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ABSTRACT. Let g be an untwisted affine Kac-Moody algebra. The quantum group Uq(g) is
known to be a quasitriangular Hopf algebra (to be precise, a braided Hopf algebra). Here
we prove that its unrestricted specializations at odd roots of 1 are braided too: in particular,
specializing q at 1 we have that the function algebra F[fﬂ of the Poisson proalgebraic group

H dual of G (a Kac-Moody group with Lie algebra g) is braided. This in turn implies also
that the action of the universal R—matrix on the tensor products of pairs of Verma modules
can be specialized at odd roots of 1.

Introduction

”Oh, quant’e affine alla sua genitrice !
Osserva come anch’ella ha belle trecce
ch’ha ereditate dalla sua matrice”

N. Barbecue, ”Scholia”

A Hopf algebra H is called quasitriangular (cf. [Dr], [C-P]) if there exists an invertible
element R € H ® H (or an element of an appropriate completion of H ® H) such that

Ad(R)(A(a)) = A°(a) Vae H
(A ®id)(R) = RizRes,  (id® A)(R) = RizRua
where Ad(R)(z) := R-x-R™', A° is the opposite comultiplication (i. e. A°P(a) =
ooA(a) with o: A%%2 — A®?  a®b+— bRa ), and Ris, Ri3, Ro3 € H®3 (or the appropriate

Completion of H®3), R12 =R X 1, R23 =1 X R, R13 = (O’ X ld)(Rgg) = (ld X O')(R12) .
As a corollary of this definition, R satisfies the Yang-Baxter equation in H®3

Ri2R13R23 = RaogR13Rq2

Keywords: Affine Quantum Groups, R-matrix. 1991 Mathematics Subject Classification: 17B37, 81R50

Typeset by ApS-TEX



2 FABIO GAVARINI

so that a braid group action can be defined on tensor products of H-modules (whence
applications to knot theory arise). If g is an untwisted affine Kac-Moody algebra, the
quantum universal enveloping algebra Uy, (§), over C[[h]], is quasitriangular (cf. [Dr], [C-
P]). On the other hand, this is not true — strictly speaking — for its ” polynomial version”,
the C(q)-algebra U,(g): nonetheless, it is a braided algebra, in the sense of the following

Definition. (c¢f. [Rel], Definition 2) A Hopf algebra H is called braided if there exists
an automorphism R of H ® H (or of an appropriate completion of H ® H ) distinct from
0:a®b— b®a such that

RoA = A
(A@id)oR:ng,oRQ:;o(A@id) , (1d®A)oR:R13 OR120(1d®A)

where ng = R@ld, Rgg = 1d®R, ng = (O’@ld) o (ld@R) o (O’@ld) S Aut(H@H@H) .

It follows from this definition that R satisfies the Yang-Baxter equation in End(H®3):
Ri20R130Ra3 = RogoRizoRi2

which yields a braid group action on tensor powers of H, which is still important for
applications. Notice that if (H, R) is quasitriangular, then (H , Ad(R)) is braided.

In this paper we prove that the unrestricted specializations of U,(g) at odd roots of
1 are braided too: indeed, we show that the braiding automorphism of U,(g) — which
is, roughly speaking, the conjugation by its universal R-matrix — does leave stable the
integer form — of U,(g) — which is to be ”specialized”. This extends to the present case
a result due to Reshetikhin (cf. [Rel]) for the case of the quantum group U, (sl(2)), and
to Reshetikhin (cf. [Re2]) and the author (cf. [Gal]) for U,(g), with g finite dimensional
semisimple. The most general case is developed in [G-H]. As a consequence, we get that
the action of the universal R—matrix of U,(g) on tensor products of pairs of Verma modules
does specialize at odd roots of 1 as well.
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§ 1 Definitions

1.1 The classical data. Let g be a simple finite dimensional Lie algebra over the field
C of complex numbers, and consider the folllowing data.

The set Iy = {1,...,n}, of the vertices of the Dynkin diagram of g (see [Bo|, [Ka] for
the identification between Iy and {1,...,n}); a Cartan subalgebra b of g; the root system
®o( C h*) of g; the set of simple roots {e; | i € Ip}; the Killing form (-|-) of g,

normalized so that short roots have square length 2. For all ¢ € Iy, we set d; := w .
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We denote g the untwisted affine Kac-Moody algebra associated to g, which can be
realized as g = g®c C [t,t_l] ®C-cdC-9, with the Lie bracket given by: [c,z] =0,
0,2 @t = mat™, [z @7,y t°] = [, y|@t" T +6, _s7 (z]y) ¢ (forall z € g, z,y € g,
me€ 7).

For g we consider: I := [(U{0}, I :=IU{oco}, and dy := 1; the (generalized) Cartan
i.jer (after [Kal); the maximal abelian subalgebra h:=h®C-cpC-9 (C

) ; the root system ® = @, U (—®,) (C (heC-co)" CG*), ¢, = O° U D™ being

the set of positive roots, with ®1 = {md | m € Ni} the set of imaginary positive

matrix A = (a;;)

roots and @I the set of real positive roots. Then g splits as g = he (@aeq) @a) , and

dime(§a) =1 Va € £, dime(§a) = #(Lo) =n V a € £87; so we define the set o, of
"positive roots with multiplicity” as &Lr = @’fu%i{n , where E)‘fl = <I>if1 x Iy. We let aq
be the unique element of h* such that (oo, €) = 1, {0, B) = 0, (oo, d) = 0. Furthermore,
we set: Q=) ;2 i, Qoo =) ;cp L-a; C b*: for any = Yzt €Q (2 €L
for all i) we set 3| :=),.; 2. Finally, we define the non-degenerate symmetric bilinear
form on R ®z Qs given by: (oy|a;) :=dia;; (Vi,jel), (as|a;) =100 (Vi€ Ix).

1.2 Some ¢-tools. For all m, n, k, s € N., n < m, we define: (s)q — q;—_11 ’
—q_° k k m (m)q' m R

[S]q . qq_qqil ’ (k)Q' = Hs:l (S)q’ [k]q' = Hs:l [S]q’ (n)q = W’ [n a’
oN (all belonging to Z[q,q~*]). For later use, we define also: ¢q := ¢ 2 for

[m—n] !n] !

all o € ¥, g, 1= q% for all 04:(7“5,2')653}1, G = Qa, = q% forall ieI.

[m] !

Second, we define the symbol (a;q), := Z;S(l —aq®), for n € N, a € C. Now
consider the function of z: (z;¢). = [[,—o(1 — 2¢™) to be thought of as an element
of C(q)[[z]]: if ¢ is a complex number such that |¢| < 1, the infinite product expressing
(2;q),, converges to an analytic function of z in any finite part of C; its Taylor series is

then (z;¢), => o, %z” . Define also exp,(z) :==> " ﬁ z™; then one has

—1

exp,(2) = eqz((l - qz)Z) = ((1 —¢%)z; qz)

The following lemma describes the behavior of (z;q),, for ¢ — €, € a root of 1.

Lemma 1.3. ([Rel], Lemma 3.4.1; [GaJ, Lemma 2.2) Let € be a primitive {-th root of 1,
with £ odd. The asymptotic behavior of the function (of q) (z;q)., for ¢ — € is given by

[o.¢]

(23;q),, = exp (qﬁ;—l Z % . zén) (11— Zg)—1/2 . H (1 _ gkz)k/é ) (1 +(’)(q—6)) O
n=1 k=0
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1.4 The quantum group U,(g). The quantized universal enveloping algebra U,(g)
(cf. e.g. [Dr]) is the unital associative C(g)-algebra with generators F;, K,, E; (i€ I,
I € Qs ) and relations (for all p,v € Qo , 4,5, €1, 1 #j)

K,K, =K, , =K/K, , Ky=1
(mlas) —(plaq) 5 K., — K_g,,
K, E; =q EK,, K.Fi=q FK,, EF,—-FE = T
1—aij 1 1—aij 1
— a; i — a; i
S o[ ] mm =0, [ ] Bt <o

A Hopf algebra structure on U,(g) is defined by (i € I; p € Qoo)

AK,)=K,®K,, S(K,)=K_,, e(K,) =1
A(EZ) = EZ ®1+ Kaq; & Ez y S(EZ) = _Kfoq;Ei s G(EZ) =0

Moreover, U,(g) has a natural Hopf algebra QQ—grading, U,(g) = 69,,€QUQ(§;)17 :

Let Uf, U, U; be the subalgebras of U,(g) respectively generated by { E; |i € I},
{K, |veQx}, {Fi|icl};then Ul and U, are both naturally graded by Q, :=
Sier N-ai(C Q). Finally, let U i= Ut -US = UL - U, Ug = Uy -US = UL - Uy, to
be called quantum Borel (sub)algebras: these are Hopf subalgebras of U,(g).

Remark: In the definition of U,(g) several choices for the ”toral part” U, g are possible,
mainly depending on the choice of any lattice M such that Qo < M < Py, Py being the
weight lattice of g (cf. for instance [B-K]). All what follows holds as well for every such
choice, up to suitably adapting the statements involving the toral part.

1.5 Quantum root vectors. It is known (cf. [Bel], [Be2]) that one can define a total
ordering on <T>+, and accordingly define quantum root vectors: from now on, we assume
a total ordering be fixed and quantum root vectors be defined as in [Ga2], § 2, so that
E, , resp. F,, is the quantum root vector in U;' , resp. in U, , attached to the positive,
resp. negative, root (with multiplicity) «, resp. —a (for any « € EIVDJr ).

1.6 Integer forms. The main interest of quantum groups is to specialize them at
roots of 1: thus we need suitable integer forms of them.

First, let 2R be the set of all roots of 1 (in C) whose order is either 1 or an odd number ¢
with g.c.d.({,n+1) =1 if gis of type A,,, ¢ ¢ 3N, if g is of type Eg or G ; then let A be
the subset of C(q) of rational functions of ¢ with no poles in R. Second, define renormalized
root vectors by En = (¢a —q3') Eay Fo = (431 — qa) Fa, for all a € ®, , and let
U,(g) be the A-subalgebra of U,(g) generated by {Fa, K, E, ! @€y, 1€ Qo } : this

is a @Q-graded Hopf subalgebra (and an A-form) of U,(g) (cf. [B-K]). We define also
US = Uy(§) NUS, UZ == Uy(§) NUZ.
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§ 2 Braiding of quantum enveloping algebras

2.1 More notation. As we said, it is well known (cf. [Dr]) that the quantum algebra
U (g) (defined over the ring C[[h]]) is quasitriangular; this is proved by means of Drinfeld’s
method of the "quantum double”. On the other hand, for the C(q)-algebras U,(g) the
correct statement is that they are braided. To see this, we define a suitable completion of

Uy(8)™*, mamely U,(8)% = { 1% € By @ P F | where By € US, B € UZ,

En € Zlﬁl—n( (g))ﬁ, Fn € 25)=—n (Uq(@))g' It is clear that Uq(@)652 is a completion
of Uy(g )®? as a Hopf algebra.
Define new quantum root vectors F, and F, (a € Q)+) as follows (like in the proof

of Proposition 4.6 in [Ga2]). For all a € ®'¢, set F, := F,,. For all a = (rd,i) € qﬂfl,
consider the matrix

M, = ((oli)o())" [aij]q;)

where o(i) = £1(i € 1) is defined in such a way that o(h)o(k) = —1 whenever ap; < 0:
then det(M,) is an invertible element of A (see [Ga2] for the exact value), so the inverse
matrix M, 1 = (,uij)z. iclo has all its entries in A ; now define

i,5€lo

7‘6 i) = Z :u]zF(ré j) -

j€lo

Similarly we define positive root vectors E, , for all o € Ebr )
Now set exp,, :=exp,_, for a € ¥, and exp, :=exp, for a € <I>ij_n; set also a, :=1

for o € @ and a, := m for a = (rd,i) € 1.

Theorem 2.2. Let R(") be the algebra automorphism of U,(g )®2 defined by

ROK,21):=K,®1, RY919K,) :=12K,
ROE, 1) =E0K_,, ROUQE):=K_, ®FE;
ROFel)=FoK,, RY0eF) =K, ®F

(i€l, n€Qu)andlet RY € U,(g )®2 be defined as the ordered product

RW .= H exp,, (aa (qof1 — qa)Ea ® Fa> = H exp,, (aa (qofl — qa)Ea ® Fa>

OCGE’+ a€<19+

Then (Uq(@), Ad(R(l)) oR(O)> is a braided Hopf algebra (with RV as R-matriz, in the
sense of [Rel], Definition 3).
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Proof. This is essentially proved in [Da2]: to get exactly the present claim, one just has to
take into account the following. The formula for the R—matrix given in [Da2] is obtained by
computing bases (of PBW type), in quantum Borel subalgebras of opposite sign, which are
orthogonal to each other with respect to a certain perfect Hopf pairing: Lemma 2.4 in [Ga2]
extends the result of [Da2| to other possible bases, specifying which choices of quantum
root vectors are ”admissible”, i.e. are such that starting from them the construction in
[Da2] still works and gives similar orthogonal bases; finally, the remarks in the proof of
Proposition 4.6 in [Ga2] show that both the choice of quantum root vectors Ejs and F,

(8,7 € ®,) and the choice of Eg and F, (8,7 € &) are admissible (in the previous
sense). [

2.3 The braiding structure at roots of 1. Our goal now is to show that U,(g) is
braided: to be precise, we could say that the braiding structure of U,(g) gives by restriction
a braiding structure for U,(g). To begin with, we define a suitable completion of U, (g)®?
(mimicking §2.1), namely

Uy (8)2 = { Y En-ProP-F, }
n=0
- < >
where P, e Us, PF e Uz, &, € Z\m—n( (0 ))6’ Fn € ZIBI——TL( ) . Tt is clear

Uy (8
that U, (g )‘X’2 is a completion of U, (§)®? as Hopf algebra, and that U, (g )® C U,(g )®2 via
the natural embedding U, (g )‘—>U (g).

Moreover, for all a € Ehr we define F,, := (qa—qgl)Fa, Ea = (qa—qgl)E’a € U, (9) -

For any ¢ € R, we call U.(g) the specialization of U,(g) at ¢ = ¢, that is

Ue(8) = Uy(8) / (0 — &) Uy (@)

Theorem 2.4. The restriction of R(®) (cf. Theorem 2.2) to Z/{q(g)@2 is given by
ROK, o) =K, o1, RO1eK,)=18K,
ROE, @1)=E,®K_o, RO1@E,) =K_o® E,
ROF, @) =Fy oK., RO(1®FE,)=K,®F,

(B € Quo, a € &)Jr) thusAR(O) restricts to an algebra automorphism R of L{q(ﬁ)®2.
Moreover, let RV € U,(g)®? be given (as in Theorem 2.2) by

RW = ] exp, (aa (o' = o) Ea® Fa) =[] exp. (aa(qa_l — o) EBa ® Fa) :
a€$+ a€$+

Then the adjoint action by R leaves L{ (@)A stable; thus Ad (R(l)) restricts to an

automorphism RM of U, (g ) , and (Uy (8 — with R :=RM RO — is a braided
Hopf algebra.
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Proof. The first part of the statement is trivial, and the third is a direct consequence of
the first, the second, and Theorem 2.2. To prove that Ad (R(l)) stabilizes U, (g)®?, we
apply an idea of Reshetikhin.

We look at the different factors R/ (for a € o, ) in the product defining R") . Notice
that Uq(ﬁ)(}%2 has a natural ” Q—pseudograding”, extending that of Uq(@)®2 : so we can look
at the homogeneous summands of R(Y), and then we find that each of them is given by the
product of finitely many factors R(,i) . Therefore, to prove the claim we have only to show
that the adjoint action by every factor RW leaves U, (@)®2 stable.

For a real root « € ®¢, the factor Rg) is of type

-1

R(o%) = €XPy (aa (Qa_l - Qa)Eoz & Fa) = €XDPyq,, <(qq_1 - Qa) Ea & Fa) .

Using the identity in §1.2 this reads

Now apply Lemma 1.3: it gives

—1 1
RW — .

o (BLo ).
(1 -ELeF) T T (=t Ba o Fa)
k=0

K/t +0O(q—¢)

00 1
n=1 n2

contains the factor (1— Ef ® F‘ﬁ)_l/Q T (1-¢k Ef @ F!
(and is trivial if £ = 1, thatis € = 1), but also the factor exp (qﬁ;_li %) (eda Evf; ® Fﬁ)),
which has a pole at ¢ =¢.

Here we can act as in the proof of the finite case (cf. [Gal], Proposition 4.2). Recall
that Ad(exp(z)) = exp (ad(z)) , where (ad(z))(y) := [z,y] = y — yz. Moreover, it is
known (see [B-K], §2, or [Dal], §3) that the images of EY and of 'Y belong to the centre
of the specialized algebra U. (g) = Uq(@)/(q — &)U, (§) ; therefore EY, @ F! belong to the
centre of U, (g) ® Ue (@) . This implies that

z™ . Thus Rg) — modulo a ”tail” vanishing at ¢ = ¢ —
)k/e

where we set ¢(z) 1= >

, which is ”harmless”

[Eg@ﬁ’o{,y(@z} € (q—a)-Z/lE(ﬁ) ®L{E(§;)

hence
(g—e) ' [BLo Fly® 2] cU-(3) @U(d)

and this clearly implies Ad (Rg)) <Uq(@)®2> C Z/{q(@)(§>2 , q.e.d.
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Now consider the factor R(o}) associated to any imaginary root « = (rd,i) € &ﬂf‘ by
definition,

. — 1 . :
R((i) = exp,, (aa o ' —qa)Ea ® Fa) = exp r E,.®F,].
( ) [T]q[di]q (Qa_l - Qa)

In this case, we have to distinguish the cases £ >1 and £=1.

If £>1,when ¢ /r the coefficient of E, ® F, in the right-hand-side expression above
is regular at ¢ = ¢, thus no problem arises. On the other hand, if E‘r that coefficient has
a pole (in the factor [r]q_l) at ¢ = ¢; but then (see again [B-K], §2, and [Dal], §3) the
root vectors E, and P o are again central modulo (¢ —¢), and we can conclude as in the

case of real roots. 5 ) 1
If ¢ =1, the coefficient of E,® F, has a pole at ¢ =1 (in the factor (ch_l - q@)_ )-

Now, from [B-K], §3, we know that U;(g) := Uq(@)/(q —1)U,(g) is commutative, so we

can apply once more the same argument than before to get that Ad (R(i)) (Z/{q (ﬁ)®2) C
U, (). O

Let G be a connected Kac- Moody group with Lie algebra g, and let H be the Poisson
proalgebraic group dual of G (in the sense of [B-K]): so G is a Poisson proalgebraic group
whose tangent Lie bialgebra is g*. We denote by F [ﬁ } the Poisson Hopf algebra of
(algebraic) regular functions on H.

Corollary 2.5. ~

(a) For any € € R, let R. be the algebra automorphism of U. (ﬁ)®2 given by special-
ization of R at q =¢. Then (U-(§), Re) is a braided Hopf algebra.

(b) The algebra F[I/-\[} is braided, by a braiding automorphism which is one of Poisson
algebra.

Proof. Claim (a) is a direct consequence of Theorem 2.4. As for claim (b), first we recall
— from [B-K], §4 — that there exists a Poisson Hopf algebra isomorphism

~

Uy (§) = F[H]

thus the first part of claim (b) is nothing but a special case of (a).
In addition, the Poisson bracket on U;(g) is defined, as usual, by

{z,y} = 1

(%)

q=1

sy =1 ; of course
q=1 q=1

for all z,y € Ui(g), with 2/,y" € U,(g) such that z = 2’

a like formula defines the Poisson bracket on the completion U (@)®2. Now, since R is
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an algebra automorphism (of U, (§)®?) its specialization R, automatically preserves the
Poisson bracket (%), i.e. it is a Poisson algebra automorphism, q.e.d. O

Remark: The results in Theorem 2.4 and Corollary 2.5 was first proved for the finite
dimensional case of the Lie algebra s[(2) in [Rel]; the case of any finite dimensional
semisimple Lie algebra was developed (and solved) in [Re2] and in [Gal]. The (affine)
case of § = sl(2) has been done in [H-S]. The most general situation, dealing with any
quasitriangular Lie bialgebra — giving rise to a quantized universal enveloping algebra
which is quasitriangular as a Hopf algebra — is treated in [G-H].

2.6 The geometry of the R—matrix action: comparison with the finite case.
In [Gal], §4, the geometrical meaning of the braiding of quantum groups of finite type
at roots of 1 is explained. The main points are Theorems 4.4-5, where one shows that
the braiding automorphism R; (in the present notation) is more than a formal object —
defined on some completion made of formal series — for it maps rational functions (on
the dual Poisson group times itself) onto rational functions: hence it defines a birational
automorphism of the square of this dual group (as a complex variety), which enjoys nice
properties. The key step in the proof of such a result exploits the fact that the Hamiltonian
vector fields associated to the functions E, and F,, for all positive roots o (real, since
we are in the finite case), are integrable (we consider root vectors E., F,at ¢g=1 as
holomorphic functions on the dual Poisson group H 2 Spec(U:(g)) ).

In the affine case, the situation is in part similar: one can treat the factors of the
R—matrix associated to real positive roots exactly as in the finite case (compare the first
part of the proof of Theorem 2.4 above with the proof of Proposition 3.7 in [Gal]), and
everything works (as in the proof of Proposition 4.2 in [Gal]) because the Hamiltonian
vector fields which occur — associated to real root vectors — are again integrable; but
in the case of imaginary positive roots one has to deal with Hamiltonian vector fields —
associated to E, and F,, for imaginary o — which are not integrable.

So in the affine case the most one gets is that the braiding defines an automorphism
(with “nice” properties) of the dual formal Poisson group associated to H x H. This

last result extends, via a different approach, to the general case of any quasitriangular Lie
bialgebra: see [G-H].

2.7 The R—matrix action on Verma modules. For any commutative unital ring
A, denote by A* the group of invertible elements of A. Given A = (X\;),c; € (C(q)*)nJr2 ,
let V() be the Verma module (for U,(g)) of highest weight A\. We recall that it is defined

as follows: define on the line C(g) - vx a structure of Uz -module by
Eivy:=0, Kjuvy:=Ajuy Viel,jely;

then V,(\) is by definition the U,(g)-module induced by C(q).vy; in particular, it is a free

U, —module of rank 1, hence it is @ —graded: V,(\) = ©yeq. (Vq()\))n, with K;.v =

Nig— (@il oy for all i€ I, ve (Vq(A))n, neEQR,.
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Now assume A = (X\i);c; € (A*)n+2: then V,(\) is also an U,(g)-module, and

Vi(A) := Uy (§).vx is an Uy (g)-module. It is also clear that V,()) is a free U, ~module of
rank 1, and it is of course @)+ —graded as well.
For any ¢ € !, we denote V. () the specialization of V,(\) at ¢ = ¢, i.e.

V.()) = Vq()\)/(q — )V, (N).

Consider on the Cartan subalgebra b the Killing form — which is dual of the form ( | )
on h* defined in §1.1 — and let T be its canonical element: i.e., T = Ziefoo u; ® w; where

{ui};er and {w;},c;  are basis of b dual of each other with respect to the Killing form.

Let A\, p € (.A*)n+2 : for simplicity, we assume A and p to be of the form

A= (qli)iefoo ’ = (qmi)iefoo

for some integers l;, m; (i € I), and we set [ := > liw;, m:= Zieloo m;w; , where

i€l
{wi}ser. 1sabasis of h* dual of {a;},c;  with respect to the Killing form (i.e. (c;fw;) =

dij Vi,j € Io). We define a linear operator

TV, @V, (1) — Vy(\) @ V(1)

by ¢TI0 @v") = gm0 gy e (V) 0" € (VW)

n £

For any pair of Verma modules V,(\) and V,(u), the algebra U, (g])@2 acts on Vg (\) ®
V() « in fact since V() is highest weight, it is clear that only finitely many summands in
the expansion of any element of Uq(ﬁg)‘g’2 act non-trivially; similarly, the algebra U, (@)@2
acts on V,(\) ® V, (1) . As a consequence, R(Y) acts as a well-defined operator on V,(\) ®

Va(p)
We call universal R-matriz of U,(g) the formal element

R:=RW .4 T = H exp,, <aa (qof1 — qa)Ea ® Fa> g T =
056;13+
= ][ exp. (aa (40" = o) Ba ® Fa) T
aethr
this is a universal R-matrix for U,(g) in the sense of [Da2].

Remark: notice that, if we deal with the quantum group U}, (g) over the ring C[[h]], the
R-matrix takes the simpler form

R .= H exp,, (aa ( exp %l — expde )Ea ® Fa> -exp(—hT)
Oéezi)+
which is an element of the topological (h—adically complete) tensor product Uy (§) @ Uy (g).

For any pair of Verma modules V,(\) and V,(u), the R-matrix acts as a well-defined
operator on V,(\) ® V,(p). Our previous results tell us that this action can be specialized
at roots of 1.
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Theorem 2.8. The action of the universal R-matriz on Vi () ® V,(u) restricts to an
action on Vy(A) @V, (1) , hence it specializes to an action on V.(A\)@V:(p) for any € € R.

Proof. The second part of the claim is a direct consequence of the first.
Since V4(A) = Uy(g).va and Vy(p) = Uy(g).v,, , we just need to look at elements such
as R(x.vy ®y.v,) with x, y € U,(g) . We have

R(x.vy®y.uv,) = R((a: ®y).(vx ® Uu)) =
= (Riz®y)R™") R(vx®v,) =Ad(R)(z ®y).(R.(vy ®v,))

where R™! denotes a formal inverse to R, (which induces the inverse operator on tensor
product of Vermas modules). Now, definitions are given in such a way that Ad(R) coin-
cides with the braiding automorphism Ad (R)) o R of U,(g) (cf. Theorem 2.2, and the
Remark above): then by Theorem 2.4 we get that Ad(R)(z®y) € Uy(§) , so we only need
to show that R.(vy®v,) € V,(A\) @V, (1) . Tt is clear that ¢~ 7 (vy®@wv,) = ¢I™ vy @0, €
Vy(A) @ Vg (1) . Moreover, from E;.vy = 0 for all ¢ € I we have also E,.vy = 0 for all

o € &, : then by definition of R we have RW.(vy ®v,) = vy ® v, in V() @ V, (1),
hence also in V() @ Vy(n), q.e.d. O

Remarks 2.9: (a) As it is clear from the proof, the previous result holds as well for
lowest weight modules, and even for pair of modules in which only the first one is highest
weight or the second is lowest weight.

(b) The analogues of Theorem 2.4 and Corollary 2.5 also hold for finite type quantum
groups (cf. [Gal], §§3-4): therefore Theorem 2.8 holds as well in the finite case (with the
same proof). In the case of g = sl(2), such a result is complementary to another one —
due to Date et al., cf. [D-J-M-M] and [C-P], Proposition 11.1.17 — which concern cyclic
(or periodic) representations.
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