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INTRODUCTION

“Yet these crystals are to Hopf algebras
but as is the body to the Children of Rees:
the house of its inner fire, that is within it
and yet in all parts of it, and is its life”

N. Barbecue, “Scholia”

Among all Hopf algebras over a field k, there are two special families which are of rele-
vant interest for their geometrical meaning. The function algebras F [G] of algebraic groups
G and the universal enveloping algebras U(g) of Lie algebras g, if Char (k) = 0 , or the re-
stricted universal enveloping algebras u(g) of restricted Lie algebras g , if Char (k) > 0 . For
brevity, we call both U(g) and u(g) “enveloping algebras” and denote them by U(g) . Sim-
ilarly by “restricted Lie algebra”, when Char (k) = 0 , we shall simply mean “Lie algebra”.
Function algebras are exactly those Hopf algebras which are commutative, and enveloping
algebras those which are connected, cocommutative and generated by their primitives.

In this paper we give functorial recipes to get out from any Hopf algebra two pairs of
Hopf algebras of geometrical type, say

(
F [G+],U(g−)

)
and

(
F [K+],U(k−)

)
. In addition,

the algebraic groups obtained in this way are connected Poisson groups, and the (restricted)
Lie algebras are (restricted) Lie bialgebras. Therefore, to each Hopf algebra — which
encodes a general notion of “symmetry” — we can associate in a functorial way some
symmetries of geometrical type, where the geometry involved is in fact Poisson geometry.
Moreover, if Char (k) > 0 these Poisson groups have dimension 0 and height 1, which
makes them very interesting for arithmetic geometry, hence for number theory too.

The construction of the pair (G+, g−) uses pretty classical (as opposite to “quantum”)
methods: in fact, it might be part of the content of any basic textbook on Hopf algebras
(and, surprisingly enough, it is not!). Instead, in order to obtain the pair (K+, k−) one
relies on the construction of the first pair, and uses the theory of quantum groups.

Let’s describe our results in detail. Let J := Ker (ϵH) be the augmentation ideal of the
Hopf algebra H (where ϵH is the counit of H), and let J :=

{
Jn

}
n∈N be the associated J–

adic filtration, Ĥ := GJ(H) the associated graded vector space and H∨ := H
/∩

n∈N Jn .

One proves that J is a Hopf algebra filtration, hence Ĥ is a graded Hopf algebra: the latter

happens to be connected, cocommutative and generated by its primitives, so Ĥ ∼= U(g−)
for some restricted Lie algebra g− . In addition, since Ĥ is graded also g− itself is graded

as a restricted Lie algebra. The fact that Ĥ be cocommutative allows to define a Poisson
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cobracket on it (from the natural Poisson cobracket ∇ := ∆−∆op on H), which makes Ĥ
a graded co-Poisson Hopf algebra. Eventually, this implies that g− is a Lie bialgebra. So

the right-hand side half of the first pair of “Poisson geometrical” Hopf algebras is just Ĥ.
On the other hand, one considers a second filtration — increasing, whereas J is decreas-

ing — namely D which is defined in a dual manner to J . For each n ∈ N , let δn be the
composition of the n–fold iterated coproduct followed by the projection onto J⊗n (note

that H = k·1H ⊕ J ); then D :=
{
Dn := Ker (δn+1)

}
n∈N . Let now H̃ := GD(H) be the

associated graded vector space and H ′ :=
∪

n∈N Dn . Again, one shows that D is a Hopf al-

gebra filtration, hence H̃ is a graded Hopf algebra: moreover, the latter is commutative, so

H̃ = F [G+] for some algebraic group G+. One proves also that H̃ = F [G+] has no non-

trivial idempotents, thus G+ is connected; in addition, since H̃ is graded, G+ as a variety is
just an affine space. A deeper analysis shows that in the positive characteristic case G+ has

dimension 0 and height 1. The fact that H̃ be commutative allows to define on it a Poisson
bracket (from the natural Poisson bracket on H given by the commutator) which makes

H̃ a graded Poisson Hopf algebra. This means that G+ is an algebraic Poisson group. So

the left-hand side half of the first pair of “Poisson geometrical” Hopf algebras is just H̃.

The relationship among H and the “geometrical” Hopf algebras Ĥ and H̃ can be ex-
pressed in terms of “reduction steps” and regular 1-parameter deformations, namely

H̃
0← t→ 1←−−−−−−−→
Rt

D(H)
H ′ ↪−−→ H −−� H∨

1← t→ 0←−−−−−−−→
Rt

J (H
∨)

Ĥ (⋆)

Here the one-way arrows are Hopf algebra morphisms and the two-ways arrows are regu-
lar 1-parameter deformations of Hopf algebras, realized through the Rees Hopf algebras
Rt

D(H) and Rt
J(H

∨) associated to the filtration D of H and to the filtration J of H∨.

The construction of the pair (K+, k−) uses quantum group theory, the basic ingredients
beingRt

D(H) andRt
J(H

∨). In the present framework, by quantum group we mean, loosely

speaking, a Hopf k[t]–algebra (t an indeterminate) Ht such that either (a) Ht

/
tHt

∼=

F [G] for some connected Poisson group G— then we sayHt is a QFA— or (b) Ht

/
tHt
∼=

U(g) , for some restricted Lie bialgebra g — then we say Ht is a QrUEA. Formula (⋆) says

that H ′t := Rt
D(H) is a QFA, with H ′t

/
tH ′t

∼= H̃ = F [G+] , and that H∨t := Rt
J(H)

is a QrUEA, with H∨t

/
tH∨t

∼= Ĥ = U(g−) . Now, a general result — the “Global

Quantum Duality Principle”, in short GQDP, see [Ga1–2] — teaches us how to construct

from the QFA H ′t a QrUEA, call it
(
H ′t

)∨
, and how to build out of the QrUEA H∨t a

QFA, say
(
H∨t

)′
. Then

(
H ′t

)∨/
t
(
H ′t

)∨
= U(k−) for some restricted Lie bialgebra k− ,

and
(
H∨t

)′/
t
(
H∨t

)′
= F [K+] for some connected Poisson group K+ . This gives the pair

(K+, k−) . The very construction implies that
(
H ′t

)∨
and

(
H∨t

)′
yield another frame of

regular 1-parameter deformations for H ′ and H∨, namely

U(k−)
0← t→ 1←−−−−−−−→
(H′

t)
∨

H ′ ↪−→ H −−� H∨
1← t→ 0←−−−−−−−→
(H∨

t )′
F [K+] (z)
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which is the analogue of (⋆). In addition, when Char (k) = 0 the GQDP also claims
that the two pairs (G+, g−) and (K+, k−) are related by Poisson duality: namely, k− is the
cotangent Lie bialgebra of G+ , and g− is the cotangent Lie bialgebra of K+ ; in short,
we write k− = g× and K+ = G⋆

− . Therefore the four “Poisson symmetries” G+, g−, K+

and k−, attached to H are actually encoded simply by the pair (G+,K+).
In particular, when H∨= H = H ′ from (⋆) and (z) together we find

U(g−)
0← t→ 1←−−−−−−−−→

H∨
t

H∨
1← t→ 0←−−−−−−−−→
(H∨

t )′
F [K+]

(
= F

[
G⋆
−
]
if Char (k) = 0

)
||
H
||

F [G+]
0← t→ 1←−−−−−−−−→

H′
t

H ′
1← t→ 0←−−−−−−−−→
(H′

t)
∨

U(k−)
(
= U

(
g×+

)
if Char (k) = 0

)
This gives four different regular 1-parameter deformations from H to Hopf algebras en-
coding geometrical objects of Poisson type, i.e. Lie bialgebras or Poisson algebraic groups.

When the Hopf algebra H we start from is already of geometric type, the result involves
Poisson duality. Namely, if Char (k) = 0 and H = F [G] , then g− = g∗ (where g :=
Lie (G) ), and if H = U(g) = U(g) , then Lie (G+) = g∗, i.e. G+ has g as cotangent Lie
bialgebra. If instead Char (k) > 0 , we have only a slight variation on this result.

The construction of Ĥ and H̃ needs only “half the notion” of a Hopf algebra. In fact,

we construct Â for any augmented algebra A (roughly, an algebra with an augmentation,

or counit, i.e. a character), and C̃ for any coaugmented coalgebra C (a coalgebra with a
coaugmentation, or unit, i.e. a coalgebra morphism from k to C). In particular this applies

to bialgebras, for which both B̂ and B̃ are (graded) Hopf algebras. We can also perform a

second construction using
(
B′t

)∨
and

(
B∨t

)′
(via a stronger version of the GQDP), and get

from these a second pair of bialgebras
((

B′t
)∨∣∣∣

t=0
,
(
B∨t

)′∣∣∣
t=0

)
. Then again

(
B′t

)∨∣∣∣
t=0

∼=

U(k−) for some restricted Lie bialgebra k− , while
(
B∨t

)′∣∣∣
t=0

is commutative with no non-

trivial idempotents, but it’s not, in general, a Hopf algebra. So the spectrum of
(
B∨t

)′∣∣∣
t=0

is a connected algebraic Poisson monoid, but not necessarily a Poisson group.
It is worthwhile pointing out that everything in fact follows from the GQDP, which —

in the stronger formulation — deals with augmented algebras and coaugmented coalgebras
over 1-dimensional domains. The content of this paper can in fact be obtained as a corollary
of the GQDP as follows. Pick any augmented algebra or coaugmented coalgebra over k,
and take its scalar extension from k to k[t] : the latter ring is a 1-dimensional domain,
hence we can apply the GQDP, and (almost) every result in the present paper will follow.

In the last section we apply these results to the case of group algebras and their duals.
Another interesting application — based on a non-commutative version of the function
algebra of the group of formal diffeomorphism on the line, also called “Nottingham group”
— is illustrated in detail in a separate paper (see [Ga3]).

— — — — —
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