ESERCIZI DI ALGEBRA DOMINI UNITARI, FATTORIZZAZIONE (2)

N.B.: il simbolo 🕏 contrassegna gli esercizi (relativamente) più complessi.

— * —

- $\mathbf{1} \mathrm{Sia} \ \mathbb{Z}\big[\sqrt{-13}\,\big] := \big\{\, z \in \mathbb{C} \ \big| \ \exists \, a,b \in \mathbb{Z} : z = a + b\,\sqrt{-13} \,\big\} \;.$
- (a) Dimostrare che $\mathbb{Z}[\sqrt{-13}]$ sia un sottoanello di \mathbb{C} .
- (b) Determinare se $\mathbb{Z}[\sqrt{-13}]$ sia un dominio di integrità.
- (c) Determinare, se esiste, il $M.C.D.(7, \sqrt{-13} 1)$ in $\mathbb{Z}[\sqrt{-13}]$.
- (d) Determinare, se esiste, il $M.C.D.\left(42,5+5\sqrt{-13}\right)$ in $\mathbb{Z}\left[\sqrt{-13}\right]$.
- (e) Determinare tutti gli elementi invertibili di $\mathbb{Z}[\sqrt{-13}]$.
- (f) Determinare se $\mathbb{Z}\big[\sqrt{-13}\,\big]$ sia un dominio a fattorizzazione unica.
- (g) Determinare se $\mathbb{Z}[\sqrt{-13}]$ sia un dominio euclideo.
- (h) Determinare se $\mathbb{Z}[\sqrt{-13}]$ sia un dominio a ideali principali.
- (i) Determinare se $\mathbb{Z}[\sqrt{-13}]$ sia un dominio atomico.
- ${f 2}$ Nell'anello ${\Bbb Z}[i]$ degli interi di Gauss si consideri l'ideale $I:=\left(-3+5\,i\,,\,5-i\right)$. Determinare se I sia principale: in caso negativo si spieghi il perché, in caso positivo si determini esplicitamente un generatore dell'ideale I. Precisare poi se l'ideale I sia proprio cioè strettamente contenuto in ${\Bbb Z}[i]$ e, in caso affermativo, precisare se sia massimale oppure no.
- **3** Calcolare tutti gli ideali dell'anello $\mathbb{Z}[i]/(7(3-i))$, precisando quali tra essi siano primi e quali massimali.
- 4 Nell'anello $\mathbb{Z}[i]$ degli interi di Gauss, si consideri l'ideale I := (-3 + 5i, 5 i). Determinare se I sia massimale, primo, o nulla di ciò, e calcolare un generatore di I.
- 5 Siano $n \in \mathbb{N}_+$ e $f(x) := 2x^3 + 3x^2 + 2x + 3 \in \mathbb{Z}_n[x], \ \ell(x) := x^2 x \in \mathbb{Z}_n[x].$ Determinare per quali valori di $n \in \mathbb{N}_+$ si abbia $M.C.D.(f(x), \ell(x)) = 1$.
 - **6** Si consideri l'anello quoziente $\mathbb{F} := \mathbb{Z}[x]/(7, x^3 5x + 1)$.
- (a) Determinare se esista in \mathbb{F} l'elemento $(\overline{3+x-5\,x^4})^{-1}$ inverso di $(\overline{3+x-5\,x^4})$. In caso positivo, lo si calcoli esplicitamente; in caso negativo, si spieghi perché non esista.
 - (b) Determinare se \mathbb{F} sia un campo oppure no.
 - (c) Calcolare la caratteristica e la cardinalità di \mathbb{F} .

- 7 Nell'anello $\mathbb{Z}[i]$ degli interi di Gauss, si fattorizzare 182 in irriducibili.
- 8 Dimostrare che $\mathbb{Z}\big[\sqrt{13}\,\big] := \big\{z \in \mathbb{C} \; \big| \; \exists \, a,b \in \mathbb{Z} : z = a + b\,\sqrt{13}\,\big\}$ è un dominio atomico ma non un dominio a fattorizzazione unica. In particolare, si mostri esplicitamente che per un opportuno elemento di $\mathbb{Z}\big[\sqrt{13}\,\big]$ esistono due fattorizzazioni in atomi (=irriducibili) non equivalenti.
- **9** Determinare se il polinomio $f(x,y) := x^2 + 3xy + y^2 + 3x 1 \in \mathbb{Z}[x,y]$ sia riducibile o irriducibile nell'anello $\mathbb{Z}[x,y]$. Nel primo caso, si determini una fattorizzazione di f(x,y) in irriducibili, se è possibile, oppure si spieghi perché non è possibile; nel secondo caso, si spieghi perché f(x,y) sia irriducibile.
- **10** <u>Regola di Fubini</u>: Sia D un dominio a fattorizzazione unica, sia Q(D) il suo campo dei quozienti, e sia $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in D[x] \setminus \{0\}$ un polinomio non nullo di grado n, e sia $q := r/s \in Q(D)$ un razionale con $r, s \in D$ tali che M.C.D.(r, s) = 1. Dimostrare che se q è radice di f(x), cioè f(q) = 0, allora r divide a_0 e s divide a_n in D.
 - 11 Fattorizzare in irriducibili il polinomio $f(x) := 15x^4 + 55x^3 50x 20 \in \mathbb{Q}[x]$.
- 12 Sia K un campo, e sia $f(x) \in K[x]$ un polinomio di grado 3. Dimostrare che f(x) è riducibile in K[x] se e soltanto se f(x) ha una radice in K.
- 13 <u>Criterio di Riduzione</u>: Siano D ed E due domini unitari, sia $\sigma: D \longrightarrow E$ un morfismo di anelli e $\sigma_x: D[x] \longrightarrow E[x]$ $\Big(f(x) = \sum_n a_n \, x^n \mapsto \sigma_x \big(f(x) \big) := \sum_n \sigma(a_n) \, x^n \Big)$ il corrispondente morfismo tra gli anelli di polinomi associati. Dato $f = f(x) \in D[x]$, dimostrare che se $\partial \big(\sigma_x(f) \big) = \partial(f)$ e $\sigma_x(f)$ non ha in E[x] una fattorizzazione in prodotto di polinomi di grado strettamente più basso del suo, allora lo stesso vale per f in D[x].
- **14** Dimostrare che il polinomio $f(x) := 5x^3 4x^2 + 13x + 17 \in \mathbb{Z}[x]$ è irriducibile in $\mathbb{Z}[x]$ e in $\mathbb{Q}[x]$.