Esercizio 1. Dimostrare per induzione che $n^3 - n$ appartiene a $3\mathbb{N}$ per ogni $n \in \mathbb{N}$.

Esercizio 2. Dimostrare per induzione che $3^{2n+1}+2^{n+2}$ appartiene a $7\mathbb{N}$ per ogni $n\in\mathbb{N}$.

Esercizio 3. Dimostrare per induzione che $(n-3)^2 < n^2 + 11$.

Esercizio 4*. Dimostrare per induzione su n=k-h che vale per ogni $h,k\in\mathbb{N}$ con h < k:

$$h^2 < h \cdot k < k^2 \tag{1}$$

Esercizio 5. Dimostrare che $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$. Suggerimento : utilizzare il significato combinatorio dei coefficienti binomiali.

Esercizio 6. Dimostrare che $\binom{n+k}{2} = \binom{n}{2} + \binom{k}{2} + nk$.

Esercizio 7. Scrivere in base $3: (76054)_9$ e $(83106)_9$.

Esercizio 8. Scrivere in base $9: (211021222)_3 e (120211012)_3$.

Esercizio 9. Scrivere in base $4:(3471)_8$.

Esercizio 10. Siano $0 < 1 < \cdots < 9 < \bot < \land$ le cifre in base $\delta = 12$.

Calcolare $(3 \wedge 7)_{\delta} \cdot (4 \perp)_{\delta}$ e poi passarlo in base 10.