ESERCIZI sulle RELAZIONI - 1

— Fabio GAVARINI —

 $N.B.:\ il\ simbolo\ \diamondsuit\ contrassegna\ gli\ esercizi\ (relativamente)\ più\ complessi.$

— * —

 ${\bf 1}$ — Sia S l'insieme degli stati della Terra, e sia κ la relazione di "confinanza" in $S\,,$ data da

$$s_1 \kappa s_2 \iff s_1 \text{ confina con } s_2 \qquad \forall \ s_1, s_2 \in S$$

dove "confina con" significa "ha un parte non vuota dei suoi confini (per terra o per mare) in comune con".

Verificare che la relazione di confinanza è riflessiva e simmetrica, ma non transitiva.

2 — Sia M l'insieme delle montagne della Terra, e sia \succ la relazione in S, data da $m_1 \succ m_2 \iff m_1 \ \grave{e} \ pi\grave{u} \ alta \ di \ m_2 \qquad \forall \ m_1, m_2 \in M \ .$

Verificare che la relazione \succ è transitiva, ma non riflessiva, né simmetrica, né antisimmetrica.

3 — Sia M l'insieme delle montagne della Terra, e sia \succeq la relazione in S, data da $m_1 \succeq m_2 \iff m_1 \text{ è alta almeno quanto } m_2 \qquad \forall \ m_1, m_2 \in M \ .$

Verificare che la relazione \succeq è transitiva e riflessiva — dunque è un preordine — ma non simmetrica, né antisimmetrica.

 ${\bf 4}$ — Sia P l'insieme delle persone viventi (adesso), e sia π la relazione di "parentela" in P, definita da

$$p_1 \pi p_2 \iff p_1$$
 ha un antenato in comune con $p_2 \qquad \forall \ p_1, p_2 \in P$.

Verificare che la relazione π è riflessiva e simmetrica, ma non è transitiva, né antisimmetrica.

5 — Sia | la relazione di "divisibilità" nell'insieme $\mathbb N$ dei numeri naturali, definita da $n'\mid n'' \iff \exists \ d\in \mathbb N: dn'=n'' \qquad \forall \ n',n''\in \mathbb N \ .$

Dimostrare che | è una relazione di ordine (cioè è riflessiva, antisimmetrica e transitiva), ma tale ordine è non totale, cioè esistono $n', n'' \in \mathbb{N}$ tali che $n' \not\mid n''$ e $n'' \not\mid n'$.

6 — Sia | la relazione di "divisibilità" nell'insieme $\mathbb Z$ dei numeri interi, definita da $z' \mid z'' \iff \exists \ d \in \mathbb Z : dz' = z'' \qquad \forall \ z', z'' \in \mathbb Z \ .$

Dimostrare che | è una relazione di *preordine* (cioè è riflessiva e transitiva) ma *non* di ordine (cioè non è anche antisimmetrica).

7 — Dato un insieme X e il suo insieme delle parti $\mathcal{P}(X)$, consideriamo in $\mathcal{P}(X)$ la relazione < così definita:

$$S < T \quad \stackrel{\Delta}{\Longleftrightarrow} \quad \left(\exists \ T \longrightarrow S \right) \land \left(\not\exists \ S \longrightarrow T \right) , \qquad \forall \ S, T \in \mathcal{P}(X) .$$

Dimostrare che < è transitiva e non riflessiva.

8 — Sia $\mathbb Q$ l'insieme dei numeri razionali. Sia λ la relazione in $\mathbb Q$ definita da $n\,\lambda\,\,m \iff n^2-3\,m+7=m^2-3\,n+7 \qquad \forall \ n,m\in\mathbb Q \ .$

Determinare se λ è una relazione di equivalenza. In caso negativo, si spieghi quale/i proprietà di una relazione di equivalenza non è/sono valide per λ ; in caso affermativo, si descrivano le classi di equivalenza di λ (come sottoinsiemi di \mathbb{Q}) e l'insieme quoziente \mathbb{Q}/λ (cioè si determini una biiezione tra tale insieme quoziente ed un insieme già noto).

9 — Sia data in $\mathbb N$ la relazione binaria ρ definita da

$$m \circ n \iff m^2 - n = n^2 - m \quad \forall m, n \in \mathbb{N}$$
.

- (a) Dimostrare che ρ è un'equivalenza.
- (b) Descrivere esplicitamente le classi di equivalenza di ρ e l'insieme quoziente E/ρ .
- ${f 10}$ Sia $\varphi\colon \mathbb{Z} \longrightarrow \mathbb{Z}$ l'applicazione definita da $\varphi(z):=z^2+3\,z-7\ (\forall\ z\in\mathbb{Z}),$ e sia \simeq_{φ} la relazione di equivalenza in \mathbb{Z} canonicamente indotta da φ . Per ogni $m\in\mathbb{Z}$, determinare (descrivendola esplicitamente) la classe di equivalenza modulo \simeq_{φ} di m.
 - **11** Si consideri l'applicazione $f: \mathbb{N} \longrightarrow \mathbb{N}$, $n \mapsto f(n) := \text{MCD}(n, 15)$ ($\forall n \in \mathbb{N}$).
 - (a) Calcolare Im(f) e verificare che f non è iniettiva.
- (b) Descrivere tutte le classi di equivalenza di $\mathbb N$ rispetto alla relazione di equivalenza ρ_f canonicamente associata ad f .
 - 12 Sia E un insieme e $\mathcal{P}(E)$ il suo insieme delle parti. Dimostrare che:
 - (a) la relazione di inclusione \subseteq è una relazione d'ordine in $\mathcal{P}(E)$;
 - (b) la relazione di "contenimento" \supseteq è una relazione d'ordine in $\mathcal{P}(E)$;
 - $(c) \quad \subseteq \ \text{\`e} \ \text{ordine} \ totale \ \Longleftrightarrow \ \left| E \right| \le 1 \ \Longleftrightarrow \ \supseteq \ \text{\`e} \ \text{ordine} \ totale \ .$

$$(x_1, y_1) \mu (x_2, y_2) \iff y_1 x_2 - y_1 + y_2 - x_1 y_2 = 0$$

Determinare se μ è una relazione di equivalenza. In caso negativo, si spieghi quale/i proprietà di una relazione di equivalenza non è/sono valide per μ ; in caso affermativo, si descrivano le classi di equivalenza di μ e l'insieme quoziente E/μ .

14 🕏 — Dati $a,\,b,\,c\in\mathbb{Z}\,,$ sia $\rho_{a,b,c}$ la relazione in \mathbb{Z} definita da

$$x \rho_{a,b,c} y \stackrel{\Delta}{\Longleftrightarrow} a x + b y = c \quad \forall x, y \in \mathbb{Z}$$
.

Determinare per quali terne $(a,b,c) \in \mathbb{Z}^3$ la relazione $\rho_{a,b,c}$ sia simmetrica oppure riflessiva.

15 \diamondsuit — Esempio di dimostrazione sbagliata!

Sia ρ una relazione (binaria) in un insieme E. Supponiamo che ρ sia simmetrica e transitiva. Allora, dati $x, y \in E$, abbiamo che

e quindi ρ è anche riflessiva!!! ... dov'è l'errore?

- 16 Sia ρ una relazione in un insieme E. Verificare che:
 - (a) ρ è riflessiva \iff id $_E \subseteq \rho$;
 - (b) ρ è transitiva $\iff \rho^2 := \rho \circ \rho \subseteq \rho \iff \rho^n \subseteq \rho \ \forall n \in \mathbb{N}_+$;
 - (c) ρ è simmetrica $\iff \rho^{-1} \subseteq \rho \iff \rho^{-1} = \rho$;
 - (d) ρ è antisimmetrica $\iff \rho \cap \rho^{-1} \subseteq \mathrm{id}_E$.
- 17 Sia ρ e σ due relazioni in un insieme E. Dimostrare che:

$$\rho \cap \sigma$$
 è riflessiva $\iff \rho \in \sigma$ sono riflessive.

- 18 Sia ρ una relazione in un insieme E. Dimostrare che:
- (a) se ρ è riflessiva, risp. transitiva, risp. antisimmetrica, allora anche ρ^{-1} è riflessiva, risp. transitiva, risp. antisimmetrica;
 - (b) se ρ è un preordine, allora anche ρ^{-1} è un preordine;
 - (c) se ρ è un ordine, allora anche ρ^{-1} è un ordine (Principio di Dualità);
 - (d) se ρ è un ordine totale, allora anche ρ^{-1} è un ordine totale.

- 19 Dato un insieme E, caratterizzare tra tutti i sottoinsiemi di $E \times E$ tutte le relazioni in E che sono simultaneamente simmetriche e antisimmetriche.
- 20 Dato un insieme E, dimostrare che l'unica relazione in E che sia simultaneamente un'equivalenza e un ordine è la relazione identità id $_E$ in E.
- **21** Sia $f: X \longrightarrow Y$ una funzione tra insiemi, e sia ω una relazione in Y, e sia ω_f la relazione in X definita da

$$x' \omega_f x'' \iff f(x') \omega f(x'')$$
 per ogni $x', x'' \in X$.

Dimostrare che valgono le seguenti implicazioni tra proprietà di ω e proprietà di ω_f :

- (a) se ω è riflessiva (in Y), allora anche ω_f è riflessiva (in X);
- (b) se ω è simmetrica (in Y), allora anche ω_f è simmetrica (in X);
- (c) se ω è transitiva (in Y), allora anche ω_f è transitiva (in X);
- (d) se ω è antisimmetrica (in Y), allora ω_f è antisimmetrica (in X) se e soltanto se la funzione f è iniettiva.
- **22** Sia $E \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$ l'insieme dei numeri interi, o dei numeri razionali, o dei numeri reali, e sia α la relazione in E data da

$$e' \alpha e'' \iff (e' = e'' \text{ oppure } e' = -e'') \quad \text{per ogni} \quad e', e'' \in E$$
.

Per ciascuno dei tre casi ($E = \mathbb{Z}$, oppure $E = \mathbb{Q}$, oppure $E = \mathbb{R}$),

- (a) dimostrare che α è un'equivalenza in E,
- (b) descrivere esplicitamente ciascuna classe di α –equivalenza in E ,
- (c) descrivere esplicitamente l'insieme quoziente E/α .
- - (a) Dimostrare che la relazione $\sigma_{\vdash} := \vdash \cap \vdash^{-1}$ in E, descritta esplicitamente da $a \sigma_{\vdash} b \iff (a \vdash b) \land (b \vdash a)$, $\forall a, b \in E$

è un'equivalenza in E .

- (b) Descrivere esplicitamente le singole classi di equivalenza di σ_{\vdash} .
- (c) Dimostrare che nell'insieme quoziente $E\Big/\sigma_{\vdash}$ esiste una ben definita relazione $\overline{\vdash}$ data da $[a]_{\sigma_{\vdash}} \overline{\vdash} [b]_{\sigma_{\vdash}} \quad \stackrel{\Delta}{\Longleftrightarrow} \quad a \vdash b \ , \qquad \forall \ a,b \in E$
- (N.B.: si tratta soltanto di dimostrare che la definizione di \vdash sia ben posta).
- (d) Dimostrare che la relazione \vdash nell'insieme quoziente E/σ_{\vdash} definita in (c) è una relazione d'ordine.

- **24** Applicare l'esercizo 23 qui sopra al caso specifico in cui $E := \mathbb{Z}$ e $\vdash := \mid$ (la relazione di "divisibilità" in \mathbb{Z}).
- **25** $\textcircled{\Rightarrow}$ Un insieme ordinato (A, \leq_A) si dice *simile* ad un insieme ordinato (B, \leq_B) se esiste una applicazione bijettiva $f: A \longrightarrow B$ tale che per ogni $a', a'' \in A$ si abbia

$$a' \leq_A a'' \iff f(a') \leq_B f(a'')$$

- (a) Dimostrare che la relazione di "similitudine" tra insiemi ordinati è una relazione di equivalenza.
 - (b) Stabilire se \mathbb{N} e \mathbb{Z} , dotati dell'ordinamento naturale, siano simili oppure no.
 - (c) Stabilire se $\mathbb Z$ e $\mathbb Q\,,$ dotati dell'ordinamento naturale, siano simili oppure no.
 - (d) Stabilire se $\mathbb Q$ e $\mathbb R$, dotati dell'ordinamento naturale, siano simili oppure no.
- **26** Si considerino l'insieme $\mathbb{V}_I := \{ \text{parole della lingua italiana} \}$ e l'insieme di lettere $Y := \{D, N, A\}$. Si consideri poi in \mathbb{V}_I la relazione \lessdot definita da

$$\mathcal{P}_1 \lessdot \mathcal{P}_2 \iff \text{``la parola } \mathcal{P}_1 \text{ contiene al più tante lettere} \ \text{di } Y \text{ quante ne contiene la parola } \mathcal{P}_2$$
"

dove le lettere, se compaiono più di una volta, vanno contate una volta sola (dunque senza molteplicità).

- (a) Si dimostri che la relazione \lessdot è un preordine in \mathbb{V}_I , ma non un ordine.
- (b) Si dimostri che la relazione $\Leftrightarrow := \lessdot \cap \gt = \lessdot \cap \lessdot^{-1}$ è una equivalenza in \mathbb{V}_I .
- (c) Determinare il numero di elementi dell'insieme quoziente $\left| \mathbb{V}_I \middle/ \Leftrightarrow \right|$.
- (d) Descrivere esplicitamente le quattro classi di ⇔-equivalenza $[DADO]_{\otimes}$, $[TUBO]_{\otimes}$, $[NANO]_{\otimes}$ e $[ORDE]_{\otimes}$.
- 27 Sia E un insieme, e $\mathcal{P}(E)$ il suo insieme delle parti. Consideriamo in $\mathcal{P}(E)$ le relazioni λ e λ^* così definite:

$$\forall A, B \in \mathcal{P}(E)$$
 $A \land B \iff A = B \text{ oppure } |A \cap B| = 2$

$$\forall A, B \in \mathcal{P}(E) \qquad A \lambda^* B \iff \begin{cases} \exists X_1, \dots, X_n \in \mathcal{P}(E) \text{ t.c.} \\ A = X_1, X_n = B, X_i \lambda X_{i+1} \quad \forall i < n. \end{cases}$$

(in particolare, λ^* è la chiusura transitiva di λ).

- (a) Dimostrare che la relazione λ è riflessiva e simmetrica.
- (b) Dimostrare che λ^* è una relazione di equivalenza.
- (c) Descrivere esplicitamente tutte le classi di equivalenza di λ^* .