ESERCIZI sugli INSIEMI

— Fabio GAVARINI —

1 — Si considerino i seguenti insiemi

$$A := \{\text{animali}\}, \quad B := \{\text{oggetti inanimati}\}, \quad C := \{\text{pesci}\}$$

$$D := \{\text{pinguini}\}, \quad E := \{\text{animali volanti}\}, \quad F := \{\text{sassi}\}$$

$$G := \{\text{piante}\}, \quad H := \{\text{pipistrelli}\}, \quad I := \{\text{struzzi}\}$$

$$J := \{\text{ciottoli}\}, \quad K := \{\text{uccelli}\}, \quad L := \{\text{mosche}\}$$

- (a) Determinare le coppie di insiemi X, Y tra quelli su elencati per i quali $X \subseteq Y$.
- (b) Determinare le coppie di insiemi X, Y tra quelli su elencati per i quali $Y \subseteq X$.
- (c) Determinare le coppie di insiemi X, Y tra quelli su elencati per i quali $X \cap Y = \emptyset$.
- (d) Determinare le coppie di insiemi X, Y tra quelli su elencati per i quali $X \cap Y \neq \emptyset$.
- (e) Determinare le coppie di insiemi X, Y tra quelli su elencati per i quali si abbia $X\setminus Y\neq\emptyset$ e $Y\setminus X\neq\emptyset$.
 - **2** Si consideri l'insieme $\mathbb{A} := \{a, b, c, d, e, f, g\}$ e i suoi tre sottoinsiemi

$$G := \{a, c, e\}$$
 , $H := \{b, f\}$, $K := \{a, b, d, f, g\}$

e utilizziamo la notazione $\mathcal{C}_{\mathbb{A}}(S)$ per indicare il *complementare* in \mathbb{A} di un qualsiasi sottoinsieme S di \mathbb{A} .

- (a) Calcolare esplicitamente il sotto insieme $\,\mathcal{C}_{\mathbb{A}}\big(H\,\cup\,\mathcal{C}_{\mathbb{A}}(K)\big)\setminus G\,.$
- (b) Calcolare esplicitamente il sottoinsieme $\mathbb{A} \setminus (\mathcal{C}_{\mathbb{A}}(K \cap \mathcal{C}_{\mathbb{A}}(H)) \cup G)$.
- (c) Verificare (tramite confronto diretto) che

$$\mathcal{C}_{\mathbb{A}}\big(H \, \cup \, \mathcal{C}_{\mathbb{A}}(K)\big) \setminus G \ = \ \mathbb{A} \setminus \Big(\mathcal{C}_{\mathbb{A}}\big(K \, \cap \, \mathcal{C}_{\mathbb{A}}(H)\big) \, \cup \, G\Big)$$

- **3** Dati tre insiemi qualsiasi $X, Y \in \mathbb{Z}$, dimostrare che:
- (a) $X \cup (Y \cup Z) = (X \cup Y) \cup Z$ e $X \cap (Y \cap Z) = (X \cap Y) \cap Z$, cioè le operazioni \cup e \cap godono della proprietà associativa;
- $(b)\ X\cup Y=Y\cup X\$ e $X\cap Y=Y\cap X$, cioè le operazioni \cup e \cap godono della proprietà commutativa;
- (c) $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$ e $(X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z)$, cioè l'operazione \cup gode della proprietà distributiva a sinistra e a destra rispetto all'operazione \cap ;
- (d) $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ e $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$, cioè l'operazione \cap gode della proprietà distributiva a sinistra e a destra rispetto all'operazione \cup ;
 - $(e) \ \ X \cap (X \cup Y \) = X \ \ e \ \ X \cup (X \cap Y \) = X \ \ -- \ \text{le cosiddette "leggi di assorbimento"}.$

4 — Dimostrare, trovando controesempi espliciti, che se $X,\ Y$ e Z sono insiemi in generale si ha che

$$X \cup Y = X \cup Z \implies Y = Z$$
 , $X \cap Y = X \cap Z \implies Y = Z$

In altre parole, si trovino esempi di insiemi X', Y', Z' e di insiemi X'', Y'', Z'' tali che

$$X' \cup Y' = X' \cup Z'$$
 e $Y' \neq Z'$, $X'' \cap Y'' = X'' \cap Z''$ e $Y'' \neq Z''$

- 5 Dati due insiemi qualsiasi X e Y, dimostrare che:
- $(a) X \cap Y = X \iff X \subseteq Y \iff X \cup Y = Y ;$
- $(b) X \setminus Y = X \cap \mathcal{C}_{X \cup Y}(Y) .$
- **6** Dati tre insiemi qualsiasi $A, B \in C$, dimostrare che:
- (a) se $A \subseteq B$, allora $B \setminus (B \setminus A) = A$;
- (b) $A \cup B = (A \setminus B) \cup B$;
- (c) $(A \setminus B) \cup (B \setminus A) = B \iff A = \emptyset$;
- (d) $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$ e $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$ sono le cosiddette "leggi di De Morgan";
- (e) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$ e $(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$, cioè l'operazione \cap gode della proprietà distributiva a sinistra e a destra rispetto all'operazione \setminus .
 - 7 Dati tre insiemi qualsiasi $X, Y \in \mathbb{Z}$, dimostrare che:
 - (a) $(X \cup Y) \setminus Z = (X \setminus Z) \cup (Y \setminus Z)$;
 - (b) $X \setminus (Y \setminus Z) = (X \setminus Y) \cup (X \cap Z)$;
 - (c) $(X \setminus Y) \setminus Z = X \setminus (Y \cup Z)$.
 - 8 Dati tre insiemi qualsiasi $A, B \in C$, dimostrare che:
- (a) $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$; l'insieme così ottenuto si indica con $A \triangle B$, e si dice "differenza simmetrica" di A con B;
- (b) $(A \triangle B) \triangle C = A \triangle (B \triangle C)$, cioè l'operazione \triangle gode della proprietà associativa (suggerimento: si faccia uso dei risultati dell'Esercizio 6 qui sopra);
 - (c) $A \triangle B = B \triangle A$, cioè l'operazione \triangle gode della proprietà commutativa;
 - (d) $A \triangle \emptyset = A$, $\emptyset \triangle A = A$;
 - (e) $A \triangle A = \emptyset$;
- (f) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$ e $(A \triangle B) \cap C = (A \cap C) \triangle (B \cap C)$, cioè l'operazione \cap gode della proprietà distributiva a sinistra e a destra rispetto all'operazione \triangle .

- **9** Dati tre insiemi A, B e K con $K \neq \emptyset$ dimostrare che:
- (a) $K \times A = K \times B \implies A = B$, cioè l'operazione \times è cancellativa a sinistra;
- (b) $A \times K = B \times K \implies A = B$, cioè l'operazione \times è cancellativa a destra.
- 10 Dati tre insiemi qualsiasi A, B e C, dimostrare che:
- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ e $(A \cup B) \times C = (A \times C) \cup (B \times C)$, cioè l'operazione \times gode della proprietà distributiva a sinistra e a destra rispetto all'operazione \cup ;
- (b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ e $(A \cap B) \times C = (A \times C) \cap (B \times C)$, cioè l'operazione \times gode della proprietà distributiva a sinistra e a destra rispetto all'operazione \cap ;
- (c) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$ e $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$, cioè l'operazione \times gode della proprietà distributiva a sinistra e a destra rispetto all'operazione \setminus .
 - (d) $A \times \emptyset = \emptyset$ e $\emptyset \times A = \emptyset$.
- 11 Calcolare esplicitamente l'insieme delle parti $\mathcal{P}(X)$ per ciascuno degli insiemi X preso tra i seguenti:

$$A := \{S, P, Q, R\} \;, \quad B := \{\flat \;, \sharp \;, \sharp \} \;, \quad C := \{\heartsuit \;, \spadesuit \;, \clubsuit \;, \diamondsuit\} \;, \quad D := \{\star \;, \circ \;, \times\}$$

$$E := \{\textcircled{c}\;, \textcircled{R}\} \;, \quad F := \{\maltese\} \;, \quad G := \{3 \;, \emptyset \;, S\} \;, \quad H := \emptyset \;, \quad I := \{<,>\} \;, \quad J := \{\bigstar\}$$

12 — Considerati gli insiemi

$$A:=\{S,P,Q,R\}\;,\quad B:=\{\flat\,,\sharp\,,\natural\}\;,\quad C:=\{\heartsuit\,,\spadesuit\,,\clubsuit\,,\diamondsuit\}\;,\quad D:=\{\star\,,\circ\,,\times\}$$

$$E:=\{\circlearrowleft\,,\circledast\}\;,\quad F:=\{\S\}\;,\quad G:=\{3\,,\emptyset\,,S\}\;,\quad H:=\emptyset\;,\quad I:=\{<\,,>\}\;,\quad J:=\{\bigstar\}$$
 si calcolino esplicitamente i seguenti prodotti cartesiani:
$$A\times E\;,\quad B\times G\;,\quad F\times C\;,\quad H\times A\;,\quad G\times B\;,\quad C\times J\;,\quad D\times D\;,\quad C\times H\;,\quad F\times B\;,\quad (E\times G)\times I\;,\quad B\times (F\times D)\;,\quad E\times (G\times I)\;.$$

- 13 Sia X un insieme, $\mathcal{P}(X)$ il suo insieme delle parti. Dimostrare che, se X contiene almeno due elementi, allora esistono $X', X'' \in \mathcal{P}(X)$ tali che $X' \nsubseteq X''$ e $X' \nsupseteq X''$.
- 14 Dati due insiemi qualsiasi A e B e il loro prodotto cartesiano $A \times B$, siano $\mathcal{P}(A)$, $\mathcal{P}(B)$ e $\mathcal{P}(A \times B)$ i relativi insiemi delle parti. Si definisca poi l'insieme

$$\mathcal{P}_{\times}(A;B) := \{ \{ (a,b) \mid a \in A', b \in B' \} \mid A' \subseteq A, B' \subseteq B \}$$

- (a) Dimostrare che $\mathcal{P}_{\times}(A;B) \subseteq \mathcal{P}(A \times B)$.
- (b) Dimostrare, tramite un esempio esplicito di specifici insiemi A e B opportunamente scelti, che se A e B hanno entrambi più di un solo elemento, allora $\mathcal{P}_{\times}(A;B) \subsetneq \mathcal{P}(A \times B)$, cioè l'inclusione di cui al punto (a) non è una uguaglianza (è invece una inclusione stretta) <u>Suggerimento</u>: pensando ad A e B come "rette" e al prodotto $A \times B$ come a un "piano", gli elementi di $\mathcal{P}_{\times}(A;B)$ in tale piano sono "rettangoli" coi lati paralleli agli "assi" A e B.

— Dati due insiemi qualsiasi A e B, dimostrare che:

(a)
$$A \subseteq B \iff \mathcal{P}(A) \subseteq \mathcal{P}(B)$$
;

(b)
$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$
;

(c)
$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$$
;

$$(d) \quad \mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}\big(A \cup B\big) \iff \big(A \subseteq B\big) \text{ oppure } \big(B \subseteq A\big) \enspace .$$