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QUANTUM FUNCTION ALGEBRAS AS
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ABSTRACT. Inspired by a result in [Ga], we locate three integer forms of Fy[SL(n + 1)] over
k [q, q_l] , with a presentation by generators and relations, which for ¢ = 1 specialize to U(f)),
where b is the Lie bialgebra of the Poisson Lie group dual to SL(n + 1). In sight of this we
prove two PBW-like theorems for F,[SL(n + 1)], both related to the classical PBW theorem
for U(h).

Introduction

”Nel mezzo a una q—algebra di funzioni
10 ¢t ritrovo una tal forma intera
che Ualgebra di Lie dual mi doni”

N. Barbecue, ”Scholia”

Let G be a connected, simply connected, semisimple algebraic group over an alge-
braically closed field k of characteristic zero, and consider on it the Sklyanin-Drinfel’d
structure of Poisson group (cf. for instance [DP] §11 or [Ga] §1, or even [Dr]); then
g := Lie(G) is a Lie bialgebra, F[G] is a Poisson Hopf algebra, and U(g) is a Poisson
Hopf coalgebra. Let H be the corresponding dual Poisson (algebraic) group of G, whose
tangent Lie bialgebra b := Lie(H) is the (linear) dual of g: then again F[H] is a Poisson
Hopf algebra, and U(h) is a Poisson Hopf coalgebra.

The quantum group Ug(g) of Drinfel’d and Jimbo provides a quantization of U(g):
namely, UZ(g) is a Hopf algebra over k(q) which has a k[g, ¢~ ']—form 4°(g) which for
g — 1 specializes to U(g) as a Poisson Hopf coalgebra. Dually, by means of a Peter-Weyl
type axiomatic trick one constructs a Hopf algebra F[G] of matrix coefficients of U (g)
with a k[q,qil]—form §”|G] which specializes to F[G], as a Poisson Hopf algebra, for
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q — 1. So far the quantization only dealt with the Poisson group G; the dual group H
is involved defining a different k[q, ¢~ *]-form ¢”(g) (of a quantum group U, + (g)) which
specializes to F[H] (as a Poisson Hopf algebra) for ¢ — 1 (cf. [DP] or [DKP]). In a dual
fashion, it is proved in [Ga] — in a wider context — that the dual (in the Hopf sense)
quantum function algebra F?[G] has a k[q,q_l}—integer form F?[G] which for ¢ — 1
specializes to U(h), as a Poisson Hopf coalgebra. Therefore quantum function algebras can
also be thought of as quantum enveloping algebras, whence the title of the paper.

In this paper we stick to the case of the group G = SL(n + 1).

Our first goal is to relate the latter result above with the well-known presentation of
F7[SL(n+1)] by generators and relations (cf. [FRT]): namely, inspired by the definition of
F?[G] and FT[G], we define two k|[q, ¢ ']-integer forms ﬁqQ [SL(n+1)] and ﬁqp [SL(n+1)]
(along with a third one, ﬁq [SL(n + 1)]) of F/[SL(n + 1)]; these inherit a presentation
by generators and relations, which enables us to prove that they specialize to U(h) (as a
Poisson Hopf coalgebra) for ¢ — 1. As a second step, since for U(h) one has the Poincaré-
Birkhof-Witt (PBW in short) theorem which provides "monomial” basis, because of the
previous result we are led to look for PBW-like theorems for F,’[SL(n + 1)]: we provide
two of them, both closely related with the classical PBW theorem for U (h).

The paper is organized as follows. Sections 1, 2 are introductory. Sections 3, 4 are
devoted to integer forms of F,”[SL(n+1)] and their specialization. Section 5 is an excursus,
where we explain the relation among the constructions and results in this paper and those
in [Ga]: this is one of the main motivation of this work; on the other hand, this section
can be skipped without affecting the comprehension of the rest of the paper, which is
completely self-contained. In section 6 we briefly outline the extension of the previous
results to the quantum function algebra F,,[GL(n+ 1)]. Finally, section 7 deals with PBW
theorems.

§ 1 The universal enveloping algebra U(h)

A presentation of U(h) by generators and relations (in the general case) can be found
in [Gal, §1. When G = SL(n + 1), it reads as follows.

U(h) is the associative k—algebra with 1 generated by fy,...,f,, h1,...,h,, e1,... e,
(which are to be thought of as ”Chevalley generators”) with relations

h;h; —hjh; =0 Vi, j

hif; — fh; = (26,5 — 6i—1,j — 0iv1,5) £ Vi, j
hie; —ejh; = (2 0ij — 0i—1,j — 5i+17]~) e Vi,j
£, — £, =0 Vij:li—j>1

eie; —eje; =0 Vi j:li—jl>1

£2f, — 2£,£,8 + £;,£7 = 0 Vii—jl=1

efej —2eeje; +ejel =0 Vi]i—jl=1

fiej — ejfi =0 v Za.]



QUANTUM FUNCTION ALGEBRAS AS QUANTUM ENVELOPING ALGEBRAS 3

Furthermore U(h) has a Poisson Hopf coalgebra structure given by
Ale)) =e; @1+ 1®e;, S(e;) = —e;, e(e;) =0

forall z=1,...,n, and by

n+1
o(f;)) =hy Afi+2- (me,] Nejit > eipry A, Z)

=142
n+1 n+1
(Z fij Neji+ Z eij N Z fit1,5 Nejipr — Z €Ci+1,5 N\ fj,i+1)
j=t+1 J=i+2
n+1
6(ei):eiAhZ-—|—2~<Zeﬂ+1/\f”+ Zfﬂﬂ/\e”)
Jj=i+2

forall ¢ =1,...,n, where 2 Ay =2 ®y —y®z and the symbols f} 1, enr, have the
following meaning;:

€ii+1 1= €, €ij = —[€ij—1,€j—1,4] = [€j—1,j.€ij—1] Vi<j—1 (1.1)
G =54, fao=laatal=-Gnhad  Yi>itld .
the symbol [, | denoting the usual commutator. In fact, if M, ; (4,5 € {1,2,...,n+1})

denotes the square matrix of size n + 1 with a 1 as (4,7)-th entry and all other entries
equal to 0, the recipe e, — My 1 Vh =1,...,n (resp. f, = Mpp1p,Vh =1,...,n)
gives an isomorphism among the Lie subalgebra of h generated by the ep’s (resp. f,’s) and
the Lie algebra n (resp. ny ) of upper (resp. lower) triangular square matrix of size n + 1;
k—h—1 -
1) My, i, and it is the
root vector e, — in the notation of [Ga] — associated to the positive root v = Zf:_}} Q;
(the a;’s being the simple roots of SL(n + 1)), and for A > k the element f}, j corresponds

to the matrix (—1)k_h_1Mh,k , and it is the root vector f, — in the notation of [Ga] —
associated to the negative root —y = — Zi:kl «; , hence corresponding to M}, . Actually,
one can also make different choices for such root vectors, but for the condition that when
one of them — say e, — is multiplied by a scalar ¢ € k\ {0} then the opposite one —
f, in our case — is multiplied by the inverse scalar ¢~!; hence the right-hand-side part in

the above formulae expressing  does not change.

then for h < k the element ey, j, corresponds to the matrix (—

§ 2 The quantum function algebra F[SL(n + 1)]

Let U? (5l (n+ 1)) be the quantized universal enveloping algebra of Drifel’d and Jimbo
(cf. [Ji] or [DL], or §5.2 later on). Let F'[SL(n+1)] be its restricted dual Hopf algebra: it
is known (cf. [APW], Appendix) that F[SL(n + 1)] has the following presentation: it is
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the unital associative k(q)-algebra generated by {p;; |i,j =1,... ,n+ 1} with relations
PijPik = q PikPij » PikPhk = q PhkPik Vj<k,i<h
pipik = pjkpi s Pikpil — Pipik = (a—q" ") pupik Vi<j k<l

dety(piy) = 1
where det, denotes the so-called quantum determinant, defined as

(o
detQ(pij) = Z (—q) ( ),01,0(1)02,0—(2) " Pntl,0(n+1) -

oESh+1

The comultiplication A, the counit €, and the antipode S are given by

Alpij) = pir @ prj Vij=1,...,n+1
k=1
€(pij) = dij Vij=1,...,n+1
S(piz) = (—q)""detq <(phk)i§§-) Vij=1,...,n+1.

§ 3 The integer forms ﬁf [SL(n +1)] and ﬁ;[SL(n +1)]

Definition 3.1. We define ﬁf [SL(n + 1)] to be the k[g, ¢ ']-subalgebra (with 1) of
F7[SL(n + 1)] generated by the elements
Pii — Pi+1,i+1 8;;—1

pi = p— ,org=(a—a7) iy Vi, j=1,...,n+1

3.2 Presentation of ﬁq@ [SL(n+1)]. The presentation of F[SL(n+1)] above induces

a similar presentation of F, 2[SL(n+1)]: it is the associative k[q, ¢~!]-algebra with 1 given
by generators ¢;, r;;, and relations
TijTik = qTikTij » TikThk = qThkTik Vj<k,zi<h
Tk = TikTil rakTie — Tk = (q — q_l)lwiﬁéﬂi(sﬂiéﬁ Tark Vi<j k<l
det,(ri;) = 1

(where c?e/tq is defined as

.....

ocESN
where e(o) := 27]:\7:1(1 — 0t o(t))
(= 1) @i =T — Tit1,i41 Vi=1,...,n
©irjk — Tikpi = 0 Vi<ik>i+1,Vj>i+1,k<i

5; 1245, o .
@itk — Tjkpi = (¢ — 1)1+ " (1 +q 1) P (rig1 kT ie1 — TikT i) Vi<ik<i
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. 1\ 249, . .
wiTik — ik = —(q — 1) " (L4+q ") (riwaprjisr —maeryi)  Vij>i+1lk>i+1

—1\2 . .
@irji — i = =it + (@ — 1)1+ ¢7 ) i1, Vij<i
iTji — TjitPi = TjiTii Vji>i+1
OiTjitl = Tjit1Pi = Tit1i4175,i4+1 Vj<i
—1\2 . .
PiTjiv1 = Tjig1Pi = —Tjip1Tivtivt + (@ = 1)1+ ¢ ) ripary Vj<i
—1\2 . .
pirij — rijei = —ruri; + (= 1) (1 +¢7") riaariv Vj<i
PiTij — TijPi = TijTii Vi>i+1
PiTit1,j = Tit1,jPi = Tit1it1Ti+1,5 Vj<i
—1\2 . .
PiTit1,j = Tit1,jPi = — Tigl,jTit1i+1 + (¢ — 1)(1 +4q ) TigTi41,i Vi>i+1
2 —1\3 .
irii— i = (= 1) (1+ ¢ ") rig1,iriita Vi
2 —1)3 .
@iTit+1,i4+1— Tit1,i4+1P7 = (q - 1) (1 +q ) Tit1,474i4+1 Vi
PiTii+1 = Tii+1Pi = Tiit1Tii T Vi 1,410,041 Vi
QiTit1,i = Tit1,iPi = Tit1,4Ti T Vit 1,i+1Ti41,3 Vi

PYiP; — Pi¥Pi =

_1\3 ..
= (q=1)(1+q7 ") (rirji + rig1 1 1im1 — Tiga1Tiets — (L=0i41 5) Tig1 jrsi1) Vi, J

Moreover, from the very definitions we also get that ﬁqQ [SL(n+1)] is a Hopf subalgebra
of F7[SL(n + 1)], with Hopf structure uniquely determined by the following formulae:

n+1
A(Tij) =74 X Tij + Tij X Tj5 + (q — 1) (1 -+ q_l) Z Tik @ Tk Vi 7&]
ki
5 n+1
A(ry) =ri @1+ (g — 1)*(1+¢77) Zh‘k@)%j Vi
7
) n+1 n+1
A(‘Pz) =100+ Q11 00 T (C] - 1)(1 + qil) Zri,k R Ty — Z Tiv1e O Thivy V1
i Fatetl
J—i3 k#i ..
S(rij) = (—q)" "detq ((Thk)h?gj) Vi, j
5(%’) = —T1172,2 " " Ti—1,i—1PiTi+2,i+2 """ Tnt+ln+1T
( ) n+1 n+1
l —1 — elo .
+ Y (" @-1) T 147 II e = T 700 Vi
o€Sn\{1} it iz

e(rij) = dij e(pi) =0 Vi, j
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Remark 3.3. It is clear by definition that ﬁqQ [SL(n+1)]is a k[g,q']-integer form of
FF[SL(n+1)]: in other words, it is a Hopf k[q, q_l}—subalg;ebra of F,7[SL(n+1)] which is
flat as a k[g, ¢~ ']-module and is such that k(q) @y [q,q-1] F2[SL(n+1)] = FF[SL(n+1)]
as Hopf k(q)—algebras.

Definition 3.4. We define ﬁqp [SL(n + 1)] to be the k[g,¢']-subalgebra (with 1) of
F7[SL(n + 1)] generated by the elements

11p22 Pii — 1 _1\Gii—1 .
Wy o= L pq_l ; rij = (q—q ") Pij Vi,j=1,...,n+1
3.5 Presentation of ﬁ;’ [SL(n+1)]. The presentation of F;[SL(n+1)] above induces a

similar presentation of F, s [SL(n+1)]: in fact the latter is the associative k [q, q_l}falgebra
with 1 given by generators 1);, r;;, and relations

TijTik = qTikTij TikThk = 4 ThkTik Vi<k,i<h

Tiarik = TikTil rakTie — Tk = (q — q*l)lJréwéﬂ_5“_%c rarik  Vi<j, k<l
dety(rij) = 1

(= 1)ty =riarag-- 1y — 1 Vi=1,...,n+1

IR o . 1\ 245

i
. Z (TI(Z,j, ]{7) - C(Z,], k)>r11 o Ts—1,5—1TskTjsTs+1,s+1 " " Tii Viajv k
s=1

(where 0(i,j, k) =1Vj<i<kor k<i<yj, nijk)=1Vi<jAk, ((i,j,k):=1
Vi>jVk, whilst 6(i,7,k), n(i,7,k) and ((4,7, k) are zero in the other cases)

Ypp1 = — Z (—q)" (g — 1)t (1+ q_l)E(G)rl,a(l)TZ,a(Z) S Trdg o (nl)

0€ESn41
o#id

— -1)3
Vi — i = (g—1)(1+q7)
: § E TiiTos T k—1"T11T22 " " To1 61T sk ks Tstr1,541 """ Tii That, k1T ht2,642 " " ° Ty Vi <j
k=it1s=1

Furthermore, from the very definitions we also get that F, s [SL(n+1)] is a Hopf subalge-
bra of F[SL(n+1)], with Hopf structure uniquely determined by the following formulae:

n+1
A(rij) =154 @rij + 15 @155 + (¢ — 1) 1+q ka@)’r’kj Vi#j
k;éz]
n—|—1
A(Tz‘z‘):ﬁi®7“z‘i+(q—1 1+q1 Zﬁk®?“kg Vi

k;éz
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%
Arpy) = (1 + q_l) Z(q - q_l)Q'N(S)il H Thysk) DT sy T Wi @T11To 0 1 + 1R, Vi
s k=1

(where s ranges over all maps s:{1,2,...,i} — {1,2,...,n+ 1} such that s(j) # j for
some j € {1,2,...,i}, and N(s) := Z;Zl (1=0;5)))

S(rij) = (—q)"~det, ((m)ﬁi?) Vi, j
S(hi) = =i + O(g — 1) Vi
e(riz) = dij, e(i) =0 Vi, j

where O(q — 1) denotes some element of (g — 1) fqp [SL(n+ 1)]. To give an example, we
show that S(v;) = —¢; + O(¢ — 1). By definition we have

S(@Di):S(rllrm"'r”_l) _ S (ri)--+S(ra2)S(r11) —1 .

q—1 o |
but
S (rj;) = det, ((?“hk)h,k;éj> -

n+1
=T11Tr22 T 1,j—1 " Tj+1,4+1 " Tntlnt1 + O ((q — 1)2> = H rss + O ((q — 1)2>

s=1
s#J

for all 7, and
1 =dety (rhg) = r11r22- - Tntin+1 + O ((q - 1)2>

therefore
n+1 n+1 n+1 n+1 n+1 g
[0 v T re T e T e = (I1E )

S(i) = —FH——F= P +0(g—1) ;

now using the fact that rppree = rexrnn + O ((q — 1)3) we get

n+1 n+1 n+1 n+1 1 i r
— T2 - - - T
S(wi):H"ass' Hrss"'Hrss'Hrss' 1 ZZ‘f’O(q—l)
s=1 s=1 s=1 s=1 g
s#£1 s#i—1 s#£2 s#1

and finally, since r;; = 14+ O (g —1) (as one easily gets from relations (¢ — 1) =
r117r22 - Tss — 1), we find

L —riargg -1y

p— +0(q—1)=—v;+0(q—-1), qed.

S(th) =




8 FABIO GAVARINI

Remark 3.6. Here again, it is clear — by definition and by the description of the
Hopf structure — that F7[SL(n+ 1)] is a k[q, ¢~ ']-integer form of F'[SL(n + 1)].

Definition 3.7. We define F,[SL(n + 1)] to be the k[q,q']-subalgebra (with 1) of
F7[SL(n + 1)] generated by the elements

pii — 1
qg—1

NG .
Xi 1= : rijgi=(a—q ') py Vi,j=1,...,n+1.

3.8 Presentation of ﬁq [SL(n+1)]. Again, we have a presentation of ﬁq [SL(n+ 1)]:
it is the associative k[q, qil]—algebra with 1 given by generators x;, r;;, and relations

TijTik = qTikTij » TikThk = 4 ThkTik Vi<kyii<h

Tarik = TikTil rakTin — Tk = (q — q_l)lwiﬁgﬂiéuiéﬁ rarjge Vi< gk <l
dety(ri;) =1

(q—1)xi =715 —1 Vi=1,...,n+1

XiTjk — TjkXi = 0 Vi<i<k,Vj>i>k

XiTji = VjiXi = —Tiilji Vi <i

XiTji — TjiXi = +TiiTji Vj>i

XiTii — TiiXi =0 Vi

XiTik — TikXi = —TiiTik Vk <1

XiTik — TikXi = +TiTik Vk>1

Xirjn — riexi = —(q — 1)*(1 + q_l)srz‘mk Vi k<i

Xirik — ripxi = +(g — (14 ¢7) rara Vi k>i

Xix; — xixi = (1= 6;) - (g = 1) (1+ ¢ ) rirji Vi<

n+1
E r1,172,2 " Ti—1,i—1Xs =

- Z (—9)") (¢ - 1)8(0)_1 (1+ qfl)e(a)ﬁ,a(nrz,a(z) “ o Tndlo(nt1)
o€Sn41\{1}

A straightforward verification shows that ﬁq [SL(n + 1)] is also a Hopf subalgebra of
FJ[SL(n+ 1)], whose Hopf structure is given by formulae

n+1
A(rij) =15 @rij + 15 @155 + (¢ — 1) 1+q ka@)’r’kj Vi#j
k;éz]
n—|—1
A(Tz‘z‘):ﬁi®7“z‘i+(q—1 1+q1 Zﬁk(@?“kg Vi

k;éz
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n+1
oo
S(ri) = (=)’ det, (ra) 7)) Vi, j
S(Xi) = —=T1,172,2 Ti—1,i—1XiTi+2,i+2 " Tn4+1,n+11
n+1
(o e(o)—1 —1\¢e(0)
+ Y "= 1+ ) T e
oeS,\{1} J=1
J#1
o(j)#i
n+1
o€Sn+1\{1} J=1
e(rij) = i, e(xi) =0 Vi, j.

Remark 3.9. By definition and by the description of its Hopf structure we see at once
that F,[SL(n+1)] is a k[q,q ! ]-integer form of F/[SL(n + 1)].

§ 4 The main theorem: specialization results

Since the integer forms we are dealing with are Hopf algebras over the ring k[q, q_l},
we can consider their specialization at ¢ = 1, namely the Hopf k—algebras

FRISL(n+1)] = F2[SL(n + 1) /(4 = 1) F2[SL(n + 1)),

FYSL(n+ 1)) i= FY[SL(n+ 1] /(q = 1) Fy[SL(n + 1)],

B[SL(n+ 1)) i= Fy[SL(n +1)] /(g = 1) Fy[SL(n + 1)]..
Our main result is the following;

Theorem 4.1. The Hopf k-algebras FE[SL(n+1)], F¥[SL(n+1)], and F1[SL(n+1)], are
Poisson Hopf coalgebras isomorphic to U(h). In other words, F2[SL(n+1)], F7[SL(n+1)],
and ﬁq [SL(n + 1)] all specialize to the Poisson Hopf coalgebra U (h).

Proof. Consider F[SL(n+ 1)]; it inherits from ﬁqQ [SL(n + 1)] the following presentation
(which is obtained from that of F. +[SL(n+1)] by setting ¢ = 1): it is the unital associative

k—algebra with generators r;;, i (i, =1,... ,n+1; k=1,...,n) and relations
TijTik = TikTij » TikThk = ThkTik Vj<k,i<h
1485 +8,1—81—8; .
TiTik = TjkTil 5 TikTj — T = (0) R TIT IR ey, Vi<j k<l

71,1722 Tntlnsl = 1

0 ="7ii — Tit1,i+1 Vi=1,...,n
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iTjk — Tjkpi =0

Vi<i,k>t+1,Vi>i+1, k<1

YiTjk — Tjkpi = 0 Vi<ik<i
©irjk — Tjkpi =0 Vi>i+1,k>i+1
PiTji — TjiPi = —TiiTji Vi<t
WiTj5 — TjiPi = T§iT44 Vi>i+1
PiTji+1 — Tji+1Pi = Tit1,i+175,i+1 Vi<t
PiTji+1 — Tji+1%Pi = —Tji+1Ti+1,i+1 Vj<i
PiTij — Tij P = —T45T45 Vi<t
YiTij — TijPi = TijTii Vi>i+1
GiTit1,j — Tit1,jPi = Tit1,i+17i+1,5 Vj<i
PiTit1,j — Ti+1,j%Pi = —Ti+1,5Ti+1,i+1 Vi>i+1
©iTii — Tiipi = 0 Vi
PiTit1,i41 — Tit1,i+19; = 0 Vi
PiTii+1 — Tii+t1Pi = Tiit1Tii T Tit1,i41700+1 Vi
QiTi41i — Tit1,iPi = Tit1,iTii T Tit1i+17i41,3 Vi
pip; —pipi =0 Vi, j
Moreover, its Hopf structure is given by

A(riz) = i @i + 15 @ 155 Vi#j
A(rii) =14 @134 Vi
Api) =74 ® i + @i @ Tit1,i41 Vi

n+1
S(riz) = —1ij - H Tk k Vi, j

k=1

k#i,5
S(%‘) = —Tr1172,2 " Ti—1,i—1PiTi4+2,i+2 " Tn+1,n+1 Vi
e(rij) =0ij,  €(pi) =0 Vi, j.

In particular we have that r1; = ro2 = -+ = 7541 41, hence rf;rl = 1 for all 7,
whence 7;; € k (k is algebraically closed); but then A(r;;) = r;; ® r;; implies r; = 1.

(0)! Ot =0i =0 rarje (1 < j,k <) gives in particular

Now relations 7, — rjri =
Tij—1T5—1,7 — Tj—1,jTij—1 = (0)61&71 TiiTi—1,5—1 (Z < j), and similarly Tij+1Tj+1,5 —
Ti41,5Ti 41 = (O)‘Si’”1 TijTj+1,j+41 (¢ < j), whence we deduce that the elements 7; 41,
ri+1,: (1 =1,...,n) together with the ¢;’s are enough to generate FR[SL(n+1)].

Now from the relations above one finds that for the generators 7; ;y1, @i, 7i+1: (i =
1,...,n) exactly the same relations hold than we have in §1 for the generators —f;, h;, e;, of
U(B): therefore F P[SL(n+1)] and U(h), having the same presentation, are isomorphic as
k—algebras. Nevertheless, the formulae for the values of Hopf operations (of F PISL(n+1)])
on the generators 7; ;11, @i, 7i+1,; are exactly the same — when taking into account that
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rii = 1 for all i — than similar formulae for the generators —f;, h;, e;, of U(h): thus the
k—algebra isomorphism @ : F?’[SL(n+ 1)] — U(h) given by

S riip— L, @i hi, rip e ey, (4.1)

is even one of Hopf algebras. In particular, the comultiplication of F' P[SL(n+1)] is cocom-
mutative: hence a Poisson cobracket §: F{*[SL(n+1)] — F?[SL(n+1)]® F{*[SL(n+1)]

is canonically defined by ¢ <x’q:1) = (A_(IA_#
q=1
In order to compare the latter Poisson cobracket with the one on U(h) given from
scratch, we have to unravel the preimage in F{*[SL(n + 1)] of root vectors in U(h).

We already saw that ri; =1 (i =1,...,n+1) in FR[SL(n + 1)]; from this fact and

(0)1+6ik+6jl_6il_6

the relations r;,rj; — ririk = Frarie (1 <j, k<l), for j =k one gets

ra = +[rij, 1) Vi<j<l,
and similarly for ¢ =1
Tjk:_[rji,rik} \V/j>i>k‘;
in particular
rig =+ [rig-1, rj-1g] = = [rj-1g . Tig-1] Vi<j-—1,
L (4.2)
rji = —[rjj-1, ri—1a] = +[rj-1, ri5-1] Vj>itl.
Comparing (4.2) and (1.1), by a simple induction one gets from (4.1) that
(I)<Tij) = (—1)j_i fji 3 q)(’l"ji) = (—l)j_i_leij N V1 < ] . (43)
Now, a straightforward computation gives
n—l—lA/\
0(Tiit1) = @i @ Tiig1 — Tiit1 @ @; +2- Z Lt (ri,j Qi+l — Tjit1 & ’f‘i,j)
j=1
n+1 n+1
(i) =4- (Z (rig @i =150 @735) = Y (riv1 @ Tjien = i @ Ti+1,j)>
j=1 j=1
n+l
O(Trit1i) =Tit1,i @ @i — @i @ Tiq1; + 2 Z S (i @1 — T @ Ty )
j=1
(forall i =1,...,n), where a superscript h means that the index h must be discarded; then

it is a simple task of rewriting (using (4.3)) to see that these formulae correspond — via
® — to the analogous ones for U(f). Thus the isomorphism & : F{*[SL(n+1)] — U(h)
above is one of Poisson Hopf coalgebras; so we have proved the claim for F{*[SL(n + 1)].
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__ As for the other two algebras, we shall shortly conclude relying on the first one. In fact
FP[SL(n +1)] and Fy[SL(n + 1)] differ from F{?[SL(n + 1)] only for ”toral” generators:
the 1;’s, resp. the x;’s, instead of the ¢;’s. Now, definitions give at once

Vi = X1+ Tr1iXe FrareeX3 s Tiar22 s 1,i—1 X Vi=1,...,n+1

so that, since 7;; =1 mod (¢ — 1), we have that {¢1,...,1,11} modulo (¢ — 1) and
{x1,- -+, Xn+1} modulo (¢ — 1) span the same k—vector space, whence

FP[SL(n +1)] = F1[SL(n + 1)].
Furthermore, definitions give also

@i = Xi — Xi+1 Vizl,...,n

hence the k—span of {®1,...,pn+1} modulo (¢—1) is contained in the k—span of {xi,...,
Xn+1} modulo (¢ — 1); moreover, the relation

n+1

E r1,172,2°  Ti—1,i—1Xi =

=1

= Z (—C])Z(U)(q - 1)6(0)_1 (1 + q_l)e(a)rl,a(1)7“2,a(2) o Tndl,0(n+1)
o€Sn+1\{1}

for ¢ =1 turns into
X1+ Xntr1 =03

thus the k—span of {¢1,...,9n4+1} modulo (¢ — 1) and the k—span of {x1,...,Xn+1}
modulo (¢ — 1) have both dimension n, hence they coincide. We conclude that

FR[SL(n+1)] = Fi[SL(n+1)] = FF[SL(n + 1)]

whence the claim. [

§5 F)'[SL(n+1)] as approximation of 7" [SL(n + 1)]

5.1 Motivations. To explain the definitions of the integer forms of §4 some comments
are in order. We resume the analysis in [Gal, using the same notation, and make it more
explicit for G = SL(n+1).

Given the quantized universal enveloping algebra U/ (5[(n + 1))7 resp. Ug? (5[(n + 1)),
there exists a k[q, q_l]—integer form (as Hopf algebra) U” (5l(n + 1)), resp. U” (5[(n + 1))
(cf. [Ga], §3.4); then we define (cf. [Ga], §4.3)

FOISL(n +1)] := {feP@SLn+

(fum(sin+1)) C kla.g™] }
) }

]
FrISLin+1)]:= { f € FyISL(n+1)] )<fzﬁ +1))) C kg, g7
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From the very definition of U*, one sees that 15(;9 [SL(n 4+ 1)] € F?[SL(n+ 1)], and
similarly, ﬁ;’ [SL(n+1)] € F?[SL(n + 1)]. But even more, we shall prove in this section
that ﬁf [SL(n+1)], resp. PN’; [SL(n+1)], is a ”good enough approximation” of F?[SL(n+
1)], resp. F7[SL(n + 1)], in the sense that they have the same specialization at ¢ = 1.

One of the main points in [Ga] is the construction of a (topological) Hopf algebra U, (h),

with a k:[q, q_l]finteger form 417 (h) which specializes to U(h) for ¢ — 1. The link with
quantum function algebras is the existence of an embedding of (topological) Hopf algebras

Ep: FISL(n+ 1] —— U,(b) ;

via this embedding one has &, (F7[SL(n+1)]) C U4”(h). In addition, one has also

£p (FPISL(n + 1)) ]q_l - uP(h)] 5o that 4"(h) 121 () implies

qg—1

FPISL(n+1)] ——=U(bh).
The embedding &p: F/[SL(n +1)] < U/ (h) is the composition of an embedding

9, ®0_

e FPIG) 2 FFIG) @ FP[G) 222 FP(B,] @ FF[B_] Uy (b-), @ Uy (by)

q op

(where G = SL(n + 1), and By and by denotes as usual Borel subgroups and Borel

subalgebras) and an isomorphism v, ! of a suitable subalgebra of UJ (b_)op ® Uy (b+)0p

(containing ju, (F} [SL(n + 1)])) with U (b); hereafter, Ho, will denote the (unique) Hopf
algebra with the same structure of H but for comultiplication, which is turned into the
opposite one. Everything holds as well with P and @) exchanging their roles; on the
other hand, since by definition is F?[SL(n + 1)] € F[SL(n + 1)], UZ(h) € U/ (),

and £, = 5P‘F$[SL(n+1)]7 Ho = 'uP|FqQ[SL(n+1)]
end, we have to revisit the definition of U, (sl(n + 1)) and its quantum Borel subalgebras
Uy (bx) (M = Q, P), and the construction of quantum root vectors: this will be done
in next sections. Here we recall the definition of F,”[B] and F,[B_] and the canonical
epimorphisms p; and p_ .

FJ[By], resp. F[B_], is the unital associative k(q)-algebra generated by {pi; | i,j =
1,...,n+1;9 < j}, resp. by {p;; |i,5=1,...,n+1;i > j}, with relations

, it will be enough to study pp,. To this

PijPik = q PikPij » PikPhk = q PhkPik Vj<k,i<h
PiPik = Pjkpil s PikPi — Pitpik = (@ —a" ") papjk Vi<j k<l
11022 Prtlntl =1

for either algebras. These are Hopf algebras too, with comultiplication given by

Alpij) = pir ® prj Vi,j  for FP[By],
k=1

J
A(pij) = Zpik ® Pk Vi, j for F[B_],
k=1
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counit by
€(pij) = i Vi, j
for either algebras, and antipode by
j—i ki ..
S(py) = () ety ((pw)i%5)  Vid for BJ[Bi],
j—i ki .
S(pii) = (—ay'det; ((puliZy) Vi for FJ[B-),
where det;, resp. det, , is the expression that one gets simply by setting p;; = 0 for all

t>7,resp. © < j,in det,.
By the very definitions, two Hopf algebra epimorphisms exist

pet FPISLn 4 1)) — EF[By].  po: EFISL(n+ 1)) —» EV[B_],
given by

P+ pig e pig Vi<j, pij =0 Vi>j

p—:  pijrpi; Vi g, pij =0 Vi<j.

5.2 The quantum algebras U, (gl(n + 1)), Uy(sl(n + 1)), and U} (b1). We recall
(cf. for instance [GL]) the definition of the quantized universal enveloping algebra U, (g[(n—i—
1)): it is the associative algebra with 1 over k(q) with generators

+1 +1 +1 +1
Fl,F2,...,Fn,G1 ,G2 7"'7GTL 7Gn+17E17E27"'7En

and relations

GiGi'=1=G;'G;, Gf'G' =G7'GH Vi, j
GiFjGi_l — q5i,j+1*5i,ij , GzEsz_l — q5i,j*5z‘,j+1Ej Vi, j
GG Y — GG,

141 '3 1+1 ..

EZFJ —FJEZ :51"]' q—q_1 VZ,j
E’E; — (¢q+q ') E,E;E; + E;E} =0 Vi, j:i—j| =1
FPF;— (q+q ") FiF;F+ F;F =0 Vi, jili—j|=1.

Moreover, U, (g[(n + 1)) has a Hopf algebra structure, given by

AF)=F,0G Gy +1aF;, S(F) = -FG:G Y, e(F)=0 Vi
A(GH) =G @G, S (GHY) = GF, e(GE) =1 Vi

AE)=E®1+GGLeoE, S(E)=-G'GE, €E)=0 Vi

The algebras UF (sl(n + 1)) and U2 (sl(n+ 1)) — defined as in [Ga], §3 — can be realized
as Hopf subalgebras or quotients of U, (g[(n + 1)) Namely, define elements

Li = Gl---Gi, Li_l = Gl_l---Gi_l, KZ‘ = GZGZ_—|—117 K~_1 = Gi_lGi_H

(3
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for all i =1,...,n. Then Ly, is a central element of Uy (gl(n + 1)), and U} (sl(n + 1))
is (isomorphic to) the subalgebra of U, (g[(n + 1)) generated by {F1,..., F,, LI—LI, oo, LEY
Eq,...,E,} — this corresponds to sl(n + 1) — gl(n + 1) — and to the quotient of
Uqy(gl(n + 1)) modulo the ideal (which is a Hopf ideal) generated by (Ly41 — 1) — which
corresponds to sl(n + 1) = gl(n + 1)/(I,11) = gl(n + 1)/Z(gl(n 4+ 1)) . Similarly, the
algebra U2 (sl(n + 1)) is (isomorphic to) the subalgebra of U,(gl(n + 1)) generated by
{F,...,Fy, K, ... KX E,,..., E,} — this again corresponds to sl(n+1) < gl(n+1).

A last word about "toral elements” G;, L;, K;. In the "classical” framework we have
toral elements h; = h,, in the (diagonal) Cartan subalgebra of sl(n +1)( C gl(n + 1)),
given by h; = M;; — M;41,41 (where M, s denotes a square matrix of size n + 1 as
in §2); similarly, letting ¢; = My + Moo + -+ + M;;, we have h; = —{;_1 + 2(; —
liy1. Now, G; is the g-analogue of M;; — in fact, on the standard representation it acts
exactly as exp (hMM), where h := log(q) — therefore K; := GiG;rll = exp(h M”) .
exp (h Mi+1,i+1)_1 = exp (h (M;,; — Mi+1,i+1)) = exp (h . hi) is exactly the g—analogue of
h;; similarly, L; is the g—analogue of /;.

As for quantum Borel subalgebras, we recall that U (b ), resp. U; (b_), is — by defini-
tion — the subalgebra of UF (s{(n+1)) generated by {L1,...,Lo}U{E1,..., E,}, resp. by
{L1,..., Ly }U{F1,. .., F,}; similar definitions occur for U2 (bs ), with K;’s instead of L;’s.
All these are in fact Hopf subalgebras.

Finally, there exist Hopf algebra isomorphisms

Oy FP[By]———UF(b-) ,  O_:FF[B.]——UZI(by)

op op
which are uniquely determined by
O (pii) = Lima L7 = G771y 94 (pii) = —FiLiL )y = —FiG Vi
9 (pii) == Ly 1 Li=Gi, O_(piy1.4) = +L; 'Li1E; = +Gi1 By Vi

(here we set Lo :=1, Ly41:=1), where F;:=(¢q—q¢ ") F;, E;:=(q—q ') E;.

5.3 Quantum root vectors. Quantum root vectors are essential in [Ga|: according
to a general recipe provided by Lusztig, they are constructed by means of braid group

operators T; (i = 1,...,n), which in our case are given by (with the normalization of [Ga])
Fj— —K;'Ej, K;—K;', E;j—-FKj, if |i—j =0

Fj)—)—FjFi-i-quFj, KJW—)KZ'KJ', EjH—EiEj-l—q_lEjEi, if |’L—]|:1
Thus letting [z, y] ¢ =Ty —qyx be the g-bracket of x and y we have

T,(Fy) = q[Fi, Fyl . = —[F3, B, Ti(Ej) = —|Ei, Bj], . = ¢ '[Ej, B, for |i—j]=1.

q ! q’

Consider now the case G = SL(n+1), g =sl(n+1). We want to compare Lusztig’s
construction of quantum root vectors with another one (which is used, for instance, in [Ji]
and in [Tal).
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In the Lie algebra sl(n + 1) we have matrices M;; (i, € {1,2,...,n},i < j) such that
Miivr =€, (Mg, Myj] = Mij , Vi<k<j

where e; denotes the i—th Chevalley generator of the positive part of sl(n + 1), the Lie
subalgebra ny of strictly upper triangular matrices. Moreover, these matrices are root
vectors, i. e. weight vectors — for the adjoint action — with roots as weights: namely, M,
has weight the positive root «a(i,j) := e; — €;, where ¢, denotes the (k, k)-th coordinate
function on matrices. Notice that the same is true for —[M;y, My;] = —M;;. Then the
level of M;;, defined to be j — i, is the height of the root a(i,7). A similar situation occurs
for the subalgebra n_ of strictly lower triangular matrices, with elements M;; (i > j) as
root vectors of weight the negative roots «(i, j) of height j—i. In particular, { M;; ‘ 1< ] }
is a basis of ny, and {Mij |z > } is a basis of n_.

The situation described above can be quantized. In fact in the standard representation
of Uy (5[(n + 1)) or U? (s[(n + 1)) we still have E; — M, 11, i.e. E; acts as the matrix
M; i11; then we define (for all ¢ < j—1)

Eiit1:=E;, E; ;= —[Ei,j—17Ej—1,j]q—1 = q_l[Ej—l,j,Ei,j—I]q

(5.1)
i =Fi Fyi=qFj1, Fjal-0 = =[Fj -1, Fj-14],

q—l

(notice the occurrence of the ”—" sign, which does not appear in [Ji], nor in [Ta]); then

remark also that in the standard representation of UJ (sl(n+1)) or U2 (sl(n+1)) we have
Ez‘j — (—1)j_i_1Mij and Fji — (—1)j_i_1Mj7;, forall 7+ < 7.
Now look at roots, for instance positive ones: they form the set

Rt ={a(i,j)|ij=1,...,n+1i<j};
if we set n(i,j):=j—i+ Z;;ll(n — h), we obtain a total ordering of R by
a(i,j) 2 a(h k) <= n(i,j) < n(h,k)

so that RT = {al,aQ, . ,aN} , with a(i,j) = a™®9) | N := (”42'1) )
The first key point is the following lemma, whose proof is trivial:

Lemma. The previously defined ordering of R is convex, that is

a,Ba+BeERaXB = aza+B=5.0

By a theorem of Papi (cf. [Pa]) we know that every total ordering of Rt which is convex
is associated to a unique minimal expression of wy = (nn—1 ... 321), the longest element
of the Weyl group S,, of sl(n+1): this means that, if wy = s;,8i, - - Siy_, iy 1S a minimal
expression of wg, then the ordering of R is given by

1 _ 2 _ k _ N __
a =04, & —sil(aiz),...,a —SilsiQ"'Sik_l(Oéik),...,Oé —Silsig"'SiN_l(aiN)-
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In the present situation we can also write down explicitely the minimal expression of
wo afforded by the given ordering of R™ : it is

Wo = 815283~ Spn—-15n8152 "+ Sp—-15152 """ 8Sn—-35152 " 54515253515251

Starting from any minimal expression of wg, Lusztig constructs quantum root vectors
via the formulae

Eqgr = kafl(Ei ) =11, - 'Tikfl(Eik:) ) For = ka—l(Fi ) =TT, - Tikfl (Fl )
where wo = s;,5;, -+ - Siy 1s the given minimal expression, wy, := S, 8;, - - - 8;, , and af =

wg—1 (ay, ) gives the associated convex ordering of RT. In our case this construction gives
quantum root vectors (for all ¢ < j)

E

o

F

[}

iy =TTy Ty, ThWTy - Ty Th - Th—jn T T - Tj——1 (Ej—i)
nii) =TTy T ThWTo - Ty Th -+ To—in T T - - Ty i1 (F—i)

Theorem. For all 1,7 =1,2,....,n+1 with 1 < j we have

E i = Eij Fonigy = Fyi

Proof. We make the proof for the "E” case, the "F” case is the like.
We have two possibilities, j =¢+1 and 7 >¢+1. If j =i+ 1 we have
an(i

J) = 8189 8p8189 - Sp_i425182 - Sp_ip1(01) = 8182 5,5152 - - - Sp_iy25152(a1)

because sp(ay) = ay for all |h — k| > 1; since s152(a1) = a2, we get

n(,7) __ _
a9 = 5155+ 8,518+ Sp_iya(an) =

= 85182 --SpS1S82 """ Sn_i+3818283(042) = 85182 -SpS1S2 """ sn_i+3(a3) 3
thus iterating we obtain

o(6d) — i

then by Lusztig’s work we know that E  .¢.;) = Eo, = E;; on the other hand, 7 =i+ 1
gives Ei,j = Ly 41 = Ei by deﬁnition, hence Ean(i,j) = Ei’j, q.e.d.

If j >14+1 we apply the definitions to get
Epniigy =TTy - T, T1To- Ty a1y - Topeiyd i - T 0T -1 (Ej—;)

=TTy --- T, ThTo-- Ty 1T1- - Thii il -T2 <_[Ej—i—1; Ej—z]q—1>
=Ty ThoiprTy - Tjjo (Ej—i—1) , T - Ty Th - - T2 ()]

gt

—[Eans-n  TiTa- T/ ThTo - Tt TiTo -+ Tj—i2 (Ej—i)] -1
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but now we have

Ny T, Wy Thiyo - TiTo Ty i1 TiTo Ty i o (Eji) =
=TTy T, T'To - TpoivoDiTo - T i1 Tj—iTj_iv1 (Ej—i) =
=TTy - T, T'Ts- - ThjyoTi T Tj_i—1 (Ej—it1)

for Ty Tk+1 (Ex) = Er4q for all k; then a simple iteration gives
N T, Wy Thiyo- T Ty d T -T2 (Ej—) = Ej_q .

Therefore we have
Egnis) = —[Egnai-v , Ej-a] 15

[e%

since (j — 1) —i < j — i, we can use induction on the height of roots and assume
Ean(i,jfl) = Ei,j—l; on the other hand, Ej—l = Ej—l,j7 by deﬁnition; thus we find
Epniiy = —[Eij-1 ,Ej_l,j]q,l , and — by definition again — the right-hand-side term
is nothing but E; ;. The claim follows. [

5.4 The embedding p,,: F[SL(n+1)] —— qu(b_)op ® U;(b+)op and special-
ization results. We are now ready to go on with the analysis of the embedding

04 @0

P A P P p— P P P P
e FY[G] = FF[G] ® FF[G] 2= FF[B}] @ F}[B_] Uy (b-), ®US (bs)

q op

(G = SL(n +1)): here A is the comultiplication of the Hopf algebra F,*[SL(n + 1)],
p+: FJ'[SL(n +1)] —— F}"[B+] are the natural epimorphisms of §5.1, and the maps
Ui: F}[B] —= Ué”(b:F)op are the isomorphisms given in §5.2.

To begin with, we go back to the study of Z:if [SL(n + 1)]: lifting the identities (4.2)

gives relations (inside F, SISL(n+1)])

rig =+[rij-1, rio1] + 0= 1) = =[rj_1,mi;1] + Ol —1) Vi<j-1, (5.1)
rii=—[rjj—1,7j—1:] +O(q—1) =+[rj_1,7j;-1] +O(g—1) Vj>i+1.
Now look at the isomorphism ¥ ,: F[B,] =, U/ (b_)op; it maps p;; = 1y onto

LZ-_1L;1 = G;l , and p; ;41 onto —FiLiL;_ll = —FZ-—I—GZ-jrll , hence r; ;41 onto —FiLiLZ-]_ll .

But remark that r,; =1+ O(¢g—1),and soalso G;=1+0(¢—1), K;=1+0(¢—1),

L; =14 O(q — 1), where the symbol O(q — 1) denotes some element of (¢ — 1) " (b_)

(notations of [Gal): thus we have also U (r;;41) = —F; + O(qg —1).

Therefore, using the first relation of (5.1), Theorem 5.3, and the fact that [, | =

q
[, ]q_1 =], ] mod (¢—1), by a simple iterating procedure we find that

’I9+ (Tij) = (—1)j_iFj7Z' -+ O(q — 1) = (_1)j_iFan(i,j) + (’)(q - 1) V’L < j .
Similarly, by the same arguments we can prove that

O_(ryi)) = (=17 " E; + O(g—1) = (-1 " Equin + O(g — 1) Vi>i.
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Now, from the definition of A and ¥+ we get a description of pp(7;41) as follows:
pp(riip1) = (04 @9_) ((P+ ® p-) <A(Ti’i+1>>) =

n+1
=W ®9-) ((p+ ®p_) (TH @riit1 i1 @Tig1i41+ (q — q_l) Z Ti k ®7“k,i+1)> =
k=1

k#1,7
n+1
:(79—1—@79—) (Tzz+1®712+11+1+ q_q Z r1k®rkz+1> ==
k=1+2
n+1
= —FiG i G+ 0D+ (0= 07") D Fagr) @ Bagirrny + O((0- 1) =
k=i+2

= -FG19G1+0(q-1)=-F,01+0(q—1)

where the symbol O(¢ — 1) denotes some element of (¢ — 1) U7 (b_) @ 47 (b1) (note that
the last algebra is mapped by v, ! into $47(h) ); recalling from [Ga] the definition of v;*
U () @ U”(by) — U”(h), for &5 = ppovy, ! we find

Ep (Tiit1) = —Fi+O0(g — 1)
and in general & (r; ;) = <—1)j_iFj’i +O(q—1), for all i < j. A similar analysis yields

§P (ri-l-l,i) = +Ei + O(q — 1)

and in general &, (r;;) = (=1 "7 E;; + O(g—1), for all j >, and also

€ (rii) =Gi+ O ((q - 1)2> =L 4L+ 0 ((q - 1)2> ;

furthermore, the latter implies

R L S
= Giy1- GC;Z_%H +0(q—1)=Giy1- Ki__ll +0(q—1) =
-2 vou-n= (") o).
o (P TL) GG g
- Lqi__ll +0(g—1) = <Li1;0> +0(@—1),

Ep (i) = &p <:> _ G-l +0(g—1) = (Gil;o) +0(q—1).
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Remark: in light of the previous formulae and of the remarks in §5.2 about toral
elements of U, (gl(n + 1)), one has that

@; is the g—analogue of h;,
¥; is the g—analogue of /;,
Xi is the g-analogue of M, ;;

on the other hand, the definition of these elements can also be motivated directly in
quantum matrix terms. In the classical framework, we have

hi =M;; — Miy1iv1, =M1+ Moo +---+ M;;; (5.2)

Now, r; ; is the i—th diagonal quantum matrix coefficient, that is the g-analogue of the
"classical” matrix coefficient M; ;; hence we should have, in principle,

Ti,i —1

= M, :
q— 1 lg=1 2,1

such a relation is completely meaningful, and was our reason to define y := % . As

G, too is a g—analogue of M, ;, the relation

Gi; 0
&t = (") + o)
is not surprising. By the way, we remark that the special relation

n+1
E r1,1722 " Ti—1,4—1Xi =
i=1

- Z (=)' (q - 1)8(0)_1 (1+ qfl)e(g)ﬁ,a(n?“z,a@) T l,o(nd1)
o€Sn+1\{1}

which arises from the relation det, (p,-]-) =1, for ¢ =1 turns into

X1tx2++xXnt1 =0
that is a relation like Tr(x) =0.
Moreover, relations (5.2) should have quantum counterparts

”g-analogue of h;" =1, ; - rijrll’iﬂ , ”g-analogue of ¢;” =ry17r29---1i;, (5.3)

which should yield

—1
reser. . — ]_ r r Y S 1
(253 Z+1,'L+1 — hz , 171 272 2,2 g E’L 7 (54)
qg—1 q=1 q—1 q=1

now, the second relation in (5.3) is completely meaningful, so it moved us to define ¢ by

r r e _1 . . . —
;= Lt 2’;71 ~—; on the other hand, the first one instead is meaningless, for r; jl does
b

not exist; but since r;; =1 mod (¢ — 1), we should have also

”g—-analogue of h;” =”g-analogue of h;” - 7Tiy1i41 ="i;- rijrll’iﬂ “Tit1i4+1 = Ty
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whence the first relation in (5.4) turns into

—1
o T T T 1
= “Tig1,i41
q=1 g—1

which provides a completely meaningful expression for a (tentative) g—analogue of h;;

that’s why defined ¢; := % . Notice that also L;, resp. K;, is a g—analogue of

l; , resp. h;: this explain the relation

Tig — Ti+1,i+1
qg—1

= h;

q=1

ew= (") rou-n. e et = (") o6

Conclusion. The result of all the analysis above is that

€p

(FrisLm+ 1) /(a= 1)y [SLin+1)]) =

=& (Fr1stin+ 1)) [(a—1)& (FIISLi+ 1)) =4(0) /(= 1) 47 (),
gQ)qzl (ﬁ;?[SL(n+ 1)]/(q —1) FQ[SL(n + 1)] )

= ¢o(F2ISLn+ 1)) /(g = D)€ (FRISLn+1)]) = 4%(b) /(a — 1) 4(b),
(FulSLe+1) /(g 1) FylSL(n+1)]) =

=& (FIszin+1))) / (a—1)& (FISLin+1)]) =4"(5) /(4= ) U"(h),

q=1

€p

q=1

because elements Fj, (Lil; 0) — resp. (Kil; O) , Tesp. (G’f 0> — and FE; are enough to gener-

ate U”(h) /(g—1) U” (h), resp. U?(h) /(¢—1) U2 (), resp. 47 (h) /(¢—1) 47 (p). In particular,
in this sense we claim that ” ﬁf [SL(n + 1)], resp. ﬁqp [SL(n + 1)], is an approximation of
FP[SL(n +1)], resp. F7[SL(n+1)]".

It is worth stressing that this implies that Theorem 4.1 is a direct consequence of the
specialization results about F”[SL(n+1)] and F?[SL(n+1)] proved in [Ga], §7 (Theorem
7.3); conversely, those results follows from Theorem 4.1:

Theorem. F[SL(n+1)] and F*[SL(n+1)] specialize to U(h) as Poisson Hopf coalgebras
for ¢ — 1. The same holds for 4% () and $1”(h) too.

Proof. To be short let us set A‘q:]_ = A/(q — 1) A for any k:[q, q_l]falgebra. Now, we
have ﬁ; [SL(n+1)] € F?[SL(n+1)] CU”(h), and the analysis above shows — through
and together with that in [Ga] — that ﬁtf [SL(n + 1)]‘ ) = ilp([j)‘ , hence

q:

FF[SL(n+1)]

~ FP[SL(n+ 1)]‘ = LlP(b)‘

the same holds with @) instead of P. Then the claim follows from Theorem 4.1. [J
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§ 6 Generalization to F;[GL(n+ 1)]

6.1 The quantum matrix-function algebra F,[M(n + 1)]. We introduce the
quantum matriz-function algebra of order n + 1 (n € N), to be called F,[M(n + 1)], as
follows.

By definition, F,[M(n + 1)] is the associative k(gq)-algebra with 1 generated by
{xij |i,7=1,...,n+ 1} with relations

TijTik = qTikTij TikThi = q ThkTik Vij<kii<h

1 . .
Tk = TjkTi Tikjl — Tt = (¢ — ¢ ) TuTjk Vi<yg k<l

(that is, the same of F,"[SL(n+1)] but for the relation ”quantum determinant = 1”). This
is a bialgebra, with co-operations defined by

A(zij) = Z%k ® Tkj , €(zij) = 6;5 Vi, j.

From the very definition we get a bialgebra epimorphism

T Fy[M(n+1)] —— F/[SL(n+1)], zi; = pij Vi, j.

6.2 The quantum function algebra F,[GL(n + 1)]. The element dety(z;;) of
F,[M(n+ 1)] is group-like and central; thus by localization at det, one can define a new
algebra, namely Fy[M(n+1)][det,']: this is now a Hopf algebra, with bialgebra structure
given by extension of that of F,[M(n + 1)] and antipode defined by

S(wig) = (—a)’ 'dety ((zni)} %) Vi, .

The Hopf algebra Fy[GL(n + 1)] := Fy[M(n + 1)] [det, '] is the quantum function
algebra of the group GL(n + 1) (cf. [Ta]). It is clear that the bialgebra epimorphism
T Fy[M(n+1)]—F7[SL(n+1)] extends to m: Fy[GL(n+1)] — F7[SL(n+1)],a
Hopf algebra epimorphism whose kernel is the (Hopf) ideal generated by (detq (x”) — 1).

The constructions and results in §§2-4 can be easily extended to F,[GL(n + 1)]. It is
straightforward to check that k[q, ¢! ]-integer forms ﬁqp [GL(n+1)] and ﬁq [GL(n+1)] of

F,[GL(n+1)] can be defined mimicking the definitions of ﬁ(f [SL(n+1)] and F,[SL(n+1)],
with x;;’s instead of p;;’s: then one has a presentation of these algebras by generators and

relations (namely, the same as for PN’qP [SL(n + 1)], resp. ﬁq [SL(n + 1)], but for the rela-
. (o e(o)—1 _1\e(o)
tion Ynyp1 =3 cq. 13 (@) @) (g — 1)) (I+¢ ) o202 " Tntlomtl)s

resp. Z?;l riar22 - Ti-1i-1Xi = desn+1\{1} (—CDZ(U) (¢ — 1)6(0)_1(1 + q_l)e(a)'
T1,0(1)72,0(2) " ** Tnt1,0(nt1) ). Lhe upshot is that the specialization at ¢ = 1 of both
of these integer forms is a Poisson Hopf coalgebra isomorphic to U (h'), where b’ is the



QUANTUM FUNCTION ALGEBRAS AS QUANTUM ENVELOPING ALGEBRAS 23

Lie bialgebra obtained by central extension of h by an element ¢ (namely, ¢ = xp+1 |q:1 )
such that

cx —xc=0 Vzeh (i.e. cis central)
Alc)=c®1+1®c, €c)=0, S(c)=—c

6(6) =4- Z fn+1,k A €k,nt1
k=1
Thus again the quantum function algebra F,[GL(n + 1)] can be seen as a quantum
enveloping algebra, namely sort of a " U, (f)’)”.

§ 7 PBW theorems

In this section we shall prove some PBW theorems for F'[SL(n +1)]: that is, we shall
exhibit some k(q)-basis of ordered monomials in the p;;’s for this algebra. To begin withs,

we recall (cf. [Ko], [PW]) that, whenever we fix any total order in the set of generators
{xij |i,7=1,...,n+ 1}, the following PBW-type theorem holds for F,[M(n + 1)]:

Proposition 7.1. The set of ordered monomials in the generators x;;’s is a k(q)-basis

of F[M(n+1)]. O

Now we wish to prove a similar result for F,[SL(n + 1)]; to this end we need a ”trian-
gularization argument”, which is now explained. Define

Ny = k(q)-subalgebra of F,[M(n + 1)] generated by {x;; | j <n+2—1i},

Ny = k(g)-subalgebra of F,[M(n + 1)] generated by {z;; | j =n+2—1i},

N_ := k(q)-subalgebra of F,[M(n + 1)] generated by {z;; | j >n+2—1i};
then we have the following result, whose proof easily follows from definitions and Propo-
sition 7.1:

Proposition 7.2. Let any total order in {z;; |i,j=1,...,n+ 1} be fired. Then:
(a) the set of ordered monomials

mij
H Lij

j<n+2—i

ms; € N Vi,j }
is a k(q)—basis of Ny ; the set of ordered monomials
{ szlﬁw—i

is a k(q)-basis of Ny ; the set of ordered monomials

H Lig

j>n+2—1

miENW}

mijer,j}

is a k(q)-basis of N_ ;
(b) Ny is a commutative subalgebra of Fy[M(n + 1)];
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(c¢) (Triangular Decomposition) the multiplication in Fy[M(n+ 1)] gives a k(q)-vector
space tsomorphism
F,M(n+1)]=2N, Ny N_. O

We are now ready for the first PBW theorem for F,[SL(n + 1)].

Theorem 7.3 (1°* PBW theorem for F[SL(n+1)]). Let < be any fized total ordering
of the index set { (i,7) | 4,7 = 1,...,n} such that (i,5) < (h,k) < (I,m) for all i, j, h,
k, 1, m such that it <n+1—j5, h=n+1—k, l>n+1—m. Then the set of ordered
monomials

SR 2 | Y S e

<n+2—j k=n+2—h I>n+2—m

Ng € NVs,t; min{Ny,...,Npy1} =0

is a k(q)-basis of F/[SL(n+1)].

Proof. We prove now that the above set does span F,’[SL(n+1)]; the linear independence
will be an easy consequence of Theorem 7.4 below.

Since F/[SL(n+1)] is a homomorphic image of F,[M(n +1)], it is clear that the whole
set (without restriction on the indices NNV},’s) of ordered monomials in the p;;’s does span
F7[SL(n +1)] over k(q). Now pick up any monomial

mN)= [ e TI eni- TI e

<n+2—j k=n+2—~h I>n+2—m

such that d := min{Ny,..., N,11} > 0; since the generators pp pio-p (h=1...,n+1)
commute with each other, we can single out of the ”m(Ny)-part” (with respect to the tri-

angular decomposition inherited from that in Proposition 7.2(c)) no := [[—p40-n thg =

n—‘,—l Nh
h=1Phnt+2—h

using the relation det, (pij) —1 =0 we substitute the factor p1 nt1p2.n - pnt+1,1 in m(N)
with

of m(N) a factor pi p+1p2n - pPnt1,1, and we can do it d times. Now

n+1 n+1 iy
(—Q)( 2 - Z (—Q)( 2= )'pl,o(l)pQ,a(Q)"'pn—|—1,a(n—|—1) (7.1)
o€Snt+1\{wo}

where wy is the longest element of S),,,11; now look at the various summands
P1,6(1)P2,0(2) " * " Pnt1,0(nt1) (UP to the proper coefficient) coming in, with o # wg: when-
ever we have o(j + 1) < o(j) the commutation rules give

Pj,o(§)Pi+1,0(j+1) = Pj+1,0(j+1)Pj,0(j)

in particular, if 7 > n+2—-0(j) and j+1 < n+2—0(j + 1) we have exactly
Pio()Pi+1,0(i+1) = Pj+1,0(j+1)Pj0(;); it follows that we can factor out the monomial
P1,6(1)P2,0(2) """ Pn+l,0(n+1) a8

P1,0(1)P2,0(2) """ Prt1,o(nt1) = Mg = Mg = N
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with ny € 7(Ny), ng € 7(No), n— € w(N_), and deg (n) < deg(ng) as monomials in
the p;;’s. Therefore at the end we are left with a new expression of m(N) as a linear
combination of monomials which, with respect to the triangular decomposition inherited
from Proposition 7.3(c), have a ”"7(Ny)-part” of lower degree; then a simple induction
argument finishes the proof. [J

We conclude with our second PBW theorem: this is the most interesting, because
it is directly related to the classical PBW theorem attached to the natural triangular
decomposition of U(h).

Theorem 7.4 (2" PBW theorem for F[SL(n+1)]). Let < be any fized total ordering
of the index set { (i,7) |i,7 =1,...,n} such that (i,7) < (h,k) 2 (Il,m) for alli, j, h, k,
I, m such that i > j, h==k, l <m. Then the set of ordered monomials

M = prm H pNhk H lem

1>] <m

st ENVS,t, mzn{Nl 1;~~7Nn+1,n+1}:0

is a k(q)-basis of FJ[SL(n +1)].

Proof. As Fy[M(n + 1)] is clearly N(+D*_graded (by the degree in each variable), it is
also N-graded (by the total degree); hence F[SL(n+ 1)] inherits a filtration, arising from
the filtration of F,[M (n + 1)] associated to the N-grading, say

RCRCFC--CF C-CFJ[SL(n+1)] UFT,

furthermore, we have M = UM, , with M, := M NF, for all r € N.
Similarly we have M’ = U+°°M7{, with Mv’ﬁ M’ N F, for all » € N, where M’ is
the set of ordered monomials defined in Proposition 7.4 above: in particular, M/ spans F;

over k(q). Finally the very definitions ensure that
4(M,) = #(M) VreN. (7.2)
q—1

Now consider the specialization F[SL(n + 1)] —— F[SL(n + 1)] and the corre-

sponding set M) of ”specialized monomials”, i.e. the image of M under the epimorphism
Fr[SL(n+1)]—F[SL(n+1)] = F[SL(n+1)]: if we prove that M@ is a linearly inde-
pendent set (over k), then the same will be true for M (over k(q) ); in particular M, will
be linearly independent (Vr € N), hence it will be a k(q)-basis of F,. (Vr € N), because
of (7.2), whence finally M will be a k(q)-basis of F,J[SL(n + 1)]. Thus let us prove that
the set M) is linearly independent over k.

Assume we have in F'[SL(n + 1)] = F[SL(n + 1)] a relation

Z am, -m =0 (7.3)
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for some (finitely many) a,, € k\{0}; then (7.3) lifts up to a relation in k [{Zij}i’jzlyu.’n+1i|
Z A - m(2) = b(2) - <det(zij) — 1) (7.4)

for some b(z) € k[{zij}i7j:1,__,’n+1] , the m(z)’s having the obvious meaning. If b(z) =0,
then (7.4) gives a non-trivial algebraic relation among the z;;’s, which is impossible; if
b(z) # 0, then the right-hand-side of (7.4) involves — with non-zero coefficient — the
monomial 211222 Znt1n+1 (coming out of det (zij)), while each monomial m(z) in the
left-hand-side does not contain the factor zj 1222 2n+1n+1; thus again (7.4) yields a
non-trivial algebraic relation among the z;;’s, which is impossible. The claim follows. [
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