CdL in Informatica GEOMETRIA ed ALGEBRA

prof. Fabio GAVARINIa.a. 2023-2024

Esame scritto del 5 Settembre 2024 — Sessione Autunnale, III appello

N.B.: compilare il compito in modo <u>sintetico</u> ma **esauriente**, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

[1] — Si consideri il sistema di tre equazioni in tre variabili $x,y,z\in\mathbb{R}$, e dipendente dal parametro $k\in\mathbb{R}$, dato da

- (a) Determinare per quali valori di $k \in \mathbb{R}$ il sistema \circledast_k abbia esattamente una e una sola soluzione.
 - (b) Determinare per quali valori di $k \in \mathbb{R}$ il sistema \circledast_k non abbia nessuna soluzione.
- (c) Per tutti i valori di $k \in \mathbb{R}$ per i quali il sistema \circledast_k abbia più di una soluzione, determinare esplicitamente tutte le sue soluzioni.
 - [2] Si consideri la matrice $A \in Mat_{3\times 3}(\mathbb{R})$ data da

$$A := \begin{pmatrix} 5 & 0 & -3 \\ 0 & -1 & 0 \\ 6 & 0 & -4 \end{pmatrix} .$$

- (a) Calcolare gli autovalori di A.
- (b) Calcolare descrivendoli esplicitamente gli autospazi di A.
- (c) Determinare se la matrice A sia diagonalizzabile. In caso negativo, si spieghi perché la matrice non sia diagonalizzabile, in caso affermativo si determini esplicitamente una base diagonalizzante, cioè una base composta da autovalori.

 $(continua...) \Longrightarrow$

- [3] Nello spazio affine reale di dimensione 3, si considerino le rette r_1 ed r_2 di equazioni rispettivamente r_1 : $\begin{cases} 3x + 2y + 4 = 0 \\ x y = 0 \end{cases}$ e $r_2 = \begin{cases} x = t \\ y = 0 \\ z = t + 3 \end{cases}$ ($\forall t \in \mathbb{R}$).
 - (a) Dimostrare che r_1 ed r_2 sono sghembe, cioè non sono incidenti né parallele.
- (b) Determinare se esiste una retta r_3 passante per il punto O:=(0,0,0) e parallela alla retta r_1 .
- [4] Sia \mathbb{K} un campo qualsiasi, e sia $V:=M_{2,3}(\mathbb{K})$ l'insieme delle matrici 2×3 a coefficienti in \mathbb{K} , con la sua struttura naturale di spazio vettoriale su \mathbb{K} . Si considerino in V i due sottoinsiemi

$$W := \left\{ \left(\begin{array}{cc} a & b & c \\ d & e & f \end{array} \right) \in V \; \middle| \; \; d = 0 \, , \; f = 0 \right\} \; , \qquad U := \left\{ \left(\begin{array}{cc} a & b & c \\ d & e & f \end{array} \right) \in V \; \middle| \; \; c = -1 \, , \; d = 3 \right\}$$

Dimostrare che:

- (a) W è sottospazio vettoriale di V;
- (b) U non è sottospazio vettoriale di V .