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THE QUANTUM DUALITY PRINCIPLE

Fabio Gavarini

Università degli Studi di Roma “Tor Vergata” — Dipartimento di Matematica
Via della Ricerca Scientifica 1, I-00133 Roma — ITALY

Abstract. The ”quantum duality principle” states that the quantisation of a Lie bialgebra
— via a quantum universal enveloping algebra (in short, QUEA) — also provides a quantisa-
tion of the dual Lie bialgebra (through its associated formal Poisson group) — via a quantum

formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bial-
gebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as
well; more in detail, there exist functors QUEA −→ QFSHA and QFSHA −→ QUEA ,
inverse to each other, such that in both cases the Lie bialgebra associated to the target object

is the dual of that of the source object. Such a result was claimed true by Drinfeld, but seems
to be unproved in the literature: I give here a thorough detailed proof of it.

”Dualitas dualitatum
et omnia dualitas”

N. Barbecue, ”Scholia”

Introduction

The quantum duality principle is known in literature under at least two formulations.
One claims that quantum function algebras associated to dual Poisson groups can be
considered to be dual — in the Hopf sense — to each other; and similarly for quantum
enveloping algebras (cf. [FRT] and [Se]). The second one, due to Drinfeld (cf. [Dr]), states
that any quantisation of the universal enveloping algebra of a Poisson group can also be
understood — in some sense — as a quantisation of the dual formal Poisson group, and,
conversely, any quantisation of a formal Poisson group also ”serves” as a quantisation of
the universal enveloping algebra of the dual Poisson group: this is the point of view we
are interested in. I am now going to describe this result more in detail.

Let k be a field of zero characteristic. Let g be a finite dimensional Lie algebra over k,
U(g) its universal enveloping algebra: then U(g) has a natural structure of Hopf algebra.
Let F [[g]] be the (algebra of regular functions on the) formal group associated to g: it is
a complete topological Hopf algebra (the coproduct taking values in a suitable topological
tensor product of the algebra with itself), which has two realisations. The first one is as
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follows: if G is an affine algebraic group with tangent Lie algebra g, and F [G] is the algebra
of regular functions on G, then F [[g]] is the me–completion of F [G] at the maximal ideal
me of the identity element e ∈ G , endowed with the me–adic topology. The second one is
F [[g]] := U(g)

∗
, the linear dual of U(g) ), endowed with the weak topology. In any case,

U(g) identifies with the topological dual of F [[g]], i.e. the set of all k–linear continuous
maps from F [[g]] to k, where k is given the discrete topology; similarly F [[g]] = U(g)

∗
is

also the topological dual of U(g) if we take on the latter space the discrete topology: in
particular, a (continuous) biduality theorem relates U(g) and F [[g]], and evaluation yields
a natural Hopf pairing among them. Now assume g is a Lie bialgebra: then U(g) is a co-
Poisson Hopf algebra, F [[g]] is a topological Poisson Hopf algebra, and the above pairing
is compatible with these additional co-Poisson and Poisson structures. Further, the dual
g∗ of g is a Lie bialgebra as well, so we can consider also U(g∗) and F [[g∗]].

Let g be a Lie bialgebra. A quantisation of U(g) is, roughly speaking, a topological
Hopf k[[h]]–algebra which for h = 0 is isomorphic, as a co-Poisson Hopf algebra, to U(g):
these objects form a category, called QUEA. Similarly, a quantisation of F [[g]] is, in short,
a topological Hopf k[[h]]–algebra which for h = 0 is isomorphic, as a topological Poisson
Hopf algebra, to F [[g]]: we call QFSHA the category formed by these objects.

The quantum duality principle (after Drinfeld) states that there exist two functors,
namely ( )

′
: QUEA −→ QFSHA and ( )

∨
: QFSHA −→ QUEA , which are inverse of

each other, and if Uh(g) is a quantisation of U(g) and Fh[[g]] is a quantisation of F [[g]] ,
then Uh(g)

′
is a quantisation of F [[g∗]] , and Fh[[g]]

∨
is a quantisation of U(g∗) .

This paper provides an explicit thorough proof (seemingly, the first one in the literature)
of this result. I also point out some further details and what is true when k has positive
characteristic, and sketch a plan for generalizing all this to the infinite dimensional case.

Note that several properties of the objects I consider have been discovered and exploited
in the works by Etingof and Kazhdan (see [EK1], [EK2]), by Enriquez (cf. [E]) and by
Kassel and Turaev (cf. [KT]), who deal with some special cases of quantum groups, arising
from a specific construction, and also applied Drinfeld’s results. The analysis in the present
paper shows that that those properties are often direct consequences of more general facts.

I point out that Drinfeld’s result is essentially local in nature, as it deals with quantisa-
tions over the ring of formal series and ends up only with infinitesimal data, i.e. objects at-
tached to Lie bialgebras; a global version of the principle, dealing with quantum groups over
a ring of Laurent polynomials, which give information on the global data of the underlying
Poisson groups will be provided in a forthcoming paper (cf. [Ga2]): this is useful in appli-
cations, e.g. it yields a quantum duality principle for Poisson homogeneous spaces, cf. [CG].
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§ 1 Notation and terminology

1.1 Topological k[[h]]–modules and topological Hopf k[[h]]–algebras. Let k be
a fixed field, h an indeterminate. The ring k[[h]] will always be considered as a topological
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ring w.r.t. the h–adic topology. Let X be any k[[h]]–module. We set X0 := X
/
hX =

k⊗k[[h]] X , a k–module (via scalar restriction k[[h]] → k[[h]]
/
hk[[h]] ∼= k ) which we call

the specialisation of X at h = 0 , or semiclassical limit of X ; we shall also use notation

X
h→0−−−→Y to mean X0

∼= Y . Note that if X is a topological k[[h]]–module which is
torsionless, complete and separated w.r.t. the h–adic topology then there is a natural
isomorphism of k[[h]]–modules X ∼= X0[[h]] : indeed, choose any k–basis

{
bi
}
i∈I

of X0,

and pick any subset
{
βi
}
i∈I

⊆ X such that βi mod h = bi (∀ i ) : then an isomorphism

as required is given by βi 7→ bi (however, topologies on either side may be different).

For later use, we also set
F
X := k((h)) ⊗k[[h]] X , a vector space over k((h)), which is

not equipped with any topology.

If X is a topological k[[h]]–module, we let its full dual to be X∗ := Hom k[[h]]
(
X,k[[h]]

)
,

and its topological dual to be X⋆ :=
{
f ∈ X∗

∣∣ f is continuous
}
. Note that X∗ = X⋆

when the topology on X is the h–adic one.

We introduce now two tensor categories of topological k[[h]]–modules, T ⊗̂ and P ⊗̃ : the
first one is modeled on the tensor category of discrete topological k–vector spaces, the
second one is modeled on the category of linearly compact topological k–vector spaces.

Let T ⊗̂ be the category whose objects are all topological k[[h]]–modules which are topo-
logically free (i.e. isomorphic to V [[h]] for some k–vector space V , with the h–adic topology)
and whose morphisms are the k[[h]]–linear maps (which are automatically continuous).
This is a tensor category w.r.t. the tensor product T1 ⊗̂T2 defined to be the separated
h–adic completion of the algebraic tensor product T1 ⊗k[[h]] T2 (for all T1, T2 ∈ T ⊗̂ ).

Let P ⊗̃ be the category whose objects are all topological k[[h]]–modules isomorphic

to modules of the type k[[h]]E (the Cartesian product indexed by E, with the Tikhonov
product topology) for some set E : these are complete w.r.t. to the weak topology, in fact
they are isomorphic to the projective limit of their finite free submodules (each one taken
with the h–adic topology); the morphisms in P ⊗̃ are the k[[h]]–linear continuous maps.

This is a tensor category w.r.t. the tensor product P1 ⊗̃P2 defined to be the completion of

the algebraic tensor product P1⊗k[[h]]P2 w.r.t. the weak topology: therefore Pi
∼= k[[h]]Ei

(i = 1, 2) yields P1 ⊗̃P2
∼= k[[h]]E1×E2 (for all P1, P2 ∈ P ⊗̃ ).

Note that the objects of T ⊗̂ and of P ⊗̃ are complete and separated w.r.t. the h–adic
topology, so by the previous remark one has X ∼= X0[[h]] for each of them.

We denote by HA ⊗̂ the subcategory of T ⊗̂ whose objects are all the Hopf algebras in
T ⊗̂ and whose morphisms are all the Hopf algebra morphisms in T ⊗̂ . Similarly, we call
HA ⊗̃ the subcategory of P ⊗̃ whose objects are all the Hopf algebras in P ⊗̃ and whose

morphisms are all the Hopf algebra morphisms in P ⊗̃ . Moreover, we define HAw−I

⊗̃ to be

the full subcategory of HA ⊗̃ whose objects are all the H ∈ HA ⊗̃ whose (weak) topology

coincides with the IH–adic topology, where IH := hH +Ker (ϵ) = ϵ−1
(
hk[[h]]

)
.

As a matter of notation, when dealing with a (possibly topological) Hopf algebra H, I
shall denote bym its product, by 1 its unit element, by ∆ its coproduct, by ϵ its counit and
by S its antipode; subscripts H will be added whenever needed for clarity. Note that the
objects of HA ⊗̂ and of HA ⊗̃ are topological Hopf algebras, not standard ones: in partic-
ular, in σ–notation ∆(x) =

∑
(x) x(1) ⊗ x(2) the sum is understood in topological sense.
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Definition 1.2. (cf. [Dr], § 7)
(a) We call quantized universal enveloping algebra (in short, QUEA) any H ∈ HA ⊗̂

such that H0 := H
/
hH is a co-Poisson Hopf algebra isomorphic to U(g) for some finite

dimensional Lie bialgebra g (over k); in this case we write H = Uh(g) , and say H is
a quantisation of U(g). We call QUEA the full subcategory of HA ⊗̂ whose objects are
QUEA, relative to all possible g (see also Remark 1.3(a) below).

(b) We call quantized formal series Hopf algebra (in short, QFSHA) any K ∈ HA ⊗̃
such that K0 := K

/
hK is a topological Poisson Hopf algebra isomorphic to F [[g]] for

some finite dimensional Lie bialgebra g (over k); then we write H = Fh[[g]] , and say K
is a quantisation of F [[g]]. We call QFSHA the full subcategory of HA ⊗̃ whose objects
are QFSHA, relative to all possible g (see also Remark 1.3(a) below).

(c) If H1, H2, are two quantisations of U(g), resp. of F [[g]] (for some Lie bialgebra g),
we say that H1 is equivalent to H2, and we write H1 ≡ H2 , if there is an isomorphism
φ :H1

∼= H2 (in QUEA, resp. in QFSHA) such that φ = id mod h .

Remarks 1.3: (a) If H ∈ HA ⊗̂ is such that H0 := H
/
hH as a Hopf algebra is

isomorphic to U(g) for some Lie algebra g, then H0 = U(g) is also a co-Poisson Hopf
algebra w.r.t. the Poisson cobracket δ defined as follows: if x ∈ H0 and x′ ∈ H gives
x = x′ + hH , then δ(x) :=

(
h−1

(
∆(x′) − ∆op(x′)

))
+ hH ⊗̂H ; then (by [Dr], §3,

Theorem 2) the restriction of δ makes g into a Lie bialgebra. Similarly, if K ∈ HA ⊗̃
is such that K0 := K

/
hK is a topological Poisson Hopf algebra isomorphic to F [[g]] for

some Lie algebra g then K0 = F [[g]] is also a topological Poisson Hopf algebra w.r.t. the
Poisson bracket { , } defined as follows: if x, y ∈ K0 and x′, y′ ∈ K give x = x′ + hK,
y = y′ + hK, then {x, y} :=

(
h−1(x′ y′ − y′ x′)

)
+ hK ; then g is a bialgebra again,

and F [[g]] is (the algebra of regular functions on) a Poisson formal group. These natural
co-Poisson and Poisson structures are the ones considered in Definition 1.2 above.

In fact, specialisation gives a tensor functor from QUEA to the tensor category of
universal enveloping algebras of Lie bialgebras and a tensor functor from QFSHA to the
tensor category of (algebras of regular functions on) formal Poisson groups.

(b) Clearly QUEA, resp. QFSHA, is a tensor subcategory of HA ⊗̂ , resp. of HA ⊗̃ .

(c) Let H be a QFSHA. Then H is complete w.r.t. the weak topology, and H0
∼= F [[g]]

for some finite dimensional Lie bialgebra g, and the weak topology on H0
∼= F [[g]] coincides

with the Ker (ϵH0
)–adic topology. It follows that the weak topology in H coincides with the

IH–adic topology, so QFSHA is a subcategory of HAw−I

⊗̃ . In particular, if H ∈ QFSHA
then H ⊗̃H equals the completion of H ⊗k[[h]] H w.r.t. the IH×H–adic topology.

Definition 1.4. Let H, K be Hopf algebras (in any category) over a ring R. A pairing
π = ⟨ , ⟩ : H×K −−→ R is called perfect if it is non-degenerate; it is called a Hopf pairing
if for all x, x1, x2 ∈ H, y, y1, y2 ∈ K, the elements

⟨
∆(x), y1 ⊗ y2

⟩
:=
∑

(x)⟨x(1), y1⟩ ·
⟨x(2), y2⟩ and

⟨
x1 ⊗ x2,∆(y)

⟩
:=
∑

(y)⟨x1, y(1)⟩ · ⟨x2, y(2)⟩ are well defined and we have

⟨
x, y1 · y2

⟩
=
⟨
∆(x), y1 ⊗ y2

⟩
,

⟨
x1 · x2, y

⟩
=
⟨
x1 ⊗ x2,∆(y)

⟩
⟨x, 1⟩ = ϵ(x) , ⟨1, y⟩ = ϵ(y) ,

⟨
S(x), y

⟩
=
⟨
x, S(y)

⟩
.
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1.5 Drinfeld’s functors. Let H be a Hopf algebra (of any type) over k[[h]]. For each
n ∈ N, define ∆n:H −→ H⊗n by ∆0 := ϵ , ∆1 := idH , and ∆n :=

(
∆⊗id⊗(n−2)

H

)
◦∆n−1

if n ≥ 2. For any ordered subset E = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik , define
the morphism jE : H⊗k −→ H⊗n by jE(a1 ⊗ · · · ⊗ ak) := b1 ⊗ · · · ⊗ bn with bi := 1 if
i /∈ Σ and bim := am for 1 ≤ m ≤ k ; then set

∆E := jE ◦∆k , ∆∅ := ∆0 , and δE :=
∑

E′⊂E

(−1)
n−|E′|∆E′ , δ∅ := ϵ .

By the inclusion-exclusion principle, the inverse formula ∆E =
∑

Ψ⊆E δΨ holds. We shall
also use the notation δ0 := δ∅ , δn := δ{1,2,...,n} . Then we define

H ′ :=
{
a ∈ H

∣∣ δn(a) ∈ hnH⊗n ∀n ∈ N
} (

⊆ H
)
.

Note that the useful formula δn = (idH − ϵ)
⊗n ◦∆n holds, for all n ∈ N+ . Then H

splits as H = k[[h]] · 1H ⊕ JH , and (id− ϵ) projects H onto JH := Ker (ϵ) : so (id− ϵ)
⊗n

projects H⊗n onto JH
⊗n ; therefore δn(a) = (id− ϵ)

⊗n(
∆n(a)

)
∈ JH

⊗n for any a ∈ H .

Now let IH := ϵ−1
(
hk[[h]]

)
; set H× :=

∑
n≥0

h−nIH
n =

∑
n≥0

(
h−1IH

)n
=
∪
n≥0

(
h−1IH

)n
(the k[[h]]–subalgebra of

F
H generated by h−1IH ; the second identity follows immediately

from
(
h−1IH

)n ⊆
(
h−1IH

)m
for all n < m ), and define

H∨ := h–adic completion of the k[[h]]–module H×

(Warning: H× naturally embeds into
F
H, whereasH∨ a priori does not, for the completion

procedure may ”lead outside”
F
H ). Note also that IH = JH + h ·H (with JH as above),

so H× =
∑

n≥0 h
−nJH

n and H∨ = h–adic completion of
∑

n≥0 h
−nJH

n .

We are now ready to state the main result we are interested in:

Theorem 1.6. (”The quantum duality principle”; cf. [Dr], §7) Assume char (k) = 0 .
The assignments H 7→ H∨ and H 7→ H ′ respectively define functors of tensor cate-

gories QFSHA −→ QUEA and QUEA −→ QFSHA . These functors are inverse to
each other. Indeed, for all Uh(g) ∈ QUEA and all Fh[[g]] ∈ QFSHA one has (cf. §1.2)

Uh(g)
′
/
hUh(g)

′
= F [[g∗]] , Fh[[g]]

∨
/
hFh[[g]]

∨
= U(g∗) ~

that is, if Uh(g) is a quantisation of U(g) then Uh(g)
′
is a quantisation of F [[g∗]], and if

Fh[[g]] is a quantisation of F [[g]] then F [[g∗]]
∨
is a quantisation of U(g∗). Moreover, the

functors preserve equivalence, that is H1 ≡ H2 implies H1
∨ ≡ H2

∨ or H1
′ ≡ H2

′ .

Our analysis also move us to set the following (half-proved)

Conjecture 1.7. The quantum duality principle holds as well for char (k) > 0 .
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§ 2 General properties of Drinfeld’s functors

The rest of this paper will be devoted to prove Theorem 1.6. In this section we establish
some general properties of Drinfeld’s functors. The first step is entirely standard.

Lemma 2.1. The assignments H 7→ H∗ = H⋆ and H 7→ H⋆ define contravariant
functors of tensor categories ( )

⋆
: T ⊗̂ −→P ⊗̃ and ( )

⋆
: P ⊗̃ −→T ⊗̂ which are inverse to

each other. Their restriction gives antiequivalences of tensor categories HA ⊗̂
( )∗−−→HA ⊗̃ ,

HA ⊗̃
( )⋆−−→HA ⊗̂ , and, if char (k) = 0 , QUEA ( )∗−→QFSHA , QFSHA ( )⋆−→QUEA . �

The following key fact shows that, in a sense, Drinfeld’s functors are dual to each other:

Proposition 2.2. Let H ∈ HA ⊗̂ , K ∈ HA ⊗̃ , and let π=⟨ , ⟩ :H ×K −−→ k[[h]] be

a Hopf pairing. Then π induces a bilinear pairing ⟨ , ⟩ :H ′×K∨ −−→ k[[h]] .
If in addition π is perfect, and the induced k–valued pairing π0 :H0×K0 −−→ k is still

perfect, then H ′ =
(
K×)◦ := {

η ∈ F
H
∣∣∣ ⟨η,K×⟩ ⊆ k[[h]]

}
(w.r.t. the natural k((h))–

valued pairing induced by scalar extension). In particular, if H = K⋆ and K = H∗ the

evaluation pairing yields k[[h]]–module isomorphisms H ′ ∼=
(
K∨)∗ and K∨ ∼=

(
H ′)⋆ .

Proof. First note that, for all x, x1, x2 ∈ H, y, y1, y2 ∈ K, the elements
⟨
∆(x), y1⊗y2

⟩
:=∑

(x)⟨x(1), y1⟩ · ⟨x(2), y2⟩ and
⟨
x1 ⊗ x2,∆(y)

⟩
:=
∑

(y)⟨x1, y(1)⟩ · ⟨x2, y(2)⟩ (cf. Definition

1.4) are well defined: in fact K acts — via π — as a Hopf subalgebra of H∗, hence K ⊗̃K

acts — via π ⊗ π — as a Hopf subalgebra of H∗ ⊗̃H∗ =
(
K ⊗̂K

)∗
, due to Lemma 2.1.

Therefore it is perfectly meaningful to require π to be a Hopf pairing.

Now, scalar extension gives a Hopf pairing ⟨ , ⟩ : F
H × F

K −→ k((h)) which restricts
to a similar pairing ⟨ , ⟩ : H ′ × K× −→ k((h)) : we have to prove that the latter takes

values in k[[h]] , that is
⟨
H ′,K×

⟩
⊆ k[[h]] , for then it will extend by continuity to a

pairing ⟨ , ⟩ : H ′ ×K∨ −→ k[[h]] ; in addition, this will also imply H ′ ⊆
(
K×)◦ .

Take c1, . . . , cn ∈ IK ; then ⟨1, ci⟩ = ϵ(ci) ∈ hk[[h]] . Now, given y ∈ H ′, consider⟨
y ,

n∏
i=1

ci

⟩
= ⟨∆n(y) , ⊗n

i=1ci⟩ =

⟨ ∑
Ψ⊆{1,...,n}

δΨ(y) , ⊗n
i=1ci

⟩
=

∑
Ψ⊆{1,...,n}

⟨
δΨ(y) , ⊗n

i=1ci
⟩

(using formulas in §1.5) and look at the generic summand in the last expression above. Let
|Ψ| = t ( t ≤ n ): then

⟨
δΨ(y),⊗n

i=1ci
⟩
=
⟨
δt(y),⊗i∈Ψci

⟩
·
∏

j ̸∈Ψ⟨1, cj⟩ , by definition of δΨ .

Thanks to the previous analysis, we have
∏

j ̸∈Ψ⟨1, cj⟩ ∈ hn−tk[[h]] , and
⟨
δt(y),⊗i∈Ψci

⟩
∈

htk[[h]] because y ∈ H ′ ; thus we get
⟨
δt(y),⊗i∈Ψci

⟩
·
∏

j ̸∈Ψ⟨1, cj⟩ ∈ hnk[[h]] , whence⟨
y,
∏n

i=1 ci
⟩
∈ hnk[[h]] . The outcome is that ⟨ y, ψ⟩ ∈ hnk[[h]] for all y ∈ H ′, ψ ∈ IK

n,

and therefore
⟨
H ′, h−nIK

n
⟩
⊆ k[[h]] for all n ∈ N, whence

⟨
H ′,K×⟩ ⊆ k[[h]] , q.e.d.

We are now left with proving
(
K×)◦ ⊆ H ′ : we do it by reverting the previous argument.

Let η ∈
(
K×)◦ : then ⟨η , h−sIK

s
⟩
∈ k[[h]] hence

⟨
η , IK

s
⟩
∈ hsk[[h]] , for all s ∈ N . In

particular, for s = 0 this gives
⟨
η ,K

⟩
∈ k[[h]] , whence — thanks to non-degeneracy of
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π0 — we get η ∈ H . Let now n ∈ N and i1, . . . , in ∈ IK ; then⟨
δn(η) , ⊗n

k=1ik

⟩
=

⟨∑
Ψ⊆{1,...,n}

(−1)
n−|Ψ|

∆Ψ(η) , ⊗n
k=1ik

⟩
=

=
∑

Ψ⊆{1,...,n}
(−1)

n−|Ψ| ·
⟨
η ,
∏

k∈Ψ
ik

⟩
·
∏

k ̸∈Ψ
⟨1, ik⟩ ∈

∈
∑

Ψ⊆{1,...,n}

⟨
η , IK

|Ψ|⟩ · hn−|Ψ| k[[h]] ⊆
∑n

s=0
hs · hn−s k[[h]] = hn k[[h]] ,

therefore
⟨
δn(η) , IK

⊗n
⟩
⊆ hnk[[h]] . In addition, H splits as K = k[[h]] ·1K ⊕JK , so K⊗n

splits into the direct sum of JK
⊗n and of other direct summands which are again tensor

products but in which at least one tensor factor is k[[h]] · 1K . Since JH := Ker (ϵH) =⟨
k[[h]] · 1K

⟩⊥
=
{
y ∈ H

∣∣ ⟨ y, 1K⟩ = 0
}

(the subspace of H orthogonal to
⟨
k[[h]] ·1K

⟩
), we

have
⟨
JH

⊗n, K⊗n
⟩
=
⟨
JH

⊗n, JK
⊗n
⟩
. Since δn(η) ∈ JH

⊗n (cf. §1.5), this analysis yields⟨
δn(η) ,K

⊗n
⟩
⊆ hn k[[h]] , whence — due to the non-degeneracy of the specialised pairing

— we get δn(η) ∈ hnH⊗n . Therefore η ∈ H ′; hence we get
(
K×)◦ ⊆ H ′, q.e.d.

For the last part of the statement, since K∨ is the h–adic completion of K× one has(
K∨)∗ =

(
K×)∗ , so now we show that the latter is equal to

(
K×)◦ = H ′ . On the one

hand, it is clear that H ′ =
(
K×)◦ ⊆

(
K×)∗. On the other hand, pick f ∈

(
K×)∗ : then f

is uniquely determined by f
∣∣∣
K
, and by construction f

∣∣∣
K

∈ K∗ and f
∣∣∣
K

(
IK

n
)
⊆ hnk[[h]]

because f
(
h−nIK

n
)
⊆ f

(
K×) ⊆ k[[h]] . Therefore f

∣∣∣
K

∈ K⋆ =
(
H∗)

⋆
= H (by Lemma

2.1), thus f
∣∣∣
K
∈ H and f

∣∣∣
K

(
K×) ⊆ k[[h]] yields f

∣∣∣
K
∈
(
K×)◦= H ′ , whence f ∈ H ′. �

Lemma 2.3. Let H1,H2 ∈ HAw−I

⊗̃ . Then
(
H1 ⊗̃H2

)∨
= H1

∨ ⊗̂H2
∨ . In particular this

holds true for any H1,H2 ∈ QFSHA .

Proof. Clearly IH1⊗̃H2
= IH1

⊗̃H2 + H1 ⊗̃ IH2
, and the assumption on topologies implies

that H1 ⊗̃H2 is the IH1⊗̃H2
–adic completion of H1 ⊗k[[h]]H2. Then, for each η ⊗̃ ∈ H ⊗̃H

we can find an expression η ⊗̃ =
∑

m∈N η
(m)

⊗̃ such that η
(m)

⊗̃ ∈ (IH⊗H)
m

for all m ; as

(IH⊗̃H)
m

is the completion
∑

r+s=m Ir ⊗̃ Is of
∑

r+s=m Ir ⊗ Is, we can in fact write

η ⊗̃ =
∑

m∈N
∑

r+s=m η
(r)
m ⊗ η

(s)
m for some η

(r)
m ∈ Ir, η

(s)
m ∈ Is (for all m, r, s), with∑

r+s=m η
(r)
m ⊗η(s)m = 0 for all m < n if η ⊗̃ ∈ IH⊗̃H

n . Thus for any n∈N and η ⊗̃ ∈IH⊗̃H

n

h−nη ⊗̃ = h−n
∑
m≥n

∑
r+s=m

η(r)m ⊗ η(s)s ∈ h−n
∑
m≥n

∑
r+s=m

Ir ⊗ Is =

=
∑
m≥n

∑
r+s=m

hm−n h−rIr ⊗ h−sIs ⊆
∑
ℓ∈N

hℓH× ⊗H× ,

from which one argues that the natural morphism H× −−→ H∨ induces a similar map(
H ⊗̃H

)∨ −−→ H∨ ⊗̂H∨ . Conversely,
∑

r+s=m IH1

r ⊗ IH2

s ⊆ IH1⊗̃H2

m (for all m) im-

plies H1
×⊗ H2

× ⊆
(
H1⊗̃H2

)×
, whence one gets by completion a continuous morphism

H1
∨⊗̂H2

∨−→
(
H1⊗̃H2

)∨
, inverse of the previous one. This gives the equality in the claim.
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Finally, by Remark 1.3(c) any H1,H2 ∈ QFSHA fulfills the hypotheses. �

Proposition 2.4.
(a) Let H ∈ HA ⊗̃ . Then H∨ is a unital (topological) k[[h]]–algebra in T ⊗̂ .

(b) Let H ∈ HAw−I

⊗̃ . Then H∨ ∈ HA ⊗̂ , and the k–Hopf algebra H∨
0 is cocommuta-

tive and connected; if char (k) = 0 , it is a universal enveloping algebra, and H∨ ∈ QUEA .

Proof. (a) We must prove that H∨ is topologically free: by the criterion in [KT], §4.1, this
is equivalent to H∨ being a torsionless, separated and complete topological k[[h]]–module.

Now, H is torsionless, so the same is true for
F
H hence for H× too; as H∨ is the h–adic

completion of H×, it is torsionless as well, and by definition it is complete and separated.
Furthermore, by construction H∨ is a (topological) k[[h]]–algebra, unital since 1H ∈ H×.

(b) Let I := IH (cf. §1.5). The definition yields SH(I) = I , whence SH

(
h−nIn

)
=

h−nIn for all n ∈ N, so SH

(
H×) = H×, so one can define SH∨ by continuous extension.

As for ∆, the assumption on topologies implies that
(
H ⊗̃H

)∨
= H∨ ⊗̂H∨, by Lemma

2.3. Moreover, definitions yield ∆H

(
In
)
⊆
∑

r+s=n I
r ⊗̃ Is = IH⊗̃H

n (for all n ), hence

∆H

(
h−nIn

)
⊆ h−n

∑
r+s=n

Ir ⊗̃ Is = h−nIH⊗̃H

n ⊆
(
H ⊗̃H

)×
so that ∆H

(
H×) ⊆ (H ⊗̃H

)×
, thus one gets ∆H∨ by continuity. Finally, by construction

ϵH extends to a counit for H∨. It is clear that all axioms of a Hopf algebra in T ⊗̂ are

then fulfilled, therefore H∨ ∈ HA ⊗̂ . Now, since H× =
∑

n≥0

(
h−1JH

)n
, the unital

topological algebra H∨ is generated by JH
× := h−1JH . Consider j∨ ∈ JH

× , and j :=
h j∨∈JH ; then ∆ = δ2 + id⊗ 1+ 1⊗ id− ϵ · 1⊗ 1 and Im (δ2) ⊆ JH ⊗ JH (cf. §1.5) give

∆(j) = δ2(j) + j ⊗ 1 + 1⊗ j − ϵ(j) · 1⊗ 1 ∈ j ⊗ 1 + 1⊗ j + JH ⊗̃JH .

Therefore

∆
(
j∨
)
= δ2

(
j∨
)
+ j∨ ⊗ 1 + 1⊗ j∨ − ϵ

(
j∨
)
1⊗ 1 = j∨ ⊗ 1 + 1⊗ j∨ + δ2

(
j∨
)

which maps (through completion) into

j∨ ⊗ 1 + 1⊗ j∨ + h−1JH ⊗̃JH = j∨ ⊗ 1 + 1⊗ j∨ + h+1JH
∨ ⊗̂JH

∨ ,

whence we conclude that

∆H∨
(
j∨
)
≡ j∨ ⊗ 1 + 1⊗ j∨ mod hH∨ ⊗̂H∨ ∀ j∨ ∈ JH

∨ .

Thus JH
∨ mod hH∨ is contained in P

(
H∨), the set of primitive elements of H∨

0 ; since

JH
∨ mod hH∨ generates H∨

0 — as JH
∨ generates H∨ — this proves a fortiori that

P
(
H∨) generates H∨

0 , and also shows that H∨
0 is cocommutative. In addition, we can

also apply Lemma 5.5.1 in [M] to the Hopf algebra H∨
0 , with A0 = k · 1 and A1 = JH

∨

mod hH∨, to argue that H∨
0 is connected, q.e.d.

If char (k) = 0 by Kostant’s Theorem (cf. for instance [A], Theorem 2.4.3) we have
H∨

0 = U(g) for the Lie (bi)algebra g = P
(
H∨

0

)
. We conclude that H ∈ QUEA . �
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Lemma 2.5. ([KT], Lemma 3.2) Let H be a Hopf k[[h]]–algebra, let a, b ∈ H, and let Φ
be a finite subset of N . Then δΦ(ab) =

∑
Λ∪Y=ΦδΛ(a) δY (b) . In addition, if Φ ̸= ∅ then

δΦ(ab− ba) =
∑

Λ∪Y=Φ
Λ∩Y ̸=∅

(
δΛ(a) δY (b)− δY (b) δΛ(a)

)
. �

Proposition 2.6. Let H ∈ HA ⊗̂ . Then H ′ ∈ HA ⊗̃ , and the k–Hopf algebra H ′
0 is

commutative.

Proof. First, H ′ is a k[[h]]–submodule of H, for the maps δn (n ∈ N) are k[[h]]–linear; to
see it lies in P ⊗̃ , we resort to a duality argument. Let K := H∗ ∈ HA ⊗̃ , so H = K⋆

(cf. Lemma 2.1), and let π :H ×K −−→ k[[h]] be the natural Hopf pairing given by

evaluation. Then Proposition 2.2 gives H ′ ∼=
(
K∨)∗ ∈ P ⊗̃ , thus since K∨ is a unital

algebra we have thatH ′ is a counital coalgebra in P ⊗̃ , with ∆H′ = ∆H

∣∣
H′ and ϵH′ = ϵH

∣∣
H′ .

In addition, by Lemma 2.5 one easily sees that H ′ is a k[[h]]–subalgebra of H, and by
construction it is unital for 1H ∈ H ′ . The outcome is H ′ ∈ HA ⊗̃ , q.e.d.

Finally, the very definitions give x = δ1(x) + ϵ(x) for all x ∈ H . If x ∈ H ′ we have
δ1(x) ∈ hH , hence there exists x1 ∈ H such that δ1(x) = hx1 . Now for a, b ∈ H ′, write
a = h a1 + ϵ(a) , b = h b1 + ϵ(b) , hence ab− ba = h c with c = h (a1b1 − b1a1) ; we show
that c ∈ H ′. For this we must check that δΦ(c) is divisible by h|Φ| for any finite subset Φ
of N+ : as multiplication by h is injective (for H is topologically free), it is enough to show
that δΦ(ab− ba) is divisible by h|Φ|+1. Let Λ and Y be subsets of Φ such that Λ∪ Y = Φ
and Λ ∩ Y ̸= ∅ : then |Λ| + |Y | ≥ |Φ| + 1 . Now, δΛ(a) is divisible by h|Λ| and δY (b) is
divisible by h|Y | : from this and the second part of Lemma 2.5 it follows that δΦ(ab− ba)
is divisible by h|Φ|+1. The outcome is ab ≡ ba mod hH ′ , so H ′

0 is commutative. �

Lemma 2.7. Let H1, H2 ∈ QUEA . Then
(
H1 ⊗̂H2

)′
= H1

′ ⊗̃H2
′ .

Proof. Proceeding as in the proof of Proposition 2.6, let Ki := Hi
∗ ∈ QFSHA (i =

1, 2); then K1 ⊗̃K2 = H1
∗ ⊗̃H2

∗ =
(
H1 ⊗̂H2

)∗
(by Lemma 2.1), and Hi

′ =
(
Ki

∨)∗
(i = 1, 2), and similarly

(
H1 ⊗̂H2

)′
=
((
K1 ⊗̃K2

)∨)∗
. Then applying Lemma 2.3 we get(

H1 ⊗̂H2

)′
=
((
K1 ⊗̃K2

)∨)∗
=
(
K1

∨ ⊗̂K2
∨)∗ =

(
K1

∨)∗ ⊗̃ (K2
∨)∗ = H1

′ ⊗̃H2
′, q.e.d. �

Lemma 2.8. The assignment H 7→ H∨ , resp. H 7→ H ′ , gives a well-defined functor
HAw−I

⊗̃ −−→ HA ⊗̂ , resp. HA ⊗̂ −−→ HA ⊗̃ .

Proof. In order to define the functors, we only have to set them on morphisms. Let
H,K ∈ HAw−I

⊗̃ and ϕ ∈ MorHAw−I

⊗̃
(H,K) ; by scalar extension it gives a morphism

F
H −→ F

K of k((h))–Hopf algebras, which maps h−1IH into h−1IK , hence H× into

K× : extending it by continuity we get the morphism ϕ∨ ∈ MorHA
⊗̂

(
H∨,K∨) we were

looking for. Similarly, let H,K ∈ HA ⊗̂ and φ ∈ MorHA
⊗̂
(H,K) : then δn◦φ = φ⊗n◦δn

(for all n ∈ N), so φ
(
H ′) ⊆ K ′ : thus as φ′ ∈ MorHA

⊗̃

(
H ′,K ′) we simply take φ

∣∣
H′ . �
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§ 3 Drinfeld’s functors on quantum groups

We focus now on the effect of Drinfeld’s functors on quantum groups. The first result
is an explicit description of Fh[[g]]

∨
when Fh[[g]] is a QFSHA.

3.1 An explicit description of Fh[[g]]
∨
. Let Fh[[g]] ∈ QFSHA , and set for sim-

plicity Fh := Fh[[g]] , F0 := Fh

/
hFh = F [[g]] , Fh

∨ := Fh[[g]]
∨
, and F0

∨ := Fh
∨/hFh

∨.
Then F0

∼= F [[g]] = k[[x̄1, . . . , x̄n]] (for some n ∈ N ) as topological k–algebras. Let-
ting π: Fh −� F0 be the natural projection, if we pick an xj ∈ π−1(x̄j) for any j,
then Fh is generated by {x1, . . . , xn} as a topological k[[h]]–algebra, that is to say Fh =
Fh[[g]] = k[[x1, . . . , xn, h]] . In this description we have I := IFh

=
(
x1, . . . , xn, h

)
, and Iℓ

identifies with the space of all formal series whose degree (that is, the degree of the lowest
degree monomials occurring in the series with non-zero coefficient) is at least ℓ, that is

Iℓ =
{
f =

∑
d∈Nn+1

cd · hd0xd1
1 x

d2
2 · · ·xdn

n

∣∣∣ cd ∈ k, d ∈ Nn+1, |d| ≥ ℓ
}

for all ℓ ∈ N (hereafter, we set |d| :=
∑n

s=0 ds for any d = (d0, d1, . . . , dn) ∈ Nn+1 ).

Then
F
Fh

∼= k[[x1, . . . , xn]]((h)) , and

h−ℓIℓ =
{
f =

∑
d∈Nn+1

Pn(x̌) · hn
∣∣∣ Pn(X) ∈ k[X1, . . . , Xn] , n− ∂X(Pn) ≥ ℓ ∀n ∈ N

}
where x̌j := h−1xj and ∂X(f) denotes the degree of a polynomial or a series f in the Xj

(j = 1, . . . , n), whence we get

Fh
× =

∪
ℓ∈N

h−ℓIℓ =
{
f =

∑
d∈Nn+1

Pn(x̌1, . . . , x̌n) · hn
∣∣∣∣∣∣ Pn(X1, . . . , Xn) ∈ k[X1, . . . , Xn] , ∃ ℓf ∈ N : n− ∂X(Pn) ≥ ℓf ∀n ∈ N

}
.

Moreover, we easily see that
∩

ℓ∈N h
ℓFh

× = {0} , hence the natural completion map

Fh
× −→ Fh

∨ is an embedding. Finally, when taking the h–adic completion we get

Fh
∨ =

{
f =

∑
d∈Nn+1

Pn(x̌1, . . . , x̌n) · hn
∣∣∣ Pn(X1, . . . , Xn) ∈ k[X1, . . . , Xn] ∀n ∈ N

}
that is Fh

∨ = k[x̌1, . . . , x̌n][[h]] as topological k[[h]]–modules.

Proposition 3.2. If Fh[[g]] ∈ QFSHA , then Fh[[g]]
∨ ∈ QUEA . Namely, we have

Fh[[g]]
∨
= Uh(g

∗) (where g∗ is the dual Lie bialgebra to g), that is

Fh[[g]]
∨
/
hFh[[g]]

∨
= U(g∗) .

Proof. Let Fh[[g]] ∈ QFSHA ; set for simplicity Fh := Fh[[g]] , F0 := Fh

/
hFh = F [[g]] ,

Fh
∨ := Fh[[g]]

∨
, F0

∨ := Fh
∨/hFh

∨, and let π: Fh −� F0 be the natural projection.
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From the discussion in §3.1, we recover the identification Fh = k[[x1, . . . , xn, h]] (for
some n ∈ N ) as topological k[[h]]–modules, where xj ∈ Fh for all j and the x̄j = π(xj)
gives F0 = k[[x̄1, . . . , x̄n]] and generate m := Ker (ϵF [[g]]) . Taking if necessary xj − ϵ(xj)
instead of xj (for any j ), we can assume in addition that the xj belong to J := Ker (ϵFh

) ,
so this kernel is the set of all formal series f whose degree in the xj , call it ∂x(f), is
positive. From §3.1 we also have Fh

∨ = k[x̌1, . . . , x̌n][[h]] as topological k[[h]]–modules.
Since F0 is commutative, we have xi xj −xj xi = hχ for some χ ∈ Fh , and in addition

we must have χ ∈ J too, thus χ =
∑n

j=0 cj(h) ·xj + f(x1, . . . , xn, h) where cj(h) ∈ k[[h]]
for all j and f(x1, . . . , xn, h) ∈ k[[x1, . . . , xn, h]] with ∂x(f) > 1 . Then

x̌i x̌j − x̌j x̌i = h−2 · hχ =
∑n

j=0
cj(h) · x̌j + h−1f̌(x̌1, . . . , x̌n, h) ,

where f̌(x̌1, . . . , x̌n, h) ∈ k[x̌1, . . . , x̌n][[h]] is formally obtained from f(x1, . . . , xn, h) sim-
ply by rewriting xj = h x̌j for all j. Then since ∂x(f) > 1 we have h−1f̌(x̌1, . . . , x̌n, h) ∈
hk[x̌1, . . . , x̌n][[h]] , whence

x̌i x̌j − x̌j x̌i ≡
∑n

j=0
cj(h) · x̌j mod hFh

∨ .

This shows that the k–span of the set of cosets
{
x̌j mod hFh

∨ }
j=1,...,n

is a Lie algebra,

which we call h. Then the identification Fh
∨ = k[x̌1, . . . , x̌n][[h]] shows that F0

∨ = U(h) ,
so that Fh

∨ ∈ QUEA , q.e.d.
Our purpose now is to prove that h ∼= g∗ as Lie bialgebras. For this we have to improve

a bit the previous analysis. Recall that1 g :=
(
m
/
m2
)∗

, that m (the unique maximal ideal
of F [[g]] ) is closed under the Poisson bracket of F [[g]], and that the dual Lie bialgebra g∗

can be realized as g∗ = m
/
m2 , its Lie bracket being induced by the Poisson bracket.

Consider J∨ := h−1J ⊂ Fh
∨ . Multiplication by h−1 yields a k[[h]]–module isomorphism

µ : J
∼=
↪−�J∨. Furthermore, the specialisation map π∨: Fh

∨ −� F0
∨ =U(h) restricts to a

similar map η : J∨−� J ∨
0 :=J∨

/
J∨ ∩

(
hFh

∨) . The latter has kernel J∨ ∩
(
hFh

∨) : we

contend that this is equal to
(
J + J∨J

)
. In fact, let y ∈ J∨ ∩ hFh

∨ : then the series

γ := h y ∈ J has ∂x(γ) > 0 . As above we write y = h−1γ as y = h−1γ ∈ Fh
∨ =

k[x̌1, . . . , x̌n][[h]] : then y = h−1γ ∈ hk[x̌1, . . . , x̌n][[h]] means ∂x(γ) > 1 , or ∂x(γ) = 1
and ∂h(γ) > 0 (i.e. γ ∈ hk[[x1, . . . , xn, h]] ), i.e. exactly γ ∈ hJ + J2 , so y ∈ J + J∨J ,
which proves our claim true. Note also that η

(
J∨) = η

(
⊕n

j=1k[[h]] ·xj
)
= ⊕n

j=1k · x̌j = h .

Now, recall that g∗ = m
/
m2 : we fix a k–linear section ν : g∗ ↪−→ m of the projection

ρ : m −� m
/
m2 = g∗ such that γ(m2) ⊆ hJ + J2 . Moreover, the specialisation map

π : Fh −� F0 restricts to π′: J −� J
/
(J ∩ hFh) = J

/
hJ = m ; we fix a k–linear section

γ : m ↪−→ J of π′. Now consider the composition map σ := η ◦µ ◦ γ ◦ ν : g∗ −→ h . This is
well-defined, i.e. it is independent of the choice of ν and γ . Indeed, if ν, ν′: g∗ ↪−→ JF are
two sections of ρ, and σ, σ′ are defined correspondingly (with the same fixed γ for both),
then Im (ν−ν′) ⊆ Ker (ρ) = JF

2 ⊆ Ker (η◦µ◦γ) , so that σ = η◦µ◦γ◦ν = η◦µ◦γ◦ν′ = σ′ .

1Hereafter, the product of ideals in a topological algebra will be understood as the closure of their
algebraic product.
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Similarly, if γ, γ′: JF ↪−→ J are two sections of π′, and σ, σ′ are defined correspondingly
(with the same ν for both), we have Im (γ−γ′) ⊆ Ker (π′) = hJ ⊆ hJ+J2 = Ker (η ◦µ) ,
thus σ = η ◦ µ ◦ γ ◦ ν = η ◦ µ ◦ γ′ ◦ ν = σ′ , q.e.d. In a nutshell, σ is the composition map

g∗
ν̄

↪−−−� JF

/
JF

2 γ̄
↪−−−� J

/(
J2 + hJ

) µ̄
↪−−−� J∨

/(
J + J∨J

) η̄
↪−−−� h

where the maps ν̄, γ̄, µ̄, η̄, are the ones canonically induced by ν, γ, µ, η, and ν̄, resp. γ̄,
does not depend on the choice of ν, resp. γ, as it is the inverse of the isomorphism

ρ̄ : JF

/
JF

2
∼=
↪−� g∗ , resp. π′ : J

/(
J2 + hJ

) ∼=
↪−�JF

/
JF

2 , induced by ρ , resp. by π′. We

use this remark to show that σ is also an isomorphism of the Lie bialgebra structure.

Using the vector space isomorphism σ : g∗
∼=−→ h we pull-back the Lie bialgebra structure

of h onto g∗, and denote it by
(
g∗, [ , ]•, δ•

)
; on the other hand, g∗ also carries its natural

structure of Lie bialgebra, dual to that of g (e.g., the Lie bracket is induced by restriction
of { , } ), denoted by

(
g∗, [ , ]×, δ×

)
: we must prove that these two structures coincide.

First, for all x1, x2 ∈ g∗ we have
[
x1, x2

]
• =

[
x1, x2

]
× .

Indeed, let fi := ν(xi) , φi := γ(fi) , φ
∨
i := µ(φi) , yi := η

(
φ∨
i

)
( i = 1, 2). Then[

x1, x2
]
• := σ−1

([
σ(x1), σ(x2)

]
h

)
= σ−1

(
[y1, y2]

)
=
(
ρ ◦ π′ ◦ µ−1

)([
φ∨
1 , φ

∨
2

])
=

=
(
ρ ◦ π′)(h−1[φ1, φ2]

)
= ρ
(
{f1, f2}

)
=:
[
x1, x2

]
× , q.e.d.

The case of cobrackets can be treated similarly; but since they take values in tensor
squares, we make use of suitable maps ν⊗ := ν⊗2, γ⊗ := γ⊗2, etc.; we set also χ⊗ :=

η⊗◦ µ⊗ = (η ◦ µ)⊗2
and ∇ := ∆−∆op. Then for all x ∈ g∗ we have δ•(x) = δ×(x) .

Indeed, let f := ν(x) , φ := γ(f) , φ∨ := µ(φ) , y := η
(
φ∨) . Then we have

δ•(x) := σ⊗
−1
(
δh(σ(x))

)
= σ⊗

−1
(
δh
(
η
(
φ∨))) = σ⊗

−1
(
η⊗
(
h−1∇

(
φ∨))) =

= σ⊗
−1
((
η ◦ µ

)
⊗

(
∇(φ)

))
= σ⊗

−1
((
η ◦ µ ◦ γ

)
⊗

(
∇(f)

))
= ρ
(
∇(f)

)
= ρ
(
∇(ν(x))

)
= δ×(x)

where the last equality holds because δ×(x) is uniquely defined as the unique element in
g∗ ⊗ g∗ such that

⟨
u1 ⊗ u2 , δ×(x)

⟩
=
⟨
[u1, u2] , x

⟩
for all u1, u2∈g , and we have⟨

[u1, u2] , x
⟩
=
⟨
[u1, u2] , ρ(f)

⟩
=
⟨
u1 ⊗ u2 ,∇(f)

⟩
=
⟨
u1 ⊗ u2 , ρ

(
∇(ν(x))

)⟩
. �

Now we need one more technical lemma. From now on, if g is any Lie algebra and
x̄ ∈ U(g) , we denote by ∂

(
x̄
)
the degree of x̄ w.r.t. the standard filtration of U(g).

Lemma 3.3. Let Uh be a QUEA, let x′ ∈ Uh
′ , and let x ∈ Uh \ hUh , n ∈ N , be such

that x′ = hnx . Set x̄ := x mod hUh ∈
(
Uh

)
0
. Then ∂(x̄) ≤ n .

Proof. (cf. [EK], Lemma 4.12) By hypothesis δn+1(x
′) ∈ hn+1Uh

⊗(n+1), hence δn+1(x) ∈
hUh

⊗(n+1) , therefore δn+1(x̄) = 0 , i.e. x̄ ∈ Ker
(
δn+1: U(g) −→ U(g)

⊗(n+1))
, where g is

the Lie bialgebra such that
(
Uh

)
0
:= Uh

/
hUh = U(g) . But the latter kernel equals the

subspace U(g)n :=
{
ȳ ∈ U(g)

∣∣ ∂(ȳ) ≤ n
}

(cf. [KT], §3.8), whence the claim follows. �
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Proposition 3.4. Let Fh be a QFSHA. Then
(
Fh

∨)′ = Fh .

Proof. As a matter of notation, we set JFh

∨ := h−1JFh
, and we denote by x̄ ∈ F0

∨ the

image of any x ∈ Fh
∨ inside Fh

∨/hFh
∨ = F0

∨.

Now, for any n ∈ N, we have δn(Fh) ⊆ JFh

⊗n (see §1.5); this can be read as δn(Fh) ⊆
JFh

⊗n = hn
(
h−1JFh

)⊗n ⊆ hn
(
Fh

×)⊗n ⊆ hn
(
Fh

∨)⊗n
, which gives Fh ⊆

(
Fh

∨)′ .
Conversely, let x′ ∈

(
Fh

∨)′ \ {0} be given; as Fh
∨ ∈ T ⊗̂ , there are (unique) n ∈ N,

x ∈ Fh
∨\hFh

∨, such that x′ = hnx . By Proposition 3.2, Fh
∨ is a QUEA, with semiclassical

limit U(h) where h = g∗ if F0 = F [[g]] . Fix an ordered basis {bλ}λ∈Λ of h and a subset

{xλ}λ∈Λ of Fh
∨ such that xλ = bλ for all λ ; in particular, since h ⊂ Ker (ϵU(g)) we can

choose the xλ inside JFh

∨ := h−1JFh
: so xλ = h−1x′λ for some x′λ ∈ JFh

, for all λ ∈ Λ .

Since Lemma 3.3 gives ∂(x̄) ≤ n , that is x̄ ∈ U(g)n :=
{
ȳ ∈ U(g)

∣∣ ∂(ȳ) ≤ n
}
, by the

PBW theorem we can write x̄ as a polynomial P
(
{bλ}λ∈Λ

)
in the bλ of degree d ≤ n (with

coefficients in k ); then x0 := P
(
{xλ}λ∈Λ

)
≡ x mod hFh

∨ , that is x = P
(
{xλ}λ∈Λ

)
+

hx⟨1⟩ for some x⟨1⟩ ∈ H∨ . Now we can write x0 := P
(
{xλ}λ∈Λ

)
=
∑d

s=0 h
−sjs (∈Fh

×),
where every js ∈ JFh

s is a homogeneous polynomial in the x′λ of degree s, and jd ̸= 0 ;

but then hnx0 =
∑d

s=0 h
n−sjs ∈ Fh because d ≤ n . Since Fh ⊆

(
Fh

∨)′ — thanks to the

first part of the proof — we get also hn+1x⟨1⟩ = hn(x− x0) = x′ − hnx0 ∈
(
Fh

∨)′ : thus
x′ = hnx0 + hn+1x⟨1⟩ , with hnx0 ∈ Fh and hn+1x⟨1⟩ ∈

(
Fh

∨)′ .
If x(1) := hn+1x⟨1⟩ is zero we are done; if not, we can repeat the argument for x(1) in

the role of x(0) := x′ : this will provide us with an x1 ∈ Fh
× and an x⟨2⟩ ∈ Fh

∨ such

that x(1) = hn+1x1 + hn+2x⟨2⟩ , with hn+1x1 ∈ Fh and hn+2x⟨2⟩ ∈
(
Fh

∨)′ . Iterating,

we eventually find a sequence {xℓ}ℓ∈N ⊂ Fh
× such that hn+ℓxℓ ∈ Fh for all ℓ ∈ N ,

and x′ =
+∞∑
ℓ=0

hn+ℓxℓ , in the sense that the right-hand-side series does converge to x′

inside Fh
∨. Furthermore, this convergence takes place inside Fh as well: indeed, the very

construction gives hn+ℓxℓ = hn+ℓPdℓ

(
{xλ}λ∈Λ

)
= hn+ℓPdℓ

(
{h−1x′λ}λ∈Λ

)
(where Pdℓ

is a

suitable polynomial of degree dℓ ≤ n+ ℓ ) and this last element belongs to IFh

n+ℓ : but Fh

is a QFSHA, hence it is complete w.r.t. the IFh
–adic topology, so the series x′ =

+∞∑
ℓ=0

hn+ℓxℓ

does converge (to x′) inside Fh, q.e.d. �

3.5 An explicit description of Uh(g)
′
(for char(k) = 0 ). When char (k) = 0 ,

for any Uh(g) ∈ QUEA we can give an explicit description of Uh(g)
′
, as follows.

Like in the proof of Proposition 2.6 consider Fh[[g]] := Uh(g)
∗ ∈ HA ⊗̃ and its natural

Hopf pairing with Uh(g): then we showed that Uh(g)
′
=
((
Fh[[g]]

)∨)∗
. Note that this time

we have in addition Fh[[g]] ∈ QFSHA , with F0[[g]] := Fh[[g]]
/
hFh[[g]] = U(g)

∗
= F [[g]] .

Pick any basis {xi}i∈I of g, endowed with some total order; then (PBW theorem)

the set of ordered monomials
{
x e
}
e∈(NI)0

is a basis of U(g): hereafter,
(
NI )

0
denotes

the set of functions from I to N with finite support, and x e :=
∏

i∈I x
e(i)
i for all
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e ∈
(
NI )

0
and all indeterminates x1, . . . , xn . Let {yi}i∈I be the pseudobasis2 of g∗

dual to {xi}i∈I , endowed with the same total order; then the set of ”rescaled” ordered

monomials
{
y e
/
e !
}
e∈(NI)0

(with e ! :=
∏

i∈I e(i)! ; that’s where we need char (k) = 0 ) is

the pseudobasis of U(g)
∗
= Fh[[g]] dual to the PBW basis

{
x e
}
e∈(NI)0

of U(g) , namely⟨
x e, y e′

/
e !
⟩
= δe,e′ for all e , e′ ∈

(
NI)

0
.

Lift {xi}i∈I to a subset {xi}i∈I ⊆ Uh(g) such that xi = xi mod hUh(g) , and

{yi}i∈I to a subset {yi}i∈I ⊆Fh[[g]] such that yi = yi mod hFh[[g]] : then
{
x e
}
e∈(NI)0

is a topological basis of Uh(g) (as a topological k[[h]]–module) and similarly
{
y e
/
e !
}
e∈(NI)0

is a topological pseudobasis of Fh[[g]] (as a topological k[[h]]–module), and they are dual

to each other modulo h , i.e.
⟨
x e, y e′

/
e !
⟩
∈ δe,e′ + hk[[h]] for all e , e′ ∈

(
NI)

0
. In

addition, y e′
/
e ! ∈

(
IFh[[g]]

)|e′|
for all e′ ∈

(
NI)

0
, where |e′| :=

∑
i∈I e

′(i) . Now, Uh(g)

also contains a topological basis dual to
{
y e
/
e !
}
e∈(NI)0

, call it
{
η e

}
e∈(NI)0

: indeed,

from the previous analysis we see — by the ”duality mod h” mentioned above — that

such a basis is given by ηe = x e +
∑+∞

n=1 h
n ·
∑

e′∈ (NI)0
c
(n)
e,e′ x

e′ for some c
(n)
e,e′ ∈ k ( e,

e′ ∈
(
NI)

0
), so

{
η e

}
e∈(NI)0

is a lift of the PBW basis
{
x e
}
e∈(NI)0

of U(g) . Since{
y e
/
e !
}
e∈(NI)0

is a topological pseudobasis of Fh[[g]] and y e′
/
e ! ∈

(
JFh[[g]]

)|e′|
for

all e′, the set
{
h−|e| y e

/
e !
}
e∈(NI)0

is a topological basis of the topologically free k[[h]]–

module
(
Fh[[g]]

)∨
: then the dual pseudobasis of

((
Fh[[g]]

)∨)∗
= Uh(g)

′
to this basis is{

h|e| η e

}
e∈(NI)0

, so Uh(g)
′
is the set

{ ∑
e∈(NI)0

ae h
|e| ηe

∣∣∣ ae ∈ k[[h]] ∀ e ∈ (NI)0

}
.

Now observe that (hx)
e
= h|e| xe ≡ h|e| ηe mod hUh(g)

′
by construction; therefore

{∑
e∈(NI)0

ae (hx)
e
∣∣∣ ae ∈ k[[h]] ∀ e

}
=
{∑

e∈(NI)0
ae h

|e| ηe

∣∣∣ ae ∈ k[[h]] ∀ e
}
=Uh(g)

′
.

Finally, up to taking xi − ϵ(xi) , one can also choose the xi so that ϵ(xi) = 0 .

To summarize, the outcome is the following:

Given any basis of g, there exists a lift {xi}i∈I of it in Uh(g) such that ϵ(xi) = 0 and

Uh(g)
′
is nothing but the topological k[[h]]–algebra in P ⊗̃ generated (in topological sense)

by {hxi
}
i∈I , thus Uh(g)

′
=
{∑

e∈(NI)0
ae h

|e| xe
∣∣∣ ae ∈ k[[h]] ∀ e

}
as a subset of Uh(g).

Remark: this description of Uh(g)
′
implies that the weak topology on Uh(g)

′
, which

coincides with its IUh(g)′–adic topology, does coincide with the induced topology (of Uh(g)
′

as a subspace of Uh(g), the latter being endowed with the h–adic topology). This defines
the topology on Uh(g)

′
in an intrinsic way, i.e. without referring to any identification of

Uh(g)
′
with the dual space to some X∈ T ⊗̂ (as we did instead to prove Proposition 2.6).

2From now on, this means that each element of g∗ can be written uniquely as a (possibly infinite) linear

combination of elements of the pseudobasis: such a (possibly infinite) sum will be convergent in the weak
topology of g∗, so a pseudobasis is a topological basis w.r.t. the weak topology.
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Proposition 3.6. Assume char (k) = 0 . If Uh(g) ∈ QUEA , then Uh(g)
′ ∈ QFSHA .

Namely, we have Uh(g)
′
= Fh[[g

∗]] (where g∗ is the dual Lie bialgebra to g), that is

Uh(g)
′
/
hUh(g)

′
= F [[g∗]] .

Proof. Consider Fh[[g]] := Uh(g)
∗∈ QFSHA (cf. Lemma 2.1); then Uh(g)

h→0−−−−→ U(g)

implies Fh[[g]] := Uh(g)
∗ h→0−−−−→ U(g)

∗
= F [[g]] . By Proposition 3.2, Fh[[g]]

∨
is a QUEA,

with semiclassical limit U(g∗) ; by Proposition 2.2 we have Uh(g)
′
=
(
Fh[[g]]

∨)∗
, thus

Uh(g)
′
is a QFSHA with semiclassical limit F [[g∗]]: indeed, Fh[[g]]

∨ h→0−−−−→ U(g∗) implies

Uh(g)
′
=
(
Fh[[g]]

∨)∗ h→0−−−→ U(g∗)
∗
= F [[g∗]] , i.e. Uh(g)

′
/
hUh(g)

′
= F [[g∗]] as claimed. �

Proposition 3.7. Assume char (k) = 0 . Let Uh be a QUEA. Then
(
Uh

′ )∨ = Uh .

Proof. Consider Fh := Uh
∗ ∈ QFSHA (cf. Lemma 2.1): then Proposition 3.4 yields(

Fh
∨)′ = Fh ; furthermore, Uh =

(
Uh

∗ )⋆
= Fh

⋆
. Applying Proposition 2.2 to the pair

(H,K) = (Uh, Fh) we get Uh
′ =

(
Fh

∨)∗ and Fh
∨ =

(
Uh

′ )⋆ . By Proposition 2.4 (as Fh ∈
QFSHA ⊆ HAw−I

⊗̃ , by Remark 1.3(c)) and by Proposition 2.6 we can apply Proposition

2.2 to the pair (H,K) =
(
Fh

∨, Uh
′ ) , thus getting

(
Uh

′ )∨ =
((
Fh

∨)′)⋆ = Fh
⋆
= Uh . �

Lemma 3.8. Drinfeld’s functors on quantum groups preserve equivalences: if H1 ≡ H2

in QFSHA, resp. in QUEA, then H1
∨ ≡ H2

∨ in QUEA, resp. H1
′ ≡ H2

′ in QFSHA.

Proof. Let H1, H2 ∈ QFSHA be two equivalent quantisations of some F [[g]], and identify
them — as k[[h]]–modules — with H := F [[g]][[h]] , so that the equivalence ϕ : H =
H1 ≡ H2 = H reads ϕ = idH + hϕ+ for some ϕ+ ∈ End k[[h]](H) . By definition,

ϕ+ = (ϕ− idH)
/
h ; therefore, for all n ∈ N, we have

(
ϕ⊗n−idH

⊗n
)/
h =

(
n−1∑
k=0

ϕ⊗k⊗(ϕ−idH)⊗idH
⊗(n−k−1)

)/
h =

n−1∑
k=0

ϕ⊗k⊗ϕ+⊗idH
⊗(n−k−1) .

Now, let J := Ker (ϵH) : since ϕ is a Hopf isomorphism, it maps J into itself, hence also

ϕ+(J) =
(

ϕ−idH

h

)
(J) ⊆ J . Letting mn : H

⊗n→ H be the n–fold multiplication, we have

ϕ+
(
Jn
)
=
(
(ϕ− idH)

/
h
)(
Jn
)
= mn

((
(ϕ⊗n − idH

⊗n)
/
h
)(
J⊗n

))
=

= mn

( n−1∑
k=0

ϕ⊗k ⊗ ϕ+ ⊗ idH
⊗(n−k−1)

(
J⊗n

))
⊆ mn

(
J⊗n

)
= Jn ,

i.e. ϕ+
(
Jn
)
⊆ Jn for all n, so ϕ∨+

(
H∨) ⊆ H∨ , where ϕ∨+ is the extension of ϕ+ to H∨.

Thus ϕ∨ = idH∨ + hϕ∨+ with ϕ∨+ ∈ End k[[h]]
(
H∨) , so ϕ∨ is an equivalence in QUEA.
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Similarly, let H1, H2 ∈ QUEA be two equivalent quantisations of some U(g), and iden-
tify them — as k[[h]]–modules — with H := U(g)[[h]]. Then the equivalence φ : H1 ≡ H2

reads φ = idH + hφ+ for some φ+ ∈ End k[[h]](H) . As above,
(
φ⊗n − idH

⊗n
)/
h =∑n−1

k=0 φ
⊗k⊗φ+⊗ idH

⊗(n−k−1) , so δn ◦φ = φ⊗n ◦δn (for φ is a Hopf isomorphism!), hence

δn ◦ φ+ =
((
φ⊗n − idH

⊗n
)/
h
)
◦ δn =

∑n−1

k=0

(
φ⊗k ⊗ φ+ ⊗ idH

⊗(n−k−1)
)
◦ δn

for all n ∈ N . Therefore

δn
(
φ+(H

′)
)
=

n−1∑
k=0

(
φ⊗k ⊗ φ+ ⊗ idH

⊗(n−k−1)
)(
δn(H

′)
)
⊆

⊆
∑n−1

k=0

(
φ⊗k ⊗ φ+ ⊗ idH

⊗(n−k−1)
)(
hnH⊗n

)
⊆ hnH⊗n

that is δn
(
φ+(H

′)
)
⊆ hnH⊗n for all n ∈ N , so φ+(H

′) ⊆ H ′ ; hence φ′ := φ
∣∣
H′ =

idH′ + hφ+

∣∣
H′ with φ+

∣∣
H′ ∈ End k[[h]]

(
H ′) , so that φ′ is an equivalence in QFSHA. �

Finally, our efforts are rewarded:

Proof of Theorem 1.6. It is enough to collect together the previous results. Proposition
3.2 and 3.6 together with Lemma 2.8 ensure that the functors in the claim are well-defined,
and that relations ~ do hold. Proposition 3.4 and 3.7 show these functors are inverse to
each other. Finally, Lemma 3.8 prove that they preserve equivalence. �

3.9 Generalizations. In this paper we dealt with finite dimensional Lie bialgebras.
What about the infinite dimensional case? Hereafter we sketch a draft of an answer.

Let g be an infinite dimensional Lie bialgebra; then its linear dual g∗ is a Lie bialgebra
only in a topological sense: in fact, the natural Lie cobracket takes values in the ”formal
tensor product” g∗⊗̇g∗ := (g⊗ g)

∗
, which is the completion of g∗ ⊗ g∗ w.r.t. the weak

topology. Note that a vector subspace g× of g∗ is dense in g∗ w.r.t. the weak topology if
and only if the restriction g× g×→ k of the natural evaluation pairing is perfect.

If g is a Lie bialgebra in the strict algebraic sense (i.e. δg ⊆ g⊗g) then U(g) is a co-Poisson
Hopf algebra as usual; if instead g is a Lie bialgebra in the topological sense (i.e. δg ⊆ g⊗̇g)
then U(g) is a topological co-Poisson Hopf algebra, whose co-Poisson bracket takes values
in a suitable completion U(g) ⊗̇U(g) of U(g) ⊗ U(g) . On the other hand, for any Lie
bialgebra g (both algebraic or topological) we can consider two objects to play the role
of F [[g]], namely F

~
[[g]] := U(g)

∗
(the linear dual of U(g) ), endowed with the weak

topology, and F
∞
[[g]], the me–adic completion of F [G] — provided the latter exists! — at

the maximal ideal me of e ∈ G , with the me–adic topology. Both F
~
[[g]] and F

∞
[[g]] are

topological Poisson Hopf algebras (the coproduct taking values in a suitable topological
tensor product), complete w.r.t. to their topology. Moreover, there are natural pairings
of (topological) Hopf algebras between U(g) and F

~
[[g]] and between U(g) and F

∞
[[g]],

compatible with the Poisson and co-Poisson structures. We still have F
~
[[g]] ⊇ F

∞
[[g]] ,

but contrary to the finite dimensional case we may have F
~
[[g]] ̸= F

∞
[[g]] .
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Let HA ⊗̂ , resp. HA ⊗̃ , be defined as in §1.1. In addition, define HA ⊗̄ to be the tensor
category of all (topological) Hopf k[[h]]–algebras H such that: (a) H is complete w.r.t. the
IH–adic topology; (b) the tensor product H1⊗̄H2 is the completion of the algebraic tensor
product H1 ⊗k[[h]] H2 w.r.t. the IH1⊗k[[h]]H2

–adic topology; in particular, the coproduct of

H takes values in H ⊗̄H . Then we call QUEA∧, resp. QFSHA~, resp. QFSHA∞,
the subcategory of HA ⊗̂ , resp. of HA ⊗̃ , resp. of HA ⊗̄ , composed of all objects whose

specialisation at h = 0 is isomorphic to some U(g), resp. some F
~
[[g]], resp. some F

∞
[[g]];

here g is any Lie bialgebra. However, note that if H ∈ QUEA∧ then the Poisson cobracket
δ of its semiclassical limit H0 = U(g) (defined as in Remark 1.3(a)) takes values in
H0⊗H0 , so that H0 is an algebraic (not topological) co-Poisson Hopf algebra hence g is an
algebraic Lie bialgebra; this means that if we start instead from a topological Lie bialgebra
g we cannot quantize U(g) in the category QUEA: what’s wrong is the tensor product ⊗̂
because, roughly, H∨ ⊗̂H∨ is ”too small”! Thus one must define a new category T ⊗̌ with
the same objects than T ⊗̂ but with a ”larger” tensor product ⊗̌ (a suitable completion
of ⊗k[[h]] ) and then consider the tensor category HA ⊗̌ of all (topological) Hopf algebras

in T ⊗̌ , and the subcategory QUEA∨ whose objects have some U(g) as specialisation at
h = 0 : then in this case the Lie bialgebra g might be of topological type as well.

Now let’s have a look back. We review our previous work and, somewhat roughly, point
out how far (and in which way) its results extend to the more generals setting.

Lemma 2.1 : This turns into: Dualisation H 7→ H∗, resp. H 7→ H⋆, defines a con-
travariant functor of tensor categories HA ⊗̂ −−→ HA ⊗̃ , resp. HA ⊗̃ −−→ HA ⊗̂ ,

which, if char (k)=0, restrict to QUEA∧−→ QFSHA~ , resp. QFSHA~−→ QUEA∧ .

Indeed, this suggest to define ⊗̌ in such a way that dualisation H 7→ H∗, resp. H 7→ H⋆,
defines a functor of tensor categories HA ⊗̌ −→ HA ⊗̄ , resp. HA ⊗̄ −→ HA ⊗̌ ; then, if
char (k)=0, this will restrict to QUEA∨−→ QFSHA∞ , resp. QFSHA∞−→ QUEA∨ .

Proposition 2.2 : This still holds true for any pair (H,K) ∈ HA ⊗̂×HA ⊗̃ . Moreover,
it should also holds true for any pair (H,K) ∈ HA ⊗̌×HA ⊗̄ of Hopf algebras in duality.

Lemma 2.3 still holds true up to replacing HAw−I

⊗̃ with HA ⊗̄ .

Proposition 2.4 still holds true but for replacing HAw−I

⊗̃ in part (b) with HA ⊗̄ .

On the other hand, if we consider H∨ for any H ∈ HA ⊗̃ then the sole thing which goes

wrong is that ∆
(
H∨) ̸⊆ H∨ ⊗̂H∨, in general: indeed, ∆

(
H∨) will lie in something larger.

Well, the definition of the category HA ⊗̌ above should fit in this frame to give exactly
H∨ ∈ HA ⊗̌ . Once one has fixed this point, our arguments still prove that H∨ ∈ QUEA∨ ;
thus one has a further version of Proposition 2.4, and similarly a proper version of Lemma
2.3 should hold with HA ⊗̃ , resp. HA ⊗̌ , instead of HA ⊗̄ , resp. HA ⊗̂ .

In any case, we can also drop at all the question of what kind of Hopf algebra H∨ is,
for in any case the proof of Proposition 2.4 will always prove the following:

If H ∈ HA ⊗̃ , then H∨
0 = U(g) for some Lie bialgebra (perhaps of topological type).

Proposition 2.6, Lemma 2.7 : The proofs we give actually show the following:

If H ∈ HA ⊗̂ , then H ′ ∈ QFSHA~. If H1, H2 ∈ HA ⊗̂ , then
(
H1 ⊗̂H2

)′
= H1

′ ⊗̃H2
′ .
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To prove these results we used a duality argument, relying on Lemma 2.1. Alternatively,
given H ∈ HA ⊗̂ or H ∈ HA ⊗̌ we can prove as before that H ′ is a unital k[[h]]–
subalgebra of H, and also that H ′ is complete w.r.t. the IH′–adic topology and is closed
for the antipode; then what one misses to have H ′ ∈ HA ⊗̄ is a control on ∆

(
H ′) .

Moreover, one proves as before that
(
H ′)

0
is commutative.

Lemma 2.8 : The way the action of Drinfeld’s functors on morphisms is defined here
still works for any one of the categories we are considering now.

Sections 3.1 through 3.4 : These results also hold in a greater generality.

Indeed, changing a few details we can adapt the discussion in §3.1 and the (claim and)
proof of Proposition 3.2 and of Proposition 3.4 (noting that Lemma 3.3, which still holds
true untouched) to the case of Fh

∞
[[g]] ∈ QFSHA∞ . The outcome is

If Fh
∞
[[g]] ∈ QFSHA∞ , then Fh

∞
[[g]]

∨ ∈ QUEA∧ , namely Fh
∞
[[g]]

∨
= Uh(g

×)
where g× is an algebraic Lie bialgebra which embeds in g∗ as a dense Lie sub-bialgebra.

Moreover,
(
Fh

∞
[[g]]

∨)′
= Fh

∞
[[g]] .

Similarly, one can apply the same arguments to Fh
~
[[g]] ∈ QFSHA~ and get essentially

the same result but with QUEA∨ instead of QUEA∧. Then again the sole real problem is
to provide a proper definition for the category HA ⊗̌ (or at least QUEA∨) which fit well
with these results. Once this (non-trivial...) point is set, the result would read

If Fh
~
[[g]]∈QFSHA~, then Fh

~
[[g]]

∨ ∈ QUEA∧ , namely Fh
~
[[g]]

∨
= Uh(g

∗), where

g∗ is the dual (topological) Lie bialgebra to g. Moreover,
(
Fh

~
[[g]]

∨)′
= Fh

~
[[g]] .

Sections 3.5 through 3.7 : These again hold in a greater generality.

In this case, the main tool is the use duality functor to switch from QUEA to QFSHA and
the property of Drinfeld’s functors of being dual to each other ensured by Proposition 2.2.
Therefore, our arguments apply verbatim to the case of Uh(g) ∈ QUEA∧. As for Uh(g) ∈
QUEA∨, everything goes true as well the same provided Lemma 2.1 and Proposition 2.2
have been properly extended to deal with QUEA∨ and QFSHA∞, as mentioned above.

Lemma 3.8 : Here again (as for Lemma 2.8) our analysis still works for any one of the
categories we are considering now.

In a nutshell, we can say that, up to some details to be fixed,

The quantum duality principle holds, in a suitable formulation, also for infinite dimen-
sional Lie bialgebras, both algebraic and topological.

3.10 Examples. Several examples about finite dimensional Lie bialgebras can be found
in [Ga2]: there we consider quantum groups ”à la Jimbo-Lusztig”, but one can easily trans-
late all definitions and results into the language ”à la Drinfeld’” we use in the present paper.

We consider now some infinite dimensional samples. Let g be a simple finite dimensional
complex Lie algebra, and ĝ the associated untwisted affine Kac-Moody algebra, with the
well-known Sklyanin-Drinfeld structure of Lie bialgebra; let also ĥ be defined as in [Ga1],

§1.2. Then both ĝ∗ and ĥ are topological Lie bialgebras, with ĥ dense inside ĝ∗.

Consider the quantum groups UM(ĝ) and UM(ĝ) defined in [Ga1], §3.3. We can re-
formulate the definition of the first in Drinfeld’s terms via the usual ”dictionary”: pick
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generators Hi = log
(
Ki

)/
log(qi) instead of the Ki’s, take h = log(q) and fix k[[h]] as

ground ring, and finally complete the resulting algebra w.r.t. the h–adic topology; then

we have exactly UM(ĝ) ∈ HA ⊗̂ and UM(ĝ)
h→0−−−→ U(ĝ) , so Uh(ĝ) := UM(ĝ) ∈ QUEA∧

(discarding the choice of the weight latticeM). On the other hand, doing the same ”trans-
lations” for UM(ĝ) and completing w.r.t. the weak topology or w.r.t. the I–adic topology
we obtain two different objects, in HA ⊗̃ and in HA ⊗̄ respectively, with semiclassical limit

F
~
[[ĝ∗]] and F

∞[[
ĥ
]]

respectively; then we call them Fh
~
[[ĝ∗]] and Fh

∞[[
ĥ
]]

respectively,

with Fh
~
[[ĝ∗]] ∈ QFSHA~ and Fh

∞[[
ĥ
]]

∈ QFSHA∞ . Now, acting as outlined in

[Ga2], §3, one finds Fh
∞[[

ĥ
]]∨

= Uh(ĝ) and Uh(ĝ)
′
= Fh

∞[[
ĥ
]]

, whilst Fh
~
[[ĝ∗]]

∨
instead

is a suitable completion of Uh(ĝ), which should be an object of QUEA∨: indeed, we have

Fh
~
[[ĝ∗]]

∨ h→0−−−→ U
(
ĥ∗
)
, and ĥ∗ is a topological Lie bialgebra in perfect duality with ĝ∗.

Dually, consider the quantum groups UM
(
ĥ
)
and UM

(
ĥ
)
defined in [Ga1], §5; as above

we can rephrase their definition, and then we find the following. First, the formulæ for the

coproduct imply that UM
(
ĥ
)
̸∈ HA ⊗̄ but UM

(
ĥ
)
∈ HA ⊗̃ , and UM

(
ĥ
) h→0−−−→ F

~[[
ĥ∗
]]
,

thus Fh
~[[

ĥ∗
]]

:= UM
(
ĥ
)
∈ QFSHA~ . Second, UM

(
ĥ
)
̸∈ HA ⊗̂ but UM

(
ĥ
)
∈ HA ⊗̌ ,

and UM
(
ĥ
) h→0−−−→ U

(
ĥ
)
, so in fact Uh

(
ĥ
)
:= UM

(
ĥ
)
∈ QUEA∨ . By an analysis like that

in [Ga2] one shows also that Fh
~[[

ĥ∗
]]∨

is an object of QUEA∨, it is a suitable completion

of Uh

(
ĥ
)
, and Fh

~[[
ĥ∗
]]∨ h→0−−−→ U

(
ĝ∗
)
; moreover,

(
Fh

~[[
ĥ∗
]]∨)′

= Fh
~[[

ĥ∗
]]

. On the

other hand, one has Uh

(
ĥ
)′

= Fh
~[[

ĥ∗
]]

∈ QFSHA~, and so
(
Uh

(
ĥ
)′)∨

= Uh

(
ĥ
)
.
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