MATEMATICA DISCRETA

CdL in Informatica

prof. Fabio GAVARINI

a.a. 2017–2018 — Esame scritto del 3 Luglio 2018 — Sessione Estiva, II appello

N.B.: compilare il compito in modo <u>sintetico</u> ma **esauriente**, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

[1] Si consideri il polinomio booleano $P_{Q,R} = P_{Q,R}(h,k,\ell,t)$ definito da

$$P_{Q,R}(h,k,\ell,t) := \left(\left(h' \wedge \left(\left(\ell' \vee t \right)' \vee (k \wedge t) \right) \right) \wedge 0' \wedge \left(\left(t' \wedge \left(k \vee t' \right) \right) \vee t \right) \right) \vee \left(\ell' \wedge \left(\left(h \wedge \left(\left(Q \vee R \right)' \vee h \right) \right) \vee h' \right) \wedge 1 \wedge \left(\left(h' \vee k \right)' \vee k \right) \right)$$

dipendente a sua volta dai due polinomi $Q := Q(h, k, \ell, t)$ e $R := R(h, k, \ell, t)$.

- (a) Calcolare una somma di prodotti fondamentali equivalente a $P_{Q,R}$.
- (b) Calcolare una seconda somma di prodotti fondamentali equivalente a $P_{Q,R}$, diversa da quella ottenuta in (a), in modo che una delle due sia più semplice dell'altra; in particolare, si spieghi perché l'una sia più semplice dell'altra.
- [2] Dato l'insieme $\{\in, \pounds, \Psi, \$\}$, si consideri il corrispondente insieme delle parti $\mathcal{P}(\{\in, \pounds, \Psi, \$\})$, dotato della relazione (d'ordine) di inclusione; per semplificare la notazione indicheremo un sottoinsieme $\{x_1, x_2, \ldots, x_n\}$ con $\underline{x_1 x_2 \ldots x_n} := \{x_1, x_2, \ldots, x_n\}$. Si consideri poi in $\mathcal{P}(\{\in, \pounds, \Psi, \$\})$ il sottoinsieme

$$\mathbb{E} \ := \ \left\{ \, \emptyset \,\,,\,\underline{\in}\,\,,\,\underline{\pounds}\,\,,\,\underline{+}\,\,,\,\underline{\pounds}\,\,\underline{+}\,\,,\,\underline{\bullet}\,\,\underline{\pounds}\,\,\underline{+}\,\,,\,\underline{\bullet}\,\,\underline{\pounds}\,\,\underline{\$}\,\,,\,\underline{\bullet}\,\,\underline{+}\,\,\underline{+}\,\,\underline{\bullet}\,\,,\,\underline{\bullet}\,\,\underline{+}\,\,\underline{\bullet}\,\,\underline{\bullet}\,\,,\,\underline{\bullet}\,\,\underline{\bullet}\,\,\underline{\bullet}\,\,,\,\underline{\bullet}\,\,\underline{\bullet}\,\,\underline{\bullet}\,\,\underline{\bullet}\,\,,\,\underline{\bullet}\,\,\underline{\bullet}\,\,\underline{\bullet}\,\,\underline{\bullet}\,\,\underline{\bullet}\,\,,\,\underline{\bullet}\,$$

e i suoi sottoinsiemi

$$\mathbb{E}' \; := \; \mathbb{E} \setminus \left\{ \, \underline{\pounds \, \underline{Y}} \, \, \right\} \quad , \qquad \mathbb{E}'' \; := \; \mathbb{E} \setminus \left\{ \, \underline{\mathfrak{E} \, \underline{\mathfrak{E}} \, \underline{Y}} \, \, \right\}$$

In tali (sotto)insiemi \mathbb{E} , \mathbb{E}' e \mathbb{E}'' consideriamo ancora la relazione (d'ordine) di inclusione.

- (a) Disegnare il diagramma di Hasse dell'insieme ordinato $(\mathbb{E};\subseteq)$.
- (b) Verificare se l'insieme ordinato $(\mathbb{E};\subseteq)$ sia un reticolo oppure no. In caso negativo, si spieghi perché tale insieme ordinato non sia un reticolo; in caso affermativo, si determini (giustificando la risposta) se tale reticolo sia distributivo.
- (c) Verificare se l'insieme ordinato $(\mathbb{E}';\subseteq)$ sia un reticolo oppure no. In caso negativo, si spieghi perché tale insieme ordinato non sia un reticolo; in caso affermativo, si determini (giustificando la risposta) se tale reticolo sia un'algebra di Boole.
- (d) Verificare se l'insieme ordinato $(\mathbb{E}'';\subseteq)$ sia un reticolo oppure no. In caso negativo, si spieghi perché tale insieme ordinato non sia un reticolo; in caso affermativo, si determini (giustificando la risposta) se tale reticolo sia un'algebra di Boole.

[3] Determinare tutti i numeri interi $x \in \mathbb{Z}$ per i quali si abbia simultaneamente

$$[63]_{105} \cdot [x]_{105} = [189]_{105}$$
 in \mathbb{Z}_{105} e $317 x \equiv -49 \pmod{20}$ in \mathbb{Z} .

- [4] Utilizzando il Principio di Induzione, si dimostri che per ogni insieme finito e non vuoto A con n:=|A| elementi, l'insieme $\underline{2}^A$ delle funzioni caratteristiche in A dove $\underline{2}:=\{0,1\}$ ha esattamente 2^n elementi, cioè $|\underline{2}^A|=2^n$.
- [5] Si consideri il multidigrafo \overrightarrow{G} , avente esattamente sei vertici v_1, v_2, \ldots, v_6 , la cui matrice di adiacenza rispetto alla fissata numerazione dei vertici sia

$$A_{\overrightarrow{G}} := egin{pmatrix} 0 & 2 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

e sia ${\bf G}$ il multigrafo associato al multidigrafo \overrightarrow{G} .

- (a) Calcolare il numero di cammini (orientati) di lunghezza 3 da v_2 a v_6 , da v_5 a v_2 , da v_4 a v_3 e da v_6 a v_2 . In ciascun caso, se tale numero è maggiore di zero si determini un cammino esplicito del tipo considerato.
- (b) Determinare, direttamente dall'analisi della sua matrice di adiacenza $A_{\overrightarrow{G}}$, il numero di archi del multidigrafo \overrightarrow{G} .
- (c) Determinare se esistano nel multidigrafo \overrightarrow{G} dei cicli (orientati). In caso negativo, si spieghi perché non esistano; in caso positivo, si determini esplicitamente almeno un ciclo (orientato).
 - (d) Determinare esplicitamente due diversi alberi ricoprenti del multigrafo ${\bf G}$.
 - (e) Descrivere graficamente (= disegnare...) il multidigrafo \overrightarrow{G} .
 - ${\bf [6]}~{\rm Sia}~X$ un insieme, e siano λ la relazione in $\mathcal{P}(X)$ definita da

$$A \lambda B \iff \left(A \cap (X \setminus B) = \emptyset \right) \& \left(|B| \le |A| \right) \quad \text{per ogni} \quad A, B \in \mathcal{P}(X)$$

- (a) Dimostrare che λ è una relazione d'ordine in $\mathcal{P}(X)$.
- (b) Dimostrare che, se l'insieme X è finito, allora la relazione λ è l'identità in $\mathcal{P}(X)$.
- (c) Dimostrare che, se l'insieme X è infinito, allora la relazione λ non è simmetrica.