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Abstract. Inspired by a result in [Ga], we locate three integer forms of Fq [SL(n+ 1)] over

k
[
q, q−1

]
, with a presentation by generators and relations, which for q = 1 specialize to U(h),

where h is the Lie bialgebra of the Poisson Lie group dual to SL(n + 1). In sight of this we

prove two PBW-like theorems for Fq [SL(n+ 1)], both related to the classical PBW theorem

for U(h).

Introduction

”Nel mezzo a una q–algebra di funzioni
io ci ritrovo una tal forma intera
che l’algebra di Lie dual mi doni”

N. Barbecue, ”Scholia”

Let G be a connected, simply connected, semisimple algebraic group over an alge-
braically closed field k of characteristic zero, and consider on it the Sklyanin-Drinfel’d
structure of Poisson group (cf. for instance [DP] §11 or [Ga] §1, or even [Dr]); then
g := Lie(G) is a Lie bialgebra, F [G] is a Poisson Hopf algebra, and U(g) is a Poisson
Hopf coalgebra. Let H be the corresponding dual Poisson (algebraic) group of G, whose
tangent Lie bialgebra h := Lie(H) is the (linear) dual of g : then again F [H] is a Poisson
Hopf algebra, and U(h) is a Poisson Hopf coalgebra.

The quantum group UQ
q (g) of Drinfel’d and Jimbo provides a quantization of U(g):

namely, UQ
q (g) is a Hopf algebra over k(q) which has a k

[
q, q−1

]
–form UQ(g) which for

q → 1 specializes to U(g) as a Poisson Hopf coalgebra. Dually, by means of a Peter-Weyl
type axiomatic trick one constructs a Hopf algebra F P

q [G] of matrix coefficients of UQ
q (g)

with a k
[
q, q−1

]
–form FP [G] which specializes to F [G], as a Poisson Hopf algebra, for
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q → 1 . So far the quantization only dealt with the Poisson group G ; the dual group H
is involved defining a different k

[
q, q−1

]
–form UP (g) (of a quantum group UP

q (g)) which
specializes to F [H] (as a Poisson Hopf algebra) for q → 1 (cf. [DP] or [DKP]). In a dual
fashion, it is proved in [Ga] — in a wider context — that the dual (in the Hopf sense)
quantum function algebra FQ

q [G] has a k
[
q, q−1

]
–integer form FQ[G] which for q → 1

specializes to U(h), as a Poisson Hopf coalgebra. Therefore quantum function algebras can
also be thought of as quantum enveloping algebras, whence the title of the paper.

In this paper we stick to the case of the group G = SL(n+ 1).

Our first goal is to relate the latter result above with the well-known presentation of
F P
q [SL(n+1)] by generators and relations (cf. [FRT]): namely, inspired by the definition of

FQ[G] and FP [G], we define two k
[
q, q−1

]
–integer forms F̃Q

q [SL(n+1)] and F̃ P
q [SL(n+1)]

(along with a third one, F̃q[SL(n + 1)]) of F P
q [SL(n + 1)]; these inherit a presentation

by generators and relations, which enables us to prove that they specialize to U(h) (as a
Poisson Hopf coalgebra) for q → 1. As a second step, since for U(h) one has the Poincaré-
Birkhof-Witt (PBW in short) theorem which provides ”monomial” basis, because of the
previous result we are led to look for PBW-like theorems for F P

q [SL(n + 1)]: we provide
two of them, both closely related with the classical PBW theorem for U(h).

The paper is organized as follows. Sections 1, 2 are introductory. Sections 3, 4 are
devoted to integer forms of F P

q [SL(n+1)] and their specialization. Section 5 is an excursus,
where we explain the relation among the constructions and results in this paper and those
in [Ga]: this is one of the main motivation of this work; on the other hand, this section
can be skipped without affecting the comprehension of the rest of the paper, which is
completely self-contained. In section 6 we briefly outline the extension of the previous
results to the quantum function algebra Fq[GL(n+1)]. Finally, section 7 deals with PBW
theorems.

§ 1 The universal enveloping algebra U(h)

A presentation of U(h) by generators and relations (in the general case) can be found
in [Ga], §1. When G = SL(n+ 1) , it reads as follows.

U(h) is the associative k–algebra with 1 generated by f1, . . . , fn, h1, . . . , hn, e1, . . . , en
(which are to be thought of as ”Chevalley generators”) with relations

hihj − hjhi = 0 ∀ i, j
hifj − fjhi =

(
2 δi,j − δi−1,j − δi+1,j

)
fj ∀ i, j

hiej − ejhi =
(
2 δi,j − δi−1,j − δi+1,j

)
ej ∀ i, j

fifj − fjfi = 0 ∀ i, j : |i− j| > 1

eiej − ejei = 0 ∀ i, j : |i− j| > 1

f 2i fj − 2 fifjfi + fjf
2
i = 0 ∀ |i− j| = 1

e 2
i ej − 2 eiejei + eje

2
i = 0 ∀ |i− j| = 1

fiej − ejfi = 0 ∀ i, j
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Furthermore U(h) has a Poisson Hopf coalgebra structure given by

∆(fi) = fi ⊗ 1 + 1⊗ fi , S(fi) = −fi , ε(fi) = 0

∆(hi) = hi ⊗ 1 + 1⊗ hi , S(hi) = −hi , ε(hi) = 0

∆(ei) = ei ⊗ 1 + 1⊗ ei , S(ei) = −ei , ε(ei) = 0

for all i = 1, . . . , n , and by

δ(fi) = hi ∧ fi + 2 ·

(
i−1∑
j=1

fi+1,j ∧ ej,i +

n+1∑
j=i+2

ei+1,j ∧ fj,i

)

δ(hi) = 4 ·

(
i−1∑
j=1

fi,j ∧ ej,i +
n+1∑

j=i+1

ei,j ∧ fj,i −
i∑

j=1

fi+1,j ∧ ej,i+1 −
n+1∑

j=i+2

ei+1,j ∧ fj,i+1

)

δ(ei) = ei ∧ hi + 2 ·

(
i−1∑
j=1

ej,i+1 ∧ fi,j +

n+1∑
j=i+2

fj,i+1 ∧ ei,j

)
for all i = 1, . . . , n , where x ∧ y := x ⊗ y − y ⊗ x and the symbols fh,k , eh,k , have the
following meaning:

ei,i+1 := ei , ei,j := − [ei,j−1, ej−1,j ] = [ej−1,j , ei,j−1] ∀ i < j − 1

fj+1,j := fj , fj,i := [fj−1,i, fj,j−1] = − [fj,j−1, fj−1,i] ∀ j > i+ 1
(1.1)

the symbol [ , ] denoting the usual commutator. In fact, if Mi,j (i, j ∈ { 1, 2, . . . , n+ 1 })
denotes the square matrix of size n + 1 with a 1 as (i, j)–th entry and all other entries
equal to 0, the recipe eh 7→ Mh,h+1 ∀h = 1, . . . , n (resp. fh 7→ Mh+1,h ∀h = 1, . . . , n )
gives an isomorphism among the Lie subalgebra of h generated by the eh’s (resp. fh’s) and
the Lie algebra n+ (resp. n+ ) of upper (resp. lower) triangular square matrix of size n+1;

then for h < k the element eh,k corresponds to the matrix (−1)
k−h−1

Mh,k , and it is the

root vector eγ — in the notation of [Ga] — associated to the positive root γ =
∑k−1

i=h αi

(the αi’s being the simple roots of SL(n+1)), and for h > k the element fh,k corresponds

to the matrix (−1)
k−h−1

Mh,k , and it is the root vector fγ — in the notation of [Ga] —

associated to the negative root −γ = −
∑h−1

i=k αi , hence corresponding to Mh,k. Actually,
one can also make different choices for such root vectors, but for the condition that when
one of them — say eγ — is multiplied by a scalar c ∈ k \ {0} then the opposite one —
fγ in our case — is multiplied by the inverse scalar c−1 ; hence the right-hand-side part in
the above formulae expressing δ does not change.

§ 2 The quantum function algebra F P
q [SL(n+ 1)]

Let UQ
q

(
sl(n+ 1)

)
be the quantized universal enveloping algebra of Drifel’d and Jimbo

(cf. [Ji] or [DL], or §5.2 later on). Let F P
q [SL(n+1)] be its restricted dual Hopf algebra: it

is known (cf. [APW], Appendix) that F P
q [SL(n + 1)] has the following presentation: it is
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the unital associative k(q)–algebra generated by {ρij | i, j = 1, . . . , n+ 1} with relations

ρijρik = q ρikρij , ρikρhk = q ρhkρik ∀ j < k, i < h

ρilρjk = ρjkρil , ρikρjl − ρjlρik =
(
q − q−1

)
ρilρjk ∀ i < j, k < l

detq(ρij) = 1

where detq denotes the so-called quantum determinant , defined as

detq(ρij) :=
∑

σ∈Sn+1

(−q)l(σ)ρ1,σ(1)ρ2,σ(2) · · · ρn+1,σ(n+1) .

The comultiplication ∆, the counit ε, and the antipode S are given by

∆(ρij) =
n∑

k=1

ρik ⊗ ρkj ∀ i, j = 1, . . . , n+ 1

ε(ρij) = δij ∀ i, j = 1, . . . , n+ 1

S(ρij) = (−q)j−i
detq

(
(ρhk)

k ̸=i
h ̸=j

)
∀ i, j = 1, . . . , n+ 1 .

§ 3 The integer forms F̃Q
q [SL(n+ 1)] and F̃ P

q [SL(n+ 1)]

Definition 3.1. We define F̃Q
q [SL(n + 1)] to be the k

[
q, q−1

]
-subalgebra (with 1) of

F P
q [SL(n+ 1)] generated by the elements

ϕi :=
ρii − ρi+1,i+1

q − 1
, rij :=

(
q − q−1

)δij−1
ρij ∀ i, j = 1, . . . , n+ 1.

3.2 Presentation of F̃Q
q [SL(n+1)]. The presentation of F P

q [SL(n+1)] above induces

a similar presentation of F̃Q
q [SL(n+1)]: it is the associative k

[
q, q−1

]
–algebra with 1 given

by generators ϕi , rij , and relations

rijrik = q rikrij , rikrhk = q rhkrik ∀ j < k, i < h

rilrjk = rjkril , rikrjl − rjlrik =
(
q − q−1

)1+δik+δjl−δil−δjk
rilrjk ∀ i < j, k < l

d̃etq(rij) = 1

(where d̃etq is defined as

d̃etq

(
(xrs)r,s=1,...,N

)
:=

∑
σ∈SN

(−q)l(σ)
(
q − q−1

)e(σ)
x1,σ(1)x2,σ(2) · · ·xN,σ(N)

where e(σ) :=
∑N

t=1(1− δt,σ(t) )

(q − 1)ϕi = rii − ri+1,i+1 ∀ i = 1, . . . , n

ϕirjk − rjkϕi = 0 ∀ j < i, k > i+ 1 , ∀ j > i+ 1, k < i

ϕirjk − rjkϕi = (q − 1)
1+δjk

(
1 + q−1

)2+δjk
(ri+1,krj,i+1 − rikrji) ∀ j < i, k < i
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ϕirjk − rjkϕi = −(q − 1)
1+δjk

(
1 + q−1

)2+δjk
(ri+1,krj,i+1 − rikrji) ∀ j > i+1, k > i+1

ϕirji − rjiϕi = −riirji + (q − 1)
(
1 + q−1

)2
rj,i+1ri+1,i ∀ j < i

ϕirji − rjiϕi = rjirii ∀ j > i+ 1

ϕirj,i+1 − rj,i+1ϕi = ri+1,i+1rj,i+1 ∀ j < i

ϕirj,i+1 − rj,i+1ϕi = −rj,i+1ri+1,i+1 + (q − 1)
(
1 + q−1

)2
ri,i+1rji ∀ j < i

ϕirij − rijϕi = −riirij + (q − 1)
(
1 + q−1

)2
ri,i+1ri+1,j ∀ j < i

ϕirij − rijϕi = rijrii ∀ j > i+ 1

ϕiri+1,j − ri+1,jϕi = ri+1,i+1ri+1,j ∀ j < i

ϕiri+1,j − ri+1,jϕi = − ri+1,jri+1,i+1 + (q − 1)
(
1 + q−1

)2
ri,jri+1,i ∀ j > i+ 1

ϕirii− riiϕi = (q − 1)
2(
1 + q−1

)3
ri+1,iri,i+1 ∀ i

ϕiri+1,i+1− ri+1,i+1ϕi = (q − 1)
2(
1 + q−1

)3
ri+1,iri,i+1 ∀ i

ϕiri,i+1 − ri,i+1ϕi = ri,i+1rii + ri+1,i+1ri,i+1 ∀ i
ϕiri+1,i − ri+1,iϕi = ri+1,irii + ri+1,i+1ri+1,i ∀ i

ϕiϕj − ϕjϕi =

= (q−1)
(
1+q−1

)3(
rijrji + ri+1,j+1rj+1,i+1 − ri,j+1rj+1,i − (1−δi+1,j) ri+1,jrj,i+1

)
∀ i, j

Moreover, from the very definitions we also get that F̃Q
q [SL(n+1)] is a Hopf subalgebra

of F P
q [SL(n+ 1)], with Hopf structure uniquely determined by the following formulae:

∆(rij) = rii ⊗ rij + rij ⊗ rjj + (q − 1)
(
1 + q−1

) n+1∑
k=1
k ̸=i,j

rik ⊗ rkj ∀ i 6= j

∆(rii) = rii ⊗ rii + (q − 1)
2(
1 + q−1

)2 n+1∑
k=1
k ̸=i

rik ⊗ rkj ∀ i

∆(ϕi) = ri,i ⊗ϕi+ϕi⊗ ri+1,i+1 +(q− 1)
(
1 + q−1

)2n+1∑
k=1
k ̸=i

ri,k ⊗ rk,i −
n+1∑
k=1

k ̸=i+1

ri+1,k ⊗ rk,i+1

 ∀ i

S(rij) = (−q)j−i
d̃etq

(
(rhk)

k ̸=i
h ̸=j

)
∀ i, j

S(ϕi) = −r1,1r2,2 · · · ri−1,i−1ϕiri+2,i+2 · · · rn+1,n+1+

+
∑

σ∈Sn\{1}

(−q)l(σ)(q − 1)
e(σ)−1(

1 + q−1
)e(σ) n+1∏

j=1
j ̸=i+1

rj,σ(j) −
n+1∏
j=1
j ̸=i

rj,σ(j)

 ∀ i

ε(rij) = δij , ε(ϕi) = 0 ∀ i, j
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Remark 3.3. It is clear by definition that F̃Q
q [SL(n+1)] is a k

[
q, q−1

]
–integer form of

F P
q [SL(n+1)]: in other words, it is a Hopf k

[
q, q−1

]
–subalgebra of F P

q [SL(n+1)] which is

flat as a k
[
q, q−1

]
–module and is such that k(q)⊗k [q,q−1] F̃

Q
q [SL(n+1)] ∼= F P

q [SL(n+1)]
as Hopf k(q)–algebras.

Definition 3.4. We define F̃ P
q [SL(n + 1)] to be the k

[
q, q−1

]
-subalgebra (with 1) of

F P
q [SL(n+ 1)] generated by the elements

ψi :=
ρ11ρ22 · · · ρii − 1

q − 1
, rij :=

(
q − q−1

)δij−1
ρij ∀ i, j = 1, . . . , n+ 1.

3.5 Presentation of F̃ P
q [SL(n+1)]. The presentation of F P

q [SL(n+1)] above induces a

similar presentation of F̃ P
q [SL(n+1)]: in fact the latter is the associative k

[
q, q−1

]
–algebra

with 1 given by generators ψi , rij , and relations

rijrik = q rikrij , rikrhk = q rhkrik ∀ j < k, i < h

rilrjk = rjkril , rikrjl − rjlrik =
(
q − q−1

)1+δik+δjl−δil−δjk
rilrjk ∀ i < j, k < l

d̃etq(rij) = 1

(q − 1)ψi = r11r22 · · · rii − 1 ∀ i = 1, . . . , n+ 1

ψirjk = q1−η(i,j,k)−ζ(i,j,k)rjkψi + θ(i, j, k) · rjk + (q − 1)
1+δjk

(
1 + q−1

)2+δjk ·

·
i∑

s=1

(
η(i, j, k)− ζ(i, j, k)

)
r11 · · · rs−1,s−1rskrjsrs+1,s+1 · · · rii ∀ i, j, k

(where θ(i, j, k) := 1 ∀ j ≤ i < k or k ≤ i < j , η(i, j, k) := 1 ∀ i < j ∧ k , ζ(i, j, k) := 1
∀ i ≥ j ∨ k , whilst θ(i, j, k), η(i, j, k) and ζ(i, j, k) are zero in the other cases)

ψn+1 = −
∑

σ∈Sn+1

σ ̸=id

(−q)l(σ)(q − 1)
e(σ)−1(

1 + q−1
)e(σ)

r1,σ(1)r2,σ(2) · · · rn+1,σ(n+1)

ψiψj − ψjψi = (q − 1)
(
1 + q−1

)3 ·
·

j∑
k=i+1

i∑
s=1

r11r22 · · · rk−1,k−1 ·r11r22 · · · rs−1,s−1rskrksrs+1,s+1 · · · rii ·rk+1,k+1rk+2,k+2 · · · rjj ∀ i<j

Furthermore, from the very definitions we also get that F̃ P
q [SL(n+1)] is a Hopf subalge-

bra of F P
q [SL(n+1)], with Hopf structure uniquely determined by the following formulae:

∆(rij) = rii ⊗ rij + rij ⊗ rjj + (q − 1)
(
1 + q−1

) n+1∑
k=1
k ̸=i,j

rik ⊗ rkj ∀ i 6= j

∆(rii) = rii ⊗ rii + (q − 1)
2(
1 + q−1

)2 n+1∑
k=1
k ̸=i

rik ⊗ rkj ∀ i



QUANTUM FUNCTION ALGEBRAS AS QUANTUM ENVELOPING ALGEBRAS 7

∆(ψi)=
(
1 + q−1

)
·
∑
s

(
q − q−1

)2·N(s)−1
i∏

k=1

rk,s(k)⊗rs(k),k + ψi⊗r1,1r2,2 · · · ri,i + 1⊗ψi ∀ i

(where s ranges over all maps s: {1, 2, . . . , i} → {1, 2, . . . , n + 1} such that s(j) 6= j for

some j ∈ {1, 2, . . . , i}, and N(s) :=
∑i

j=1

(
1− δj,s(j)

)
)

S(rij) = (−q)j−i
d̃etq

(
(rhk)

k ̸=i
h ̸=j

)
∀ i, j

S(ψi) = −ψi +O(q − 1) ∀ i
ε(rij) = δij , ε(ψi) = 0 ∀ i, j

where O(q − 1) denotes some element of (q − 1) · F̃ P
q [SL(n+ 1)] . To give an example, we

show that S(ψi) = −ψi +O(q − 1). By definition we have

S(ψi) = S

(
r11r22 · · · rii − 1

q − 1

)
=

S (rii) · · ·S (r22)S (r11)− 1

q − 1
;

but

S (rjj) = d̃etq

(
(rhk)h,k ̸=j

)
=

= r11r22 · · · rj−1,j−1 · rj+1,j+1 · · · rn+1,n+1 +O
(
(q − 1)

2
)
=

n+1∏
s=1
s ̸=j

rss +O
(
(q − 1)

2
)

for all j, and

1 = d̃etq (rhk) = r11r22 · · · rn+1,n+1 +O
(
(q − 1)

2
)

therefore

S(ψi) =

∏n+1

s=1
s ̸=i

rss ·
∏n+1

s=1
s ̸=i−1

rss · · ·
∏n+1

s=1
s ̸=2

rss ·
∏n+1

s=1
s ̸=1

rss −
(∏n+1

s=1 rss

)i
q − 1

+O (q − 1) ;

now using the fact that rhhrkk = rkkrhh +O
(
(q − 1)

3
)

we get

S(ψi) =
n+1∏
s=1
s ̸=i

rss ·
n+1∏
s=1

s ̸=i−1

rss · · ·
n+1∏
s=1
s ̸=2

rss ·
n+1∏
s=1
s ̸=1

rss ·
1− r11r22 · · · rii

q − 1
+O (q − 1)

and finally, since rjj = 1 + O (q − 1) (as one easily gets from relations (q − 1)ψs =
r11r22 · · · rss − 1 ), we find

S(ψi) =
1− r11r22 · · · rii

q − 1
+O (q − 1) = −ψi +O (q − 1) , q.e.d.
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Remark 3.6. Here again, it is clear — by definition and by the description of the

Hopf structure — that F̃ P
q [SL(n+ 1)] is a k

[
q, q−1

]
–integer form of F P

q [SL(n+ 1)].

Definition 3.7. We define F̃q[SL(n + 1)] to be the k
[
q, q−1

]
-subalgebra (with 1) of

F P
q [SL(n+ 1)] generated by the elements

χi :=
ρii − 1

q − 1
, rij :=

(
q − q−1

)δij−1
ρij ∀ i, j = 1, . . . , n+ 1.

3.8 Presentation of F̃q[SL(n+ 1)]. Again, we have a presentation of F̃q[SL(n+ 1)]:
it is the associative k

[
q, q−1

]
–algebra with 1 given by generators χi , rij , and relations

rijrik = q rikrij , rikrhk = q rhkrik ∀ j < k, i < h

rilrjk = rjkril , rikrjl − rjlrik =
(
q − q−1

)1+δik+δjl−δil−δjk
rilrjk ∀ i < j, k < l

d̃etq(rij) = 1

(q − 1)χi = rii − 1 ∀ i = 1, . . . , n+ 1

χirjk − rjkχi = 0 ∀ j < i < k , ∀ j > i > k

χirji − rjiχi = −riirji ∀ j < i

χirji − rjiχi = +riirji ∀ j > i

χirii − riiχi = 0 ∀ i
χirik − rikχi = −riirik ∀ k < i

χirik − rikχi = +riirik ∀ k > i

χirjk − rjkχi = −(q − 1)
2(
1 + q−1

)3
riirik ∀ j, k < i

χirjk − rjkχi = +(q − 1)
2(
1 + q−1

)3
riirik ∀ j, k > i

χiχj − χjχi = (1− δij) · (q − 1)
(
1 + q−1

)3
rijrji ∀ i ≤ j

n+1∑
i=1

r1,1r2,2 · · · ri−1,i−1χi =

=
∑

σ∈Sn+1\{1}

(−q)l(σ) (q − 1)
e(σ)−1(

1 + q−1
)e(σ)

r1,σ(1)r2,σ(2) · · · rn+1,σ(n+1)

A straightforward verification shows that F̃q[SL(n + 1)] is also a Hopf subalgebra of
F P
q [SL(n+ 1)], whose Hopf structure is given by formulae

∆(rij) = rii ⊗ rij + rij ⊗ rjj + (q − 1)
(
1 + q−1

) n+1∑
k=1
k ̸=i,j

rik ⊗ rkj ∀ i 6= j

∆(rii) = rii ⊗ rii + (q − 1)
2(
1 + q−1

)2 n+1∑
k=1
k ̸=i

rik ⊗ rkj ∀ i
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∆(χi) = rii ⊗ χi + (q − 1)
(
1 + q−1

)2 n+1∑
k=1
k ̸=i

ri,k ⊗ rk,i ∀ i

S(rij) = (−q)j−i
d̃etq

(
(rhk)

k ̸=i
h ̸=j

)
∀ i, j

S(χi) = −r1,1r2,2 · · · ri−1,i−1χiri+2,i+2 · · · rn+1,n+1+

+
∑

σ∈Sn\{1}

(−q)l(σ)(q − 1)
e(σ)−1(

1 + q−1
)e(σ) n+1∏

j=1
j ̸=i

σ(j) ̸=i

rj,σ(j)−

−
∑

σ∈Sn+1\{1}

(−q)l(σ)(q − 1)
e(σ)−1(

1 + q−1
)e(σ) n+1∏

j=1

rj,σ(j) ∀ i

ε(rij) = δij , ε(χi) = 0 ∀ i, j .

Remark 3.9. By definition and by the description of its Hopf structure we see at once

that F̃q[SL(n+ 1)] is a k
[
q, q−1

]
–integer form of F P

q [SL(n+ 1)].

§ 4 The main theorem: specialization results

Since the integer forms we are dealing with are Hopf algebras over the ring k
[
q, q−1

]
,

we can consider their specialization at q = 1 , namely the Hopf k–algebras

F̃Q

1 [SL(n+ 1)] := F̃Q

q [SL(n+ 1)]
/
(q − 1) F̃Q

q [SL(n+ 1)] ,

F̃ P

1 [SL(n+ 1)] := F̃ P

q [SL(n+ 1)]
/
(q − 1) F̃ P

q [SL(n+ 1)] ,

F̃1[SL(n+ 1)] := F̃q[SL(n+ 1)]
/
(q − 1) F̃q[SL(n+ 1)] .

Our main result is the following:

Theorem 4.1. The Hopf k–algebras F̃Q

1 [SL(n+1)], F̃ P
1 [SL(n+1)], and F̃1[SL(n+1)], are

Poisson Hopf coalgebras isomorphic to U(h). In other words, F̃Q
q [SL(n+1)], F̃ P

q [SL(n+1)],

and F̃q[SL(n+ 1)] all specialize to the Poisson Hopf coalgebra U(h).

Proof. Consider F̃Q

1 [SL(n+ 1)]; it inherits from F̃Q
q [SL(n+ 1)] the following presentation

(which is obtained from that of F̃Q
q [SL(n+1)] by setting q = 1 ): it is the unital associative

k–algebra with generators rij , ϕk ( i, j = 1, . . . , n+ 1; k = 1, . . . , n ) and relations

rijrik = rikrij , rikrhk = rhkrik ∀ j < k, i < h

rilrjk = rjkril , rikrjl − rjlrik = (0)
1+δik+δjl−δil−δjk rilrjk ∀ i < j, k < l

r1,1r2,2 · · · rn+1,n+1 = 1

0 = rii − ri+1,i+1 ∀ i = 1, . . . , n
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ϕirjk − rjkϕi = 0 ∀ j < i, k > i+ 1 , ∀ j > i+ 1, k < i

ϕirjk − rjkϕi = 0 ∀ j < i, k < i

ϕirjk − rjkϕi = 0 ∀ j > i+ 1, k > i+ 1

ϕirji − rjiϕi = −riirji ∀ j < i

ϕirji − rjiϕi = rjirii ∀ j > i+ 1

ϕirj,i+1 − rj,i+1ϕi = ri+1,i+1rj,i+1 ∀ j < i

ϕirj,i+1 − rj,i+1ϕi = −rj,i+1ri+1,i+1 ∀ j < i

ϕirij − rijϕi = −riirij ∀ j < i

ϕirij − rijϕi = rijrii ∀ j > i+ 1

ϕiri+1,j − ri+1,jϕi = ri+1,i+1ri+1,j ∀ j < i

ϕiri+1,j − ri+1,jϕi = −ri+1,jri+1,i+1 ∀ j > i+ 1

ϕirii − riiϕi = 0 ∀ i
ϕiri+1,i+1 − ri+1,i+1ϕi = 0 ∀ i

ϕiri,i+1 − ri,i+1ϕi = ri,i+1rii + ri+1,i+1ri,i+1 ∀ i
ϕiri+1,i − ri+1,iϕi = ri+1,irii + ri+1,i+1ri+1,i ∀ i

ϕiϕj − ϕjϕi = 0 ∀ i, j

Moreover, its Hopf structure is given by

∆(rij) = rii ⊗ rij + rij ⊗ rjj ∀ i 6= j

∆(rii) = rii ⊗ rii ∀ i
∆(ϕi) = rii ⊗ ϕi + ϕi ⊗ ri+1,i+1 ∀ i

S(rij) = −rij ·
n+1∏
k=1
k ̸=i,j

rk,k ∀ i, j

S(ϕi) = −r1,1r2,2 · · · ri−1,i−1ϕiri+2,i+2 · · · rn+1,n+1 ∀ i
ε(rij) = δij , ε(ϕi) = 0 ∀ i, j .

In particular we have that r1,1 = r2,2 = · · · = rn+1,n+1 , hence r n+1
i,i = 1 for all i,

whence ri,i ∈ k (k is algebraically closed); but then ∆(rii) = rii ⊗ rii implies rii = 1 .

Now relations rikrjl − rjlrik = (0)
1+δik+δjl−δil−δjk rilrjk (i < j, k < l) gives in particular

ri,j−1rj−1,j − rj−1,jri,j−1 = (0)
δi,j−1 ri,jrj−1,j−1 (i < j), and similarly ri,j+1rj+1,j −

rj+1,jri,j+1 = (0)
δi,j+1 ri,jrj+1,j+1 (i < j), whence we deduce that the elements ri,i+1,

ri+1,i (i = 1, . . . , n) together with the ϕj ’s are enough to generate F̃Q

1 [SL(n+ 1)].
Now from the relations above one finds that for the generators ri,i+1, ϕi, ri+1,i (i =

1, . . . , n) exactly the same relations hold than we have in §1 for the generators −fi, hi, ei, of

U(h): therefore F̃Q

1 [SL(n+1)] and U(h), having the same presentation, are isomorphic as

k–algebras. Nevertheless, the formulae for the values of Hopf operations (of F̃Q

1 [SL(n+1)])
on the generators ri,i+1, ϕi, ri+1,i are exactly the same — when taking into account that
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rii = 1 for all i — than similar formulae for the generators −fi, hi, ei, of U(h): thus the

k–algebra isomorphism Φ : F̃Q

1 [SL(n+ 1)] −→ U(h) given by

Φ : ri,i+1 7→ −fi , ϕi 7→ hi , ri+1,i 7→ +ei , (4.1)

is even one of Hopf algebras. In particular, the comultiplication of F̃Q

1 [SL(n+1)] is cocom-

mutative: hence a Poisson cobracket δ: F̃Q

1 [SL(n+1)] −→ F̃Q

1 [SL(n+1)]⊗ F̃Q

1 [SL(n+1)]

is canonically defined by δ
(
x
∣∣
q=1

)
:= (∆−∆op)(x)

q−1

∣∣∣∣
q=1

.

In order to compare the latter Poisson cobracket with the one on U(h) given from

scratch, we have to unravel the preimage in F̃Q

1 [SL(n+ 1)] of root vectors in U(h).

We already saw that rii = 1 ( i = 1, . . . , n + 1 ) in F̃Q

1 [SL(n + 1)]; from this fact and

the relations rikrjl − rjlrik = (0)
1+δik+δjl−δil−δjk rilrjk ( i < j, k < l ), for j = k one gets

ril = +
[
rij , rjl

]
∀ i < j < l ,

and similarly for i = l

rjk = −
[
rji , rik

]
∀ j > i > k ;

in particular

rij = +
[
ri,j−1 , rj−1,j

]
= −

[
rj−1,j , ri,j−1

]
∀ i < j − 1 ,

rji = −
[
rj,j−1 , rj−1,i

]
= +

[
rj−1,i , rj,j−1

]
∀ j > i+ 1 .

(4.2)

Comparing (4.2) and (1.1), by a simple induction one gets from (4.1) that

Φ
(
rij
)
= (−1)

j−i
fji , Φ

(
rji
)
= (−1)

j−i−1
eij , ∀ i < j . (4.3)

Now, a straightforward computation gives

δ(ri,i+1) = ϕi ⊗ ri,i+1 − ri,i+1 ⊗ ϕi + 2 ·
n+1∑
j=1

î, î+1
(
ri,j ⊗ rj,i+1 − rj,i+1 ⊗ ri,j

)
δ(ϕi) = 4 ·

(
n+1∑
j=1

(
ri,j ⊗ rj,i − rj,i ⊗ ri,j

)
−

n+1∑
j=1

(
ri+1,j ⊗ rj,i+1 − rj,i+1 ⊗ ri+1,j

))

δ(ri+1,i) = ri+1,i ⊗ ϕi − ϕi ⊗ ri+1,i + 2 ·
n+1∑
j=1

î, î+1
(
ri+1,j ⊗ rj,i − rj,i ⊗ ri+1,j

)
(for all i = 1, . . . , n ), where a superscript ĥmeans that the index hmust be discarded; then
it is a simple task of rewriting (using (4.3)) to see that these formulae correspond — via

Φ — to the analogous ones for U(h). Thus the isomorphism Φ : F̃Q

1 [SL(n+1)] −→ U(h)

above is one of Poisson Hopf coalgebras; so we have proved the claim for F̃Q

1 [SL(n+ 1)].
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As for the other two algebras, we shall shortly conclude relying on the first one. In fact

F̃ P
1 [SL(n + 1)] and F̃1[SL(n + 1)] differ from F̃Q

1 [SL(n + 1)] only for ”toral” generators:
the ψi’s, resp. the χi’s, instead of the ϕi’s. Now, definitions give at once

ψi = χ1 + r1,1χ2 + r1,1r2,2χ3 + · · ·+ r1,1r2,2 · · · ri−1,i−1χi ∀ i = 1, . . . , n+ 1

so that, since rj,j ≡ 1 mod (q − 1) , we have that {ψ1, . . . , ψn+1} modulo (q − 1) and
{χ1, . . . , χn+1} modulo (q − 1) span the same k–vector space, whence

F̃ P

1 [SL(n+ 1)] = F̃1[SL(n+ 1)] .

Furthermore, definitions give also

ϕi = χi − χi+1 ∀ i = 1, . . . , n

hence the k–span of {ϕ1, . . . , ϕn+1} modulo (q−1) is contained in the k–span of {χ1, . . . ,
χn+1} modulo (q − 1) ; moreover, the relation

n+1∑
i=1

r1,1r2,2 · · · ri−1,i−1χi =

=
∑

σ∈Sn+1\{1}

(−q)l(σ)(q − 1)
e(σ)−1(

1 + q−1
)e(σ)

r1,σ(1)r2,σ(2) · · · rn+1,σ(n+1)

for q = 1 turns into
χ1 + · · ·+ χn+1 = 0 ;

thus the k–span of {ϕ1, . . . , ϕn+1} modulo (q − 1) and the k–span of {χ1, . . . , χn+1}
modulo (q − 1) have both dimension n, hence they coincide. We conclude that

F̃Q

1 [SL(n+ 1)] = F̃1[SL(n+ 1)] = F̃ P

1 [SL(n+ 1)]

whence the claim. □

§ 5 F̃M
q [SL(n+ 1)] as approximation of FM [SL(n+ 1)]

5.1 Motivations. To explain the definitions of the integer forms of §4 some comments
are in order. We resume the analysis in [Ga], using the same notation, and make it more
explicit for G = SL(n+ 1) .

Given the quantized universal enveloping algebra UP
q

(
sl(n + 1)

)
, resp. UQ

q

(
sl(n + 1)

)
,

there exists a k
[
q, q−1

]
–integer form (as Hopf algebra) UP

(
sl(n+ 1)

)
, resp. UP

(
sl(n+ 1)

)
(cf. [Ga], §3.4); then we define (cf. [Ga], §4.3)

FQ[SL(n+ 1)] :=
{
f ∈ FQ

q [SL(n+ 1)]
∣∣∣ 〈f,UP

(
sl(n+ 1)

)〉
⊆ k

[
q, q−1

] }
FP [SL(n+ 1)] :=

{
f ∈ F P

q [SL(n+ 1)]
∣∣∣ 〈f,UQ

(
sl(n+ 1)

)〉
⊆ k

[
q, q−1

] }
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From the very definition of UP , one sees that F̃Q
q [SL(n + 1)] ⊆ FQ[SL(n + 1)] , and

similarly, F̃ P
q [SL(n+ 1)] ⊆ FP [SL(n+ 1)] . But even more, we shall prove in this section

that F̃Q
q [SL(n+1)], resp. F̃ P

q [SL(n+1)], is a ”good enough approximation” of FQ[SL(n+

1)], resp. FP [SL(n+ 1)], in the sense that they have the same specialization at q = 1.
One of the main points in [Ga] is the construction of a (topological) Hopf algebra UP

q (h),

with a k
[
q, q−1

]
–integer form UP (h) which specializes to U(h) for q → 1. The link with

quantum function algebras is the existence of an embedding of (topological) Hopf algebras

ξP : F
P

q [SL(n+ 1)] ↪−−−→ UP

q (h) ;

via this embedding one has ξP (FP [SL(n+ 1)]) ⊆ UP (h) . In addition, one has also

ξP (FP [SL(n+ 1)])
∣∣∣
q=1

= UP (h)
∣∣∣
q=1

, so that UP (h)
q→1−−−→U(h) implies

FP [SL(n+ 1)]
q→1−−−→U(h) .

The embedding ξP : F
P
q [SL(n+ 1)] ↪→ UP

q (h) is the composition of an embedding

µP :F
P

q [G]
∆−→ F P

q [G]⊗ F P

q [G]
ρ+⊗ρ−−−−−→ F P

q [B+]⊗ F P

q [B−]
ϑ+⊗ϑ−−−−−−→ UP

q (b−)op ⊗ UP

q (b+)op

(where G = SL(n + 1) , and B± and b± denotes as usual Borel subgroups and Borel
subalgebras) and an isomorphism ν −1

P of a suitable subalgebra of UP
q (b−)op ⊗ UP

q (b+)op
(containing µP

(
F P
q [SL(n+ 1)]

)
) with UP

q (h); hereafter, Hop will denote the (unique) Hopf
algebra with the same structure of H but for comultiplication, which is turned into the
opposite one. Everything holds as well with P and Q exchanging their roles; on the
other hand, since by definition is FQ

q [SL(n + 1)] ⊆ F P
q [SL(n + 1)] , UQ

q (h) ⊆ UP
q (h) ,

and ξQ = ξP
∣∣
FQ

q [SL(n+1)]
, µQ = µP

∣∣
FQ

q [SL(n+1)]
, it will be enough to study µP . To this

end, we have to revisit the definition of UM
q (sl(n+ 1)) and its quantum Borel subalgebras

UM
q (b±) (M = Q,P ), and the construction of quantum root vectors: this will be done

in next sections. Here we recall the definition of F P
q [B+] and F P

q [B−] and the canonical
epimorphisms ρ+ and ρ− .
F P
q [B+], resp. F

P
q [B−], is the unital associative k(q)–algebra generated by {ρij | i, j =

1, . . . , n+ 1; i ≤ j}, resp. by {ρij | i, j = 1, . . . , n+ 1; i ≥ j}, with relations

ρijρik = q ρikρij , ρikρhk = q ρhkρik ∀ j < k, i < h

ρilρjk = ρjkρil , ρikρjl − ρjlρik =
(
q − q−1

)
ρilρjk ∀ i < j, k < l

ρ1,1ρ2,2 · · · ρn+1,n+1 = 1

for either algebras. These are Hopf algebras too, with comultiplication given by

∆(ρij) =

n∑
k=i

ρik ⊗ ρkj ∀ i, j for F P

q [B+] ,

∆(ρij) =

j∑
k=1

ρik ⊗ ρkj ∀ i, j for F P

q [B−] ,
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counit by
ε(ρij) = δij ∀ i, j

for either algebras, and antipode by

S(ρij) = (−q)j−i
det+q

(
(ρhk)

k ̸=i
h ̸=j

)
∀ i, j for F P

q [B+] ,

S(ρij) = (−q)j−i
det−q

(
(ρhk)

k ̸=i
h ̸=j

)
∀ i, j for F P

q [B−] ,

where det+q , resp. det
−
q , is the expression that one gets simply by setting ρij ≡ 0 for all

i > j , resp. i < j , in detq .
By the very definitions, two Hopf algebra epimorphisms exist

ρ+ : F P

q [SL(n+ 1)] −−−↠ F P

q [B+] , ρ− : F P

q [SL(n+ 1)] −−−↠ F P

q [B−] ,

given by
ρ+ : ρij 7→ ρij ∀ i ≤ j , ρij 7→ 0 ∀ i > j

ρ− : ρij 7→ ρij ∀ i ≥ j , ρij 7→ 0 ∀ i < j .

5.2 The quantum algebras Uq

(
gl(n + 1)

)
, Uq

(
sl(n + 1)

)
, and UP

q (b±). We recall

(cf. for instance [GL]) the definition of the quantized universal enveloping algebra Uq

(
gl(n+

1)
)
: it is the associative algebra with 1 over k(q) with generators

F1, F2, . . . , Fn, G
±1
1 , G±1

2 , . . . , G±1
n , G±1

n+1, E1, E2, . . . , En

and relations

GiG
−1
i = 1 = G−1

i Gi , G±1
i G±1

j = G±1
j G±1

i ∀ i, j

GiFjG
−1
i = qδi,j+1−δi,jFj , GiEjG

−1
i = qδi,j−δi,j+1Ej ∀ i, j

EiFj − FjEi = δi,j
GiG

−1
i+1 −G−1

i Gi+1

q − q−1
∀ i, j

EiEj = EjEi , FiFj = FjFi ∀ i, j: |i− j| > 1

E2
i Ej −

(
q + q−1

)
EiEjEi + EjE

2
i = 0 ∀ i, j: |i− j| = 1

F 2
i Fj −

(
q + q−1

)
FiFjFi + FjF

2
i = 0 ∀ i, j: |i− j| = 1 .

Moreover, Uq

(
gl(n+ 1)

)
has a Hopf algebra structure, given by

∆ (Fi) = Fi ⊗G−1
i Gi+1 + 1⊗ Fi , S (Fi) = −FiGiG

−1
i+1 , ε (Fi) = 0 ∀ i

∆
(
G±1

i

)
= G±1

i ⊗G±1
i , S

(
G±1

i

)
= G∓1

i , ε
(
G±1

i

)
= 1 ∀ i

∆(Ei) = Ei ⊗ 1 +GiG
−1
i+1 ⊗ Ei , S (Ei) = −G−1

i Gi+1Ei , ε (Ei) = 0 ∀ i .

The algebras UP
q

(
sl(n+1)

)
and UQ

q

(
sl(n+1)

)
— defined as in [Ga], §3 — can be realized

as Hopf subalgebras or quotients of Uq

(
gl(n+ 1)

)
. Namely, define elements

Li := G1 · · ·Gi , L−1
i := G−1

1 · · ·G−1
i , Ki := GiG

−1
i+1 , K−1

i := G−1
i Gi+1
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for all i = 1, . . . , n . Then Ln+1 is a central element of Uq

(
gl(n + 1)

)
, and UP

q

(
sl(n + 1)

)
is (isomorphic to) the subalgebra of Uq

(
gl(n+1)

)
generated by {F1, . . . , Fn, L

±1
1 , . . . , L±1

n ,
E1, . . . , En} — this corresponds to sl(n + 1) ↪→ gl(n + 1) — and to the quotient of
Uq

(
gl(n+ 1)

)
modulo the ideal (which is a Hopf ideal) generated by (Ln+1 − 1) — which

corresponds to sl(n + 1) ∼= gl(n + 1)
/
(In+1) = gl(n + 1)

/
Z
(
gl(n + 1)

)
. Similarly, the

algebra UQ
q

(
sl(n + 1)

)
is (isomorphic to) the subalgebra of Uq

(
gl(n + 1)

)
generated by

{F1, . . . , Fn,K
±1
1 , . . . ,K±1

n , E1, . . . , En} — this again corresponds to sl(n+1) ↪→ gl(n+1) .
A last word about ”toral elements” Gi, Li, Ki. In the ”classical” framework we have

toral elements hi = hαi
in the (diagonal) Cartan subalgebra of sl(n + 1)

(
⊆ gl(n + 1)

)
,

given by hi = Mi,i − Mi+1,i+1 (where Mr,s denotes a square matrix of size n + 1 as
in §2); similarly, letting `i = M11 + M22 + · · · + Mii , we have hi = −`i−1 + 2`i −
`i+1 . Now, Gi is the q–analogue of Mi,i — in fact, on the standard representation it acts

exactly as exp
(
hMi,i

)
, where h := log(q) — therefore Ki := GiG

−1
i+1 = exp

(
hMi,i

)
·

exp
(
hMi+1,i+1

)−1
= exp

(
h (Mi,i −Mi+1,i+1)

)
= exp

(
h · hi

)
is exactly the q–analogue of

hi; similarly, Li is the q–analogue of `i.
As for quantum Borel subalgebras, we recall that UP

q (b+), resp. U
P
q (b−), is — by defini-

tion — the subalgebra of UP
q

(
sl(n+1)

)
generated by {L1, . . . , Ln}∪{E1, . . . , En} , resp. by

{L1, . . . , Ln}∪{F1, . . . , Fn} ; similar definitions occur for UQ
q (b±), withKi’s instead of Li’s.

All these are in fact Hopf subalgebras.
Finally, there exist Hopf algebra isomorphisms

ϑ+ : F P

q [B+]
∼=−−−→UP

q (b−)op , ϑ− : F P

q [B−]
∼=−−−→UP

q (b+)op

which are uniquely determined by

ϑ+ (ρii) := Li−1L
−1
i = G−1

i , ϑ+ (ρi,i+1) := −F iLiL
−1
i+1 = −F iG

−1
i+1 , ∀ i

ϑ− (ρii) := L−1
i−1Li = Gi , ϑ− (ρi+1,i) := +L−1

i Li+1Ei = +Gi+1Ei , ∀ i

(here we set L0 := 1 , Ln+1 := 1 ), where F i :=
(
q − q−1

)
Fi , Ei :=

(
q − q−1

)
Ei .

5.3 Quantum root vectors. Quantum root vectors are essential in [Ga]: according
to a general recipe provided by Lusztig, they are constructed by means of braid group
operators Ti (i = 1, . . . , n), which in our case are given by (with the normalization of [Ga])

Ti:


Fj 7→ −K−1

j Ej , Kj 7→ K−1
j , Ej 7→ −FjKj , if |i− j| = 0

Fj 7→ Fj , Kj 7→ Kj , Ej 7→ Ej , if |i− j| > 1

Fj 7→ −FjFi + qFiFj , Kj 7→ KiKj , Ej 7→ −EiEj + q−1EjEi , if |i− j| = 1

Thus letting [x, y]q := xy − q yx be the q–bracket of x and y we have

Ti(Fj) = q [Fi, Fj ]q−1 = −[Fj , Fi]q , Ti(Ej) = −[Ei, Ej ]q−1 = q−1[Ej , Ei]q for |i−j| = 1.

Consider now the case G = SL(n + 1) , g = sl(n + 1) . We want to compare Lusztig’s
construction of quantum root vectors with another one (which is used, for instance, in [Ji]
and in [Ta]).
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In the Lie algebra sl(n+ 1) we have matrices Mij (i, j ∈ {1, 2, . . . , n}, i < j) such that

Mi,i+1 = ei , [Mik,Mkj ] =Mij , ∀ i < k < j

where ei denotes the i–th Chevalley generator of the positive part of sl(n + 1), the Lie
subalgebra n+ of strictly upper triangular matrices. Moreover, these matrices are root
vectors, i. e. weight vectors — for the adjoint action — with roots as weights: namely, Mij

has weight the positive root α(i, j) := εi − εj , where εk denotes the (k, k)–th coordinate
function on matrices. Notice that the same is true for −[Mik,Mkj ] = −Mij . Then the
level of Mij , defined to be j− i, is the height of the root α(i, j). A similar situation occurs
for the subalgebra n− of strictly lower triangular matrices, with elements Mij (i > j) as
root vectors of weight the negative roots α(i, j) of height j−i. In particular,

{
Mij

∣∣ i < j
}

is a basis of n+, and
{
Mij

∣∣ i > j
}
is a basis of n−.

The situation described above can be quantized. In fact in the standard representation
of UP

q

(
sl(n + 1)

)
or UQ

q

(
sl(n + 1)

)
we still have Ei 7→ Mi,i+1 , i.e. Ei acts as the matrix

Mi,i+1; then we define (for all i < j − 1 )

Ei,i+1 := Ei , Ei,j := −[Ei,j−1, Ej−1,j ]q−1 = q−1[Ej−1,j , Ei,j−1]q

Fj+1,j := Fi , Fj,i := q [Fj−1,i, Fj,j−1]q−1 = −[Fj,j−1, Fj−1,i]q
(5.1)

(notice the occurrence of the ”−” sign, which does not appear in [Ji], nor in [Ta]); then
remark also that in the standard representation of UP

q

(
sl(n+1)

)
or UQ

q

(
sl(n+1)

)
we have

Eij 7→ (−1)
j−i−1

Mij and Fji 7→ (−1)
j−i−1

Mji , for all i < j .
Now look at roots, for instance positive ones: they form the set

R+ :=
{
α(i, j)

∣∣ i, j = 1, . . . , n+ 1; i < j
}
;

if we set n(i, j) := j − i+
∑i−1

h=1(n− h) , we obtain a total ordering of R+ by

α(i, j) � α(h, k) ⇐⇒ n(i, j) ≤ n(h, k)

so that R+ =
{
α1, α2, . . . , αN

}
, with α(i, j) =: αn(i,j) , N :=

(
n+1
2

)
.

The first key point is the following lemma, whose proof is trivial:

Lemma. The previously defined ordering of R+ is convex, that is

α, β, α+ β ∈ R+, α � β =⇒ α � α+ β � β . □

By a theorem of Papi (cf. [Pa]) we know that every total ordering of R+ which is convex
is associated to a unique minimal expression of w0 = (nn−1 . . . 3 2 1) , the longest element
of the Weyl group Sn of sl(n+1): this means that, if w0 = si1si2 · · · siN−1

siN is a minimal
expression of w0, then the ordering of R+ is given by

α1 = αi1 , α
2 = si1

(
αi2

)
, . . . , αk = si1si2 · · · sik−1

(
αik

)
, . . . , αN = si1si2 · · · siN−1

(
αiN

)
.
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In the present situation we can also write down explicitely the minimal expression of
w0 afforded by the given ordering of R+ : it is

w0 = s1s2s3 · · · sn−1sns1s2 · · · sn−1s1s2 · · · sn−3s1s2 · · · s4s1s2s3s1s2s1 .

Starting from any minimal expression of w0, Lusztig constructs quantum root vectors
via the formulae

Eαk := Twk−1
(Eik) = Ti1Ti2 · · ·Tik−1

(Eik) , Fαk := Twk−1
(Fik) = Ti1Ti2 · · ·Tik−1

(Fik)

where w0 = si1si2 · · · siN is the given minimal expression, wh := si1si2 · · · sih , and αk =
wk−1 (αik) gives the associated convex ordering of R+. In our case this construction gives
quantum root vectors (for all i < j )

Eαn(i,j) := T1T2 · · ·TnT1T2 · · ·Tn−1T1 · · ·Tn−i+1T1T2 · · ·Tj−i−1 (Ej−i) ,

Fαn(i,j) := T1T2 · · ·TnT1T2 · · ·Tn−1T1 · · ·Tn−i+1T1T2 · · ·Tj−i−1 (Fj−i) .

Theorem. For all i, j = 1, 2, . . . , n+ 1 with i < j we have

Eαn(i,j) = Eij , Fαn(i,j) = Fji .

Proof. We make the proof for the ”E” case, the ”F” case is the like.
We have two possibilities, j = i+ 1 and j > i+ 1 . If j = i+ 1 we have

αn(i,j) = s1s2 · · · sns1s2 · · · sn−i+2s1s2 · · · sn−i+1(α1) = s1s2 · · · sns1s2 · · · sn−i+2s1s2(α1)

because sh(αk) = αk for all |h− k| > 1 ; since s1s2(α1) = α2 , we get

αn(i,j) = s1s2 · · · sns1s2 · · · sn−i+2(α2) =

= s1s2 · · · sns1s2 · · · sn−i+3s1s2s3(α2) = s1s2 · · · sns1s2 · · · sn−i+3(α3) ;

thus iterating we obtain

αn(i,j) = αi ;

then by Lusztig’s work we know that Eαn(i,j) = Eαi = Ei ; on the other hand, j = i + 1
gives Ei,j = Ei,i+1 = Ei by definition, hence Eαn(i,j) = Ei,j , q.e.d.

If j > i+ 1 we apply the definitions to get

Eαn(i,j) := T1T2 · · ·TnT1T2 · · ·Tn−1T1 · · ·Tn−i+1T1T2 · · ·Tj−i−2Tj−i−1 (Ej−i)

= T1T2 · · ·TnT1T2 · · ·Tn−1T1 · · ·Tn−i+1T1T2 · · ·Tj−i−2

(
−[Ej−i−1, Ej−i]q−1

)
=

= −[T1 · · ·Tn−i+1T1 · · ·Tj−i−2 (Ej−i−1) , T1 · · ·Tn−i+1T1 · · ·Tj−i−2 (Ej−i)]q−1 =

= −[Eαn(i,j−1) , T1T2 · · ·TnT1T2 · · ·Tn−i+1T1T2 · · ·Tj−i−2 (Ej−i)]q−1 ;
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but now we have

T1T2 · · ·TnT1T2 · · ·Tn−i+2 · · ·T1T2 · · ·Tn−i+1T1T2 · · ·Tj−i−2 (Ej−i) =

= T1T2 · · ·TnT1T2 · · ·Tn−i+2T1T2 · · ·Tj−i−1Tj−iTj−i+1 (Ej−i) =

= T1T2 · · ·TnT1T2 · · ·Tn−i+2T1T2 · · ·Tj−i−1 (Ej−i+1)

for TkTk+1 (Ek) = Ek+1 for all k ; then a simple iteration gives

T1T2 · · ·TnT1T2 · · ·Tn−i+2 · · ·T1T2 · · ·Tn−i+1T1T2 · · ·Tj−i−2 (Ej−i) = Ej−1 .

Therefore we have
Eαn(i,j) = −[Eαn(i,j−1) , Ej−1]q−1 ;

since (j − 1) − i < j − i , we can use induction on the height of roots and assume
Eαn(i,j−1) = Ei,j−1 ; on the other hand, Ej−1 = Ej−1,j , by definition; thus we find
Eαn(i,j) = −[Ei,j−1 , Ej−1,j ]q−1 , and — by definition again — the right-hand-side term

is nothing but Ei,j . The claim follows. □

5.4 The embedding µM :F P
q [SL(n+1)] ↪−−−→ UP

q (b−)op ⊗UP
q (b+)op and special-

ization results. We are now ready to go on with the analysis of the embedding

µP :F
P

q [G]
∆−→ F P

q [G]⊗ F P

q [G]
ρ+⊗ρ−−−−−→ F P

q [B+]⊗ F P

q [B−]
ϑ+⊗ϑ−−−−−−→ UP

q (b−)op ⊗ UP

q (b+)op

(G = SL(n + 1) ): here ∆ is the comultiplication of the Hopf algebra FM
q [SL(n + 1)],

ρ±:F
M
q [SL(n + 1)] −−−↠ FM

q [B±] are the natural epimorphisms of §5.1, and the maps

ϑ±:F
M
q [B±]

∼=−−−→UM
q (b∓)op are the isomorphisms given in §5.2.

To begin with, we go back to the study of F̃Q
q [SL(n + 1)]: lifting the identities (4.2)

gives relations (inside F̃Q
q [SL(n+ 1)] )

rij = +
[
ri,j−1 , rj−1,j

]
+O(q − 1) = −

[
rj−1,j , ri,j−1

]
+O(q − 1) ∀ i < j − 1 ,

rji = −
[
rj,j−1 , rj−1,i

]
+O(q − 1) = +

[
rj−1,i , rj,j−1

]
+O(q − 1) ∀ j > i+ 1 .

(5.1)

Now look at the isomorphism ϑ+:F
P
q [B+]

∼=−−−→ UP
q (b−)op; it maps ρii = rii onto

Li−1L
−1
i = G−1

i , and ρi,i+1 onto −F iLiL
−1
i+1 = −F i+G

−1
i+1 , hence ri,i+1 onto −FiLiL

−1
i+1 .

But remark that rii = 1 +O(q − 1) , and so also Gi = 1 +O(q − 1) , Ki = 1 +O(q − 1) ,
Li = 1 + O(q − 1) , where the symbol O(q − 1) denotes some element of (q − 1)UP (b−)
(notations of [Ga]): thus we have also ϑ+

(
ri,i+1

)
= −Fi +O(q − 1) .

Therefore, using the first relation of (5.1), Theorem 5.3, and the fact that [ , ]q ≡
[ , ]q−1 ≡ [ , ] mod (q − 1) , by a simple iterating procedure we find that

ϑ+
(
rij
)
= (−1)

j−i
Fj,i +O(q − 1) = (−1)

j−i
Fαn(i,j) +O(q − 1) ∀ i < j .

Similarly, by the same arguments we can prove that

ϑ−
(
rji
)
= (−1)

j−i+1
Ei,j +O(q − 1) = (−1)

j−i+1
Eαn(i,j) +O(q − 1) ∀ j > i .
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Now, from the definition of ∆ and ϑ± we get a description of µP (ri,i+1) as follows:

µP (ri,i+1) = (ϑ+ ⊗ ϑ−)

(
(ρ+ ⊗ ρ−)

(
∆
(
ri,i+1

)))
=

= (ϑ+ ⊗ϑ−)

(
(ρ+ ⊗ ρ−)

(
ri,i ⊗ ri,i+1 + ri,i+1 ⊗ ri+1,i+1 +

(
q − q−1

) n+1∑
k=1
k ̸=i,j

ri,k ⊗ rk,i+1

))
=

= (ϑ+ ⊗ ϑ−)

(
ri,i+1 ⊗ ri+1,i+1 +

(
q − q−1

) n+1∑
k=i+2

ri,k ⊗ rk,i+1

)
=

= −FiG
−1
i+1 ⊗Gi+1 +O(q − 1) +

(
q − q−1

) n+1∑
k=i+2

Fα(k,i) ⊗ Eα(i+1,k) +O
(
(q − 1)

2
)
=

= −FiG
−1
i+1 ⊗Gi+1 +O(q − 1) = −Fi ⊗ 1 +O(q − 1)

where the symbol O(q − 1) denotes some element of (q − 1)UP (b−)⊗ UP (b+) (note that
the last algebra is mapped by ν −1

P into UP (h) ); recalling from [Ga] the definition of ν −1
P :

UP (b−)⊗ UP (b+) −→ UP (h) , for ξP = µP ◦ ν −1
P we find

ξP (ri,i+1) = −Fi +O(q − 1)

and in general ξP (ri,j) = (−1)
j−i

Fj,i +O(q − 1) , for all i < j . A similar analysis yields

ξP (ri+1,i) = +Ei +O(q − 1)

and in general ξP (rj,i) = (−1)
j−i+1

Ei,j +O(q − 1) , for all j > i , and also

ξP (ri,i) = Gi +O
(
(q − 1)

2
)
= L−1

i−1Li +O
(
(q − 1)

2
)
;

furthermore, the latter implies

ξP (ϕi) = ξP

(
ri,i − ri+1,i+1

q − 1

)
=

Gi −Gi+1

q − 1
+O(q − 1) =

= Gi+1 ·
GiG

−1
i+1 − 1

q − 1
+O(q − 1) = Gi+1 ·

Ki − 1

q − 1
+O(q − 1) =

=
Ki − 1

q − 1
+O(q − 1) =

(
Ki; 0

1

)
+O(q − 1) ,

ξP (ψi) = ξP

(
r1,1 · · · ri,i − 1

q − 1

)
=

G1 · · ·Gi − 1

q − 1
+O(q − 1) =

=
Li − 1

q − 1
+O(q − 1) =

(
Li; 0

1

)
+O(q − 1) ,

ξP (χi) = ξP

(
ri,i − 1

q − 1

)
=

Gi − 1

q − 1
+O(q − 1) =

(
Gi; 0

1

)
+O(q − 1) .
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Remark: in light of the previous formulae and of the remarks in §5.2 about toral
elements of Uq

(
gl(n+ 1)

)
, one has that

ϕi is the q–analogue of hi ,

ψi is the q–analogue of `i ,

χi is the q–analogue of Mi,i ;

on the other hand, the definition of these elements can also be motivated directly in
quantum matrix terms. In the classical framework, we have

hi =Mi,i −Mi+1,i+1 , `i =M1,1 +M2,2 + · · ·+Mi,i ; (5.2)

Now, ri,i is the i–th diagonal quantum matrix coefficient, that is the q–analogue of the
”classical” matrix coefficient Mi,i; hence we should have, in principle,

ri,i − 1

q − 1

∣∣∣
q=1

=Mi,i ;

such a relation is completely meaningful, and was our reason to define χ :=
ri,i−1
q−1 . As

Gi too is a q–analogue of Mi,i, the relation

ξP (χi) =

(
Gi; 0

1

)
+O(q − 1)

is not surprising. By the way, we remark that the special relation

n+1∑
i=1

r1,1r2,2 · · · ri−1,i−1χi =

=
∑

σ∈Sn+1\{1}

(−q)l(σ)(q − 1)
e(σ)−1(

1 + q−1
)e(σ)

r1,σ(1)r2,σ(2) · · · rn+1,σ(n+1)

which arises from the relation detq
(
ρij
)
= 1 , for q = 1 turns into

χ1 + χ2 + · · ·+ χn+1 = 0

that is a relation like Tr(x) = 0 .
Moreover, relations (5.2) should have quantum counterparts

”q–analogue of hi” = ri,i · r−1
i+1,i+1 , ”q–analogue of `i” = r1,1r2,2 · · · ri,i , (5.3)

which should yield

ri,i · r−1
i+1,i+1 − 1

q − 1

∣∣∣
q=1

= hi ,
r1,1r2,2 · · · ri,i − 1

q − 1

∣∣∣
q=1

= `i ; (5.4)

now, the second relation in (5.3) is completely meaningful, so it moved us to define ψ by

ψi :=
r1,1r2,2···ri,i−1

q−1 ; on the other hand, the first one instead is meaningless, for r−1
j,j does

not exist; but since rj,j ≡ 1 mod (q − 1) , we should have also

”q–analogue of hi” = ”q–analogue of hi” · ri+1,i+1 = ri,i · r−1
i+1,i+1 · ri+1,i+1 = ri,i
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whence the first relation in (5.4) turns into

ri,i − ri+1,i+1

q − 1

∣∣∣
q=1

=

(
ri,i · r−1

i+1,i+1 − 1

q − 1
· ri+1,i+1

)∣∣∣∣∣
q=1

= hi

which provides a completely meaningful expression for a (tentative) q–analogue of hi ;

that’s why defined ϕi :=
ri,i−ri+1,i+1

q−1 . Notice that also Li , resp. Ki , is a q–analogue of

`i , resp. hi : this explain the relation

ξP (ψi) =

(
Li; 0

1

)
+O(q − 1) , resp. ξP (ϕi) =

(
Ki; 0

1

)
+O(q − 1)

Conclusion. The result of all the analysis above is that

ξP

∣∣∣
q=1

(
F̃ P

q [SL(n+ 1)]
/
(q − 1) F̃ P

q [SL(n+ 1)]
)
=

= ξP

(
F̃ P

q [SL(n+ 1)]
)/

(q − 1) ξP

(
F̃ P

q [SL(n+ 1)]
)
= UP (h)

/
(q − 1)UP (h) ,

ξQ

∣∣∣
q=1

(
F̃Q

q [SL(n+ 1)]
/
(q − 1) F̃Q

q [SL(n+ 1)]
)
=

= ξQ

(
F̃Q

q [SL(n+ 1)]
)/

(q − 1) ξQ

(
F̃Q

q [SL(n+ 1)]
)
= UQ(h)

/
(q − 1)UQ(h) ,

ξP

∣∣∣
q=1

(
F̃q[SL(n+ 1)]

/
(q − 1) F̃q[SL(n+ 1)]

)
=

= ξP

(
F̃q[SL(n+ 1)]

)/
(q − 1) ξP

(
F̃q[SL(n+ 1)]

)
= UP (h)

/
(q − 1)UP (h) ,

because elements Fi,
(

Li; 0
1

)
— resp.

(
Ki; 0
1

)
, resp.

(
Gi; 0
1

)
— and Ei are enough to gener-

ate UP (h)
/
(q−1)UP (h), resp. UQ(h)

/
(q−1)UQ(h), resp. UP (h)

/
(q−1)UP (h). In particular,

in this sense we claim that ”F̃Q
q [SL(n + 1)], resp. F̃ P

q [SL(n + 1)], is an approximation of

FQ[SL(n+ 1)], resp. FP [SL(n+ 1)]”.
It is worth stressing that this implies that Theorem 4.1 is a direct consequence of the

specialization results about FP [SL(n+1)] and FQ[SL(n+1)] proved in [Ga], §7 (Theorem
7.3); conversely, those results follows from Theorem 4.1:

Theorem. FQ[SL(n+1)] and FP [SL(n+1)] specialize to U(h) as Poisson Hopf coalgebras
for q → 1 . The same holds for UQ(h) and UP (h) too.

Proof. To be short let us set A
∣∣
q=1

:= A
/
(q − 1)A for any k

[
q, q−1

]
–algebra. Now, we

have F̃ P
q [SL(n+ 1)] ⊆ FP [SL(n+ 1)] ⊆ UP (h) , and the analysis above shows — through

and together with that in [Ga] — that F̃ P
q [SL(n+ 1)]

∣∣∣
q=1

∼= UP (h)
∣∣∣
q=1

, hence

F̃ P

q [SL(n+ 1)]
∣∣∣
q=1

∼= FP [SL(n+ 1)]
∣∣∣
q=1

∼= UP (h)
∣∣∣
q=1

;

the same holds with Q instead of P . Then the claim follows from Theorem 4.1. □
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§ 6 Generalization to Fq[GL(n+ 1)]

6.1 The quantum matrix-function algebra Fq[M(n + 1)]. We introduce the
quantum matrix-function algebra of order n + 1 (n ∈ N), to be called Fq[M(n + 1)], as
follows.

By definition, Fq[M(n + 1)] is the associative k(q)–algebra with 1 generated by
{xij | i, j = 1, . . . , n+ 1 } with relations

xijxik = q xikxij , xikxhk = q xhkxik ∀ j < k, i < h

xilxjk = xjkxil , xikxjl − xjlxik =
(
q − q−1

)
xilxjk ∀ i < j, k < l

(that is, the same of F P
q [SL(n+1)] but for the relation ”quantum determinant = 1”). This

is a bialgebra, with co-operations defined by

∆(xij) =
n∑

k=1

xik ⊗ xkj , ε(xij) = δij ∀ i, j .

From the very definition we get a bialgebra epimorphism

π : Fq[M(n+ 1)] −−−↠ F P

q [SL(n+ 1)] , xij 7→ ρij ∀ i, j .

6.2 The quantum function algebra Fq[GL(n + 1)]. The element detq
(
xij
)
of

Fq[M(n + 1)] is group-like and central; thus by localization at detq one can define a new
algebra, namely Fq[M(n+1)]

[
det−1

q

]
: this is now a Hopf algebra, with bialgebra structure

given by extension of that of Fq[M(n+ 1)] and antipode defined by

S(xij) := (−q)j−i
detq

(
(xhk)

k ̸=i
h ̸=j

)
∀ i, j .

The Hopf algebra Fq[GL(n + 1)] := Fq[M(n + 1)]
[
det−1

q

]
is the quantum function

algebra of the group GL(n + 1) (cf. [Ta]). It is clear that the bialgebra epimorphism
π : Fq[M(n+1)]−↠F P

q [SL(n+1)] extends to π : Fq[GL(n+1)] −−−↠ F P
q [SL(n+1)] , a

Hopf algebra epimorphism whose kernel is the (Hopf) ideal generated by
(
detq

(
xij
)
− 1
)
.

The constructions and results in §§2–4 can be easily extended to Fq[GL(n + 1)]. It is

straightforward to check that k
[
q, q−1

]
–integer forms F̃ P

q [GL(n+1)] and F̃q[GL(n+1)] of

Fq[GL(n+1)] can be defined mimicking the definitions of F̃ P
q [SL(n+1)] and F̃q[SL(n+1)],

with xij ’s instead of ρij ’s: then one has a presentation of these algebras by generators and

relations (namely, the same as for F̃ P
q [SL(n + 1)], resp. F̃q[SL(n + 1)], but for the rela-

tion ψn+1 = −
∑

σ∈Sn+1\{1} (−q)
l(σ)

(q − 1)
e(σ)−1(

1 + q−1
)e(σ)

r1,σ(1)r2,σ(2) · · · rn+1,σ(n+1),

resp.
∑n+1

i=1 r1,1r2,2 · · · ri−1,i−1χi =
∑

σ∈Sn+1\{1} (−q)
l(σ)

(q − 1)
e(σ)−1(

1 + q−1
)e(σ)·

·r1,σ(1)r2,σ(2) · · · rn+1,σ(n+1) ). The upshot is that the specialization at q = 1 of both

of these integer forms is a Poisson Hopf coalgebra isomorphic to U
(
h′
)
, where h′ is the
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Lie bialgebra obtained by central extension of h by an element c (namely, c = χn+1

∣∣
q=1

)

such that

cx− xc = 0 ∀x ∈ h (i.e. c is central)

∆(c) = c⊗ 1 + 1⊗ c , ε(c) = 0 , S(c) = −c

δ(c) = 4 ·
n∑

k=1

fn+1,k ∧ ek,n+1

Thus again the quantum function algebra Fq[GL(n + 1)] can be seen as a quantum
enveloping algebra, namely sort of a ”Uq

(
h′
)
”.

§ 7 PBW theorems

In this section we shall prove some PBW theorems for F P
q [SL(n+ 1)]: that is, we shall

exhibit some k(q)–basis of ordered monomials in the ρij ’s for this algebra. To begin withs,
we recall (cf. [Ko], [PW]) that, whenever we fix any total order in the set of generators
{xij | i, j = 1, . . . , n+ 1 }, the following PBW-type theorem holds for Fq[M(n+ 1)]:

Proposition 7.1. The set of ordered monomials in the generators xij’s is a k(q)–basis
of Fq[M(n+ 1)] . □

Now we wish to prove a similar result for F P
q [SL(n+ 1)]; to this end we need a ”trian-

gularization argument”, which is now explained. Define
N+ := k(q)–subalgebra of Fq[M(n+ 1)] generated by {xij | j < n+ 2− i },
N0 := k(q)–subalgebra of Fq[M(n+ 1)] generated by {xij | j = n+ 2− i },
N− := k(q)–subalgebra of Fq[M(n+ 1)] generated by {xij | j > n+ 2− i };

then we have the following result, whose proof easily follows from definitions and Propo-
sition 7.1:

Proposition 7.2. Let any total order in {xij | i, j = 1, . . . , n+ 1 } be fixed. Then:
(a) the set of ordered monomials{ ∏

j<n+2−i

x
mij

ij

∣∣∣mij ∈ N ∀ i, j
}

is a k(q)–basis of N+ ; the set of ordered monomials{ ∏
i

xmi
i,n+2−i

∣∣∣mi ∈ N ∀ i
}

is a k(q)–basis of N0 ; the set of ordered monomials{ ∏
j>n+2−i

x
mij

ij

∣∣∣mij ∈ N ∀ i, j
}

is a k(q)–basis of N− ;
(b) N0 is a commutative subalgebra of Fq[M(n+ 1)];
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(c) (Triangular Decomposition) the multiplication in Fq[M(n+ 1)] gives a k(q)–vector
space isomorphism

Fq[M(n+ 1)] ∼= N+ ⊗N0 ⊗N− . □

We are now ready for the first PBW theorem for F P
q [SL(n+ 1)].

Theorem 7.3 (1st PBW theorem for F P
q [SL(n+1)]). Let � be any fixed total ordering

of the index set { (i, j) | i, j = 1, . . . , n } such that (i, j) � (h, k) � (l,m) for all i, j, h,
k, l, m such that i < n+ 1− j , h = n+ 1− k , l > n+ 1−m . Then the set of ordered
monomials

M ′ :=

 ∏
i<n+2−j

ρ
Nij

ij

∏
k=n+2−h

ρNh

hk

∏
l>n+2−m

ρNlm

lm

∣∣∣∣Nst ∈ N ∀ s, t ; min{N1, . . . , Nn+1} = 0


is a k(q)–basis of F P

q [SL(n+ 1)] .

Proof. We prove now that the above set does span F P
q [SL(n+1)]; the linear independence

will be an easy consequence of Theorem 7.4 below.
Since F P

q [SL(n+1)] is a homomorphic image of Fq[M(n+1)], it is clear that the whole
set (without restriction on the indices Nh’s) of ordered monomials in the ρij ’s does span
F P
q [SL(n+ 1)] over k(q). Now pick up any monomial

m(N) :=
∏

i<n+2−j

ρ
Nij

ij ·
∏

k=n+2−h

ρNh

hk ·
∏

l>n+2−m

ρNlm

lm

such that d := min{N1, . . . , Nn+1} > 0 ; since the generators ρh,n+2−h (h = 1 . . . , n + 1)
commute with each other, we can single out of the ”π(N0)–part” (with respect to the tri-

angular decomposition inherited from that in Proposition 7.2(c)) n0 :=
∏

k=n+2−h ρ
Nh

hk =∏n+1
h=1 ρ

Nh

h,n+2−h of m(N) a factor ρ1,n+1ρ2,n · · · ρn+1,1 , and we can do it d times. Now

using the relation detq
(
ρij
)
−1 = 0 we substitute the factor ρ1,n+1ρ2,n · · · ρn+1,1 in m(N)

with

(−q)(
n+1
2 ) −

∑
σ∈Sn+1\{w0}

(−q)(
n+1
2 )−ℓ(σ) · ρ1,σ(1)ρ2,σ(2) · · · ρn+1,σ(n+1) (7.1)

where w0 is the longest element of Sn+1 ; now look at the various summands
ρ1,σ(1)ρ2,σ(2) · · · ρn+1,σ(n+1) (up to the proper coefficient) coming in, with σ 6= w0 : when-
ever we have σ(j + 1) < σ(j) the commutation rules give

ρj,σ(j)ρj+1,σ(j+1) = ρj+1,σ(j+1)ρj,σ(j) ;

in particular, if j ≥ n + 2 − σ(j) and j + 1 ≤ n + 2 − σ(j + 1) we have exactly
ρj,σ(j)ρj+1,σ(j+1) = ρj+1,σ(j+1)ρj,σ(j) ; it follows that we can factor out the monomial
ρ1,σ(1)ρ2,σ(2) · · · ρn+1,σ(n+1) as

ρ1,σ(1)ρ2,σ(2) · · · ρn+1,σ(n+1) = n+ · n′0 · n−
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with n+ ∈ π(N+), n
′
0 ∈ π(N0), n− ∈ π(N−), and deg (n′0) < deg(n0) as monomials in

the ρij ’s. Therefore at the end we are left with a new expression of m(N) as a linear
combination of monomials which, with respect to the triangular decomposition inherited
from Proposition 7.3(c), have a ”π(N0)–part” of lower degree; then a simple induction
argument finishes the proof. □

We conclude with our second PBW theorem: this is the most interesting, because
it is directly related to the classical PBW theorem attached to the natural triangular
decomposition of U(h).

Theorem 7.4 (2nd PBW theorem for F P
q [SL(n+1)]). Let � be any fixed total ordering

of the index set { (i, j) | i, j = 1, . . . , n } such that (i, j) � (h, k) � (l,m) for all i, j, h, k,
l, m such that i > j , h = k , l < m . Then the set of ordered monomials

M :=

∏
i>j

ρ
Nij

ij

∏
h=k

ρNhk

hk

∏
l<m

ρNlm

lm

∣∣∣∣Nst ∈ N ∀ s, t ; min{N1,1, . . . , Nn+1,n+1 } = 0


is a k(q)–basis of F P

q [SL(n+ 1)].

Proof. As Fq[M(n + 1)] is clearly N(n+1)2–graded (by the degree in each variable), it is
also N–graded (by the total degree); hence F P

q [SL(n+1)] inherits a filtration, arising from
the filtration of Fq[M(n+ 1)] associated to the N–grading, say

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr ⊂ · · · ⊂ F P

q [SL(n+ 1)] =

+∞⋃
r=0

Fr ;

furthermore, we have M = ∪+∞
r=0Mr , with Mr :=M ∩ Fr for all r ∈ N.

Similarly we have M ′ = ∪+∞
r=0M

′
r , with M ′

r := M ′ ∩ Fr for all r ∈ N, where M ′ is
the set of ordered monomials defined in Proposition 7.4 above: in particular, M ′

r spans Fr

over k(q). Finally the very definitions ensure that

#
(
Mr

)
= #

(
M ′

r

)
∀ r ∈ N . (7.2)

Now consider the specialization F P
q [SL(n + 1)]

q→1−−−→ F [SL(n + 1)] and the corre-

sponding set M (1) of ”specialized monomials”, i.e. the image of M under the epimorphism
F P
q [SL(n+1)]−↠F P

1 [SL(n+1)] = F [SL(n+1)] : if we prove that M (1) is a linearly inde-
pendent set (over k ), then the same will be true for M (over k(q) ); in particular Mr will
be linearly independent ( ∀r ∈ N ), hence it will be a k(q)–basis of Fr ( ∀r ∈ N ), because
of (7.2), whence finally M will be a k(q)–basis of F P

q [SL(n + 1)]. Thus let us prove that

the set M (1) is linearly independent over k.
Assume we have in F P

1 [SL(n+ 1)] = F [SL(n+ 1)] a relation∑
m∈M(1)

am ·m = 0 (7.3)
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for some (finitely many) am ∈ k\{0} ; then (7.3) lifts up to a relation in k
[
{zij}i,j=1,...,n+1

]
∑

m∈M(1)

am ·m(z) = b(z) ·
(
det
(
zij
)
− 1
)

(7.4)

for some b(z) ∈ k
[
{zij}i,j=1,...,n+1

]
, the m(z)’s having the obvious meaning. If b(z) = 0 ,

then (7.4) gives a non-trivial algebraic relation among the zij ’s, which is impossible; if
b(z) 6= 0 , then the right-hand-side of (7.4) involves — with non-zero coefficient — the
monomial z1,1z2,2 · · · zn+1,n+1 (coming out of det

(
zij
)
), while each monomial m(z) in the

left-hand-side does not contain the factor z1,1z2,2 · · · zn+1,n+1 ; thus again (7.4) yields a
non-trivial algebraic relation among the zij ’s, which is impossible. The claim follows. □
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