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FABIO GAVARINI

Universita degli Studi di Roma “Tor Vergata” — Dipartimento di Matematica
Via della Ricerca Scientifica 1, I-00133 Roma — ITALY

ABSTRACT. The ”quantum duality principle” states that the quantisation of a Lie bialgebra
— via a quantum universal enveloping algebra (in short, QUEA) — also provides a quantisa-
tion of the dual Lie bialgebra (through its associated formal Poisson group) — via a quantum
formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bial-
gebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as
well; more in detail, there exist functors QUEA — QFSHA and QFSHA — QUEA,
inverse to each other, such that in both cases the Lie bialgebra associated to the target object
is the dual of that of the source object. Such a result was claimed true by Drinfeld, but seems
to be unproved in the literature: I give here a thorough detailed proof of it.

” Dualitas dualitatum
et omnia dualitas”

N. Barbecue, ”Scholia”

Introduction

The quantum duality principle is known in literature under at least two formulations.
One claims that quantum function algebras associated to dual Poisson groups can be
considered to be dual — in the Hopf sense — to each other; and similarly for quantum
enveloping algebras (cf. [FRT] and [Se]). The second one, due to Drinfeld (cf. [Dr]), states
that any quantisation of the universal enveloping algebra of a Poisson group can also be
understood — in some sense — as a quantisation of the dual formal Poisson group, and,
conversely, any quantisation of a formal Poisson group also ”serves” as a quantisation of
the universal enveloping algebra of the dual Poisson group: this is the point of view we
are interested in. I am now going to describe this result more in detail.

Let k be a field of zero characteristic. Let g be a finite dimensional Lie algebra over k,
U(g) its universal enveloping algebra: then U(g) has a natural structure of Hopf algebra.
Let F[[g]] be the (algebra of regular functions on the) formal group associated to g: it is
a complete topological Hopf algebra (the coproduct taking values in a suitable topological
tensor product of the algebra with itself), which has two realisations. The first one is as
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follows: if G is an affine algebraic group with tangent Lie algebra g, and F'[G] is the algebra
of regular functions on G, then F[[g]] is the m.—completion of F[G] at the maximal ideal
m, of the identity element e € GG, endowed with the m.—adic topology. The second one is
Fllg]] = U(g)", the linear dual of U(g) ), endowed with the weak topology. In any case,
U(g) identifies with the topological dual of F|[g]], i.e. the set of all k-linear continuous
maps from F|[g]] to k, where k is given the discrete topology; similarly F([[g]] = U(g)”" is
also the topological dual of U(g) if we take on the latter space the discrete topology: in
particular, a (continuous) biduality theorem relates U(g) and F/[[g]], and evaluation yields
a natural Hopf pairing among them. Now assume g is a Lie bialgebra: then U(g) is a co-
Poisson Hopf algebra, F'[[g]] is a topological Poisson Hopf algebra, and the above pairing
is compatible with these additional co-Poisson and Poisson structures. Further, the dual
g* of g is a Lie bialgebra as well, so we can consider also U(g*) and F[[g*]].

Let g be a Lie bialgebra. A quantisation of U(g) is, roughly speaking, a topological
Hopf k[[h]]-algebra which for h = 0 is isomorphic, as a co-Poisson Hopf algebra, to U(g):
these objects form a category, called QUEA. Similarly, a quantisation of F'[[g]] is, in short,
a topological Hopf k[[h]]-algebra which for A = 0 is isomorphic, as a topological Poisson
Hopf algebra, to F[[g]]: we call Q FSH.A the category formed by these objects.

The quantum duality principle (after Drinfeld) states that there exist two functors,
namely ()': QUEA — QFSHA and ()": QFSHA — QUEA, which are inverse of
each other, and if Up(g) is a quantisation of U(g) and Fj[[g]] is a quantisation of F[[g]],
then Uy(g)" is a quantisation of F[[g*]], and Fy[[g]]" is a quantisation of U(g*).

This paper provides an explicit thorough proof (seemingly, the first one in the literature)
of this result. I also point out some further details and what is true when k has positive
characteristic, and sketch a plan for generalizing all this to the infinite dimensional case.

Note that several properties of the objects I consider have been discovered and exploited
in the works by Etingof and Kazhdan (see [EK1], [EK2]), by Enriquez (cf. [E]) and by
Kassel and Turaev (cf. [KT]), who deal with some special cases of quantum groups, arising
from a specific construction, and also applied Drinfeld’s results. The analysis in the present
paper shows that that those properties are often direct consequences of more general facts.

I point out that Drinfeld’s result is essentially local in nature, as it deals with quantisa-
tions over the ring of formal series and ends up only with infinitesimal data, i.e. objects at-
tached to Lie bialgebras; a global version of the principle, dealing with quantum groups over
a ring of Laurent polynomials, which give information on the global data of the underlying
Poisson groups will be provided in a forthcoming paper (cf. [Ga2]): this is useful in appli-
cations, e.g. it yields a quantum duality principle for Poisson homogeneous spaces, cf. [CG].
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§ 1 Notation and terminology

1.1 Topological k[[h]]-modules and topological Hopf k[[h]|-algebras. Let k be
a fixed field, h an indeterminate. The ring k[[h]] will always be considered as a topological
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ring w.r.t. the h—adic topology. Let X be any k[[h]]-module. We set X, := X /hX =
k @(pp; X , a k-module (via scalar restriction k[[h]] — k([[h]]/hk[[h]] = k) which we call

the specialisation of X at h = 0, or semiclassical limit of X ; we shall also use notation

X 2% Y tomean X, =Y. Note that if X is a topological k[[h]]-module which is

torsionless, complete and separated w.r.t. the h—adic topology then there is a natural
isomorphism of k[[h]]-modules X = X[[h]]: indeed, choose any k—basis {bl}z < of Xo,
and pick any subset { ﬁi}i er © X such that 8; mod h =b; (Vi): then an isomorphism
as required is given by (; — b; (however, topologies on either side may be different).

For later use, we also set X := k((h)) ®u[jn)) X » a vector space over k((h)), which is
not equipped with any topology.

If X is a topological k{[h]]-module, we let its full dual to be X* := Hom ) (X, k[[h]]) ,
and its topological dual to be X* := {f e X~ ‘ f is continuous } Note that X* = X*
when the topology on X is the h—adic one.

We introduce now two tensor categories of topological k[[h]]-modules, T and P : the
first one is modeled on the tensor category of discrete topological k—vector spaces, the
second one is modeled on the category of linearly compact topological k—vector spaces.

Let Tg be the category whose objects are all topological k[[h]]-modules which are topo-
logically free (i.e. isomorphic to V'[[h]] for some k—vector space V', with the h—adic topology)
and whose morphisms are the k[[h]]-linear maps (which are automatically continuous).
This is a tensor category w.r.t. the tensor product T3 ® T» defined to be the separated
h~adic completion of the algebraic tensor product T @y T2 (for all Ty, Tr € Ty ).

Let Pz be the category whose objects are all topological k[[h]]-modules isomorphic
to modules of the type k[[h]]” (the Cartesian product indexed by E, with the Tikhonov
product topology) for some set E: these are complete w.r.t. to the weak topology, in fact
they are isomorphic to the projective limit of their finite free submodules (each one taken
with the h-adic topology); the morphisms in Pg are the k[[h]]-linear continuous maps.
This is a tensor category w.r.t. the tensor product P; ® P, defined to be the completion of
the algebraic tensor product P; @y P> w.r.t. the weak topology: therefore P; = k[[A]]""
(i =1, 2) yields Py ® P, 2 Kk[[h]]"**™ (for all P, P, € Pg).

Note that the objects of T and of Pg are complete and separated w.r.t. the h—adic
topology, so by the previous remark one has X = Xy[[h]] for each of them.

We denote by HAg the subcategory of Tg whose objects are all the Hopf algebras in
Tz and whose morphisms are all the Hopf algebra morphisms in 7. Similarly, we call
HAg the subcategory of Pz whose objects are all the Hopf algebras in Pz and whose
morphisms are all the Hopf algebra morphisms in Pz . Moreover, we define ’HA%_I to be
the full subcategory of H.A g whose objects are all the H € HA 5 whose (weak) topology
coincides with the I,,—adic topology, where I, := h H + Ker(e) = ¢ *(hk[[h]]) .

As a matter of notation, when dealing with a (possibly topological) Hopf algebra H, I
shall denote by m its product, by 1 its unit element, by A its coproduct, by € its counit and
by S its antipode; subscripts H will be added whenever needed for clarity. Note that the
objects of HA 5 and of HAg are topological Hopf algebras, not standard ones: in partic-
ular, in o—notation A(z) = Z(x) T(1) ® x(2) the sum is understood in topological sense.



4 FABIO GAVARINI

Definition 1.2. (c¢f. [Dr], § 7)

(a) We call quantized universal enveloping algebra (in short, QUEA) any H € HA
such that Hy := H/hH is a co-Poisson Hopf algebra isomorphic to U(g) for some finite
dimensional Lie bialgebra g (over k); in this case we write H = Up(g), and say H is
a quantisation of U(g). We call QUEA the full subcategory of HA g5 whose objects are
QUEA, relative to all possible g (see also Remark 1.3(a) below).

(b) We call quantized formal series Hopf algebra (in short, QFSHA) any K € HAg
such that Ko := K/hK is a topological Poisson Hopf algebra isomorphic to F[[g]] for
some finite dimensional Lie bialgebra g (over k); then we write H = Fp[[g]], and say K
is a quantisation of F[[g]]. We call Q FSHA the full subcategory of HAz whose objects
are QFSHA, relative to all possible g (see also Remark 1.3(a) below).

(¢) If Hy, Hy, are two quantisations of U(g), resp. of F[g]] (for some Lie bialgebra g),
we say that Hy is equivalent to Ho, and we write Hy = Ho, if there is an isomorphism
p:Hy =2 Hy (in QUEA, resp. in QFSHA) such that ¢ = id mod h.

Remarks 1.3: (a) If H € HAg is such that Hy := H/hH as a Hopf algebra is
isomorphic to U(g) for some Lie algebra g, then Hy = U(g) is also a co-Poisson Hopf
algebra w.r.t. the Poisson cobracket § defined as follows: if x € Hy and 2’ € H gives
x =’ +hH, then 6(z) := (7 (A(2') — A°P(2'))) + hH® H ; then (by [Dr], §3,
Theorem 2) the restriction of § makes g into a Lie bialgebra. Similarly, if K € HAg
is such that Ko := K/hK is a topological Poisson Hopf algebra isomorphic to F([[g]] for
some Lie algebra g then Ky = F[g]] is also a topological Poisson Hopf algebra w.r.t. the
Poisson bracket { , } defined as follows: if x, y € Ky and 2/, ¢y’ € K give x =2’ + h K,
y =y +hK, then {z,y} := (h7'(2'y —y'2’)) + hK; then g is a bialgebra again,
and F[[g]] is (the algebra of regular functions on) a Poisson formal group. These natural
co-Poisson and Poisson structures are the ones considered in Definition 1.2 above.

In fact, specialisation gives a tensor functor from QUEA to the tensor category of
universal enveloping algebras of Lie bialgebras and a tensor functor from Q FSHA to the
tensor category of (algebras of regular functions on) formal Poisson groups.

(b) Clearly QUEA, resp. QFSHA, is a tensor subcategory of HAg , resp. of HA .

(c) Let H be a QFSHA. Then H is complete w.r.t. the weak topology, and Hy = F[g]]
for some finite dimensional Lie bialgebra g, and the weak topology on Hy = F[[g]] coincides
with the Ker (e, )—adic topology. It follows that the weak topology in H coincides with the
I, —adic topology, so Q FSHA is a subcategory of ’HA%_I. In particular, if H € QFSHA

then H ® H equals the completion of H Qk(ny) H w.r.t. the I, z—adic topology.

Definition 1.4. Let H, K be Hopf algebras (in any category) over a ring R. A pairing
7=1{(, ): HxK —— R is called perfect if it is non-degenerate; it is called a Hopf pairing

if for all x, x1, xo € H, y, y1, y2 € K, the elements <A(x),y1 ®y2> = Z(w)(x(1)7y1> .
(T(2),y2) and <ac1 ® T3, A(y)> = Z(y)<x1,y(1)> (T2,Y(2)) are well defined and we have

<9€ay1 -y2> = <A(1‘)ayl ®y2> ) <$1 '$2,y> = <901 ®$2,A(y)>
(1) =€), (Ly =€), (S),y)=(z5@).
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1.5 Drinfeld’s functors. Let H be a Hopf algebra (of any type) over k[[h]]. For each
n €N, define A™ H — H®" by A®:=¢, Al :=id,, and A" := (A@id?""?)oAn~!
if n > 2. For any ordered subset E = {i1,...,ix} C{1,...,n} with i; <--- <4, define
the morphism j, : H®* — H®" by jy(a; ®---®ay) :==b; ®---® b, with b; := 1 if
i ¢ and b;, = a,, for 1 <m < k; then set

Api=jsof, Api=A", and  dpi= 3 (1) 1FlAg, gy i=e.
E'CE

By the inclusion-exclusion principle, the inverse formula Ag =), 5 6w holds. We shall
also use the notation dq :=dg, 0y := 0412, ny - Then we define -

H :={a€H|bd,(a) e "H®*"VneN} (CH).

Note that the useful formula 8, = (id, — €)*" o A™ holds, for all n € N, . Then H
splits as H = k[[h]] - 1, & J, , and (id — €) projects H onto J, := Ker(e): so (id — €)®"
projects H®™ onto J,*" ; therefore 8, (a) = (id — €)*" (A™(a)) € J,®" for any a € H.

Now let I := e L(hk[[R]]); set H* := > h7"[," = 3 (h7',)" = U (h~u)"

n>0

n>0 n>0
(the Kk[[R]]-subalgebra of "H generated by h~1I, ; the second identity follows immediately
from (h_IIH)n - (h_lfH)m for all n < m), and define

HY := h-adic completion of the k[[h]]-module H *

(Warning: H* naturally embeds into "H, whereas H" a priori does not, for the completion
procedure may "lead outside” "H ). Note also that I, = J, +h-H (with J,, as above),
so H* =37 Soh™™Jy" and HY = h-adic completion of »_ ~oh™"Jy".

We are now ready to state the main result we are interested in:

Theorem 1.6. ("The quantum duality principle”; cf. [Dr], §7) Assume char(k) =0.
The assignments H — HY and H — H' respectively define functors of tensor cate-

gories QFSHA — QUEA and QUEA — QFSHA. These functors are inverse to

each other. Indeed, for all Up(g) € QUEA and all Fy[[g]] € QFSHA one has (cf. §1.2)

Un(e) /1U(e) = Fllg"l,  Fullall" /hFullel]’ = Ulg") ®

that is, if Un(g) is a quantisation of U(g) then Ux(g) is a quantisation of F[[g*]], and if
Fi([g]] is a quantisation of F|[[g]] then F[[g*]]" is a quantisation of U(g*). Moreover, the
functors preserve equivalence, that is H, = Hy implies H,Y = Hy' or H\' = H,' .

Our analysis also move us to set the following (half-proved)

Conjecture 1.7. The quantum duality principle holds as well for char (k) > 0.
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§ 2 General properties of Drinfeld’s functors

The rest of this paper will be devoted to prove Theorem 1.6. In this section we establish
some general properties of Drinfeld’s functors. The first step is entirely standard.

Lemma 2.1. The assignments H — H* = H* and H — H* define contravariant
functors of tensor categories ()": Tz —Pg and ()*: Py —Tg which are inverse to
O

each other. Their restriction gives antiequivalences of tensor categories HAg ——HAg ,

HA: “LuAs  and, if char(k) =0, QUEAS QFSHA, QFsHAYS QueA. O

The following key fact shows that, in a sense, Drinfeld’s functors are dual to each other:

Proposition 2.2. Let H e HA5 , K € HAg , andlet m=( , ): H x K —— K[[h]] be
a Hopf pairing. Then 7 induces a bilinear pairing ( , ):H' x KY —— K|[[h]] .

If in addition  is perfect, and the induced k—valued pairing mg: Hy x Ko —— k 1is still
perfect, then H' = (KX)O = {77 e 'H ‘ (n,K*) C k[[h]]} (w.r.t. the natural k((h))-
valued pairing induced by scalar extension). In particular, if H = K* and K = H* the
evaluation pairing yields k[[h]]-module isomorphisms H' = (KV)* and KV = (H’)*

Proof. First note that, for all x, 1, zo € H, y, y1, yo € K, the elements <A(ac), Y1 ®y2> =
> (T), 1) - (T2),y2) and (21 ® 22, Ay)) = > T1y@)) - (22,y2)) (cf. Definition
1.4) are well defined: in fact K acts — via m — as a Hopf subalgebra of H*, hence K QK
acts — via m ® T — as a Hopf subalgebra of H* ® H* = (K@K)* , due to Lemma 2.1.
Therefore it is perfectly meaningful to require 7w to be a Hopf pairing.

Now, scalar extension gives a Hopf pairing ( , }: "H x 'K —» k((h)) which restricts
to a similar pairing ( , ): H' x K* — k((h)): we have to prove that the latter takes

values in k[[h]], that is <H "NK ><> C Kk[[R]], for then it will extend by continuity to a

pairing ( , ): H' x KY — K[[h]] ; in addition, this will also imply H' C (KX)O .
Take c1, ..., ¢n € Ic; then (1,¢;) = €(c;) € hk[[h]]. Now, given y € H', consider

<y, ch> = (A"y), ®iLi6) = < > duly), ®?—1Cz‘> = ) (uly), ®ye)

wc{l,..., n}

(using formulas in §1.5) and look at the generic summand in the last expression above. Let
W=t (¢t <n): then (du(y), ®"ic;) = <5t(y),®ie\pci>-]_[j€q,(1,cj> , by definition of 0y .
Thanks to the previous analysis, we have [[,4q(1,¢;) € A" 7'k[[h]], and (0:(y), @icwei) €
h'k[[h]] because y € H'; thus we get (0;(y), Qicw¢;) - [T;¢0 (1, c;) € R"K[[A]], whence
(y,IT7; ¢i) € h"k[[h]]. The outcome is that (y,) € h"k[[h]] for all y € H', ¢ € I,/",
and therefore (H', h~"I,0*) CKk[[h]] for all n € N, whence (H', K*) CKk[[h]], g.e.d.

We are now left with proving (K X ) ® C H': we do it by reverting the previous argument.

Let n € (KX)O: then (n, h~*I,) € k[[h]] hence (n,I) € h°k[[h]], for all s € N. In
particular, for s = 0 this gives (n,K) € k[[]], whence — thanks to non-degeneracy of
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mg — we get n € H. Let now n €N and 4y, ..., i, € [ ; then

<6n(77)> ®Z=1ik> = <Z\pg{1,...,n} (0" A, ®Z:1ik> N

ci1... n} (—1)n—|\P| : <77, erqj ’Lk> . Hk@!(l,ik) €
€D iy (e L) RT3 b KR = AT K([A])

therefore <5n(77) , [K®”> C h"k[[h]] . In addition, H splits as K =K[[h]]- 15D Jx , so K&

splits into the direct sum of J 2" and of other direct summands which are again tensor
products but in which at least one tensor factor is k[[A]] - 1. Since Jy := Ker(eH) =

(k[[h]] - 1K>L ={yeH ’ (y,1x) =0} (the subspace of H orthogonal to (k[[A]]-1)),
have <JH®", K®"> = <JH®", JK®">. Since 6,(n) € J°" (cf. §1.5), this analysis yields

<5n(n) K ®"> C h"Kk[[h]] , whence — due to the non-degeneracy of the specialised pairing

— we get 0,(n) € h"H®" . Therefore n € H'; hence we get (KX)O C H', q.e.d.
For the last part of the statement, since KV is the h—adic completion of K* one has
(KV)* = (KX)* , so now we show that the latter is equal to (KX)O = H’. On the one

hand, it is clear that H' = (KX)O C (KX)*. On the other hand, pick f € (KX)* : then f
(L&) € h[A]

because f(h™"I¢") C f(K*) C Kk[[h]]. Therefore f‘ € K* = (H*)* = H (by Lemma

, and by construction f ’ € K*
K K

is uniquely determined by f

2.1), thus f’KGH and f‘K(KX) C k[[R]] yields f‘ KX) H', whence fe€ H'. O

Lemma 2.3. Let H, H, € HA%_I. Then (H1 @Hg)v = H\Y ® Hy . In particular this
holds true for any Hi,Hy € QFSHA.

Proof. Clearly I; 5y, = I, ® Hy + Hy éIHQ , and the assumption on topologies implies
that Hy @ Ho is the I; 5, —adic completion of Hy Qy(pp)) Haz. Then, for each ng € H® H
we can find an expression 7z = >y ng) such that n(m) € (Lygy)™ for all m; as
I"®TI% of 3.
NE = DomeN Dortse mm:;) ®n£n) for some 77( Do, nﬁi) € I* (for all m, r, s), with

(Iyzx)™ is the completion > I" ® I*, we can in fact write

r4+s=m r4+s=m

D rtse mm(:;)@) (5) — 0 forall m < n if Mg € lLugn - Thus for any n€N and ng €Lz,

h- n®:hnz Zn(r)®n(s)€hnz ZIT@IS:

m>nr+s=m m>nr+s=m
=Y > WmTthTI@hICy WH @ HX,
m>nr+s=m £eN
from which one argues that the natural morphism H* —— HY induces a similar map
(H@H)v —— HY®H. Conversely, Yortomm b @ In) C Ly gy, (for all m) im-
plies H{* @ Hy* C (H 1 éHg)X, whence one gets by completion a continuous morphism

H,\® HyY — (H 1QH, )V, inverse of the previous one. This gives the equality in the claim.
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Finally, by Remark 1.3(c) any Hi, Ho € QFSH.A fulfills the hypotheses. [

Proposition 2.4.
(a) Let He HAg . Then HY is a unital (topological) k[[h]]-algebra in T .

w—1
(b) Let HE?—L.Ag9 . Then HY € HAg ,

tive and connected; if char (k) =0, it is a universal enveloping algebra, and HY € QUEA .

and the k—Hopf algebra HY, is cocommuta-

Proof. (a) We must prove that H" is topologically free: by the criterion in [KT], §4.1, this
is equivalent to H" being a torsionless, separated and complete topological k[[A]]-module.
Now, H is torsionless, so the same is true for "H hence for H* too; as HV is the h—adic
completion of H*, it is torsionless as well, and by definition it is complete and separated.
Furthermore, by construction H" is a (topological) k[[h]]-algebra, unital since 1, € H*.

(b) Let I := Iy (cf. §1.5). The definition yields Sy (I) = I, whence Sy (h™"I") =
h="I™ for all n € N, so Sy (HX) = H*, so one can define Syv by continuous extension.
As for A, the assumption on topologies implies that (H ®H )v = HY® HY, by Lemma
2.3. Moreover, definitions yield Ay (I”) CYopen " ®I° = L,3," (for all n), hence

Ap(h™I") Ch™ > I'®I*=h"L;z,; C (H®H)"
r+s=n

so that Ay (H X) C (H QH )X, thus one gets Agyv by continuity. Finally, by construction
eg extends to a counit for HY. It is clear that all axioms of a Hopf algebra in T are

then fulfilled, therefore HY € HAgz . Now, since H* = 3 .o (h7"J,)", the unital
topological algebra H" is generated by J.,* := h~'J,. Consider jV € J,°, and j :=
hjVeJy; then A=0s4+id®1+1®id—e-1®1 and Im(d2) C Jy ® Jy (cf. §1.5) give

AG) =0 +i@1+1Rj—€j) 101cj@l+10j+J,0Jy.
Therefore

A(JY) =0+ @1l+10)Y —e(jV)10l=5"@1+1®;" + (")
which maps (through completion) into
Vol+1ejV+h Iy @Jy =V el+10Y +hT Y 00,

whence we conclude that

Apv(j¥) =57V ®1+1®;5Y mod hHY @ HY v iV eldy.

Thus J,” mod h HV is contained in P(H"), the set of primitive elements of H ) ; since
J»' mod h HY generates HY, — as J, generates HY — this proves a fortiori that
P(H") generates HY, and also shows that HY, is cocommutative. In addition, we can
also apply Lemma 5.5.1 in [M] to the Hopf algebra HY), with Ag =k-1 and A; = J,’
mod h HV, to argue that HY, is connected, q.e.d.

If char(k) = 0 by Kostant’s Theorem (cf. for instance [A], Theorem 2.4.3) we have
HYy = U(g) for the Lie (bi)algebra g= P(HY). We conclude that H € QUEA. O
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Lemma 2.5. (/KT], Lemma 3.2) Let H be a Hopf k|[[h]]-algebra, let a, b € H, and let
be a finite subset of N. Then do(ab) =3, y_gp0ar(a)dy (D). In addition, if ® # 0 then
dp(ab—ba) =>_ (6a(a) 6y (b) — 8y (b) 0a(a)) . O

AUY =0
ANY #0

Proposition 2.6. Let H € HAg . Then H' € HA

5 » and the k-Hopf algebra H'y is
commutative.

Proof. First, H' is a k[[h]]-submodule of H, for the maps §,, (n € N) are k[[h]|]-linear; to
see it lies in P, we resort to a duality argument. Let K := H* € HAg , so H = K*
(cf. Lemma 2.1), and let 7: H x K —— k[[h]] be the natural Hopf pairing given by

evaluation. Then Proposition 2.2 gives H' = (K V)* € Pg , thus since K V' is a unital

algebra we have that H' is a counital coalgebra in Pg, with Ay = Ay i and €5 = €y e
In addition, by Lemma 2.5 one easily sees that H' is a k[[h]]-subalgebra of H, and by
construction it is unital for 1, € H'. The outcome is H' € HAg , q.e.d.

Finally, the very definitions give x = é1(z) + €(z) for all z € H. If = € H' we have
d1(x) € h H , hence there exists x1 € H such that §;(x) = hzy. Now for a,b € H', write
a=hay+e€(a), b="hby +¢€(b), hence ab—ba = hc with ¢ = h(a1by —bia;); we show
that ¢ € H'. For this we must check that dg(c) is divisible by hl®! for any finite subset ®
of N : as multiplication by h is injective (for H is topologically free), it is enough to show
that dg(ab — ba) is divisible by Al®I*1. Let A and Y be subsets of ® such that AUY = &
and ANY # (: then |A| +|Y| > |®| + 1. Now, 6x(a) is divisible by hlA and 6y (b) is
divisible by AYI: from this and the second part of Lemma 2.5 it follows that dg(ab — ba)
is divisible by hl®l*1. The outcome is ab = ba mod h H', so H'y is commutative. [J

Lemma 2.7. Let Hy, Hy € QUEA. Then (H\ & H,) = H\'® H,' .

Proof. Proceeding as in the proof of Proposition 2.6, let K; := H;" € QFSHA (i =

1,2); then K1 ® Ky = Hi* ® Hy* = (H1 @Hg)* (by Lemma 2.1), and H;' = (KZ-V)*

(i = 1,2), and similarly (H1 @Hg)/ = ((K1 @Kg)v> . Then applying Lemma 2.3 we get
~ ~ v\* ~ * * ~ * ~

(&) = (Ki18K)") = (K& KyY) = (KY) & (K2)" = i/ @ By, q.ed. O

Lemma 2.8. The assignment H — HY, resp. H — H', gives a well-defined functor
’HA%_I—> HAg , resp. HAg —— HA .

Proof. In order to define the functors, we only have to set them on morphisms. Let
H K € HA%_I and ¢ € MO’I”HA%—I(H, K); by scalar extension it gives a morphism
"H — "K of k((h))-Hopf algebras, which maps kI, into h~'I,, hence H* into
K*: extending it by continuity we get the morphism ¢Y € Mor,, g (HY,KY) we were
looking for. Similarly, let H, K € HAg and ¢ € MOTHA@ (H,K): then §,0p = p®"0§,
(for all n € N), so ¢(H') C K': thusas ¢ € MOTHAé (H',K') we simply take g0|H, . 4d
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§ 3 Drinfeld’s functors on quantum groups

We focus now on the effect of Drinfeld’s functors on quantum groups. The first result
is an explicit description of Fy[[g]]" when F},[[g]] is a QFSHA.

3.1 An explicit description of F,[[g]]". Let Fj[[g]] € QFSHA, and set for sim-
plicity Fy, := Fy[[g]], Fo = Fy/hF, = F[[g]], Fy := F[[g]]", and Fy := F,' /hFy’.
Then Fy = Fl[g]] = k[[Z1,...,%,]] (for some n € N) as topological k-algebras. Let-
ting m: F, —» Fy be the natural projection, if we pick an z; € n~!(z;) for any j,
then Fj, is generated by {z1,...,x,} as a topological k[[h|]-algebra, that is to say F), =
Fpllgl] =K[[z1,...,z,,R]]. In this description we have I :=1I,, = (z1,...,2n,h), and I
identifies with the space of all formal series whose degree (that is, the degree of the lowest
degree monomials occurring in the series with non-zero coefficient) is at least ¢, that is

Ie:{f:Zd N +1cd'hd0xtlill'gz"'x7dln Cdek,dGNn+1, |d| Zg}
ETL

for all ¢ € N (hereafter, we set |d| := Y.»_,ds for any d = (do,ds,...,d,) € N**1).
Then ‘Fj, 2 k[[z1,...,z,]]((R)), and

—L 1l n
I {7 =2 g Pal@)

where Z; := h™'z; and Ox(f) denotes the degree of a polynomial or a series f in the X;
(j=1,...,n), whence we get

W= U I = {f - ZdeNnHP”(jl’ ceeydp) R

£eN

Po(X) €K[X1,..., X,], n— Ox(P, )>evneN}

(Pn(Xl,...,Xn)ek[Xl,...,X] 30; € N:n— dx(P )>£fvneN}

Moreover, we easily see that [),cy h‘Fy,* = {0}, hence the natural completion map
F* — F” is an embedding. Finally, when taking the h-adic completion we get

FY = {f: > s Pal@se o B0) B | Pa(Xa, ., X)) € K[X0, L, Xo] Vi€ N}

that is F},’ = k[#1,...,#,][[h]] as topological k[[h]]-modules.

Proposition 3.2. If Fy[lg]] € QFSHA, then Fy[[g]]" € QUEA. Namely, we have
Fiulla]]Y = Un(g*) (where g* is the dual Lie bialgebra to g), that is

1Y /nEallel)Y = Us").

Proof. Let Fy[[g]] € QFSHA; set for simplicity Fj, := Fp[[g]], Fo := Fn/hFy, = F[[g]],
Fy = Fyle]]", Fy = Fhv/h Fy’, and let 7 Fj, —» F, be the natural projection.
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From the discussion in §3.1, we recover the identification F} = k[[z1,...,2,,h]] (for
some n € N) as topological k[[h]]-modules, where x; € Fj, for all j and the z; = n(z;)
gives Fy =k[[Z1,...,7,]] and generate m := Ker(epyq)) - Taking if necessary x; — e(z;)

instead of z; (for any j ), we can assume in addition that the x; belong to J := Ker (e, ),
so this kernel is the set of all formal series f whose degree in the z;, call it Ox(f), is
positive. From §3.1 we also have F},” =k[Z1,...,%,][[h]] as topological k[[h]]-modules.

Since Fj is commutative, we have x; x; —x; x; = hx for some x € F}, and in addition
we must have x € J too, thus x = Z?:o cj(h)-zj+ f(x1,...,xn, h) where c¢;(h) € k[[h]]
for all j and f(z1,...,2n,h) €K|[[x1,..., 2, h]] with Ox(f) > 1. Then

Fidj— i =h"2 hy = Z::Ocj(h) i+ hT (. En, B,

where f(Zy,...,&n,h) € k[1,...,%,][[h]] is formally obtained from f(z1,...,%,,h) sim-
ply by rewriting x; = h&; for all j. Then since Ox(f) > 1 we have h=Yf(@1,... &0, h) €
hKk[Z1,...,Z,][[h]], whence

T; .Ci‘j — .fj T; = Z::() Cj(h) . .’lvfj mod hFh\/.

This shows that the k—span of the set of cosets { Z; mod h FyY }j:1 . Is a Lie algebra,

which we call h. Then the identification F},’ = k[#1,...,Z,][[h]] shows that Fy' = U(b),
so that F),” € QUEA, q.e.d.

Our purpose now is to prove that h = g* as Lie bialgebras. For this we have to improve
a bit the previous analysis. Recall that! g := (m / mg)* , that m (the unique maximal ideal
of F[[g]]) is closed under the Poisson bracket of F[[g]], and that the dual Lie bialgebra g*
can be realized as g* =m / m?, its Lie bracket being induced by the Poisson bracket.

Consider JV := h~1J C F},’ . Multiplication by h~! yields a k[[h]]-module isomorphism
p: J— JV. Furthermore, the specialisation map 7V: F,,” —» Fy' =U(h) restricts to a
similar map n:JY —» JY := JV/JV N (h Fh\/) . The latter has kernel JV N (hFhV) © we
contend that this is equal to (J + JVJ) . In fact, let y € JY N hFE, : then the series
v := hy € J has Ox(y) > 0. As above we write y = h™'y as y = h™ly € F}Y =
k[#1,...,Z,][[h]]: then y = h=ty € hk[E1,...,3,][[h]] means Oyx(y) > 1, or dy(y) =1
and Op(y) >0 (ie. v € hk[[z1,...,2,,h]]), ie. exactly vy € hJ +J?, so ye J+ JVJ,
which proves our claim true. Note also that n(J") = n/( P k[[] - xy) =@l k-d;=h.

Now, recall that g* =m / m?: we fix a k-linear section v: g* — m of the projection
prm —» m/m2 = g* such that y(m?) C hJ + J?. Moreover, the specialisation map
m: F, —» Fy restricts to 7': J —» J/(JNhF,) = J/hJ =m; we fix a k-linear section
~v:m < J of n’. Now consider the composition map o :=nopuoyov: g* — . This is
well-defined, i.e. it is independent of the choice of v and v . Indeed, if v,v": g* — J, are
two sections of p, and o, o’ are defined correspondingly (with the same fixed ~ for both),
then Im(v—v') C Ker(p) = J.°> C Ker(nopoy), sothat o = nopoyor = nouoyor' = o’

Hereafter, the product of ideals in a topological algebra will be understood as the closure of their
algebraic product.
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Similarly, if ~,~': J. — J are two sections of 7/, and o, ¢’ are defined correspondingly
(with the same v for both), we have Im (y—+') C Ker(n') =hJ ChJ+J? = Ker(nopu),
thus o =nopuoyov=nopo~y ov =0, qed. In a nutshell, o is the composition map

¢ L fIE e P hT) e 3V (T 0YT)

where the maps v, 7, fi, 77, are the ones canonically induced by v, v, u, 1, and v, resp. 7,
does not depend on the choice of v, resp. 7, as it is the inverse of the isomorphism
0 JF/JFQi»g*, resp. ' : J/(J2 + hJ)i» F/JFQ, induced by p, resp. by «’. We
use this remark to show that ¢ is also an isomorphism of the Lie bialgebra structure.

Using the vector space isomorphism o : g* = b we pull-back the Lie bialgebra structure
of h onto g*, and denote it by (g*, [ s 6.); on the other hand, g* also carries its natural
structure of Lie bialgebra, dual to that of g (e.g., the Lie bracket is induced by restriction
of {, }), denoted by (g*, [ 1o 5X): we must prove that these two structures coincide.

First, for all 1, xo € g* we have [ml,xg] = [.Tl,.’lfg}x
Indeed, let f; :=v(x:), @i :==(fi), @ == pu(ei), yi :==n(p)) (i=1,2). Then

[z = a*({amwwam) ) = oo () =
= (por') (N o1, 2]) = p({f1, fo}) = [x1,22) ., qed.

The case of cobrackets can be treated similarly; but since they take values in tensor
squares, we make use of suitable maps vg = v®2, vg = 72, etc.; we set also g :=
Neo e = (o u)®* and V:i= A — A°. Then for all z € g* we have d4(z) = 65 (z).

Indeed, let f:=v(z), ¢:=7(f), ¢ = pu(p), y:=n(¢¥). Then we have

ba(@) i= 06~ Gy (@) = 05 (9 (n(¢"))) = 05 (e (A7 V(")) ) =
=05 ((no1) o (V(¥)) =0 ((no07) o (V1)) = p(V(N) = p(T(¥())) = 8 ()

where the last equality holds because dx (x) is uniquely defined as the unique element in
g* ® g* such that <u1 R ug , Ox (93)> = <[u1,u2] , x> for all ui,us €g, and we have

([u1,u2], ) = ([ur,uz], p(f)) = (w1 @ uz, V(f)) = (ur ®ug, p(V(v(x)))) . O

Now we need one more technical lemma. From now on, if g is any Lie algebra and
z € U(g), we denote by 9(z) the degree of Z w.r.t. the standard filtration of U (g).

Lemma 3.3. Let Uy be a QUEA, let ' € Uy, and let x € U, \ hUy, n € N, be such
that ' = h"™x . Set T :=x mod hUy € (Uh)O' Then 0(Z) <n

Proof. (cf. [EK], Lemma 4.12) By hypothesis 6,41(2') € h"P1U,2" YD hence 6,41 (x) €
hUZEMHD | therefore 6,41(Z) =0, ie. T € Ker(0,41: U(g) — U(g)®(n+1)) , where g is
the Lie bialgebra such that ( ) = Uy / h Uh = U(g). But the latter kernel equals the
subspace U(g), := {7 € U(g) |0(y) <n} (cf. [KT], §3.8), whence the claim follows. [J
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Proposition 3.4. Let F}, be a QFSHA. Then (Fhv)/ =F,.

Proof. As a matter of notation, we set JFhV = h_lJFh , and we denote by T € FyY the
image of any x € F,Y inside F},’ / h Y = Fy.

Now, for any n € N, we have §,(F}) C JF?" (see §1.5); this can be read as 0, (F}) C
T2 = b (b1, V" C R (B C (B, which gives Fy € (FY)

Conversely, let 2’ € (Fhv)/ \ {0} be given; as F},” € Ty , there are (unique) n € N,
r € Fp'\h F,’Y, such that 2’ = h™x . By Proposition 3.2, F},” is a QUEA, with semiclassical
limit U(h) where b = g* if Fy = F[[g]]. Fix an ordered basis {bx},c, of h and a subset
{xx}yea of Fy,Y such that T, = by for all \; in particular, since h C Ker(ey ) we can
choose the z inside JFhv = h_lJFh TS0 Ty = h_lx’A for some 2\ € Jr, , forall A€ A.

Since Lemma 3.3 gives 9(z) < n, thatis z € U(g), := {7 € U(g)|0(y) <n}, by the
PBW theorem we can write & as a polynomial P({bx},.,) in the by of degree d < n (with
coefficients in k); then zg := P({zx},cy) = @ mod hFp,’, that is @ = P({z\}cs) +
hayy for some z(;y € HY. Now we can write zg := P({zx},cp) = Zgzo h=5js (€ F™),
where every js € Jg,° is a homogeneous polynomial in the x\ of degree s, and jg # 0;
but then hA"z¢ = Zgzo h"=%js € Fp, because d < n. Since F} C (Fhv)/ — thanks to the
first part of the proof — we get also h”“xm =h"(r —x9) =2’ — h"xg € (Fh\/),: thus

x = hnl'o + hn+11‘<1> , with h”xo € I}, and h"+1x<1> € (Fhv)/ .
If wgy) = h"+1m<1> is zero we are done; if not, we can repeat the argument for z;) in
the role of z(g) := 2’: this will provide us with an z; € F,* and an T(g) € F,Y such

that T1) = hn+1$1 + hn+2$<2>, with hn+1$1 € Fj, and hn+2$<2> € (Fh\/)/. Iterating,
we eventually find a sequence {z¢},cy C Fp* such that h"™z, € F), for all £ € N,

“+o0
and 2’ = > h"tfx,, in the sense that the right-hand-side series does converge to x’
=0
inside F},”. Furthermore, this convergence takes place inside F}, as well: indeed, the very
construction gives h"w, = WPy, ({xa}ycp) = B Py, ({h™12h}, o) (Where Py, is a

suitable polynomial of degree dy < n+ /) and this last element belongs to I th% : but Fj
+00
is a QFSHA, hence it is complete w.r.t. the I, —adic topology, so the series ' = R,

{=0
does converge (to z’) inside Fy, q.e.d. O

3.5 An explicit description of Uj(g)’ (for char(k) = 0 ). When char(k) =0,
for any Up(g) € QUEA we can give an explicit description of Uy, (g)", as follows.
Like in the proof of Proposition 2.6 consider F[[g]] := Un(g)" € HAg and its natural

Hopf pairing with Uy, (g): then we showed that Uy, (g)’ = <(Fh[[g]])v>* . Note that this time
we have in addition Fy[[g]] € QFSHA, with Fo[g]] := Fy[[g]]/h Fu[[g]] = U(g)" = F|[g]].

Pick any basis {Z;},.; of g, endowed with some total order; then (PBW theorem)

the set of ordered monomials {Tg}e €(NT) is a basis of U(g): hereafter, (N* )0 denotes
<2 0

the set of functions from Z to N with finite support, and z¢ := Hiesz(i) for all
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e € (NI)O and all indeterminates x1,...,2,. Let {¥;};c; be the pseudobasis® of g*
dual to {7;},.; , endowed with the same total order; then the set of "rescaled” ordered
ce(NT), (with e!:=]],c7ze(i)!; that’s where we need char(k) =0) is
the pseudobasis of U(g)* = Fj[[g]] dual to the PBW basis {z¢}
<§g,§§//gl> =g, forall e, ¢’ € (N7), .

Lift {T;},c; to a subset {z;},.; € Ux(g) such that Z; = x; mod hU(g), and
{U:},ez toasubset {y;},., € Fp[[g]] such that 7; = y; mod h F}[[g]]: then {mg}ge(NI)O
is a topological basis of Uy, (g) (as a topological k[[h]]-module) and similarly {y</e!}

monomials {yﬁ / e! }

ce(NT), of U(g), namely

e€(NT)
is a topological pseudobasis of Fj[[g]] (as a topological k[[h|]-module), and they are dual

to each other modulo A, i.e. <x§,y9//§!> € O + hk[[h]] for all e, € € (NI)O. In

addition, yé//g! € (Iph[[g”)lgl for all €' € (NI)O, where [¢/| := ), .7 €/ (i). Now, Ux(g)
also contains a topological basis dual to {yg/g!}ge(NI)o , call it {77g }ge(NI)O . indeed,
from the previous analysis we see — by the ”duality mod A” mentioned above — that
such a basis is given by 7, = ¢ + Y72 h"- Do (NT), cg;), z€ for some cg;), ek (e,

e € (NI)O), so {ne }ee(NI) is a lift of the PBW basis {z¢} of U(g). Since
€ 0

QG(NI)O
{yg/gl}ge(NI)o is a topological pseudobasis of Fj[[g]] and yél/g! € (Jph[[g”)lgl for

all €', the set {h~lelye/e !}e is a topological basis of the topologically free k[[h]]—

€(NT),
module (Fh[[g]])v : then the dual pseudobasis of <(Fh[[g]])v> = Upn(g)’ to this basis is

{hlely, }ge(NI)O . so Up(g) is the set { Zﬁe(NI)o ae hl€ln, ’ ac € k[[h] ¥V e € (NF), } .
Now observe that (hz)¢ = hl¢lze = hlely, mod hUy,(g)" by construction; therefore

{ ZQE(NI)Oag(h )" \ ae € K[[n]] ¥ g} = { ZQG(NI)OGQMQ Me | ae € k[[h] ¥ g} = Un(g)'.

Finally, up to taking x; — e(x;), one can also choose the z; so that e(x;) =0.
To summarize, the outcome is the following:

Given any basis of g, there exists a lift {x;},.7 of it in Un(g) such that e(x;) =0 and
Un(g)' is nothing but the topological k[[h]]-algebra in Pz generated (in topological sense)

by {hxi}iez’ thus Up(g)' = {Zﬁe(NI)o ae hlelze | a, € k[[h]] Vg} as a subset of Up(g).

Remark: this description of Uh(g)' implies that the weak topology on Uh(g)/, which
coincides with its I;, ,»—adic topology, does coincide with the induced topology (of Uy (g)’
as a subspace of Uy (g), the latter being endowed with the h—adic topology). This defines
the topology on Uy, (g)/ in an intrinsic way, i.e. without referring to any identification of
Up(g)" with the dual space to some X € T (as we did instead to prove Proposition 2.6).

2From now on, this means that each element of g* can be written uniquely as a (possibly infinite) linear
combination of elements of the pseudobasis: such a (possibly infinite) sum will be convergent in the weak
topology of g*, so a pseudobasis is a topological basis w.r.t. the weak topology.
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Proposition 3.6. Assume char(k) =0. If Up(g) € QUEA, then Uy(g) € QFSHA.
Namely, we have Up(g)" = Fi,[[g*]] (where g* is the dual Lie bialgebra to g), that is

Un(s)' /hU(s) = Fllg"]].

Proof. Consider Fj[[g]] := Un(9)” € QFSHA (cf. Lemma 2.1); then Uy (g) SN Ul(g)

implies F[[g]] := Un(g) —=2+ U(g)* = F|[g]]. By Proposition 3.2, F},[[g]]" is a QUEA,
with semiclassical limit U(g*); by Proposition 2.2 we have Uj(g) = (Fh[[g]]v)*, thus
Un(g)' is a QFSHA with semiclassical limit F[[g*]]: indeed, F},[[g]]" 20, U(g*) implies

Un(g) = (Fullg]]") =% U(g)" = Fllg*]], ic. Un(g) /hUh(g) = F[[g"]] as claimed. [J

Proposition 3.7. Assume char(k) =0. Let U, be a QUEA. Then (U}’ )v =U,.

Proof. Consider Fj, := U, € QFSHA (cf. Lemma 2.1): then Proposition 3.4 yields
(Fhv)/ = F},; furthermore, U, = (Uh* )* = F3,". Applying Proposition 2.2 to the pair
(H,K) = (Up, Fy,) we get U’ = (Fhv)>k and F}) = (Uh')*. By Proposition 2.4 (as Fj €
QFSHA C HA%_I , by Remark 1.3(c)) and by Proposition 2.6 we can apply Proposition

2.2 to the pair (H,K) = (Fy,Uy'), thus getting (U,’)" = ((Fhv)/>* =B =U,. O

Lemma 3.8. Drinfeld’s functors on quantum groups preserve equivalences: if Hy = Ho

in QFSHA, resp. in QUEA, then HyY = Hy' in QUEA, resp. Hi' = Hy' in QFSHA.

Proof. Let Hy, Hy € Q FSHA be two equivalent quantisations of some F[[g]], and identify
them — as k[[h]]-modules — with H := F[[g]][[h]], so that the equivalence ¢: H =
Hy, = Hy = H reads ¢ = idy + h¢y for some ¢ € Endyy(H). By definition,
o+ = (¢ — z'dH)/h; therefore, for all n € N, we have

n—1 n—1
(6% —idy™") [h = (Z ¢®’“®(¢—idH)®z'dH®(”“>> h=Y" 6% 0, @id " D

k=0 k=0

Now, let J := Ker(ey): since ¢ is a Hopf isomorphism, it maps J into itself, hence also
o4 (J) = (‘b_—,’icbt’) (J) C J. Letting m,, : H®"— H be the n—fold multiplication, we have

6+ (") = (&= idu) /1) (J7) = ma (67" = ids") /) (J5) ) =

= My ( > ¢ @ oy @id? Y (J®")) C m, (Jo") = J",
k=0

ie. ¢y (J") CJ™ for all n, so ¢Y (HY) C HY, where ¢} is the extension of ¢ to HY.
Thus ¢¥ = idyv + h ¢y with ¢Y € Endyy(H), so ¢V is an equivalence in QUEA.
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Similarly, let Hy, Hy € QUEA be two equivalent quantisations of some U(g), and iden-
tify them — as k[[h]]-modules — with H := U(g)[[h]]. Then the equivalence ¢: Hy = H,
reads ¢ = idy + hoy for some ¢ € Endyp(H). As above, (¢®" — id,;")/h =
ZZ;S % @, @id,2" Y 50 6,00 = ¥ 06, (for ¢ is a Hopf isomorphism!), hence

n—1

On Oy = <(<p®n — idH®n)/h> 06, = Zk_ﬂ (<p®’“ ® 0y @ Z-dH®(n—lc—1)) o6,

for all n € N. Therefore

n—1

O (H)) =) (¢ @0y ® idy? DY (5, (H')) €
k=0

YT (e @y @ i) () ©

that is &, (¢4 (H')) € h"H®" for all n € N, so ¢ (H') C H'; hence ¢ := @‘Hl =
idy + hg0+‘H, with <p+‘H, € Endyn (H') , so that ¢’ is an equivalence in Q FSHA. O

Finally, our efforts are rewarded:

Proof of Theorem 1.6. It is enough to collect together the previous results. Proposition
3.2 and 3.6 together with Lemma 2.8 ensure that the functors in the claim are well-defined,
and that relations ® do hold. Proposition 3.4 and 3.7 show these functors are inverse to
each other. Finally, Lemma 3.8 prove that they preserve equivalence. [J

3.9 Generalizations. In this paper we dealt with finite dimensional Lie bialgebras.
What about the infinite dimensional case? Hereafter we sketch a draft of an answer.

Let g be an infinite dimensional Lie bialgebra; then its linear dual g* is a Lie bialgebra
only in a topological sense: in fact, the natural Lie cobracket takes values in the ”formal
tensor product” g*®g* := (g ® g)*, which is the completion of g* ® g* w.r.t. the weak
topology. Note that a vector subspace g* of g* is dense in g* w.r.t. the weak topology if
and only if the restriction g x g* — k of the natural evaluation pairing is perfect.

If g is a Lie bialgebra in the strict algebraic sense (i.e. §; C g®g) then U(g) is a co-Poisson
Hopf algebra as usual; if instead g is a Lie bialgebra in the topological sense (i.e. §; C g®g)
then U(g) is a topological co-Poisson Hopf algebra, whose co-Poisson bracket takes values
in a suitable completion U(g) @ U(g) of U(g) ® U(g). On the other hand, for any Lie
bialgebra g (both algebraic or topological) we can consider two objects to play the role
of F|[g]], namely F®[[g]] := U(g)" (the linear dual of U(g)), endowed with the weak
topology, and F'*[[g]], the m.—adic completion of F'[G] — provided the latter exists! — at
the maximal ideal m, of e € G, with the m.—adic topology. Both F ®[[g]] and F *[[g]] are
topological Poisson Hopf algebras (the coproduct taking values in a suitable topological
tensor product), complete w.r.t. to their topology. Moreover, there are natural pairings
of (topological) Hopf algebras between U(g) and F ®[[g]] and between U(g) and F*[[g]],
compatible with the Poisson and co-Poisson structures. We still have F®[[g]] 2 F*[[g]],
but contrary to the finite dimensional case we may have F®[[g]] # F~[[g]].
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Let HA g, resp. HA 5, be defined as in §1.1. In addition, define HA g to be the tensor
category of all (topological) Hopf k[[h||-algebras H such that: (a) H is complete w.r.t. the
I,—adic topology; (b) the tensor product H; ® Hj is the completion of the algebraic tensor
product H; Q) H2 w.r.t. the IH1®k[[hHH2fadic topology; in particular, the coproduct of

H takes values in H® H. Then we call QUEA", resp. QFSHA®, resp. QFSHA>,
the subcategory of HAg , resp. of HAg, resp. of HAg, composed of all objects whose
specialisation at h = 0 is isomorphic to some U(g), resp. some F “[[g]], resp. some F *[[g]];
here g is any Lie bialgebra. However, note that if H € QUEA" then the Poisson cobracket
d of its semiclassical limit Hy = U(g) (defined as in Remark 1.3(a)) takes values in
Hy® Hy, so that Hy is an algebraic (not topological) co-Poisson Hopf algebra hence g is an
algebraic Lie bialgebra; this means that if we start instead from a topological Lie bialgebra
g we cannot quantize U(g) in the category QUEA: what’s wrong is the tensor product ®
because, roughly, HY & H" is "too small”! Thus one must define a new category Te with
the same objects than T but with a ”larger” tensor product ® (a suitable completion
of ®y(p))) and then consider the tensor category H.A; of all (topological) Hopf algebras
in T, and the subcategory QUEAY whose objects have some U(g) as specialisation at
h =0: then in this case the Lie bialgebra g might be of topological type as well.

Now let’s have a look back. We review our previous work and, somewhat roughly, point
out how far (and in which way) its results extend to the more generals setting.

Lemma 2.1: This turns into: Dualisation H — H*, resp. H — H*, defines a con-
travariant functor of tensor categories HAg —— HAg , resp. HAz —— HAg,
which, if char (k)=0, restrict to QUEA" — QFSHA® |, resp. QFSHA® — QUEA™ .

Indeed, this suggest to define ® in such a way that dualisation H — H*, resp. H — H*,
defines a functor of tensor categories HAg — HAg , resp. HAg — HAg ; then, if
char (k) =0, this will restrict to QUEAY — QFSHA™® | resp. QFSHA® — QUEAY .

Proposition 2.2: This still holds true for any pair (H,K) € HAg x HAg . Moreover,
it should also holds true for any pair (H,K) € HAg x HAg of Hopf algebras in duality.

Lemma 2.3 still holds true up to replacing HA%_] with HA g .

Proposition 2.4 still holds true but for replacing ”HA%_I in part (b) with HA .

On the other hand, if we consider H" for any H € HAz then the sole thing which goes
wrong is that A(HY) ¢ HY ® HV, in general: indeed, A(HY) will lie in something larger.
Well, the definition of the category H.A g above should fit in this frame to give exactly
HY € HAg . Once one has fixed this point, our arguments still prove that HY € QUEAY ;
thus one has a further version of Proposition 2.4, and similarly a proper version of Lemma
2.3 should hold with HA g, resp. HAg , instead of HAg , resp. HA .

In any case, we can also drop at all the question of what kind of Hopf algebra H" is,
for in any case the proof of Proposition 2.4 will always prove the following;:

If He HAg , then HYy = U(g) for some Lie bialgebra (perhaps of topological type).

Proposition 2.6, Lemma 2.7: The proofs we give actually show the following:

If He HAg, then H € QFSHA®. If Hy, Hy € HAg , then (Hi®Hy) = H{ ® HY .
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To prove these results we used a duality argument, relying on Lemma 2.1. Alternatively,
given H € HAg or H € HAgz we can prove as before that H' is a unital k[[A]]-
subalgebra of H, and also that H' is complete w.r.t. the I,/—adic topology and is closed
for the antipode; then what one misses to have H' € HAg is a control on A(H ! )
Moreover, one proves as before that (H ! )0 is commutative.

Lemma 2.8: The way the action of Drinfeld’s functors on morphisms is defined here
still works for any one of the categories we are considering now.

Sections 3.1 through 3.4: These results also hold in a greater generality.

Indeed, changing a few details we can adapt the discussion in §3.1 and the (claim and)
proof of Proposition 3.2 and of Proposition 3.4 (noting that Lemma 3.3, which still holds
true untouched) to the case of Fj,”[[g]] € QFSHA>™ . The outcome is

If Fye[lo]] € QFSHA™, then Fy[[g]]” € QUEA", namely F,"[[g]]" = Un(g®)
where g* is an algebraic Lie bialgebra which embeds in g* as a dense Lie sub-bialgebra.
Moreover, (F;{”[[g]]v)/ = Fp"[[g]] -

Similarly, one can apply the same arguments to F,”[[g]] € Q FSHA® and get essentially
the same result but with QUEAY instead of QUEA". Then again the sole real problem is
to provide a proper definition for the category HA g (or at least QUEAY) which fit well
with these results. Once this (non-trivial...) point is set, the result would read

If F¥[[g]] € QFSHA®, then F[[g]]” € QUEA", namely F¥[[g]]’ = Un(g*), where
/
g is the dual (topological) Lie bialgebra to g. Moreover, (Fh®[[g]]v) = Fy’[[g]] -

Sections 3.5 through 3.7: These again hold in a greater generality.

In this case, the main tool is the use duality functor to switch from QUEA to QFSHA and
the property of Drinfeld’s functors of being dual to each other ensured by Proposition 2.2.
Therefore, our arguments apply verbatim to the case of Up(g) € QUEA". As for Uy(g) €
QUEAY, everything goes true as well the same provided Lemma 2.1 and Proposition 2.2
have been properly extended to deal with QUEAY and Q FSH.A™, as mentioned above.

Lemma 3.8: Here again (as for Lemma 2.8) our analysis still works for any one of the
categories we are considering now.

In a nutshell, we can say that, up to some details to be fixed,

The quantum duality principle holds, in a suitable formulation, also for infinite dimen-
sional Lie bialgebras, both algebraic and topological.

3.10 Examples. Several examples about finite dimensional Lie bialgebras can be found
in [Ga2]: there we consider quantum groups ”a la Jimbo-Lusztig”, but one can easily trans-
late all definitions and results into the language ”a la Drinfeld’” we use in the present paper.

We consider now some infinite dimensional samples. Let g be a simple finite dimensional
complex Lie algebra, and g the associated untwisted affine Kac-Moody algebra, with the
well-known Sklyanin-Drinfeld structure of Lie bialgebra; let also 6 be defined as in [Gal],
§1.2. Then both g* and 6 are topological Lie bialgebras, with 6 dense inside g*.

Consider the quantum groups U (g) and U (g) defined in [Gal], §3.3. We can re-
formulate the definition of the first in Drinfeld’s terms via the usual ”dictionary”: pick
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generators H; = log (K;)/log(g;) instead of the K;’s, take h = log(q) and fix k[[h]] as

ground ring, and finally complete the resulting algebra w.r.t. the h—adic topology; then

we have exactly U™ (g) € HA5 and UM (g )ﬂ> U(g), so Un(g) := 4¥(g) € QUEA"

(discarding the choice of the weight lattice M). On the other hand, doing the same ”trans-
lations” for U™ (g) and completing w.r.t. the weak topology or w.r.t. the I-adic topology
we obtain two different objects, in HA 5z and in HA g respectively, with semiclassical limit

F®[[g*]] and F* HGH respectively; then we call them F},”[[§*]] and Fy~® HGH respectively,
with F,°[[g*]] € QFSHA® and F;{”HGH € QFSHA>. Now, acting as outlined in

[Ga2], §3, one finds Fj~ Hﬁ”v: Un(g) and Up(g)' = F~ [[6“ , whilst Fh®[[§;*]]v instead

is a suitable completion of Uy (g), which should be an object of QUEAY: indeed, we have

F2 g ]]v% U(f) ), and h* is a topological Lie bialgebra in perfect duality with §*.

Dually, consider the quantum groups U™ (6) and UM (6) defined in [Gal], §5; as above

we can rephrase their definition, and then we find the following. First, the formulee for the
h—0

coproduct imply that Z/IM( ) ¢ HAg but U (b) € ’HA® , and UM (6) —— F° Hf) H ,
thus F)” Hf) H = Z/IM(b) € QFSHA®. Second, LLM( ) ¢ HAg but LlM(h) € HAg ,
and UM (6) h=0 U(f)) , so in fact Uh(f)) = UM (f)) € QUEAY . By an analysis like that
in [Ga2] one shows also that Fj,’ [[6 H is an object of QUEAY, it is a suitable completion

of Uh(h), and F}° [[6*”\/ h=0 U( ); moreover, (Fh®[[6*ﬂv>/ = Fh®[[6*ﬂ. On the

~

other hand, one has Uh( ) H H € QFSHA®, and so (Uh(f))/)v = Uh(b).
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