GEOMETRIA I modulo

CdL in Scienze e Tecnologie per i Media — a.a. 2010/2011

prof. Fabio GAVARINI

Esame scritto del 20 Febbraio 2012

N.B.: compilare il compito in modo sintetico ma **esauriente**, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

[1] Nello spazio vettoriale $V:=\mathbb{R}^4$, si considerino i tre vettori

$$u_1(h) := (0, 1, 0, 2h-2), u_2(h) := (1, 0, 0, h-1)$$

 $u_3(h) := (h-1, 2h+1, -3h, -1)$

dipendenti dal parametro $h \in \mathbb{R}$, e si indichi con $U_h := Span(u_1(h), u_2(h), u_3(h))$ il sottospazio vettoriale (anch'esso dipendente dal parametro h) generato in V da tali vettori. Al variare di $h \in \mathbb{R}$, risolvere i seguenti problemi.

- (a) Determinare la dimensione del sottos pazio U(h) .
- (b) Estrarre dall'insieme $\{u_1(h), u_2(h), u_3(h)\}$ un suo sottoinsieme B_{U_h} che sia una base del sottospazio U_h .
- (c) Estendere la base B_{U_h} di U_h trovata al punto (b) ad una base B_h di tutto lo spazio vettoriale $V := \mathbb{R}^4$.

- *** --

[2] Si considerino la matrice $A \in Mat_{5\times 4}(\mathbb{R})$ e i vettori $\underline{b}', \, \underline{b}'' \in \mathbb{R}^5$ dati da

$$A := \begin{pmatrix} -2 & 1 & -1 & 1 \\ 0 & 4 & 4 & 0 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & 2 & 0 \\ -1 & 0 & -1 & -1 \end{pmatrix} \quad , \qquad \underline{b}' := \begin{pmatrix} 6 \\ 11 \\ 1 \\ 0 \\ -1 \end{pmatrix} \quad , \qquad \underline{b}'' := \begin{pmatrix} -2 \\ -4 \\ 8 \\ 7 \\ -5 \end{pmatrix}$$

- (a) Calcolare il nucleo Ker(A) della matrice A, precisandone la dimensione.
- (b) Calcolare la dimensione dell'immagine Im(A) della matrice A, e calcolarne esplicitamente una base.
 - (c) Risolvere i due sistemi lineari $\circledast': A \cdot \underline{x} = \underline{b}'$ e $\circledast'': A \cdot \underline{x} = \underline{b}''$

(continua...)

[3] Si considerino lo spazio vettoriale $V:=\mathbb{R}^3$ e in esso gli insiemi

$$B_v := \left\{ v_1 := (1, 1, 0), v_2 := (3, 1, 0), v_3 := (0, 1, 3) \right\}$$

$$B_w := \left\{ w_1 := (3, 3, -6), w_2 := (9, 3, -6), w_3 := (-15, 3, -12) \right\}$$

- (a) Dimostrare che B_v e B_w sono basi di V.
- (b) Poiché B_v è base di V, esiste una e una sola funzione lineare $F:V\longrightarrow V$ (cioè un endomorfismo di V) tale che $F(v_i)=w_i$ per i=1,2,3. Determinare l'unica matrice $A\in Mat_{3\times 3}(\mathbb{R})$ tale che $F=L_A$, cioè $F(\underline{x})=L_A(\underline{x}):=A\cdot\underline{x}$ (prodotto righe per colonne tra matrici) per ogni $\underline{x}\in\mathbb{R}$ (scritto come matrice colonna).
- (c) Determinare se l'endomorfismo $F \in End(V)$ di cui al punto (b) sia diagonalizzabile oppure no.

- *** -

[4] Nello spazio vettoriale $V := \mathbb{R}^4$ dotato del prodotto scalare canonico, si consideri il sottospazio $W := Span(w_1, w_2, w_3)$ generato dai tre vettori

$$w_1 := (1, 0, 3, 0), \qquad w_2 := (1, 0, 0, 1), \qquad w_3 := (0, 0, -1, 1).$$

- (a) Determinare una base ortogonale B_W di W.
- (b) Completare la base (ortogonale) B_W del sottospazio W determinata al punto (a) ad una base ortogonale B_V dell'intero spazio $V := \mathbb{R}^4$.
- (c) Detto $U := Span(u_1, u_2)$ il sottospazio generato dai due vettori $u_1 := (2, 0, -1, 3)$ e $u_2 := (-1, -3, 0, 2)$, calcolare esplicitamente il sottospazio U^{\perp} ortogonale a U, e determinarne una base esplicita.