ESERCIZI SU

GRUPPI, MORFISMI, SOTTOGRUPPI NORMALI E QUOZIENTI

N.B.: il simbolo 🕏 contrassegna gli esercizi (relativamente) più complessi.

 $\mathbf{1}$ — Verificare quali delle applicazioni da (a) a (e) siano dei morfismi (cioè rispettino le operazioni), e se lo sono se ne determini il nucleo e l'immagine.

(a)
$$\varphi: (\mathbb{Z} \times \mathbb{Z}; +) \longrightarrow (\mathbb{C}; +), (x,y) \mapsto x + iy,$$

(b)
$$\varphi: (\mathbb{R} \times \mathbb{R}; +) \longrightarrow (\mathbb{R} \times \mathbb{R}; +), (x,y) \mapsto (x-y, x+y),$$

(c)
$$\varphi: (\mathbb{C}; +) \longrightarrow (\mathbb{C}; +), \quad x+iy \mapsto x-iy,$$

(d)
$$\varphi: (\mathbb{R}^3; +) \longrightarrow (\mathbb{R}^3; +), \quad (x, y, z) \mapsto (x, x + y, x + y + z),$$

(e)
$$\varphi: (\mathbb{R}^2 \times \mathbb{Z} \times \mathbb{C}^3; +) \longrightarrow (\mathbb{R} \times \mathbb{Z} \times \mathbb{C}^2; +),$$

 $((r_1, r_2), z, (c_1, c_2, c_3)) \mapsto (2r_1 - r_2, -3z, c_3 - 2c_1, c_2 + 4c_1 - 2c_3).$

 $\mathbf{2}$ — Siano G_1 e G_2 due gruppi finiti. In ciascuna delle seguenti ipotesi

(a)
$$|G_1| = 41$$
, $|G_2| = 12$

(b)
$$|G_1| = 20$$
, $|G_2| = 50$

(c)
$$|G_1| = 36$$
, $|G_2| = 54$

può esistere un morfismo $\phi: G_1 \longrightarrow G_2$ non banale (cioè non tale che $\phi(g) = 1 \ \forall g \in G_1$)? E può un tale morfismo essere iniettivo? Oppure suriettivo? In generale, quali sono le condizioni su $|G_1|$ e $|G_2|$ perché un tale morfismo possa esistere?

3 — Si consideri l'insieme $V_4 := \{1, i, j, k\}$ dotato dell'operazione (indicata moltiplicativamente) definita da

Dimostrare che:

- (a) V_4 con tale operazione è un gruppo abeliano detto gruppo di Klein;
- (b) il gruppo V_4 è isomorfo al gruppo $(\mathbb{Z}_2^2 := \mathbb{Z}_2 \times \mathbb{Z}_2; +)$ prodotto diretto di $(\mathbb{Z}_2; +)$ con sé stesso.

1

<u>Suggerimento</u>: Si possono dimostrare entrambi gli enunciati direttamente. In alternativa, la parte (a) segue subito dalla parte (b), nel senso che basta dimostrare che il gruppoide V_4 sia isomorfo a $(\mathbb{Z}_2^2; +)$, perché quest'ultimo è un gruppo e qualunque gruppoide isomorfo a un gruppo è a sua volta un gruppo.

- **4** Determinare tutti i possibili morfismi dal gruppo di Klein V_4 al gruppo $(S_3; \circ)$.
- **5** Determinare tutti i possibili morfismi dal gruppo (S_3 ; \circ) al gruppo di Klein V_4 .
- **6** Determinare tutti i possibili morfismi dal gruppo di Klein V_4 al gruppo (\mathbb{Z}_4 ; +).
- 7 Determinare tutti i gruppi G omomorfi a \mathbb{Z}_4 , cioè tali che esista un epimorfismo $\varphi \colon \mathbb{Z}_4 \longrightarrow G$.
- 8 Si consideri l'insieme $Q := \{1, -1, i, -i, j, -j, k, -k\}$ dotato dell'operazione (indicata moltiplicativamente) definita sinteticamente da

$$1 \cdot x = x = x \cdot 1 \; , \quad (-x) \cdot y = -(x \cdot y) = x \cdot (-y) \; , \quad z^2 = -1 \; , \quad \forall \; x, y \in Q \; , \; z \in Q \setminus \{\pm 1\}$$

$$i \cdot j = k \; , \qquad \qquad j \cdot k = i \; , \qquad \qquad k \cdot i = j$$

Dimostrare che Q con tale operazione è un gruppo — detto gruppo dei quaternioni.

- ${\bf 9}$ Determinare tutti i morfismi dal gruppo di Klein V_4 al gruppo dei quaternioni Q .
- 10 Determinare tutti i morfismi dal gruppo dei quaternioni Q al gruppo di Klein V_4 .
- 11 Dimostrare che $(\mathbb{Q}; +)$ non è isomorfo a $(\mathbb{Q} \setminus \{0\}; \cdot)$.

<u>Suggerimento</u>: Basta dimostrare che in uno dei due gruppi vale una qualche proprietà — ad esempio, una certa identità tra formule, magari per certi elementi particolari — che certamente non vale invece nell'altro gruppo...

12 — Sia $n \in (2 \mathbb{N}_+ + 1)$ un numero naturale dispari. Poniamo $x * y := \sqrt[n]{x^n + y^n}$ per ogni $x, y \in \mathbb{R}$. Verificare che $(\mathbb{R}; *)$ è un gruppo isomorfo a $(\mathbb{R}; +)$.

<u>Suggerimento</u>: Non si richiede una dimostrazione diretta; basta invece verificare che certe proprietà dei numeri reali e delle loro potenze con esponente dispari (che assumiamo come note), quando riformulate nel linguaggio dei gruppi, ci dicono che una certa applicazione da \mathbb{R} a \mathbb{R} è in effetti un isomorfismo dal gruppoide (\mathbb{R} ; *) al gruppoide (\mathbb{R} ; +). Come conseguenza, siccome il secondo gruppoide è un gruppo, allora lo è anche il primo.

13 — Sia $(G;\cdot)$ un gruppo finito, e siano $g_1,\ldots,g_k\in G$ con $k\geq |G|$. Dimostrare che esistono indici $p,\ldots,q\in\{0,1,\ldots,k\}$ con p< q tali che $g_{p+1}\,g_{p+2}\cdots\,g_{q-1}\,g_q=1_G$.

14 — Calcolare i gruppi di automorfismi $\operatorname{Aut}(\mathbb{Z}_6; +)$, $\operatorname{Aut}(\mathbb{Z}_8; +)$, $\operatorname{Aut}(\mathbb{Z}_{11}; +)$ e $\operatorname{Aut}(\mathbb{Z}; +)$.

<u>Suggerimento</u>: Si osservi che i gruppi $(\mathbb{Z}_n; +)$ — con $n \in \{6, 8, 11\}$ — $e(\mathbb{Z}; +)$ sono tutti ciclici, quindi un automorfismo è univocamente determinato dall'immagine di un generatore (e per generatore possiamo prendere sempre $[1]_n$ o 1).

15 — Dimostrare che Aut $(V_4; \circ) \cong S_3$.

<u>Suggerimento</u>: Si osservi che ogni automorfismo ϕ di V_4 fissa (cioè manda in sé stesso) l'elemento neutro 1; pertanto ϕ stesso è univocamente determinato dalla sua restrizione al sottoinsieme $\{i,j,k\}$ di V_4 . Si dimostri poi che questo definisce in effetti una applicazione da $Aut(V_4; \circ)$ a $(S_3; \circ)$, e che questa è un isomorfismo di gruppi.

 $\mathbf{16}$ — Dimostrare che $\mathrm{Aut}(\mathcal{S}_3\,;\,\circ\,)\cong\mathcal{S}_3$.

<u>Suggerimento</u>: Si può ottenere da un calcolo diretto, oppure passando per il morfismo di gruppi $\Gamma: \mathcal{S}_3 \longrightarrow \operatorname{Aut}(\mathcal{S}_3; \circ)$ che associa ad ogni $\sigma \in \mathcal{S}_3$ l'automorfismo interno $\gamma_{\sigma} (x \mapsto \sigma x \sigma^{-1})$, osservando poi che Γ è in effetti un isomorfismo.

 $\begin{aligned} \mathbf{17} &- \operatorname{Sia} \left\{ G_i \right\}_{i \in I} \text{ una famiglia di gruppi, indicizzata da un insieme } I. \text{ Il corrispondente} \\ \text{prodotto cartesiano} & \underset{i \in I}{\times} G_i \text{ è allora un gruppo} &- \text{detto "prodotto diretto dei } G_i " &- \text{per} \\ \text{l'operazione} & \left(\left. g_i' \right)_{i \in I} + \left(\left. g_i'' \right)_{i \in I} := \left(\left. g_i' \, g_i'' \right)_{i \in I} \right. \end{aligned}$

Per ogni $i \in I$ sia dato un sottoinsieme $S_i \subseteq G_i$; si definisca allora

$$\underset{i \in I}{\times} G_i^{\langle S \rangle} := \left\{ \left(g_i \right)_{i \in I} \in \underset{i \in I}{\times} G_i \mid g_i \in S_i, \forall i \in I \right\}$$

Dimostrare che:

- (a) se ogni S_i è sottogruppo di G_i ($i \in I$), allora $\underset{i \in I}{\times} G_i^{\langle S \rangle}$ è sottogruppo di $\underset{i \in I}{\times} G_i$, ed è isomorfo al prodotto diretto $\underset{i \in I}{\times} S_i$ dei gruppi S_i ($i \in I$) tra di loro;
- (b) se ogni S_i è sottogruppo normale di G_i ($i \in I$), allora $\underset{i \in I}{\times} G_i^{\langle S \rangle}$ è sottogruppo normale di $\underset{i \in I}{\times} G_i$, e il corrispondente gruppo quoziente $\underset{i \in I}{\times} G_i / \underset{i \in I}{\times} G_i^{\langle S \rangle}$ è isomorfo al prodotto diretto $\underset{i \in I}{\times} \left(G_i / S_i \right)$ dei vari gruppi quoziente G_i / S_i ($i \in I$);
 - (c) per ogni $j \in I$, la funzione $\pi_j : \underset{i \in I}{\times} G_i \longrightarrow G_j \left((g_i)_{i \in I} \mapsto g_j \right)$, è un epimorfismo;

4

(d) per ogni $j\in I$, la funzione $\eta_j:G_j\longrightarrow \underset{i\in I}{\times}G_i$ $\left(g\mapsto (g_i)_{i\in I}\right)$ data da $g_j:=g$ e $g_i:=e_{G_i}$ per ogni $i\in I\setminus\{j\}$, è un monomorfismo, la cui immagine è un sottogruppo normale di $\underset{i\in I}{\times}G_i$.

<u>Suggerimento</u>: Per evitare confusioni fuorvianti, si cominci considerando il caso in cui l'insieme I sia di soli due o tre indici, dunque studiamo il prodotto diretto di due o tre anelli... Tutto quel che c'è da capire, si manifesta già in questo caso semplice.

- - (a) esistono immersioni "canoniche"

$$j_s: G/\bigcap_{i\in I}H_i \longrightarrow \times_{i\in I}G/H_i$$
 , $g(\bigcap_{i\in I}H_i) \mapsto (gH_i)_{i\in I}$
 $j_d: \bigcap_{i\in I}H_i\backslash G \longrightarrow \times_{i\in I}H_i\backslash G$, $(\bigcap_{i\in I}H_i)g \mapsto (H_ig)_{i\in I}$

(cioè, le su descritte funzioni sono effettivamente ben definite...);

- (b) se $H_i \subseteq G$ per ogni $i \in I$, allora j_s e j_d coincidono e sono morfismi di gruppi.
- 19 Dimostrare che la "relazione" di "essere sottogruppo di" (tra gruppi) è "transitiva", cioè, dati tre gruppi H,G,K, si ha $H\leq G$, $G\leq K \implies H\leq K$.
- ${f 20}$ Dimostrare che la "relazione" di "essere sottogruppo normale di" (tra gruppi) non è "transitiva", cioè, dati tre gruppi H,G,K, in generale si ha

$$H \triangleleft G$$
, $G \triangleleft K \implies H \triangleleft K$

Suggerimento: Basta di trovare tre gruppi H, G e K t.c. $H \unlhd G$ e $G \unlhd K$ ma $H \npreceq K$.

- **21** Sia G un gruppo, $H \leq G$ e $K \leq G$. Dimostrare che $(H \cap K) \leq H$.
- **22** Siano H e K due sottogruppi normali di un gruppo G tali che $H \cap K = \{1\}$. Dimostrare che:
 - (a) hk = kh per ogni $h \in H$, $k \in K$;
 - (b) $HK := \{ h k \mid h \in H, k \in K \} = KH$ è sottogruppo normale di G.

<u>Suggerimento</u>: Si riscriva $h\,k$ nella forma $h\,k=h\,k\,h^{-1}\,h$ e si ricordi che $H\unlhd G$; analogamente si faccia per $k\,h$. Quindi...

23 — Siano H e K due sottogruppi di un gruppo G tali che HK = KH . Dimostrare che HK = KH è il sottogruppo di G generato da $H \cup K$.

- **24** Sia G un gruppo, $H \leq G$ e $N \leq G$. Dimostrare che HN = NH.
- **25** Sia G un gruppo, sia $\{N_i\}_{i\in I}$ una famiglia di sottogruppi normali di G, e sia $\left\langle \bigcup_{i\in I} N_i \right\rangle$ il sottogruppo di G generato da $\bigcup_{i\in I} N_i$. Dimostrare che $\left\langle \bigcup_{i\in I} N_i \right\rangle \subseteq G$.
 - 26 Per un qualsiasi gruppo G, definiamo i sottoinsiemi

$$Z(G) := \{ z \in G \mid zg = gz, \forall g \in G \}$$
 (=: "centro di G ")

 $C_G(g) := \{ x \in G \mid x g = g x \}$ (=: "centralizzante di g") $\forall g \in G$

Dimostrare che:

- (a) $Z(G) = \bigcap_{g \in G} C_G(g)$;
- (b) $C_G(g) \leq G$ per ogni $g \in G$;
- (c) $Z(G) \subseteq G$.

<u>Suggerimento</u>: Tutto segue direttamente dalle definizioni. Inoltre, la parte (c) si può ottenere anche come conseguenza immediata delle parti (a) e (b) insieme.

- **27** Sia G un gruppo, e $H \leq Z(G)$, dove Z(G) indica il centro di G. Dimostrare che $H \subseteq G$, e inoltre che, se il gruppo quoziente G/H è ciclico, allora G è abeliano.
 - ${\bf 28}$ Siano G un gruppo e H un sottogruppo di G . Definiamo poi

$$C_G(H) := \left\{ x \in G \mid xh = hx \ \forall h \in H \right\} , \qquad N_G(H) := \left\{ x \in G \mid xH = Hx \right\} .$$

Dimostrare che:

- (a) $C_G(H) \leq H$, $N_G(H) \leq G$, $H \leq N_G(H)$;
- (b) se $H \subseteq K \subseteq G$, allora $K \subseteq N_G(H)$;
- (c) $H \triangleleft G \iff N_G(H) = G$;
- (d) per ogni $\phi \in Aut(G)$ si ha $H \subseteq G \iff \phi(H) \subseteq G$;
- (e) dato $\alpha \in \text{Aut}(G)$ tale che $\alpha(H) = H$, si ha $\alpha(C_G(H)) = C_G(H) \qquad \text{e} \qquad \alpha(N_G(H)) = N_G(H) .$

20. Sie
$$C$$
 un gruppo qualciesi. Por ogni $a \in C$ sie $\alpha : C \to C$ l'app

- **29** Sia G un gruppo qualsiasi. Per ogni $g \in G$, sia $\gamma_g : G \longrightarrow G$ l'applicazione definita da $\gamma_g(x) := g \, x \, g^{-1}$, per ogni $x \in G$. Dimostrare che:
- (a) $\gamma_g \in Aut(G)$, cioè γ_g è un automorfismo di G, per ogni $g \in G$ (detto "automorfismo interno" associato a g);
 - $(b) \quad Int(G) := \left\{ \left. \gamma_g \, \middle| \, g \in G \right. \right\} \trianglelefteq Aut(G) \, , \text{ cioè } Int(G) \, \text{è sottogruppo normale di } Aut(G) \, ; \right.$
 - (c)l'applicazione $\varGamma: G \longrightarrow Aut(G)$ è un morfismo di gruppi;
 - (d) il nucleo del morfismo $\Gamma: G \longrightarrow Aut(G)$ è $Ker(\Gamma) = Z(G)$.

30 — Sia G un gruppo, e $H \subseteq G$ con |H| = 2. Dimostrare che $H \subseteq Z(G)$.

<u>Suggerimento</u>: Si analizzi l'effetto degli operatori $\gamma_g: G \longrightarrow G\left(x \mapsto g \, x \, g^{-1}\right)$ — per ogni $g \in G$ — sul sottogruppo H ...

31 — Sia
$$G$$
 un gruppo, e $H \leq G$ con $(G:H) = 2$. Dimostrare che $H \leq G$.

<u>Suggerimento</u>: L'ipotesi (G:H)=2 significa che il sottogruppo H ha due classi laterali sinistre e due classi laterali destre; in entrambi i casi, una di queste due classi è la classe laterale (sinistra o destra, rispettivamente) dell'elemento neutro del gruppo $e_G \in G$: in formule, abbiamo $G/H=\{\kappa_1,\kappa_2\}$ e $H\backslash G=\{c_1,c_2\}$ con $\kappa_1=e_GH$, $\kappa_2=\gamma H$, e $c_1=He_G$, $c_2=H\ell$. Inoltre, le classi laterali di H (sinistre o destre, rispettivamente) formano una partizione di G, quindi è $G=\kappa_1\dot{\cup}\kappa_2$ e $G=c_1\dot{\cup}c_2$, da cui segue che $\kappa_2=G\backslash\kappa_1$ e $c_2=G\backslash c_1$. Infine, le classi laterali sinistra e destra di H coincidono entrambe con H stesso, e da questo (e da quanto già visto) possiamo concludere che $\kappa_1=H=c_1$ e $\kappa_2=G\backslash H=c_2$. Dunque gH=Hg per ogni $g\in G$, cioè $H\unlhd G$.

32 — Per un qualsiasi gruppo G, consideriamo gli elementi $(g,h) := g h g^{-1} h^{-1}$ — per ogni $g,h \in G$ — e il sottogruppo da essi generato in G, cioè

$$G' := \left\langle \left\{ \left(g, h \right) := g \, h \, g^{-1} \, h^{-1} \, \middle| \, g, h \in G \right\} \right\rangle \qquad \left(=: \text{``sottogruppo derivato''} \, \operatorname{di} \, G \right)$$

Dimostrare che:

- (a) $G' \subseteq G$;
- $(b) \quad G \ \mbox{\`e} \ \ abeliano \ \iff \ G' = \left\{1_{{}_{G}}\right\} \ \ .$

33 — Sia
$$N := \{ id, (12)(34), (13)(24), (14)(23) \} (\subseteq S_4)$$
. Dimostrare che:

- (a) $N \subseteq \mathcal{S}_4$;
- (b) \diamondsuit $\mathcal{S}_4/N \cong \mathcal{S}_3$.

Suggerimento: La parte (a) si può ottenere con un calcolo diretto. Per la parte (b), cerchiamo un isomorfismo da S_4/N a S_3 ; siccome il primo è un gruppo quoziente, un tale isomorfismo ci sarebbe dato dal Teorema Fondamentale di Omomorfismo se troviamo un morfismo $\varphi: S_4 \longrightarrow S_3$ che abbia immagine S_3 (cioè sia suriettivo) e nucleo N — da cui quindi seguirà anche la parte (a). Per trovare un tale φ , si può procedere seguendo questo schema:

— [1] siccome ogni morfismo manda un elemento di ordine n in un elemento di ordine un divisore di n, e poiché ogni permutazione ciclica di lunghezza n ha ordine n, dobbiamo avere che $\varphi((ab))$, risp. $\varphi((abc))$, risp. $\varphi((abcd))$, dev'essere una permutazione di

ordine 1 oppure 2, risp. 1 oppure 3, risp. 1 oppure 2 oppure 4: ma quest'ultimo caso va scartato, perché non esistono elementi di ordine 4 in S_3 ...

- [2] siccome dev'essere $Ker(\varphi) = N$, abbiamo $\varphi((ab)) \neq id$ per ogni a, b tali che $a \neq b$ perché $(ab) \notin N$; in particolare $\varphi((ab))$ non ha ordine 1, quindi (vedi sopra) ha ordine 2, dunque è della forma $\varphi((ab)) = (xy)$ per qualche $x, y \in \{1, 2, 3\}$, $x \neq y$;
- [3] sempre perché $\operatorname{Ker}(\varphi) = N$, abbiamo il vincolo che $\varphi((a\,b)\,(c\,d)) = \operatorname{id}$ per ogni a, b, c, d tali che $\{a,b,c,d\} = \{1,2,3,4\}$ che a sua volta significa che $\varphi((a\,b)) = \varphi((c\,d))^{-1} = \varphi((c\,d)^{-1}) = \varphi((c\,d))$;
- [5] a questo punto facciamo una scelta per $(x_i y_i)$ con $i \in \{1,2,3\}$ ponendo $\varphi((12)) := (12)$, $\varphi((13)) := (13)$, $\varphi((23)) := (23)$; da questa premessa otteniamo un'unica possibilità per il valore di φ sulle altre permutazioni: infatti, poniamo $\varphi((34)) := (12)$, $\varphi((24)) := (13)$, $\varphi((14)) := (23)$ per il punto [3], $\varphi((ab)(cd)) := id$ per avere $Ker(\varphi) = N$, e poi per le restanti permutazioni che sono tutte cicliche di ordine 3 oppure 4 usiamo la condizione che φ sia un morfismo: così ad esempio definiamo

$$\varphi((1\,3\,4)) = \varphi((1\,4)\,(1\,3)) := \varphi((1\,4))\varphi((1\,3)) = (2\,3)\,(1\,3) = (1\,2\,3)$$
$$\varphi((1\,2\,3\,4)) = \varphi((1\,4)\,(1\,3)\,(1\,2)) := \varphi((1\,4))\varphi((1\,3))\varphi((1\,2)) = (2\,3)\,(1\,3)\,(1\,2) = (1\,3)$$

questo permette effettivamente di definire φ su tutto \mathcal{S}_4 perché tale gruppo è generato dal sottoinsieme $\{(a\,b) \mid a \neq b\}$ e per quest'ultimo i valori di φ sono già assegnati una volta scelte le tre permutazioni $(x_i\,y_i) \in \mathcal{S}_3$.

N.B.: con scelte diverse della terna ordinata $((x_i\,y_i))_{i=1,2,3;}$ di permutazioni in \mathcal{S}_3 si trovano diversi morfismi φ che tutti soddisfano le nostre richieste; in totale ci sono 3!=6 diverse possibilità, e quindi abbiamo esattamente 6 diversi isomorfismi da \mathcal{S}_4/N a \mathcal{S}_3 .

34 — Dato un insieme E, per ogni $F \subseteq E$ consideriamo i sottoinsiemi di $\mathcal{S}(E)$ dati da $G_F := \{ \sigma \in \mathcal{S}(E) \mid \sigma(F) = F \}$, $G_{(F)} := \{ \nu \in \mathcal{S}(E) \mid \nu(f) = f, \ \forall \ f \in F \}$ e anche la relazione \sim in G_F definita da

$$\sigma' \sim \sigma'' \quad \Longleftrightarrow \quad \sigma' \Big|_{F} = \sigma'' \Big|_{F} \qquad \qquad \forall \ \sigma', \sigma'' \in \mathcal{S}(E)$$

dove $\sigma\Big|_F$ come sempre indica la restrizione di $\sigma\in\mathcal{S}(E)$ al sottoinsieme F. Dimostrare che:

(a) la relazione \sim è un'equivalenza in G_F ;

- (b) $(G_F; \circ)$ è sottogruppo di $(S(E); \circ)$;
- (c) la relazione \sim è compatibile con l'operazione " \circ " in G_F ;
- (d) il gruppo quoziente G_F/\sim è isomorfo al gruppo di permutazioni $(S(F); \circ)$;
- (e) $G_{(F)}$ è sottogruppo normale di G_F ;
- (f) il gruppo quoziente $G_F/G_{(F)}$ è isomorfo al gruppo di permutazioni $(S(F); \circ)$;
- (g) $\sim = \rho_d^{G_{(F)}}$ dove $\rho_d^{G_{(F)}}$ è la relazione destra in G_F canonicamente associata a $G_{(F)}$;
- (h) $\sim = \rho_s^{G_{(F)}}$ dove $\rho_s^{G_{(F)}}$ è la relazione sinistra in G_F canonicamente associata a $G_{(F)}$;
- (i) l'applicazione $\mathcal{R}_F: G_F \longrightarrow \mathcal{S}(F), \ \sigma \mapsto \mathcal{R}_F(\sigma) := \sigma \Big|_{\Gamma}, \ \text{è suriettiva};$
- (j) la relazione \sim è l'equivalenza in G_F canonicamente associata all'applicazione \mathcal{R}_F ;
- (k) l'applicazione $\mathcal{R}_F: G_F \longrightarrow \mathcal{S}(F), \ \sigma \mapsto \mathcal{R}_F(\sigma) := \sigma\Big|_F$, è un epimorfismo dal gruppo $(G_F; \circ)$ al gruppo $(\mathcal{S}(F); \circ)$.

<u>Suggerimento</u>: L'enunciato è molto ridondante, e la sua dimostrazione si può semplificare di molto. La linea più semplice da seguire può essere questa che sintetizziamo. I punti (b) e (i) sono sostanzialmente indipendenti, e si possono dimostrare per primi. Per il resto, si cominci dimostrando (j), che implica (a); poi si dimostri parte del (k) — precisamente, il fatto che \mathcal{R}_F sia un morfismo (il fatto che sia "epi-" segue dal punto (i)! — che insieme a (j) implica (c); a questo punto, dimostrando il punto (g) — oppure il punto (h) — ne consegue automaticamente anche il punto (h) — oppure il punto (g), rispettivamente — e il punto (e), e anche il fatto che i punti (d) ed (f) sono equivalenti, perché i gruppi quoziente di cui si parla coincidono (sono soltanto scritti usando notazioni diverse). Infine questi due enunciati (d) ed (f) — che sono appunto equivalenti — si ottengono dal Teorema Fondamentale di Omomorfismo applicato all'epimorfismo di gruppi \mathcal{R}_F : G_F — $\mathcal{S}(F)$.

35 $\textcircled{\mathbb{P}}$ — Sia $\mathbb{K} \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\} \cup \{\mathbb{Z}_p\}_{p \text{ primo}}$, o più in generale sia \mathbb{K} un qualsiasi campo. Si consideri $\mathbb{P}_{\mathbb{K}} := \mathbb{K} \cup \{\infty\}$ e sia $\mathcal{G}_{\mathbb{P}_{\mathbb{K}}}$ il sottogruppo del gruppo $(\mathcal{S}(\mathbb{P}_{\mathbb{K}}); \circ)$ di tutte le permutazioni di $\mathbb{P}_{\mathbb{K}}$ definito da

$$\mathcal{G}_{\mathbb{P}_{\mathbb{K}}} \; := \; \left\{ \, f \in \mathbb{P}_{\mathbb{K}}^{\mathbb{P}_{\mathbb{K}}} \; \middle| \; \exists \, a,b,c,d \in \mathbb{K} \colon ad-bc \neq 0 \in \mathbb{K} \, , \; f(x) = \frac{ax+b}{cx+d} \; \; \forall \, x \in \mathbb{P}_{\mathbb{K}} \, \right\}$$

Dimostrare che $\mathcal{G}_{\mathbb{P}_{\mathbb{K}}}$ è isomorfo al gruppo quoziente $GL_2(\mathbb{K}) / \mathbb{K}^* I_2$, dove I_2 è la matrice identità 2×2 e $\mathbb{K}^* I_2 := \{ \kappa I_2 \mid \kappa \in \mathbb{K}^* := \mathbb{K} \setminus \{0\} \}$ è sottogruppo centrale (e quindi normale) di $GL_2(\mathbb{K})$.

Suggerimento: Basterà trovare un isomorfismo $\phi: GL_2(\mathbb{K}) / \mathbb{K}^* I_2 \stackrel{\cong}{\longleftarrow} \mathcal{G}_{\mathbb{P}_{\mathbb{K}}}$. A sua volta, questo sarà indotto dal Teorema Fondamentale di Omomorfismo come $\phi = \varphi_*$ dove $\varphi: GL_2(\mathbb{K}) \stackrel{\cong}{\longrightarrow} \mathcal{G}_{\mathbb{P}_{\mathbb{K}}}$ sia un epimorfismo con nucleo $Ker(\varphi) = \mathbb{K}^* I_2$. Per trovare un

tale φ , si noti che bisogna associare a ogni $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{K})$ una permutazione di $\mathbb{P}_{\mathbb{K}}$ scelta tra quelle in $\mathcal{G}_{\mathbb{P}_{\mathbb{K}}}$...

- 36 \diamondsuit Sia $\phi: G \longrightarrow G'$ un morfismo di gruppi. Dimostrare che:
 - (a) $\phi(1_G) = 1_{G'}$;
 - (b) $\phi(g^{-1}) = \phi(g)^{-1}$ per ogni $g \in G$;
- (c) per ogni $H \leq G$ si ha $\phi(H) \leq G'$, con $\phi(H) \subseteq Im(\phi) := \phi(G)$; in particolare, si ha sempre $Im(\phi) = \phi(G) \leq G'$;
 - (d) per ogni $H \subseteq G$ si ha $\phi(H) \subseteq Im(\phi) = \phi(G)$, ma in generale $\phi(H) \not\subseteq G'$;
 - $(e) \ \text{per ogni} \ H' \leq G' \ \text{si ha} \ \phi^{-1}(H') \leq G \,, \ \text{con} \ \phi^{-1}(H') \supseteq Ker(\phi) := \phi^{-1}\left(1_{G'}\right) \ ;$
- (f) per ogni $H' \leq G'$ tale che $\left(H' \cap \operatorname{Im}(\phi)\right) \trianglelefteq \operatorname{Im}(\phi)$ si ha $\phi^{-1}(H') \trianglelefteq G$; in particolare, $\operatorname{Ker}(\phi) := \phi^{-1}\left(1_{G'}\right) \trianglelefteq G$;
 - (g) per ogni $H \leq G$ si ha $\phi^{-1}(\phi(H)) = H \operatorname{Ker}(\phi) = \operatorname{Ker}(\phi) H$;
 - (h) per ogni $H' \leq G'$ si ha $\phi(\phi^{-1}(H')) = H' \cap \operatorname{Im}(\phi) = \operatorname{Im}(\phi) \cap H'$;
- $\begin{array}{lll} (i) \ \ \text{le applicazioni} & H \mapsto \phi(H) & \text{e} & H' \mapsto \phi^{-1}(H') & \text{dall'insieme dei sottogruppi di } G \\ \text{all'insieme dei sottogruppi di } G' & \text{si restringono a biiezioni} & \mathcal{S}_G^{Ker(\phi)} & \longrightarrow & \mathcal{S}_{G',\,Im(\phi)} \\ \text{e} & \mathcal{S}_G^{Ker(\phi)} & \longleftarrow & \mathcal{S}_{G',\,Im(\phi)} & \text{dove poniamo} & \mathcal{S}_G^{Ker(\phi)} & := \left\{ \left. H \leq G \mid H \supseteq Ker(\phi) \right\} \right. \\ \text{e} & \mathcal{S}_{G',\,Im(\phi)} := \left\{ \left. H' \leq G' \mid H' \subseteq Im(\phi) \right\} \right. \\ & \text{che sono inverse l'una dell'altra.} \end{array}$

<u>Suggerimento</u>: L'enunciato è lungo ma non (realmente) difficile. Le parti (a) e (b) sono elementari, basta ricordare alcune proprietà specifiche dell'elemento neutro e dell'inverso in un gruppo. Per il resto, si possono utilizzare vari risultati considerati in precedenza. Infine, si noti che la parte (i) è sostanzialmente una riformulazione di quanto già enunciato nelle parti precedenti.

37 — Dato un gruppo G, siano

$$\lambda : G \hookrightarrow \mathcal{S}(G) , \quad g \mapsto \lambda_g \begin{pmatrix} G & & & G \\ x \mapsto \lambda_g(x) := g x \end{pmatrix}$$

$$\rho : G \hookrightarrow \mathcal{S}(G) , \quad g \mapsto \rho_g \begin{pmatrix} G & & & G \\ x \mapsto \rho_g(x) := x g^{-1} \end{pmatrix}$$

i monomorfismi di gruppi dati dal Teorema di Cayley (per gruppi), e si ponga

$$\lambda(G) := Im(\lambda) , \quad \rho(G) := Im(\rho) .$$

Si considerino poi

$$C(\lambda(G)) := \{ \sigma \in \mathcal{S}(G) \mid \sigma \circ \lambda_g = \lambda_g \circ \sigma, \ \forall \ g \in G \}$$

$$C(\rho(G)) := \{ \tau \in \mathcal{S}(G) \mid \tau \circ \rho_g = \rho_g \circ \tau, \ \forall \ g \in G \}.$$

Dimostrare che

$$C(\lambda(G)) = \rho(G)$$
, $C(\rho(G)) = \lambda(G)$.

38 — Dato un morfismo di anelli $\phi: R \longrightarrow A$, dimostrare che la funzione associata

$$G_n(\phi): GL_n(R) \longrightarrow GL_n(A), \quad (r_{i,j}) \mapsto G_n(\varphi)((r_{i,j})) := (\phi(r_{i,j}))$$

è un morfismo di gruppi. Inoltre, si dimostri che:

- (a) per $\phi = id_A$ si ha $G_n(id_A) = id_{GL_n(A)}$;
- (b) se $\psi: A \longrightarrow T$ è un analogo morfismo, si ha $G_n(\psi \circ \phi) = G_n(\psi) \circ G_n(\phi)$.

$$S_{n}(\mathbb{A}) := \left\{ (m_{i,j})_{i=1,\dots,n;}^{j=1,\dots,n;} \in GL_{n}(\mathbb{A}) \mid m_{i,j} = \delta_{i,j} \alpha, \ \forall i \neq j, \ \alpha \in U(\mathbb{A}) \right\}$$

$$D_{n}(\mathbb{A}) := \left\{ (m_{i,j})_{i=1,\dots,n;}^{j=1,\dots,n;} \in GL_{n}(\mathbb{A}) \mid m_{i,j} = 0, \ \forall i \neq j \right\}$$

$$T_{n}^{+}(\mathbb{A}) := \left\{ (m_{i,j})_{i=1,\dots,n;}^{j=1,\dots,n;} \in GL_{n}(\mathbb{A}) \mid m_{i,j} = 0, \ \forall i > j \right\}$$

$$T_{n}^{-}(\mathbb{A}) := \left\{ (m_{i,j})_{i=1,\dots,n;}^{j=1,\dots,n;} \in GL_{n}(\mathbb{A}) \mid m_{i,j} = 0, \ \forall i < j \right\}$$

$$U_{n}^{\pm}(\mathbb{A}) := \left\{ (u_{i,j})_{i=1,\dots,n;}^{j=1,\dots,n;} \in T_{n}^{\pm}(\mathbb{A}) \mid u_{k,k} = 1, \ \forall k \right\}$$

Inoltre, soltanto per il caso in cui l'anello \mathbb{A} sia commutativo — come nel caso di $\mathbb{A} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\} \cup \{\mathbb{Z}_n\}_{n \in \mathbb{N}}$ — consideriamo anche il sottoinsieme

$$SL_n(\mathbb{A}) := \left\{ (m_{i,j})_{i=1,\dots,n;}^{j=1,\dots,n;} \in GL_n(\mathbb{A}) \mid \det((m_{i,j})_{i=1,\dots,n;}^{j=1,\dots,n;}) = 1 \right\}$$

Dimostrare che:

- (a) \diamondsuit tutti questi sottoinsiemi sono sottogruppi di $GL_n(\mathbb{A})$;
- (b) $\mbox{\ensuremath{\mbox{$\hat{x}$}}} S_n(\mathbb{A}) = Z(GL_n(\mathbb{A})) ;$
- (c) $D_n(\mathbb{A}) \leq T_n^{\pm}(\mathbb{A})$ ma $D_n(\mathbb{A}) \not \supseteq T_n^{\pm}(\mathbb{A})$;
- (d) $T_n^{\pm}(\mathbb{A}) \leq GL_n(\mathbb{A})$ ma $T_n^{\pm}(\mathbb{A}) \not \subseteq GL_n(\mathbb{A})$;
- (e) $U_n^+(\mathbb{A}) \leq T_n^+(\mathbb{A})$ e $U_n^-(\mathbb{A}) \leq T_n^-(\mathbb{A})$;
- (f) il gruppo quoziente $T_n^{\pm}(\mathbb{A})/U_n^{\pm}(\mathbb{A})$ è isomorfo al gruppo $D_n(\mathbb{A})$;
- (g) $SL_n(\mathbb{A}) \leq GL_n$ (nel caso in cui l'anello \mathbb{A} sia commutativo);
- (h) il gruppo quoziente $GL_n(\mathbb{A})/SL_n$ è isomorfo al gruppo $U(\mathbb{A})$ (nel caso in cui l'anello \mathbb{A} sia commutativo).

<u>Suggerimento</u>: Si consideri prima il caso n=2, nel quale già si verificano tutti i fenomeni significativi. Da questo si può anche dedurre il caso generale, osservando che GL_2 si immerge come sottogruppo in GL_n tramite un monomorfismo che manda una matrice (invertibile) 2×2 in una matrice (invertibile) $n\times n$ ottenuta inserendo nell'angolo in alto a sinistra la matrice 2×2 assegnata, inserendo tanti "1" nelle posizioni diagonali rimaste libere e tanti "0" in tutte le altre posizioni non ancora riempite. In breve, si lavori con matrici a blocchi di forma $\left(\begin{array}{c|c} 2\times 2 & 2\times (n-2) \\ \hline (n-2)\times 2 & (n-2)\times (n-2) \end{array}\right)$.

Per la parte (a), la cosa delicata è dimostrare che per una matrice triangolare (superiore o inferiore) con coefficienti sulla diagonale invertibili esiste la matrice inversa e quest'ultima è a sua volta triangolare (dello stesso tipo). Si analizzi prima il caso n=2, e poi si osservi che si può procedere per induzione, dove nel passaggio da n a n+1 una matrice (quadrata) di ordine n+1 si scompone come matrice a blocchi i cui blocchi siano di taglia $n\times n$ (in alto a sinistra), $1\times n$ (in alto a destra), $n\times 1$ (in basso a sinistra) e 1×1 (in basso a destra).

Le parti (e) e (f) si possono ottenere osservando che l'applicazione $T_n^{\pm}(\mathbb{A}) \longrightarrow D_n(\mathbb{A})$ data da $(m_{i,j})_{i=1,\dots,n}^{j=1,\dots,n}$; $\mapsto (\delta_{i,j} m_{i,j})_{i=1,\dots,n}^{j=1,\dots,n}$; è un epimorfismo (in breve, "estrae la diagonale" da una matrice triangolare), con $U_n^{\pm}(\mathbb{A})$ come nucleo; questo ci dà (e), e inoltre anche (f) applicando il Teorema Fondamentale di Omomorfismo.

Le parti (g) ed (h) seguono dall'osservazione che la ben nota applicazione "determinante" det : $GL_n^{\pm}(\mathbb{A}) \longrightarrow U(\mathbb{A})$ è un epimorfismo (per il Teorema di Binet), il cui nucleo è esattamente $SL_n^{\pm}(\mathbb{A})$; questo ci dà (g), e a seguire anche (h) applicando il Teorema Fondamentale di Omomorfismo.