), if Φ is any finite subset of N then

δΦ(ab) =
∑

Λ∪Y =Φ δΛ(a) δY (b) ∀ a, b ∈ H ; (2.1)

δΦ(ab− ba) =
∑

Λ∪Y =Φ
Λ∩Y 6=∅

(
δΛ(a) δY (b)− δY (b) δΛ(a)

) ∀ a, b ∈ H , Φ 6= ∅ . (2.2)

Now let IH := ε−1
(
~ k[[~]]

)
; set H× :=

∑
n≥0

~−nIH
n =

∑
n≥0

(
~−1IH

)n =
⋃

n≥0

(
~−1IH

)n =
∑

n≥0 ~−nJH
n (inside k((~))⊗k[[~]] H ), and define

H∨ := ~–adic completion of the k[[~]]–module H× .

By means of this constructions, the QDP says that any QUEA provides also a QFSHA
for the dual Poisson group, and any QFSHA yields also a QUEA for the dual Lie bialgebra:

Theorem 2.5. (“The quantum duality principle” [=QDP]; cf. Drinfel’d [Dr1, §7]; see
also Etingof and Schiffman [ES, §10.2], or Gavarini [Ga1], for a proof) The assignments
H 7→ H∨ and H 7→ H ′ , respectively, define tensor functors QFSHA −→ QUEA and
QUEA −→ QFSHA , which are inverse to each other. Indeed, for all U~(g) ∈ QUEA
and all F~[[G]] ∈ QFSHA one has

U~(g)′
/
~U~(g)′ = F [[G∗]] , F~[[G]]∨

/
~F~[[G]]∨ = U(g∗)

that is, if U~(g) is a quantization of U(g) then U~(g)′ is a quantization of F [[G∗]], and
if F~[[G]] is a quantization of F [[G]] then F [[G∗]]∨ is a quantization of U(g∗) . ¤

In addition, Drinfeld’s functors respect Hopf duality, in the sense of the following
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Proposition 2.6. (see Gavarini [Ga1, Proposition 2.2]) Let U~ ∈ QUEA , F~ ∈ QFSHA
and let π : U~ × F~ → k[[~]] be a perfect Hopf pairing whose specialization at ~ = 0 is
perfect as well. Then π induces — by restriction on l.h.s. and scalar extension on r.h.s. — a
perfect Hopf pairing U~

′×F~
∨→ k[[~]] whose specialization at ~ = 0 is again perfect too. ¤

2.7 Quantum subgroups and quantum homogeneous spaces. From now on,
let G be a formal Poisson group, g := Lie(G) its tangent Lie bialgebra. We assume
a quantization of G is given, in the sense that a QFSHA F~[[G]] quantizing F [[G]] and
a QUEA U~(g) quantizing U(g) are given such that, in addition, F~[[G]] ∼= U~(g)∗ :=
Hom k[[~]]

(
U~(g), k[[~]]

)
as topological Hopf algebras; the latter requirement is equivalent

to fix a perfect Hopf algebra pairing between F~[[G]] and U~(g) whose specialization at
~ = 0 be perfect too. Note that this assumption is not restrictive: by [EK1], a QUEA U~(g)
as required always exists, and then F~[[G]] can be simply taken to be F~[[G]] ∼= U~(g)∗ ,
by definition. Finally, as a matter of notation we denote by πF~ : F~[[G]] −−³ F [[G]] and
πU~ : U~(g) −−³ U(g) the specialization maps, and we set F~ := F~[[G]] , U~ := U~(g) .

Let K be a formal subgroup of G , and k := Lie(K) . As quantization of K and/or
of G

/
K , we mean a quantization of any one of the four algebraic objects I, C, I and C

associated to them in §1.2, that is either of the following:

(a) a left ideal, coideal I~ E` Ė F~[[G]] such that I~
/
~ I~ ∼= πF~(I~) = I

(b) a subalgebra, left coideal C~ ≤1 Ė` F~[[G]] such that C~
/
~ C~ ∼= πF~(C~) = C

(c) a left ideal, coideal I~ E` Ė U~(g) such that I~
/
~ I~ ∼= πU~(I~) = I

(d) a subalgebra, left coideal C~ ≤1 Ė` U~(g) such that C~
/
~C~ ∼= πU~(C~) = C

(2.3)

In (2.3) the constraint I~
/
~ I~ ∼= πF~(I~) = I means the following. By construction

I~ ↪−−→F~[[G]]
πF~−−−³ F~[[G]]

/
~F~[[G]] ∼= F [[G]] , and the composed map I~−−→F [[G]]

factors through I~
/
~ I~ ; then we ask that the induced map I~

/
~ I~ −−→ F [[G]] be a

bijection onto πF~(I~) , and that the latter do coincide with I ; of course this bijection
will also respects all Hopf operations, because πF~ does. Similarly for the other conditions.

The existence of any of such objects is a separate problem, which we shall not tackle.
However, the four existence problems are in fact equivalent, in that as one solves any one
of them, a solution follows for the remaining ones. Indeed, much like in §1.2, one has:

— (a) ⇐⇒ (d) and (b) ⇐⇒ (c): if I~ exists as in (a), then C~ := I~⊥ enjoys the
properties in (d); conversely, if C~ exists as in (d), then I~ := C~

⊥ enjoys the properties
in (a) (hereafter orthogonality is meant w.r.t. the fixed Hopf pairing between F~[[G]] and
U~(g) ). The equivalence (b) ⇐⇒ (c) follows from a like orthogonality argument.

— (a) ⇐⇒ (b) and (c) ⇐⇒ (d): if I~ exists as in (a), then C~ := I coI~
~ is an object

like in (b); on the other hand, if C~ as in (b) is given, then I~ := F~[[G]]·C +
~ enjoys all prop-

erties in (a) (notation of §1.2). The equivalence (c)⇐⇒ (d) stems from a like argument.
From now on, we assume from scratch that quantizations I~ , C~ , I~ and I~ as in (2.3)

be given, and that they be linked by the like of relations (1)–(2) in §1.2, namely

(i) I~ = C~
⊥

, C~ = I~⊥ (ii) I~ = C~⊥ , C~ = I~
⊥

(iii) I~ = F~ · C +
~ , C~ = F~

coI~ (iv) I~ = U~ · C+
~ , C~ = U~

coI~ (2.4)
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In fact, one of the objects is enough to have all the others, in such a way that the
previous assumption holds. Indeed, if coS := coS(G) let Y~

(
coS)

:=
{
Y~(k)

}
k∈ coS for

all Y ∈ {I, C, I, C
}

. The equivalences (a) ⇐⇒ (d), (b) ⇐⇒ (c), (a) ⇐⇒ (b) and (c) ⇐⇒
(d) seen above are given by bijective maps I~

(
coS) ←→ C~

(
coS)

, C~
(
coS) ←→ I~

(
coS)

,
I~

(
coS) ←→ C~

(
coS)

and I~
(
coS) ←→ C~

(
coS)

respectively. Altogether these maps
form a square, which happens to be commutative. This follows from the fact that each
of these maps, or their inverse, is of type X~ 7→ X⊥

~ , A~ 7→ H~A
+
~ or K~ 7→ HcoK~

~

(see §1.2): since the general relations X~ ⊆
(
X⊥
~

)⊥ and A~ ⊆ H
co(H~A+

~ )

~ hold, and these

inclusions turn to identities at ~ = 0 , one gets X~ =
(
X⊥
~

)⊥ and A~ = H
co(H~A+

~ )

~ , which
are the key steps to prove (easily) that the square of maps is commutative, as claimed.

Note also that the sets I~
(
coS)

, C~
(
coS)

, C~
(
coS)

and I~
(
coS)

are again lattices
w.r.t. set theoretical inclusion, so they can (and will) be thought of as categories as well.

Remarks 2.8: (a) Let X ∈ {I, C, I, C} and S~ ∈
{
F~[[G]], U~(g)

}
. Since πS~(X~) =

X~
/(

X~ ∩ ~S~
)
, the property X~

/
~X~ ∼= πS~(X~) = X is equivalent to X~ ∩ ~S~ =

~X~ . Therefore our quantum objects can also be characterized, instead of by (2.3), by

(a) I~ E` Ė F~[[G]] , I~ ∩ ~F~[[G]] = ~ I~ , I~
/
~ I~ = I

(b) C~ ≤1 Ė` F~[[G]] , C~ ∩ ~F~[[G]] = ~ C~ , C~
/
~ C~ = C

(c) I~ E` Ė U~(g) , I~ ∩ ~U~(g) = ~ I~ , I~
/
~ I~ = I

(d) C~ ≤1 Ė` U~(g) , C~ ∩ ~U~(g) = ~C~ , C~
/
~C~ = C

(2.3)′

along with conditions (2.4). In any case, next Lemma proves that the formal subgroup of
G obtained as specialization of a quantum formal subgroup is always coisotropic (much
like specializing a quantum group one gets a Poisson group).

(b) If a quadruple
(I~ , C~ , I~ , C~

)
is given which enjoys all properties in the first

and the second column of (2.3)′, then one easily checks that the four specialized objects
I := I~

∣∣
~=0

, C := C~
∣∣
~=0

, I := I~
∣∣
~=0

and C := C~
∣∣
~=0

verify relations (1) and (2)
in §1.2, thus they define one single pair (coisotropic subgroup, Poisson quotient), and the
quadruple

(I~ , C~ , I~ , C~
)

then yields a quantization of the latter in the sense of §2.7.
(c) The existence of quantizations for a given formal coisotropic subgroup is an open

question, in general. However, Etingof and Kahzdan provided a positive answer for the
special subclass of those formal coisotropic subgroups K which are also Poisson subgroups
(which infinitesimally amounts to k := Lie(K) being a Lie subbialgebra); see [EK2, §2.2].
Several other examples of quantizations exist in literature for scattered cases of special
coisotropic subgroups of interest: we shall deal with one of them in §6. ♦
Lemma 2.9. Let K be a formal subgroup of G, and assume a quantization I~, C~, I~ or
C~ of I, C, I or C respectively be given as in §2.7. Then K is coisotropic.

Proof. Assume I~ exists. Let f, g ∈ I , and let ϕ, γ ∈ I~ with πF~(ϕ) = f , πF~(γ) =
g . Then by definition {f, g} = πF~

(
~−1[ϕ, γ]

)
. But [ϕ, γ] ∈ I~ ∩ ~F~[G] = ~ I~ by

assumption, hence ~−1[ϕ, γ] ∈ I~ , thus {f, g} = πF~

(
~−1[ϕ, γ]

) ∈ πF~(I~) = I , which
means that I is closed for the Poisson bracket. Thus (see §1.6) K is coisotropic. The
proof is entirely similar when dealing with C~ , I~ or C~ . ¤
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2.10 General program. Starting from the setup of §1.2, we will move along the scheme

I (⊆F [[G]]
) (1)−→ I~

(⊆F~[[G]]
) (2)−→ I~g

(⊆F~[[G]]∨
) (3)−→ I0

g
(
⊆(

F~[[G]]∨
)
0
= U

(
g∗

))
(a)

C (⊆F [[G]]
) (1)−→ C~

(⊆F~[[G]]
) (2)−→ C~O

(⊆F~[[G]]∨
) (3)−→ C0

O
(
⊆(

F~[[G]]∨
)
0
= U

(
g∗

))
(b)

I
(⊆ U(g)

) (1)−→ I~
(⊆ U~(g)

) (2)−→ I~
!
(⊆ U~(g)′

) (3)−→ I0
!
(
⊆ (

U~(g)′
)
0

= F [[G∗]]
)

(c)

C
(⊆ U(g)

) (1)−→ C~
(⊆ U~(g)

) (2)−→ C~
� (⊆ U~(g)′

) (3)−→ C0
�

(
⊆ (

U~(g)′
)
0

= F [[G∗]]
)

(d)

In the frame above, the arrows (1) are quantizations, as in §2.7, and the arrows (3)
are specializations at ~ = 0 . The middle arrows (2) instead are suitable “adaptations” of
Drinfeld’s functors to the quantizations of K or of G

/
K in left hand side: roughly, one

takes the suitable Drinfeld’s functor on F [[G]] , resp. on U(g) , and restricts it — in some
sense — to the subobject I or C , resp. I or C . The points to show then are the following:

First: each one of the right-hand-side objects above is one of the four algebraic objects
which describe a (closed formal) subgroup of G∗ : namely, the correspondence is

(a) ==⇒ (c) , (b) ==⇒ (d) , (c) ==⇒ (a) , (d) ==⇒ (b) .

Second: all the formal subgroups of G∗ associated to the four objects so obtained are
coisotropic.

Third: the four formal subgroups of G∗ in (b) do coincide.
Fourth: if we start from K ∈ coS(G) , then the formal coisotropic subgroup of G∗

obtained above is K⊥ (cf. Definition 1.4(a)).

§ 3 Drinfeld-like functors on quantum subgroups and Poisson quotients

In this section and next one we introduce Drinfeld-like functors for quantum coisotropic
subgroups and Poisson quotients. In particular, we start with I~ , C~ , I~ and C~ as in
§2.7, hence enjoying (2.3), or equivalently (2.3)′, and (2.4), with F~ and U~ as in §2.7. We
begin moving step (2) in §2.10, with a definition whose meaning is (roughly) to “restrict”
Drinfeld’s functors from quantum groups to quantum subgroups or Poisson quotients:

Definition 3.1. (Drinfeld-like functors for subgroups) Keeping notation of §2.4, we define:

(a) I~g :=
∑∞

n=1 ~
−n · In−1 · I~ =

∑∞
n=1 ~

−n · Jn−1 · I~ ;

(b) C~O := C~ +
∑∞

n=1 ~
−n · (C~ ∩ I

)n = k[[~]] · 1 +
∑∞

n=1 ~
−n · (C~ ∩ J

)n ;

(c) I~
! :=

{
x ∈ I~

∣∣∣ δn(x) ∈ ~n ∑n
s=1 U~

b⊗ (s−1) ⊗̂ I~ ⊗̂U~
b⊗ (n−s), ∀ n ∈ N+

}
;

(d) C~
� :=

{
x ∈ C~

∣∣∣ δn(x) ∈ ~n U~
b⊗ (n−1) ⊗̂C~ , ∀ n ∈ N+

}
.

3.2 Remark: The following inclusion relations hold, directly by definitions:

(i) I~g ⊇ I~ , (ii) C~O ⊇ C~ , (iii) I~
! ⊆ I~ , (iv) C~

� ⊆ C~ .
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Moreover, definitions and assumptions in (2.3)′ imply that I~ = I~g∩F~ , C~ = C~O∩F~ ,
I~

! = I~∩U~
′ and C~

� = C~∩U~
′ : thus we are just “restricting” Drinfeld’s functors. ♦

We can now state the QDP for formal coisotropic subgroups and Poisson quotients:

Theorem 3.3. (“QDP for Coisotropic Subgroups and Poisson Quotients”)
(a) Definition 3.1 provides category equivalences

( )g: I~
(
coS(G)

) ∼=−−−→I~
(
coS(G∗)

)
, ( )O: C~

(
coS(G)

) ∼=−−−→C~
(
coS(G∗)

)
,

( )! : I~
(
coS(G)

) ∼=−−−→I~
(
coS(G∗)

)
, ( )� : C~

(
coS(G)

) ∼=−−−→C~
(
coS(G∗)

)
,

along with the similar ones with G and G∗ interchanged, such that ( )! ◦ ( )g = idcoS(G) ,
( )g ◦ ( )! = idcoS(G∗) , and ( )� ◦ ( )O = idcoS(G) , ( )O ◦ ( )� = idcoS(G∗) , and so on.

(b) (QDP) For any K ∈ coS(G) , we have

I(k)g~ mod ~F~[[G]]∨ = I
(
k⊥

)
, C(k)O~ mod ~F~[[G]]∨ = C

(
k⊥

)
,

I(k) !
~ mod ~U~(g)′ = I(

k⊥
)
, C(k) �~ mod ~U~(g)′ = C(k⊥)

.

In short, the quadruple
(I(k)g~ , C(k)O~ , I(k) !

~ , C(k) �~
)

is a quantization of the quadruple(
I
(
k⊥

)
, C

(
k⊥

)
, I(

k⊥
)
, C(k⊥))

w.r.t. the quantization
(
F~[[G]]∨, U~(g)′

)
of

(
U(g∗), F [[G∗]]

)
.

§ 4 First properties of Drinfeld-like functors

We shall now study the properties of the images of Drinfeld-like functors for general ~ .
The main result is — Proposition 4.4 — that they are quantizations of some (unique) pair
(coisotropic subgroup, Poisson quotient), in the sense of §2.7, for the Poisson group G∗.

Lemma 4.1. The following relations hold (w.r.t. the perfect Hopf pairing between U~
′ and

F~
∨ given by Proposition 2.6 for the orthogonality relations (i)–(ii)):

(i) I~g =
(
C~
� )⊥ , C~

� =
(I~g

)⊥ (ii) I~
! =

(C~O
)⊥

, C~O =
(
I~

!
)⊥

(iii) I~g = F~
∨ · (C~O

)+
, C~O =

(
F~
∨ )coI~g (iv) I~

! = U~
′ · (C~�

)+
, C~

� =
(
U~
′ )coI~!

Proof. Let I = IF~ be the ideal of F~ considered in §2.4, and take y1, . . . , yn−1 ∈ I ; then
〈yi, 1〉 = ε(yi) ∈ ~ · k[[~]] , for all i = 1, . . . , n− 1 . Given yn ∈ I~ and γ ∈ C~

� , consider
〈

n∏
i=1

yi , γ

〉
=

〈
n⊗

i=1

yi , ∆n(γ)
〉

=
〈

n⊗
i=1

yi ,
∑

Ψ⊆{1,...,n}
δΨ(γ)

〉
=

∑
Ψ⊆{1,...,n}

〈
n⊗

i=1

ci , δΨ(γ)
〉

.

Now consider any summand in the last term in the formula above. Let |Ψ| = t ( t ≤ n ):
then

〈 ⊗n
i=1 yi, δΨ(γ)

〉
=

〈 ⊗i∈Ψ yi, δt(γ)
〉 ·∏j 6∈Ψ〈yj , 1〉 , by definition of δΨ . Thanks to

the previous analysis, we have
∏

j 6∈Ψ〈yj , 1〉 ∈ ~n−tk[[~]] , hence

〈⊗
i∈Ψyi , δt(γ)

〉
∈

〈 ⊗
i∈Ψyi , ~t ∑n

s=1 U~
b⊗ (n−1) ⊗̂C~

〉
⊆ ~t+1 k[[~]]
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because γ ∈ C~
� ; therefore 〈∏n

i=1yi , γ〉 ∈ ~ k[[~]] . And even more, the rightmost tensor
factor in each summand δΨ(γ) always belongs to C~ (as also 1 ∈ C~ ), whereas yn ∈ I~ =
C~
⊥ : therefore

〈∏n
i=1 yi , γ

〉
=

〈 ⊗n
i=1yi ,

∑
Ψ⊆{1,...,n}δΨ(γ)

〉
= 0 . This means that

I~g ⊆
(
C~
� )⊥ , C~

� ⊆ (I~g
)⊥

. (4.1)

Now take κ ∈ (I~g
)⊥ ⊆ (

F~
∨)∗ = U~

′ (using Proposition 2.6 for the last equality).

Since κ ∈ U~
′ , we have δn(κ) ∈ ~n U~

b⊗n for all n ∈ N , and moreover from κ ∈ (I~g
)⊥

it follows that κ+ := ~−n δn(κ) enjoys
〈
I e⊗ (n−1) ⊗̃ I~ , κ+

〉
= 0 , so that

κ+ ∈
(
I
e⊗ (n−1) ⊗̃ I~

)⊥
=

∑
r+s=n−2 U~

b⊗ r ⊗̂ I⊥ ⊗̂U~
b⊗ s ⊗̂U~ + U~

b⊗ (n−1) ⊗̂ I~⊥ .

In addition, δn(κ) ∈ J b⊗n , where J := JU~ = Ker
(
ε : U~ −→ k[[~]]

)
, hence δn(κ) ∈

~n U~
b⊗n ∩ J b⊗n = ~n J b⊗n ; this together with the above formula yields

κ+ ∈
(
I
e⊗ (n−1) ⊗̃ I~

)⊥
∩ J

b⊗n =
( ∑

r+s=n−2
U~
b⊗ r ⊗ I⊥ ⊗̂U~

b⊗ s ⊗̂U~

)
∩ J

b⊗n +

+
(
U~
b⊗ (n−1) ⊗̂ I~⊥

)
∩J

b⊗n =
∑

r+s=n−2
J
b⊗ r ⊗̂

(
I⊥∩JU

)
⊗̂ J

b⊗ s ⊗̂J + J
b⊗ (n−1) ⊗̂

(
I~⊥∩J

)
=

= J
b⊗ (n−1) ⊗̂

(
I~⊥ ∩ J

)
= J

b⊗ (n−1) ⊗̂
(
C~ ∩ J

)
⊆ U~

b⊗ (n−1) ⊗̂C~

where in the third equality we used the fact that I⊥ = 0 ; the last equality then follows from
(2.4)(i). Thus κ+ ∈ U~

b⊗ (n−1) ⊗̂C~ , hence δn(κ) ∈ ~n U~
b⊗ (n−1) ⊗̂C~ for all n ∈ N : so

κ ∈ C~
� . We conclude that

(I~g
)⊥ ⊆ C~

� , which together with (4.1) gives C~
� =

(I~g
)⊥ .

By Proposition 2.6 the specialization at ~ = 0 of the pairing between U~
′ and F~

∨ is

perfect too. From this we can easily argue that I~g ≡
((I~g

)⊥)⊥
mod ~F~

∨ , whence

I~g =
((I~g

)⊥)⊥
follows at once by ~–adic completeness. But then starting from C~

� =
(I~g

)⊥ , hence
(
C~
� )⊥ =

((I~g
)⊥)⊥

, we finally get
(
C~
� )⊥ = I~g , thus (i) is proved.

The proof of (ii) is similar. First of all, by (2.4)(ii) and definitions it is clear that

I~
! ⊆ (C~O

)⊥
, C~O ⊆

(
I~

!
)⊥

. (4.2)

Now notice that C~O ⊇ C~ , so
(C~O

)⊥ ⊆ C~⊥ = I~ , due to (2.4)(ii); thus
(C~O

)⊥ ⊆ I~ .

Second, pick η ∈ (C~O
)⊥ ( ⊆ U~

′) . Then δn(η) ∈ ~nU~
b⊗n for all n ∈ N+ , and from

η ∈ (C~O
)⊥ we get that η+ := ~−n δn(η) enjoys

〈(C~ ∩ I
)e⊗n

, η+

〉
= 0 , so that

η+ ∈
((C~ ∩ I

)e⊗n
)⊥

=
∑

r+s=n−1
U~
b⊗ r ⊗̂ (C~ ∩ I

)⊥ ⊗̂U~
b⊗ s .
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Moreover δn(η) ∈ J b⊗n , hence δn(η) ∈ ~n U~
b⊗n ∩ J b⊗n = ~nJ b⊗n , so η+ ∈ J b⊗n and

η+ ∈
((C~ ∩ I

)b⊗n
)⊥
∩ J

b⊗n =
(∑

r+s=n−1 U~
b⊗ r ⊗̂ (C~ ∩ I

)⊥ ⊗̂U~
b⊗ s

)
∩ J

b⊗n =

=
∑

r+s=n−1 J
b⊗ r ⊗̂

((C~ ∩ I
)⊥ ∩ J

)
⊗̂J

b⊗ s .

Now
(C~ ∩ I

)⊥ ∩ J = C~⊥ ∩ J = I~ ∩ J ⊆ I~ , thanks to (2.4)(ii). The upshot is

η+ ∈ ∑
r+s=n−1 J

b⊗ r ⊗̂ (
I~ ∩ JU

) ⊗̂ J
b⊗ s ⊆ ∑

r+s=n−1 U~
b⊗ r ⊗̂ I~ ⊗̂U~

b⊗ s

whence we get δn(η) ∈ ~n
∑

r+s=n−1 U~
b⊗ r ⊗̂ I~ ⊗̂U~

b⊗ s for all n ∈ N+ . Since in addition

η ∈ I~ , for we proved that
(C~O

)⊥ ⊆ I~ , we argue that η ∈ I~
! . The final outcome is(C~O

)⊥ ⊆ I~
! , which together with (4.2) implies I~

! =
(C~O

)⊥ , q.e.d.

With like arguments as for part (i) one proves that
((C~O

)⊥)⊥
= C~O and then argue

that
(
I~

!
)⊥

= C~O ; this ends the proof of claim (ii) too. Finally, (iii) and (iv) are
straightforward consequence of relations (iii) and (iv) in (2.4) and of definitions. ¤

Lemma 4.2.

(a) I~g E` F~
∨ (b) C~O ≤1 F~

∨ (c) I~
! E` U~

′ (d) C~
� ≤1 U~

′ ;

(e) I~g Ė F~
∨ (f) C~O Ė` F~

∨ (g) I~
! Ė U~

′ (h) C~
� Ė` U~

′

Proof. The statements on the first line are proved directly, and imply those on the second
line via the orthogonality relations of Lemma 4.1.

Claim (a) is straightforward, and (b) follows directly from definitions. To prove (c),
let a ∈ U~

′ and b ∈ I~
! : by definition of I~

! , from I~ E` U~ and from (2.1) we get
δn(ab) ∈ ~n

∑n
s=1 U~

b⊗ (s−1)⊗̂ I~ ⊗̂U~
b⊗ (n−s), so ab ∈ I~

! ; thus I~
! E` U~

′ . Recall that
U~

′ is commutative modulo ~ , and ~U~
′ ∈ I~

! : then I~
! E` U~

′ implies I~
! E U~

′

(a two-sided ideal), thus proving (c). Lastly, to prove (d), remark that 1 ∈ C~ and
δn(1) = 0 for all n ∈ N , so 1 ∈ C~

� . Let x, y ∈ C~
� and n ∈ N ; by (2.1) we have

δn(xy) =
∑

Λ∪Y ={1,...,n} δΛ(x) δY (y) . Each of the factors δΛ(x) belongs to a module

~|Λ| U~
b⊗ (|Λ|−1)⊗̂X where the last tensor factor is either X = C~ (if n ∈ Λ ) or X = {1} ⊂

C~ (if n 6∈ Λ ), and similarly for δY (y) ; but Λ∪Y = {1, . . . , n} implies |Λ|+|Y | ≥ n , and
summing up δn(xy) ∈ ~nU~

b⊗ (n−1)⊗̂C~ , whence xy ∈ C~
� . Thus C~

� ≤1 U~
′ , q.e.d. ¤

Remark: in the previous proof one might also prove the required properties for only
one of the objects involved, say I~

! for instance: then the properties of all others objects
will follow from relations (i)–(iv) in Lemma 4.1.

Lemma 4.3.

(a) I~g
⋂
~F~

∨ = ~ I~g , (b) C~O
⋂
~F~

∨ = ~ C~O ,

(c) I~
! ⋂ ~U~

′ = ~ I~
! , (d) C~

�⋂
~U~

′ = ~C~
� .
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Proof. We start proving claim (c). Let η ∈ I~
! ∩ ~U~

′ = ~ I~
! . Then

δn(η) ∈ ~n
((∑n

s=1U~
b⊗ (s−1) ⊗̂ I~ ⊗̂U~

b⊗ (n−s)
) ⋂

~U~
b⊗n

)
(4.3)

for all n ∈ N+ . Now, for n ∈ N+ we have
(∑n

s=1U~
b⊗ (s−1) ⊗̂I~ ⊗̂U~

b⊗ (n−s)
) ⋂

~U~
b⊗n =

∑n
s=1 U~

b⊗ (s−1) ⊗̂
(
I~

⋂
~U~

)
⊗̂U~

b⊗ (n−s) , and since I~
⋂
~U~ = ~ I~ by (2.3)′, from

(4.3) we conclude that δn(η) ∈ ~n+1
∑n

s=1U~
b⊗ (s−1) ⊗̂ I~ ⊗̂U~

b⊗ (n−s) for all n ∈ N+ ,
which in turn means η ∈ ~ I~

! , q.e.d. The converse inclusion I~
! ∩ ~U~

′ ⊇ ~ I~
! is

trivially true. The same arguments prove (d) as well.
As for (a) and (b), we can give a rather concrete description of the objects involved,

starting from F~
∨. Let I := IF~ as in §2.4, J := Ker

(
ε : F~ −→ k[[~]]

)
, and J∨ :=

~−1J ⊂ F~
∨ . Then J mod ~F~ = JG := Ker

(
ε : F [[G]] → k

)
, and JG

/
JG

2 = g∗ .

Let {y1, . . . , yn} , with n := dim(G) , be a k–basis of JG

/
JG

2 , and pull it back to a

subset {j1, . . . , jn} of J . Then
{
~−|e|j e mod ~F~

∨ ∣∣ e ∈ Nn
}

(with j e :=
∏n

s=1 j
e(i)
s ,

and similarly hereafter) is a k–basis of F0
∨ and, setting j ∨s := ~−1js for all s, the set{

j ∨1 , . . . , j ∨n
}

is a k–basis of t := J∨ mod ~F~
∨ . Moreover, since jµ jν − jν jµ ∈ ~ J (for

µ, ν ∈ {1, . . . , n} ) we have jµ jν − jν jµ = ~
∑n

s=1 cs js + ~2γ1 + ~ γ2 for some cs ∈ k[[~]] ,
γ1 ∈ J and γ2 ∈ J2, whence

[
j∨µ , j∨ν

]
:= j∨µ j∨ν − j∨ν j∨µ ≡ ∑n

s=1 cs j∨s mod ~F~
∨ , thus

t := J∨ mod ~F~
∨ is a Lie subalgebra of F0

∨ : indeed, F0
∨ = U(t) as Hopf algebras.

Now for the second step. The specialization map π∨: F~
∨ −³ F0

∨ = U(t) restricts
to η : J∨ −−³ t := J∨mod ~F~

∨ = J∨
/

J∨ ∩ (
~F~

∨)
= J∨

/(
J + J∨J~

)
, because

J∨ ∩ (
~F~

∨)
= J∨ ∩ ~−1IF~

2 = J~ + J∨J~ . Moreover, multiplication by ~−1 yields a

k[[~]]–module isomorphism µ : J
∼=

↪−−³ J∨. Let ρ : JG −³ JG

/
JG

2 = g∗ be the natural
projection map, and ν : g∗ ↪−→ JG a section of ρ . The specialization map π : F~ −³ F0

restricts to π′: J −³ J
/
(J ∩ ~F~) = J~

/
~ J~ = JG : we fix a section γ : JG ↪−→ J~ of

π′. Then the composition map σ := η ◦ µ ◦ γ ◦ ν : g∗ −→ t is a well-defined Lie bialgebra
isomorphism, independent of the choice of ν and γ . In fact, one has (see [Ga1]) F~[[G]] ∼=(
k[[j1, . . . , jn]]

)
[[~]] and U~(g) ∼=

(
k
[
j∨1 , . . . , j∨n

])
[[~]] as topological k[[~]]–modules.

For our purposes we need a special choice of the k–basis {y1, . . . , yn} of g∗ = JG

/
JG

2 .
Namely, letting k := dim(K) , we fix a system of parameters {j1, . . . , jk, jk+1, . . . , jn} for
F [[G]] like in the end of §1.6: then in particular

( {jk+1, . . . , jn} mod J 2
G

)
mod k∗ is a

k–basis of g∗
/
k∗ = k⊥ , the cotangent space of G

/
K at the point eK .

By construction
(I+J 2

G

)∩Span
({j1, . . . , jk}

)
= {0} and ρ(I ) =

(I+JG
2
)

mod JG
2 =

Span
({yk+1, . . . , yn}

)
= k⊥ . Thus we choose this set

{
y1, . . . , yk, yk+1, . . . , yn

}
as the

basis of JG

/
JG

2 = g∗ to start with. Then I~ identifies with the left ideal of F~[[G]] =(
k[[j1, . . . , jn]]

)
[[~]] generated by {jk+1, . . . , jn} , which is the set of all formal power series

in {j1, . . . , jn, ~} such that in each monomial with non-zero coefficient at least one out
of jk+1, . . . , jn does occur with non-zero exponent. Similarly, I~g identifies with the left
ideal of U~(g) =

(
k
[
j∨1 , . . . , j∨n

])
[[~]] generated by

{
j∨k+1, . . . , j

∨
n

}
, which is the set of all

formal power series in ~ with coefficients in k
[
j∨1 , . . . , j∨n

]
such that in each monomial in
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the j∨r ’s with non-zero coefficient at least one out of j∨k+1, . . . , j∨n occurs with non-zero
exponent. But then it’s clear — thanks to (2.3)′ — that I~g ∩ ~F~[G]∨ ⊆ ~ I~g . The
converse inclusion I~g ∩ ~F~[G]∨ ⊇ ~ I~g is obvious. Similarly one proves (b). ¤

Altogether, Lemmas 4.1–4.3 yield the main result of this section, namely

Proposition 4.4. I~g, C~
�, C~O and I~

! are quantizations of a pair (coisotropic subgroup,
Poisson quotient), in the sense of §2.7, for the dual Poisson group G∗. ¤

Next result instead shows that the construction by Drinfeld-like functors is involutive:

Proposition 4.5. The following identities hold:
(I g~

)! = I~ ,
(C O~

)� = C~ ,
(
I~

!
)g

= I~ ,
(
C~
� )O = C~ .

Proof. From the very definitions we get

δn

(I~
) ⊆ ∑n

s=1JF~
e⊗ (s−1) ⊗̃ I~ ⊗̃JF~

e⊗ (n−s) ⊆ ∑n
s=1

(
~s−1

(
F~
∨)b⊗ (s−1)

)
⊗̂

⊗̂
(
~ I g~

)
⊗̂

(
~n−s

(
F~
∨)b⊗ (n−s)

)
= ~n ·∑n

s=1

(
F~
∨)b⊗ (s−1) ⊗̂ I g~ ⊗̂ (

F~
∨)b⊗ (n−s)

for all n ∈ N+ , which means exactly that
(I g~

)! ⊇ I~ . Similarly, we have also δn

(C~
) ⊆

JF~
e⊗ (n−1) ⊗̃ C~ ⊆

(
~n−1

(
F~
∨)b⊗ (n−1)

)
⊗̂

(
~ C O~

)
= ~n · (F~∨

)b⊗ (n−1) ⊗̂ C O~ for all n ∈ N+ ,

which means exactly that
(C O~

)� ⊇ C~ . On the other hand, by definitions I~
! ∩ JF~ =

ε
(
I~

! ∩ JF~

)
+ δ1

(
I~

! ∩ JF~

)
= δ1

(
I~

! ∩ JF~

) ⊆ ~ (
I~∩ JF~

)
, which implies

(
I~

!
)g ⊆ I~ .

Similarly, C~
� ∩ JF~ = ε

(
C~
� ∩ JF~

)
+ δ1

(
C~
� ∩ JF~

)
= δ1

(
C~
� ∩ JF~

) ⊆ ~ · (C~ ∩ JF~

)

yields
(
C~
� )O ⊆ C~ . Thus all identities in the claim are half proved.

To prove the reverse inclusions
(I g~

)! ⊆ I~ and
(C O~

)� ⊆ C~ one can resume the proof
of Proposition 3.2 in [Ga1], which shows that

(
F~
∨)′ ⊆ F~ : in fact, the same arguments

apply almost untouched with C~ instead of F~ , and also (with minimal changes) with I~
instead of F~ . The outcome is

(I g~
)! ⊆ I~ and

(C O~
)� ⊆ C~ , whence identities hold.

To finish with, by Proposition 4.4 we can apply twice Lemma 4.1 and get
(
C~
� )O =((I g~

)!
)⊥

and
(
I~

!
)g

=
((C O~

)�)⊥. As
(I g~

)! = I~ and
(C O~

)�= C~ , we get
(
C~
� )O=

I~⊥ and
(
I~

!
)g

= C~⊥ ; but then (2.4) eventually yields
(
C~
� )O= C~ and

(
I~

!
)g

= I~ . ¤

Remark: like for Lemma 4.2, in the previous proof we might prove only one of the
identities in the claim, e.g. that for I~ : all others then follow via (i)–(iv) in Lemma 4.1.

§ 5 Specialization at ~ = 0

We shall now look at semiclassical limits of the images of Drinfeld-like functors. The
result — Proposition 5.2 — will be

(
K⊥, G∗

/
K⊥

)
, in the sense that this will be the pair

(coisotropic subgroup, Poisson quotient) mentioned in Proposition 4.4.
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Lemma 5.1. Let S(G∗) be the set of formal subgroups of the formal Poisson group G∗ .
(a) I0

gE` Ė F0[[G]]∨= U(g∗) , whence I0
g= U(g∗)·l for some Lie subalgebra l ≤ g∗;

(b) C0
O ≤H F0[[G]]∨ = U(g∗) , whence C0

O = U(h) for some Lie subalgebra h ≤ g∗ ;
(c) I0

! EH U0(g)′ = F [[G∗]] , whence I0
! = I(Γ ) for some Γ ∈ S(G∗) ;

(d) C0
�≤1Ė` U0(g)′ = F [[G∗]] , whence C0

�=F [[G∗]]Θ for some Θ ∈ S(G∗) ;
(e) Let H ∈ S(G∗) be the formal subgroup of G∗ with Lie (H) = h , and let L ∈ S(G∗)

be the one with Lie (L) = l . Then Γ = H = L = Θ .
(f) the formal subgroup Γ = H = L = Θ in (e) is coisotropic in G∗.

Proof. Statements (a) and (d) follow trivially from Lemma 4.2; the same also implies part
of (b) and (c), in that I0

! is a bialgebra ideal of U0(g)′ and C0
O is a subbialgebra of F0[[G]]∨ .

Now, F0[[G]]∨ = U(g∗) , and a subbialgebra of any universal enveloping algebra (such as
U(g∗) ) is automatically a Hopf subalgebra: thus C0

O is a Hopf subalgebra. On the other
hand, the orthogonality relations of Lemma 5.1(ii) imply that I0

! is a Hopf ideal too.
Claim (e) follows directly from Proposition 4.4 and from Remark 2.8(b).
Finally (f) follows from Proposition 4.4 and Lemma 2.9. ¤

Proposition 5.2. The coisotropic subgroup Γ = H = L = Θ of Proposition 5.1 coincide
with K⊥ ∈ coS(G∗) (cf. Definition 1.4). In other words, l = h coincides with k⊥

( ⊆ g∗
)
.

Proof. We resume the construction made for the proof of Lemma 4.3, with same notation.
In particular we fix a special subset {j1, . . . , jk, jk+1, . . . , jn} of JG enjoying the properties
mentioned there, and call {y1, . . . , yk, yk+1, . . . , yn} its image in g∗ = JG

/
JG

2 .
The same kind of analysis carried on in the proof of Lemma 4.3 to prove that σ : g∗∼= t

shows that the unital subalgebra C0
O := C~O mod ~F~

∨ is generated by η
(C~O ∩ J∨

)
=

(µ ◦ η)
(C~ ∩ J

)
= (σ ◦ ρ ◦ π)

(C~ ∩ J
)

= σ
(
ρ(C ∩ JG)

)
= σ

(
ρ(〈jk+1, . . . , jn〉)

)
= σ

(
k⊥

)
,

where 〈 jk+1, . . . , jn〉 is the ideal of C generated by {jk+1, . . . , jn} . Therefore C0
O = U(h)

is generated by k⊥, whose elements are primitive, so belong to h : then h = k⊥ , q.e.d. ¤

Corollary 5.3. I(K)g~ , C(K)O~ , I(K) !
~ and C(K) �~ all provide quantizations, w.r.t.(

U~
′, F~∨

)
, of the formal coisotropic subgroup K⊥ and the formal Poisson quotient G∗

/
K⊥.

Proof. The claim follows from Proposition 4.4, Lemma 5.1 and Proposition 5.2. ¤

Patching together all previous results, we can finally prove Theorem 3.3:

Proof of Theorem 3.3. Corollary 5.3 proves that the functors in (a) are well-defined on
objects, and it is trivially clear that they are inclusion-preserving, so they do are functors.
Proposition 4.5 proves the rest of claim (a), in particular that these functors are in fact
equivalences. In addition, Corollary 5.3 also proves claim (b). ¤

§ 6 Example: the Stokes matrices as Poisson homogeneous SLn
∗–space

6.1 The Poisson homogeneous SLn
∗–space of Stokes matrices. Let G = SLn(k)

endowed with the standard Poisson-Lie structure. We denote by d the Cartan subalgebra of
diagonal matrices in sln(k) . With b+ (resp. b−) we denote the Borel subalgebra of upper
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(resp. lower) triangular matrices in sln; then B+ and B− will be the corresponding Borel
subgroups in SLn . It is well known that at the infinitesimal level the dual Lie bialgebra
can be identified with g∗ =

{
(X,Y ) ∈ b+ ⊕ b−

∣∣ X
∣∣
d

= −Y
∣∣
d

}
, so that the simply

connected dual Poisson group is G∗ = B+ ? B− , the pairs of upper and lower triangular
matrices such that the restrictions on the diagonal are mutually inverse.

By construction, the algebra F [G∗] = F [B+ ? B−] is generated by matrix coefficients
xi,j (1 ≤ i ≤ j ≤ n) for the over-diagonal part of B+ , yi,j (1 ≥ i ≥ j ≥ 1) for the
under-diagonal part of B− , and zi (1 ≤ i ≤ n) for the diagonal part of B+ .

Let H = SOn(k) ↪−−→ SLn(k) be the standard embedding. The corresponding Lie
algebra is h = son(k) . Its orthogonal in g∗, for the pairing given by the Killing form,
is h⊥ =

{(
b,−b t

) ∈ b+ ⊕ b− : b
∣∣
d

= 0
}

and can be integrated to H⊥ =
{
(B, C) ∈

B+ ? B−
∣∣ B C t = Id

}
, which is a coisotropic subgroup of G∗ . We are then in the

situation described in §1. The spaces SLn

/
SOn and SLn

∗/H⊥ are a complementary
dual pair of Poisson homogeneous spaces: the former can be identified with the space
of symmetric matrices and the latter with the space U+

n of Stokes matrices, i.e. upper
triangular unipotent (n × n)–matrices. By construction the function algebra F

[
U+

n

]
=

F
[
G∗

/
H⊥]

= F [G∗]H
⊥

is generated by elements xi,j , for all 1 ≤ i < j ≤ n , which may
be realized as the matrix coefficient functions on Stokes matrices.

The Poisson structure on U+
n was first found by Dubrovin in the n = 3 case (see [Du])

and then by Ugaglia (cf. [Ug]) for generic n ≥ 3 in a completely different setting: it
naturally arises in the study of moduli spaces of semisimple Frobenius manifolds. Later, in
[Bo,Xu], it was shown how U+

n with such structure is a Poisson homogeneous space of the
Poisson-Lie group B+ ?B− , dual to the standard SLn, as just explained. More explicitly,
from [Xu] one can argue the following

Proposition 6.2. Let Ψ : B+ ? B− −−→ B+ ? B− , Ψ(B, C) :=
(
C t, B t

)
and let

H⊥ =
{

g ∈ B+ ? B−
∣∣ ψ(g) = g−1

}
. Then H⊥ is a coisotropic subgroup of B+ ? B− and

U+
n
∼= (B+ ? B−)

/
H⊥ with its quotient Poisson structure. ¤

6.3 Towards quantization of Stokes matrices. In the present section we look for
quantizations of U+

n : the first step is to switch to the associated formal homogeneous space.
Actually, the function algebra F~

[[
G∗

/
H⊥]]

= F~
[[

U+
n

]]
is nothing but the algebra of

formal power series in the matrix coefficient functions, say χi,j ( 1 ≤ i < j ≤ n ), on U+
n .

Now we look for a quantization F~
[[

U+
n

]]
of F

[[
U+

n

]]
with the above Poisson structure:

we shall find it applying Theorem 3.3. As our purpose is to obtain a quantum algebra of
functions on the homogeneous space, an object of type (b) in the list (2.3), we start with an
object of type (d) in the same list. This means that as a starting point we need a subalgebra
and left coideal inside U~(sln) quantizing the standard embedding of son . This has been
already obtained in [No, §2.3] (see also the works of Klimyk et al., e.g [GIK] and references
therein): we recall hereafter its definition in the formal setup. We begin fixing notation
for U~(gln), a quantum analogue of U(gln) , and its Hopf subalgebra U~(sln) :

Definition 6.4. We call U~(gln) the topological, ~–adically complete, associative unital
k[[~]]–algebra with generators fi , `j , ei ( i = 1, . . . , n− 1; j = 1, . . . , n) and relations

`j fi− fi `j = (δi+1,j − δi,j) fi , `j `k = `k `j , `j ei− ei `j = (δi,j − δi+1,j) ei ∀ i , j , k



18 NICOLA CICCOLI, FABIO GAVARINI

ek fl − fl ek = δk,l
t+1
k − t−1

k

q − q−1
∀ k , l , ei ej = ej ei , fi fj = fj fi ∀ | i−j | > 1

e2
i ej −

(
q + q−1

)
ei ej ei + ej e2

i = 0 , f2
i fj −

(
q + q−1

)
fi fj fi + fj f2

i = 0 ∀ | i−j | = 1

where hereafter we use notation q := exp(~) , qX := exp
(
~X

)
and ti := q`i−`i+1 (∀ i ).

It has a structure of topological Hopf k[[~]]–algebra uniquely given by

∆(fi) = fi ⊗ t−1
i + 1⊗ fi , S(fi) = −fi ti , ε(fi) = 0 ∀ i

∆(`j) = `j ⊗ 1 + 1⊗ `j , S(`j) = −`j , ε(`j) = 0 ∀ j

∆(ei) = ei ⊗ 1 + ti ⊗ ei , S(ei) = −t−1
i ei , ε(ei) = 0 ∀ i

6.5 Quantum root vectors and L–operators in U~(gln) . We recall the notion
of L–operators, first introduced in [FRT]: these are elements L±i,j ∈ U~(gln) (with i, j =
1, . . . , n), which are defined as follows. Set [x, y]a := x y−a y x (for all x, y, a ), and define

Ei,i+1 := ei , Ei,j :=
[
Ei,k, Ek,j

]
q

, Fi+1,i := fi , Fj,i :=
[
Fj,k, Fk,i

]
q−1 ∀ i<k<j

(where q := exp(~) again). These are quantum root vectors in U~(gln) , in that the coset
of Ei,j (resp. Fj,i ) modulo ~U~(gln) in U~(gln)

/
~U~(gln) ∼= U(gln) is the elementary

matrix ei,j (resp. ej,i) for all i < j .
The L–operators are obtained by twisting and rescaling the above quantum root vectors,

L+
i,i := q+`i =: g+1

i , L+
i,j := +

(
q − q−1

)
g+1

i Fj,i , L+
j,i := 0 (i < j)

L−i,i := q−`i =: g−1
i , L−i,j := −(

q − q−1
)
Ej,i g−1

j , L−j,i := 0 (i > j)

and satisfy the remarkable formulas ∆
(
L±i,j

)
=

∑i∨j
k=i∧j L±(i∧j),k⊗L±k,(i∨j) , ε

(
L±i,j

)
= δi,j .

When suitably normalized, the L–operators are again q–analogues of the elementary
matrices of gln : namely, the coset of

(
q − q−1

)−1
L+

i,j (resp.
(
q − q−1

)−1
L−j,i ) modulo

~U~(gln) in the semiclassical limit U~(gln)
/
~U~(gln) ∼= U(gln) is ej,i (resp. ei,j) for all

i < j . Moreover, the elements L̂±i,j :=
(
q − q−1

)δi,j−1
L±i,j for i 6=j together with the `k’s

form a set of generators for U~(gln) . Set also Λ± :=
(
Λ±i,j

)n

i,j=1
for any Λ ∈ {

L, L̂
}

.

6.6 Quantization of U(sln) . For all i = 1, . . . , n − 1 , let hi := `i − `i+1 . Given
U~(gln) as above, we define U~(sln) as the closed topological subalgebra of U~(gln) gen-
erated by

{
fi , hi , ei

}
i=1,...n−1

. From the presentation of U~(gln) in Definition 6.4 one
argues a presentation of U~(sln) as well: in particular, this shows that U~(sln) is a Hopf
subalgebra of U~(gln) ; moreover, by construction we have a quantum analogue of the
classical embedding sln ↪−→ gln . Note also that, for any i, j , we have L±i,j 6∈ U~(sln) . It
is also immediate to check that our Hopf algebra U~(sln) coincides with Drinfeld’s one.
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6.7 Quantization of U(son) . Following an idea of Noumi, Klimyk et al., we de-
fine U~(son) as a subalgebra of U~(sln). We call U~(son) the closed topological k[[~]]–
subalgebra of U~(gln) generated by the matrix entries of K :=

(
L̂−

)t
J L+ =

(
L−

)t
J L̂+,

where J is the (n× n) diagonal matrix diag
(
qn−1, . . . , q, 1

)
. Explicit computations give

Ki,j =
∑j

k=i qn−k
(
q − q−1

)−1
L−k,i L+

k,j =
∑j

k=i qn−kL̂−k,i L+
k,j =

∑j
k=i qn−kL−k,i L̂+

k,j

for the matrix entries of K, which is upper triangular with J onto the diagonal. Note
that we have

(
q − q−1

)δi,j−1
L−k,i L+

k,j ∈ U~(sln) for all i, k, j, hence U~(son) ⊆ U~(sln)
as well. This yields quantum analogues of the classical embeddings son ↪−→ sln ↪−→ gln .
Moreover, w.r.t. the Lie bialgebra structure on g inherited by its quantization U~(gln)
one has that son is also a Lie coideal of gln , hence correspondingly SOn is a coisotropic
subgroup of GLn . Note that we have fixed Noumi’s parameters aj to be aj = qn−j (for
all j ). With respect to the coproduct, U~(son) is a right coideal both of U~(sln) and of
U~(gln) . Thus C~ := U~(son) and U~(g) := U~(sln) do realize the situation of (2.3–(d))
— the specialization result U~(son)

∣∣
~=0

∼= U(son) being explained in [No] — but for having
a right instead than left coideal. However, by left-right symmetry our analysis remains
unchanged. So C~ := U~(son) is a quantum subgroup for the quantum group U~(gln) .

We now apply the functor ( )� : C~
(
coS(SLn)

) ∼=−−−→C~
(
coS(B+ ? B−)

)
of Theorem

3.3 to get a quantization F~
[[

U+
n

]]
:= U~(son)� of F

[[
SO⊥

n

]]
= F

[[
U+

n

]]
. We explain

in detail the case of n = 3 , and then basing on that we will give a sketch of the general
situation. Note that the over-diagonal entries of the matrix K will provide — passing from
U~(son) to F~

[[
U+

n

]]
:= U~(son)� and eventually to the semiclassical limit of the latter

— algebra generators of F
[[

U+
n

]]
, namely the matrix coefficients of Stokes matrices.

Warning: Noumi’s definition of U~(son) is in [No, §2.4] (mutatis mutandis). It is
explained there that one can take as algebra generators of U~(son) the entries of either one
of four different matrices, given in formula (2.18) in [loc. cit.]. Among these, we choose
K0 :=

(
L−

)t
QJ−1 L+ , where J is given above and Q is the (n × n) diagonal matrix

diag
(
qn−1, . . . , q, 1

)
= J2 , so that QJ−1 = J . We also need to rescale such generators,

and eventually take K :=
(
q − q−1

)−1
K0 as above for the purpose of specialization.

6.8 The algebras U~(gln)′ and U~(sln)′ . As F~
[[

U+
n

]]
:= U~(son)� is a subalgebra

of U~(gln)′ and U~(sln)′ , we do need a clear description of these objects.
By definition, the topological Hopf algebra U~(gln) is Q–graded, Q being the root lattice

of gln , with ∂(fi) = −αi , ∂(hi) = 0 , ∂(ei) := +αi where αi is the i–th simple root of
gln , for all i . Also, ∂

(
Fj,i

)
= ∂

(
Λ+

i,j

)
= −∑

i≤k≤j αk =: −αi,j and ∂
(
Ei,j

)
= ∂

(
Λ−j,i

)
=

+
∑

i≤k≤j αk =: +αi,j , for all i < j and Λ ∈ {
L, L̂

}
. It follows that U~(gln)⊗d is

Q⊕d– graded as a topological algebra, and the like for U~(sln)⊗d (for all d ∈ N ).
The formulas for the coproduct of L–operators in §6.5 can be iterated, yielding for L̂±

∆d
(
L̂+

i,j

)
=

∑
I+

d

(
q−q−1

)(d−1−δi,k1−δk1,k2−···−δkd−1,j) L̂+
i,k1
⊗L̂+

k1,k2
⊗· · ·⊗L̂+

kd−1,j ( d ≥ 2)

where I+
d :=

{
k1, . . . , kdl−1

∣∣ i ≤ k1 ≤ k2 ≤ · · · ≤ kd−1 ≤ j
}

for i < j , and similarly

∆d
(
L̂−i,j

)
=

∑
I−d

(
q − q−1

)(d−1−δi,k1−δk1,k2−···−δkd−1,j) L̂−i,k1
⊗ L̂−k1,k2

⊗ · · · ⊗ L̂−kd−1,j
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where I−d :=
{

k1, . . . , kd−1

∣∣ i ≥ k1 ≥ k2 ≥ · · · ≥ kd−1 ≥ j
}

for i > j . In particular,

∆d
(
L̂ε

i,j

)
=

∑
r+s=`−1

(
gε1

i

)⊗r⊗ L̂ε
i,j ⊗

(
gε1

j

)⊗s + R (hereafter ε ∈ {+,−})
where R is a topological sum of homogeneous terms in U~(gln)⊗` whose degree in Q⊕d is
of type (∂1, . . . , ∂d) , each ∂k being a positive or negative root (according to ε = − or
ε = + ) of height less than that of αi,j . Finally, for all i = 1, . . . , n we have

∆d
(
hi

)
=

∑
r+s=d−11

⊗r ⊗ hi ⊗ 1⊗s ∀ d ∈ N+ .

Now let Φ+ (resp. Φ−) be the set of positive (resp. negative) roots of gln , and fix any
total ordering ¹ on Φ+ . Set also L±α := L±i,j for each root α = ∓αi,j . The well-known
quantum PBW theorem (adapted to the present case) ensures that

S :=
{ ∏

α∈Φ−

(
L̂+

α

)λ+
α

∏n
i=1`

ηi
∏

α∈Φ+

(
L̂−α

)λ−α
∣∣∣ λ+

α , ηi , λ+
α ∈ N ∀α, i

}

is a topological k[[~]]–basis of U~(gln) ; hereafter the products over positive or negative
roots are made w.r.t. the fixed total ordering.

Given M ∈ S we set
∣∣M

∣∣ :=
∑

α∈Φ− λ+
α +

∑n
i=1 ηi +

∑
α∈Φ+

λ−α , the sum of all
exponents occurring in M . Since ∆d is a graded algebra morphism, the previous formulas
imply that for each PBW-like monomial M in S we have, for all d ≥

∣∣M
∣∣ ,

∆d
(M)

= L̂+
−α1

ζ
(1)
−α1

⊗ · · · ⊗ L̂+
−α1

ζ
(λ+
−α1

)

−α1
⊗ · · · ⊗ L̂+

−αN
ζ

(1)
−αN

⊗ · · · ⊗ L̂+
−αN

ζ
(λ+
−αN

)

−αN
⊗

⊗ h1 θ
(1)
h1
⊗ · · · ⊗ h1θ

(η1)
h1

⊗ · · · ⊗ hn−1θ
(1)
hn−1

⊗ · · · ⊗ hn−1θ
(ηn−1)
hn−1

⊗

⊗ L̂−+α1
ζ

(1)
+α1

⊗ · · · ⊗ L̂−+α1
ζ
(λ+

+α1
)

+α1
⊗ · · · ⊗ L̂−+αN

ζ
(1)
+αN

⊗ · · · ⊗ L̂−+αN
ζ
(λ+

+αN
)

+αN
⊗

⊗ ψ1 ⊗ · · · ⊗ ψd−|M| + T

where α1 ¹ α2 ¹ · · · ¹ αN (with N =
(
n
2

)
) are the positive roots of gln , each one of the

ζ
(k)
−αr

’s, the θ
(s)
hi

’s, the ζ
(`)
+αr

’s and the ψp’s is a suitable monomial in the g±1
j ’s, and finally T

is a sum of homogeneous terms whose degrees are different from the degree of the previous
summand. From this and ε

(
L̂±i,j

)
= 0 = ε(`k) (for all k and all i 6= j ) we argue

δd

(M)
= L̂+

−α1
ζ

(1)
−α1

⊗ · · · ⊗ L̂+
−α1

ζ
(λ+

α1
)

−α1
⊗ · · · ⊗ L̂+

−αN
ζ

(1)
−αN

⊗ · · · ⊗ L̂+
−αN

ζ
(λ+
−αN

)

−αN
⊗

⊗ h1 θ
(1)
h1
⊗ · · · ⊗ h1θ

(η1)
h1

⊗ · · · ⊗ hn−1θ
(1)
hn−1

⊗ · · · ⊗ hn−1θ
(ηn−1)
hn−1

⊗

⊗ L̂−+α1
ζ

(1)
+α1

⊗ · · · ⊗ L̂−+α1
ζ
(λ+

+α1
)

+α1
⊗ · · · ⊗ L̂−+αN

ζ
(1)
+αN

⊗ · · · ⊗ L̂−+αN
ζ
(λ+

+αN
)

+αN
⊗

⊗ (ψ1 − 1)⊗ · · · ⊗ (ψd−|M| − 1) + P

(6.1)

where P := (id− ε)⊗d(
T

)
is again a sum of homogeneous terms whose degrees are different

from that of the previous summand (which is homogeneous too). In the latter each tensor
factor belongs to U~(gln) \ ~U~(gln) , whilst (ψk − 1) ∈ ~U~(gln) \ ~2 U~(gln) for all k :
the outcome is δd

(M) ∈ ~d−|M| U~(gln) \ ~d−|M|+1 U~(gln) for all d ≥
∣∣M

∣∣ , whence

M̃ := ~|M|M ∈ U~(gln)′ \ ~U~(gln)′ ∀ M ∈ S .

From this we eventually get S̃ :=
{
M̃

∣∣∣M ∈ S
}
⊆ U~(gln)′ , thus also the k[[~]]– span

of S̃ is contained in U~(gln)′ . In fact, the previous analysis also allows to revert this last
result, thus proving the following
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Claim : S̃ is a topological k[[~]]–basis of U~(gln)′ .

Indeed, let η ∈ U~(gln)′ and take an expansion η =
∑
M∈S cMM of η of minimal

length as a linear combination over k[[~]] of elements of S . Let’s call Md,⊗ the first
summand in right-hand-side of (6.1): then our analysis gives

δd(η) =
∑
M∈S cM δd

(M)
=

∑
M∈S cM

(Md,⊗ + P
)

=
∑
|M|=µ+

cMMd,⊗ + R−

where µ+ := max
{|M|}M∈S and R− is a sum of homogeneous terms whose degrees

are different from the degrees of any summand in
∑
|M|=µ+

cMMd,⊗ . Therefore δd(η) ∈
~d U~(gln) (as η ∈ U~(gln)′ ) forces also

∑
|M|=µ+

cMMd,⊗ ∈ ~d U~(gln) . Again by a
simple degree argument we get

∑
|M|=µ+
∂(M)=β

cMMd,⊗ ∈ ~d U~(gln) for all β ∈ Q . Using

linear independence of monomials in the L̂±α ’s with different exponents (consequence of the
quantum PBW theorem) we get also

∑
M∈Sµ+

cMMd,⊗ ∈ ~d U~(gln) where Sµ+ is the set of

all monomials M with |M| = µ+ and fixed exponents λ±α . Again by quantum PBW, this
happens if and only if

∑
M∈Sµ+

cMM∈ ~µ+ U~(gln) , which in turn implies cM ∈ ~µ+ k[[~]]

for all M involved; so this last sum can be written as η+ =
∑

M∈Sµ+

cMM =
∑

M∈Sµ+

ĉM M̃ ,

which belongs to the topological k[[~]]– span of S̃ , with ĉM := ~−µ+cM ∈ k[[~]] . But
then also η′ := η − η+ ∈ U~(gln)′ , and η′ has less non-zero coefficients in its expansion
w.r.t. the topological k[[~]]–basis S . Iterating this argument, we eventually find that η

belongs to the topological k[[~]]– span of S̃ , q.e.d.
Note that each M̃ ∈ S̃ is a monomial in the elements ˜̀

k := ~ `k and the ~ L̂±∓α =
~

(
q − q−1

)−1
L±∓α , hence these are topological algebra generators for U~(gln)′ . Further-

more, since ~−1
(
q − q−1

)
is an invertible element of k[[~]] , we have also that U~(gln)′ is

generated, as a unital k[[~]]– algebra, by the L±i,j ’s and the ˜̀
k’s (for all i, j, k ).

In the semiclassical limit U~(gln)′
∣∣∣
~=0

∼= F
[[

GL ∗
n

]]
= F

[[
BG

+ ? BG
−

]]
= F

[[
bG
+ ? bG

−
]]

,
the above generators specialize to matrix coefficients onto bG

+ ? bG
− ; hereafter BG

± is the
Borel subgroup in GLn of upper/lower triangular matrices and bG

± := Lie
(
BG
±

)
, so BG

+ ?
BG
− is the Poisson group dual to GL ∗

n , and we identify BG
+ ? BG

− ∼= bG
+ ? bG

− (everything
is very similar to the case of SLn). Namely, for every i < j the coset modulo ~U~(gln)′

of each L+
i,j is the matrix coefficient ei,j onto

(
bG
+ , 0

) ∼= bG
+ , and the coset of each L−j,i

is the matrix coefficient ej,i onto
(
0 , bG

−
) ∼= bG

− ; also, for each k the coset of ˜̀
k modulo

~U~(gln)′ is ek,k

∣∣∣
BG

+

= e −1
k,k

∣∣∣
BG
−

. Finally, as L±k,k =:g±1
k := exp

(
~ `k

)
= exp

( ˜̀
k

)
the same

kind of relation occurs between the cosets modulo ~U~(gln)′ of L±k,k and of ˜̀
k , for all k .

As for U~(sln)′, for all i < j we have that F̃j,i :=
(
q − q−1

)
Fj,i = g−1

i L+
i,j and

Ẽi,j := − (
q− q−1

)
Ei,j = −L−j,i g+1

i belong to U~(gln)′
⋂

U~(sln) = U~(sln)′ , as well as
h̃k := ~ (`k−`k+1) = ˜̀

k− ˜̀
k+1 (for all k ). Indeed, with the same analysis as above — up to

the obvious, minimal changes — one proves also that U~(sln)′ is generated, as a topological

unital k[[~]]– algebra, by the F̃j,i’s, the Ẽi,j ’s (for all i < j ) and the h̃k’s (for all k ).
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In addition, U~(sln)′ has k[[~]]–basis the set of rescaled PBW-like monomials (in the
above generators) analogue to the set S̃ considered above which is a basis for U~(gln)′ .

Finally, under specialization U~(sln)′
∣∣∣
~=0

∼= F
[[

SL ∗
n

]]
= F

[[
B+?B−

]]
= F

[[
b+?b−

]]

the above generators specialize as F̃j,i

∣∣
~=0

= e −1
i,i ei,j

∣∣
b+

, Ẽi,j

∣∣
~=0

= ej,i e +1
i,i

∣∣
b−

(for all

i < j ) and h̃k

∣∣
~=0

= ek,k

∣∣
b+
− ek+1,k+1

∣∣
b+

(for all k = 1, . . . , n− 1 ).

6.9 Quantum Stokes matrices: n = 3 . According to the general recipe in §6.7,
the generators of H = U~(so3) are

K1,2 = q2
(
F1 − q T−1

1 E1

)
, K2,3 = q

(
F2 − q T−1

2 E2

)

K1,3 = q2
(
F3,1 −

(
q − q−1

)
F2 T−1

1 E1 − T−1
1 T−1

2 E1,3

)

(cf. §6.7) where T±1
s := t±1

s (s = 1, 2). From this one can directly prove that
[
K1,2 ,K2,3

]
q

= − q2 K1,3 . (6.2)

Using the relations between the elements θj in [No, §2.4] — namely, formulas (2.23) therein
— and remarking that K1,2 = q θ1 , K2,3 = θ2 , one can derive also

[
K1,3 ,K1,2

]
q

= − q3 K2,3 ,
[
K2,3 ,K1,3

]
q

= − q K1,2 . (6.3)

Indeed, the case n = 3 is especially interesting because, using renormalized generators
K̃1,2 := q−5/2K1,2 , K̃1,3 := q−4/2K1,3 and K̃2,3 := q−3/2K2,3 one has for U~(so3) a
cyclically invariant presentation (see [HKP] and references therein, and Remark 6.11(b)
too). However, this special feature has no general counterpart for n 6= 3 .

The following PBW-like theorem holds for U~(so3) , as a direct consequence of defini-
tions and formulas (6.2–6.3):

Claim : U~(so3) is a topologically free k[[~]]–module, with topological k[[~]]– basis the
set of ordered monomials

{
K a

1,2 K b
1,3 K c

2,3

∣∣ a, b, c ∈ N}
. A similar basis is the one with

K̃i,j instead of Ki,j everywhere.

Theorem 6.10. F~
[[

U+
3

]]
:= U~(so3)

� is the topological, ~–adically complete, unital
k[[~]]– algebra with generators

k1,2 := q−2
(
q − q−1

)
K1,2 , k2,3 := q−1

(
q − q−1

)
K2,3 , k1,3 := q−2

(
q − q−1

)
K1,3

and relations
k1,2 k2,3 = q k2,3 k1,2 − q

(
q − q−1

)
k1,3

k2,3 k1,3 = q k1,3 k2,3 −
(
q − q−1

)
k1,2

k1,3 k1,2 = q k1,2 k1,3 −
(
q − q−1

)
k2,3

(6.4)

with the right coideal structure given by

∆
(
k1,2

)
= 1⊗ k1,2 + k1,2 ⊗ t−1

1 , ∆
(
k2,3

)
= 1⊗ k2,3 + k2,3 ⊗ t−1

2

∆
(
k1,3

)
= 1⊗k1,3 + k1,3⊗ t−1

1 t−1
2 +

(
q−q−1

)
k1,2⊗ f2 t−1

1 − q−1
(
q−q−1

)
k2,3⊗ t−1

1 t−1
2 e1 .

Moreover, F~
[[

U+
3

]]
:= U~(so3)

� is a free k[[~]]–module, a k[[~]]– basis being the set of
ordered monomials B3 :=

{
k a
1,2 k b

1,3 k c
2,3

∣∣ a, b, c ∈ N}
.
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Proof. The relations (6.4) among the ki,j ’s clearly spring out of formulas (6.2)–(6.3), whilst
the formulas for the right coideal structure directly come out of the very definitions. The
key point of the proof instead is to show that these elements do generate U~(so3)

� .
From the above formulas for ∆ , a straightforward computation proves that (∀ d ∈ N )

δd

(
k1,2

)
= k1,2 ⊗

(
t−1
1 − 1

)⊗(d−1)
, δd

(
k2,3

)
= k2,3 ⊗

(
t−1
2 − 1

)⊗(d−1)

δd

(
k1,3

)
= k1,3 ⊗

(
t−1
1 t−1

2 − 1
)⊗(d−1) +

+
∑

r+s=d−2

(
q − q−1

)
k1,2 ⊗

(
t−1
1 − 1

)⊗r ⊗ f2 t−1
1 ⊗ (

t−1
1 t−1

2 − 1
)⊗s +

+
∑

r+s=d−2 q−1
(
q − q−1

)
k2,3 ⊗

(
t−1
2 − 1

)⊗r ⊗ t−1
1 t−1

2 e1 ⊗
(
t−1
1 t−1

2 − 1
)⊗s

As ki,j ,
(
t−1
h − 1

)
,
(
t−1
1 t−1

2 − 1
) ∈ ~U~(so3) \ ~2 U~(so3) , we have k1,2 , k2,3 , k1,3 ∈

U~(so3)
� \ ~U~(so3)

� , so the subalgebra generated by these elements lies in U~(so3)
� .

We shall now prove that B3 is a topological k[[~]]– basis of U~(so3)
� ; this in turn will

imply that this algebra is generated by k1,2 , k2,3 and k1,3 . First, the Claim in §6.9
implies that B3 is a linearly independent set inside U~(so3)

� ; then now we prove that it
spans U~(so3)

� over k[[~]] . The formulas for ∆ on the ki,j ’s give also, for all d ∈ N ,

∆d
(
K1,2

)
=

∑
r+s= d−1

1⊗r ⊗K1,2 ⊗
(
t−1
1

)⊗s
, ∆d

(
K2,3

)
=

∑
r+s= d−1

1⊗r ⊗K2,3 ⊗
(
t−1
2

)⊗s

∆d
(
K1,3

)
=

∑
r+s= d−1

1⊗r ⊗K1,3 ⊗
(
t−1
1 t−1

2

)⊗s +

+
∑

r+p+s= d−2

1⊗r ⊗K1,2 ⊗
(
t−1
1

)⊗p ⊗A⊗ (
t−1
1 t−1

2

)⊗s +

+
∑

r+p+s= d−2

1⊗r ⊗K2,3 ⊗
(
t−1
2

)⊗p ⊗B ⊗ (
t−1
1 t−1

2

)⊗s

with A := L+
2,3 g−1

1 =
(
q−q−1

)
f2 t−1

1 , B := q−1g3 L−2,1 = − q−1
(
q−q−1

)
t−1
1 t−1

2 e1∈ U~(sln)′.

In particular, this implies that δa+2 b+c

(
K a

1,2 K b
1,3 K c

2,3

)
=

∑
i∈I Ci,1⊗Ci,2⊗· · ·⊗Ci,a+2 b+c

(for some index set I ) where each tensor factor Ci,j is a product of type

Ci,j = t−n1
1 t−ν1

2 ·D1 · t−n2
1 t−ν2

2 ·D2 · · · · · t−nk−1
1 t

−νk−1
2 ·Dk−1 · t−nk

1 t−νk
2 ( k ∈ N+)

with ns, νs ∈ N and Ds ∈
{
K1,2 , K1,3 ,K2,3 , A , B

} ⋃ {(
t−τ1
1 t−τ2

2 − 1
) ∣∣ τ1, τ2 ∈ N+

}
. In

particular — cf. also (6.4) — there is a first summand of type

Φa,b,c
1 =

(
a−1⊗
p=0

t−p
1 K1,2

)
⊗
(

b−1⊗
r=0

t
−(a+r)
1 t−r

2

)
⊗

(
c−1⊗
s=0

t
−(a+b)
1 t

−(b+s)
2 K2,3

)
⊗(

t
−(a+b)
1 t

−(b+c−1)
2 −1

)⊗b

Define the length of K a
1,2 K b

1,3 K c
2,3 ∈ B3 as l

(
K a

1,2 K b
1,3 K c

2,3

)
:= a + 2 b + c , and let

Hn be the k[[~]]– span of all monomials in B3 of length at most n . This defines an algebra
filtration {Hn}n∈N of U~(so3) ; the formulas for the coproduct of the ki,j ’s show that this
is a comodule algebra filtration, i.e. an algebra filtration such that ∆

(Hn

) ⊆ Hn⊗U~(sl3)
for all n . A similar filtration is also induced onto each tensor power U~(so3)

⊗ l ( l ∈ N ).
Any η ∈ U~(so3)

� expands uniquely as η =
∑

a,b,c∈N χa,b,c K a
1,2 K b

1,3 K c
2,3 for some

χa,b,c ∈ k[[~]] , by the Claim of §6.9. Set µ := min
{
a + 2 b + c

∣∣ χa,b,c 6= 0
}

, and look
at δµ(η) =

∑
a,b,c∈N χa,b,c · δµ

(
K a

1,2 K b
1,3 K c

2,3

) ∈ ~µ U~(so3) ⊗ U~(sl3)
⊗(µ−1) . By degree
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arguments — w.r.t. the filtration {Hn}n∈N of U~(so3) given above — we see that δµ(η) ∈
~µ U~(so3)⊗ U~(sl3)

⊗(µ−1) forces also
∑

a+2 b+c=µ

χa,b,c · δµ

(
K a

1,2 K b
1,3 K c

2,3

) ∈ ~µ U~(so3)⊗ U~(sl3)
⊗(µ−1)

. (6.5)

By the analysis above, each δµ

(
K a

1,2 K b
1,3 K c

2,3

)
in (6.5) is equal to Φa,b,c

1 (defined
above) plus other terms which are linearly independent of Φa,b,c modulo ~U~(sln)⊗µ .
Furthermore, all these Φa,b,c

1 ’s, for different triples (a, b, c) ∈ N3 , are linearly independent
inside U~(sln)⊗µ , by construction. As an outcome, we have that (6.5) implies

χa,b,c · Φa,b,c
1 ∈ ~µ U~(so3)⊗ U~(sl3)

⊗(µ−1) ∀ a + 2 b + c = µ .

Since Φa,b,c
1 ∈ ~b U~(so3)⊗U~(sl3)

⊗(µ−1) by construction, we argue χa,b,c ∈ ~a+b+c k[[~]]
for all a + 2 b + c = µ , so that

χa,b,c K a
1,2 K b

1,3 K c
2,3 ∈ k[[~]] · k a

1,2 k b
1,3 k c

2,3 ⊆ k[[~]]– span of B3 ∀ a + 2 b + c = µ .

But then η− :=
∑

a+2 b+c=µ

χa,b,c ·K a
1,2 K b

1,3 K c
2,3 ∈ U~(so3)

� by our previous results, hence

also
η> := η − η− =

∑
a+2 b+c>µ

χa,b,c ·K a
1,2 K b

1,3 K c
2,3 ∈ U~(so3)

�
.

Now we can apply the same arguments to η< instead of η : iterating this procedure
(involving monomials in the Ki,j ’s whose length grows up), we eventually find that η
belongs to the topological k[[~]]– span of B3 , q.e.d. ¤

6.11 Remarks: (a) in §6.8 we saw that U~(sln)′ is generated by the L–operators,
hence its semiclassical limit F [[G∗]] is generated by their cosets, which are simply half
the matrix coefficients generating F [[G∗]] (see §6.1). Then by the very construction
and our concrete description of U~(so3)

� we get that the generators ki,j specialize, in

U~(so3)
�
∣∣∣
~=0

= F
[[

U+
3

]]
, right to the generators of F

[[
U+

3

]]
(cf. §6.1). In particular,

the corresponding limit Poisson bracket can therefore be verified to be equal to that in
[Ug] and in [Xu] (the latter taken from [Du]), up to normalizations: e.g., the isomorphism
between our presentation of F

[[
U+

3

]]
and Xu’s one is given by

k1,2

∣∣
~=0

7→ z , k1,3

∣∣
~=0

7→ y , k2,3

∣∣
~=0

7→ x

(notation of [Xu], §1, formula (2)), and this is easily seen to preserve the Poisson bracket.
(b) the claim and proof of Theorem 6.10 show that one could take as generators for

U~(so3)
� simply the

(
q − q−1

)
Ki,j ’s. However, our choice of normalization (dividing

out such generators by suitable powers of q ) lead us to better looking relations, such as
(6.4). Indeed, this can still be improved, taking new generators k̃1,2 := q−1/2 k1,2 =(
q − q−1

)
K̃1,2 , k̃1,3 := k1,3 =

(
q − q−1

)
K̃1,3 and k̃2,3 := q−1/2 k2,3 =

(
q − q−1

)
K̃2,3

(see §6.9):these enjoy the relations k̃1,2 k̃2,3 = q k̃2,3 k̃1,2 −
(
q − q−1

)
k̃1,3 , k̃2,3 k̃1,3 =

q k̃1,3 k̃2,3 −
(
q − q−1

)
k̃1,2 , k̃1,3 k̃1,2 = q k̃1,2 k̃1,3 −

(
q − q−1

)
k̃2,3 , which are totally

symmetric with respect to cyclic permutations of the indices. Nevertheless, this special
feature — like for U~(so3) — has no general counterpart for n 6= 3 . ♦
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6.12 The general case. Let us now move to the general case n > 3 . The generators
Ki,j (i < j) are defined in §6.7; like in the Claim in §6.9, we have a PBW-like theorem for
U~(son) : namely, the set of all ordered monomials (w.r.t. any fixed total order of the set
of pairs

{
(i, j)

∣∣ i < j
}

) in the Ki,j ’s is a topological k[[~]]– basis of U~(son) .
Straightforward computations yield

δd

(
Ki,j

)
=

∑
I

Kt1,s1 ⊗ (id− ε)
(
L−t1,t2L

+
s1,s2

)⊗ · · · ⊗ (id− ε)
(
L−td−2,i L+

sd−2,j

)

where the set of indices is I =
{

i ≤ td−2 ≤ · · · ≤ t1 < s1 ≤ · · · ≤ sd−2 ≤ j
}

; it is worth
pointing out that, while the L–operators L+

i,j and L−i,j do not belong to U~(sln) but only
to U~(gln) , the products L−tr,tr+1

L+
sr,sr+1

do belong to U~(sln) . From this one gets easily

δd

(
Ki,j

) ∈ ~d−1U~(son)⊗ U~(sln)⊗(d−1) ( i < j , d ∈ N)

whence ki,j :=
(
q − q−1

)
Ki,j ∈ U~(son)� \ ~U~(son)� follows at once.

Indeed, with much the same analysis as in §§6.9–10 one can prove that in fact the ki,j ’s
(for i < j ) form a complete set of generators for the algebra U~(son)� , and that the set of
ordered monomials in these generators is a topological k[[~]]– basis for U~(son)� . Finding
the relations between the ki,j ’s then will provide an explicit presentation of the algebra
U~(son)� , hence a quantization F~

[[
U+

n

]]
:= U~(son)� of F

[[
U+

n

]]
with the Poisson struc-

ture given in [Ug], the analogue of Remark 6.11(a) holding true in the general case too.

§ 7 Generalizations

7.1 Quantum duality with half quantizations. In the present work we take from
scratch the datum of a pair of mutually dual quantum groups, namely

(
F~[[G]] , U~(g)

)
(cf. §2.7). In the proofs, this assumption is exploited to apply orthogonality arguments,
for which all these are necessary (a single quantum groups would not be enough).

However, this is only a matter of choice. Indeed, our quantum duality principle deals
with quantum subgroups which are contained either in F~[[G]] or in U~(g) , and we might
prove every step in our discussion using only the single quantum group which is concerned,
and only one quantum subgroup (such as I~, or C~, etc.) at the time, by a direct method
which use no orthogonality arguments. To give a sample, we re-prove part of Lemma 4.2:

Claim: let I~g and C~O be as in Lemma 4.2. Then I~g Ė F~[[G]]∨ and C~O ≤̇F~[[G]]∨ .

Proof. By definition I~g is the left ideal of F~[[G]]∨ generated by ~−1I~ , hence it is
enough to show that ∆

(
F~[[G]]∨ · ~−1I~

) ⊆ F~[[G]]∨⊗ I~g + I~g⊗ F~[[G]]∨ . Since I~
is a coideal of F~[[G]] (see §2.6), we have ∆

(
F~[[G]]∨ · ~−1I~

) ⊆ (
F~[[G]]∨⊗ F~[[G]]∨

) ·(
F~[[G]]⊗ ~−1I~ + ~−1I~ ⊗ F~[[G]]

) ⊆ F~[[G]]∨⊗ I~g + I~g⊗ F~[[G]]∨ , q.e.d.
The case of C~O is entirely similar. ¤

7.2 Quantum duality with global quantizations. In this paper we use quantum
groups in the sense of Definition 2.2; in literature, these are sometimes called local quan-
tizations. Instead, one can consider global quantizations: quantum groups like Jimbo’s,
Lusztig’s, etc. The latter ones differ from the former in two respects:
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—1) they are standard (rather than topological) Hopf algebras;
—2) they may be defined over any ring R , the rôle of ~ being played by a suitable

element of that ring (the most common example is R = k
[
q, q−1

]
and ~ = q − 1 ).

The first point implies that the semiclassical limit of a quantum group of this type
is either U(g) , for some Lie bialgebra g , or F [G] , the algebra of regular functions on
some Poisson algebraic group G . The latter is a geometrical object of global type, thus
a quantum group specializing to it carries richer information than a QFSHA. The second
point implies that one can consider different specializations, namely one for each point of
the spectrum of the ground ring R : so this setting is richer from an arithmetical viewpoint.

Now, the present work might be written equally well in terms of global quantum groups
and their specializations. The only care is to start with algebraic Poisson groups and alge-
braic Poisson homogeneous spaces, instead of formal ones. Then one defines Drinfeld-like
functors in a perfectly similar manner; the key fact is that the quantum duality principle
has a global version (see [Ga2]) in which the recipe given in §3 to define Drinfeld-like
functors do make sense, up to a few technical details, in the global framework as well.
In addition, one can also extend our quantum duality principle for coisotropic subgroups
(and Poisson quotients) to all closed subgroups (and all homogeneous spaces): the out-
come then is that applying the so-extended Drinfeld’s functors to any closed subgroup (or
homogeneous space) one always gets a coisotropic subgroup (or a Poisson quotient) of the
dual Poisson group, and this is again characterized in terms of involutivity (see [CG]).

7.3 ∗–structures and quantum duality for real subgroups and homogeneous
spaces. If one is interested in quantizations of real subgroups and real homogeneous
spaces, then ∗–structures must be considered on the quantum group Hopf algebras one
starts from. It is then possible to perform all our construction in this setting, and to
formulate and prove a version of the QDP for real quantum subgroups and quantum
homogeneous spaces too, both in the formal and in the global setting; see [CG] for details.
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