Università degli Studi di Roma "Tor Vergata" CdL in Matematica

ALGEBRA 2

prof. Fabio GAVARINI

Esame scritto del 9 Settembre 2025 — 3º appello, sessione autunnale

N.B.: compilare il compito in modo <u>sintetico</u> ma **esauriente**, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

[1] — Si consideri l'anello quoziente

$$A := (\mathbb{Z}_5[x])[y, y^{-1}]/(x^2 - 4y^{-1}, y - 8)$$

- (a) Determinare se A sia un campo.
- (b) Determinare la cardinalità di A.
- $(c)\;$ Determinare la classe di isomorfismo del gruppo $\,U(A)\;$ delle unità dell'anello A .
- (d) Per ciascuno dei valori $n \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$, determinare se nell'anello A esistano radici n—esime primitive dell'unità.
- [2] Si consideri il polinomio $f(x) := x^3 + 4x^2 + 10x 6 \in \mathbb{F}_7[x]$, nella variabile x, a coefficienti nel campo \mathbb{F}_7 di sette elementi. Sia poi \mathbb{K}_f l'anello quoziente $\mathbb{K}_f := \mathbb{F}_7[x] / (f(x))$.
 - (a) Dimostrare che \mathbb{K}_f è un campo.
 - (b) Determinare la cardinalità di \mathbb{K}_f .
- (c) Determinare la classe di isomorfismo del gruppo di Galois $\operatorname{Gal}(\mathbb{K}_f/\mathbb{F}_7)$ dell'estensione di campi $\mathbb{K}_f/\mathbb{F}_7$.
 - (d) Determinare il numero dei campi intermedi tra \mathbb{F}_7 e \mathbb{K}_f .

- [3] Dato un numero naturale dispari $n \in (2 \mathbb{N} + 1)$, si consideri il gruppo generale lineare $G := GL_n(\mathbb{Q})$ delle matrici quadrate invertibili $n \times n$ a coefficienti nel campo \mathbb{Q} , e siano $G_+ := \{ M \in G \mid det(M) > 0 \}$ e $G_- := \{ M \in G \mid det(M) < 0 \}$.
 - (a) Dimostrare che G_+ è sottogruppo normale di G.
 - (b) Dimostrare che G_{-} non è sottogruppo di G.
- (c) Dimostrare che esiste in G un sottogruppo normale \mathcal{Z} tale che G sia isomorfo al prodotto diretto di \mathcal{Z} con G_+ , in formule $G \cong \mathcal{Z} \times G_+$.

$$[\mathbf{4}] \quad - \quad \mathrm{Sia} \quad \mathbb{Z}\big[\sqrt{-11}\,\big] := \big\{\,z \in \mathbb{C} \,\,\big|\,\,\exists\, a,b \in \mathbb{Z} : z = a + b\,\sqrt{-11}\,\big\} \ .$$

- (a) Dimostrare che $\mathbb{Z}[\sqrt{-11}]$ è un sottoanello di \mathbb{C} .
- (b) Determinare se $\mathbb{Z}[\sqrt{-11}]$ sia un dominio (oppure no!).
- (c) Determinare se l'ideale $I := (3, -1 + \sqrt{-11})$ in $\mathbb{Z}[\sqrt{-11}]$ sia principale (oppure no!).
- (d) Determinare se $\mathbb{Z}\big[\sqrt{-11}\,\big]$ sia un dominio a fattorizzazione (non necessariamente unica).
 - (e) Determinare se $\mathbb{Z}\left[\sqrt{-11}\,\right]$ sia un dominio a fattorizzazione unica.
 - (f) Determinare se $\mathbb{Z}\left[\sqrt{-11}\right]$ sia un dominio a ideali principali.
 - (g) Determinare se $\mathbb{Z}[\sqrt{-11}]$ sia un dominio euclideo.
- [5] Siano G un gruppo, S ed S' due G—spazi, e $\varphi: S \longrightarrow S'$ un'applicazione tale che $\varphi(g.s) = g.\varphi(s)$ per ogni $g \in G$, $s \in S$.

Indicando con \mathcal{O}_x e con St_x rispettivamente l'orbita e lo stabilizzatore di un punto x (in un qualsiasi G-spazio), dimostrare che:

- (a) $\varphi(\mathcal{O}_s) = \mathcal{O}_{\varphi(s)}$ per ogni $s \in S$;
- (b) $|St_{\varphi(s)}| \geqslant |St_s|$ per ogni $s \in S$;
- (c) $St_{\varphi(s)} \supseteq St_s$ per ogni $s \in S$.