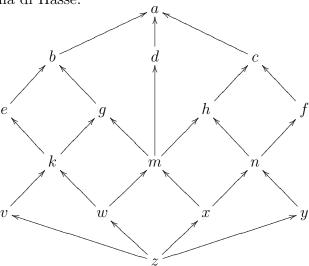
corso di "Algebra e Logica" (prof. Fabio Gavarini)

Tutorato su RETICOLI E ALGEBRE DI BOOLE

[1] Si consideri il reticolo $L := \{a, b, c, d, e, f, g, h, k, m, n, v, w, x, y, z\}$ descritto dal seguente diagramma di Hasse:



- (a) Determinare tutti gli atomi del reticolo $(L; \leq)$.
- (b) Determinare tutti gli elementi \vee -irriducibili del reticolo $(L; \preceq)$.
- (c) Per ciascuno dei due elementi a, c e g in L, determinare se esista una \vee -fattorizzazione non ridondante in fattori \vee -irriducibili per tale elemento. Nel caso in cui una tale \vee -fattorizzazione non esista, se ne spieghi il perché; nel caso in cui ne esista almeno una, si determinino tutte (a meno dell'ordine dei fattori) le \vee -fattorizzazioni di tal genere.
- (d) Trovare un sottoreticolo L' del reticolo $(L; \preceq)$ tale che L' abbia esattamente sei elementi e sia distributivo.
 - (e) Stabilire se il reticolo $(L; \leq)$ sia un'algebra di Boole oppure no.
 - (f) Stabilire se il reticolo $(L; \preceq)$ sia distributivo oppure no.
- [2] Dato l'insieme $\{\in, \pounds, \Psi, \$\}$, si consideri il corrispondente insieme delle parti $\mathcal{P}(\{\in, \pounds, \Psi, \$\})$, dotato della relazione (d'ordine) di inclusione; per semplificare la notazione indicheremo un sottoinsieme $\{x_1, x_2, \ldots, x_n\}$ con $\underline{x_1 x_2 \ldots x_n} := \{x_1, x_2, \ldots, x_n\}$. Si consideri poi in $\mathcal{P}(\{\in, \pounds, \Psi, \$\})$ il sottoinsieme

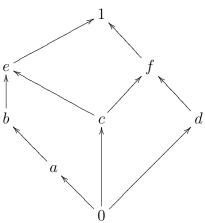
$$\mathbb{E} \ := \ \left\{ \, \emptyset \,\,,\,\underline{\underline{\epsilon}} \,\,,\,\underline{\underline{\tau}} \,\,,\,\underline{\underline{\epsilon}} \,\,\underline{\underline{\tau}} \,\,,\,\underline{\underline{\tau}} \,$$

e i suoi sottoinsiemi

$$\mathbb{E}' \; := \; \mathbb{E} \setminus \left\{ \, \underline{\pounds \, \Upsilon} \, \right\} \quad , \qquad \mathbb{E}'' \; := \; \mathbb{E} \setminus \left\{ \, \underline{\in \pounds \, \Upsilon} \, \right\}$$

In tali (sotto) insiemi \mathbb{E} , \mathbb{E}' e \mathbb{E}'' consideriamo ancora la relazione (d'ordine) di inclusione.

- (a) Disegnare il diagramma di Hasse dell'insieme ordinato $(\mathbb{E};\subseteq)$.
- (b) Verificare se l'insieme ordinato (\mathbb{E} ; \subseteq) sia un reticolo oppure no. In caso negativo, si spieghi perché tale insieme ordinato non sia un reticolo; in caso affermativo, si determini (giustificando la risposta) se tale reticolo sia distributivo.
- (c) Verificare se l'insieme ordinato (\mathbb{E}' ; \subseteq) sia un reticolo oppure no. In caso negativo, si spieghi perché tale insieme ordinato non sia un reticolo; in caso affermativo, si determini (giustificando la risposta) se tale reticolo sia un'algebra di Boole.
- (d) Verificare se l'insieme ordinato $(\mathbb{E}'';\subseteq)$ sia un reticolo oppure no. In caso negativo, si spieghi perché tale insieme ordinato non sia un reticolo; in caso affermativo, si determini (giustificando la risposta) se tale reticolo sia un'algebra di Boole.
- [3] Dato l'insieme $L := \{1, 2, 3, 6, 7, 12, 56, 168\}$, si consideri in esso la relazione di divisibilità δ , rispetto alla quale $(L; \delta)$ è un insieme ordinato.
- (a) Verificare che l'insieme ordinato $(L; \delta)$ è un reticolo, scrivendo esplicitamente tutti i valori $\sup(x, y)$ e $\inf(x, y)$ per ogni $x, y \in L$ (tranne i casi banali).
 - (b) Determinare tutti gli atomi del reticolo $(L; \delta)$.
 - (c) Determinare tutti gli elementi \vee -irriducibili del reticolo ($L; \delta$).
- (d) Per ciascuno dei due elementi 56 e 168 in L, determinare se esista una \vee -fattorizzazione non ridondante in fattori \vee -irriducibili per tale elemento. Nel caso in cui una tale \vee -fattorizzazione non esista, se ne spieghi il perché; nel caso in cui ne esista almeno una, si determinino tutte (a meno dell'ordine dei fattori) le \vee -fattorizzazioni di tal genere.
- (e) Stabilire, motivando adeguatamente la risposta, se il reticolo $(L; \delta)$ sia un'algebra di Boole oppure no.
- [4] Si consideri il reticolo $L:=\left\{0\,,a\,,b\,,c\,,d\,,e\,,f\,,1\,\right\}$ descritto dal seguente diagramma di Hasse:



- (a) Determinare tutti gli atomi del reticolo L.
- (b) Determinare tutti gli elementi \vee -irriducibili del reticolo L.
- (c) Determinare se esista una ∨-fattorizzazione non ridondante in fattori ∨-irriducibili per l'elemento 1. Nel caso in cui una tale ∨-fattorizzazione non esista, se ne spieghi il perché; nel caso in cui esista, se ne determini esplicitamente almeno una, e se fosse possibile almeno due non equivalenti.
 - (d) Determinare se il reticolo L sia un'algebra di Boole oppure no.
 - (e) Determinare se il reticolo L sia complementato oppure no.
 - (f) Determinare se il reticolo L sia distributivo oppure no.
- [5] Sia $n \in \mathbb{N}_+$ un numero naturale positivo, la cui fattorizzazione in numeri primi distinti sia $n = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_k}$ for some $k \in \mathbb{N}$ and $e_1, e_2, \dots, e_k \in \mathbb{N}_+$. Sia poi D_n il corrispondente reticolo dei divisori di n. Dimostrare che

$$D_n$$
 è un'algebra di Boole \iff $e_1 = 1, e_2 = 1, \ldots, e_k = 1$

- [6] Verificare che i reticoli (D_6, mcm, MCD) e (D_{15}, mcm, MCD) sono isomorfi, esibendo esplicitamente un isomorfismo di reticoli.
- [7] Verificare che i reticoli (D_6, mcm, MCD) e (D_8, mcm, MCD) non sono isomorfi.
- [8] Verificare che i reticoli (D_6, mcm, MCD) e $(\mathcal{P}(\{1, 2\}), \cup, \cap)$ sono isomorfi, esibendo esplicitamente un isomorfismo di reticoli.
- [9] Stabilire se il reticolo (D_{30}, mcm, MCD) dei divisori di 30 sia isomorfo al reticolo $(\mathcal{P}(\{1,2,3\}), \cup, \cap)$; in caso affermativo, stabilire quanti sono gli isomorfismi di reticoli $\varphi: \mathcal{P}(\{1,2,3\}) \longrightarrow D_{30}$.
- [10] Sia $\mathcal{P}_{cof}^f(\mathbb{N})$ l'insieme dei sottoinsiemi E di \mathbb{N} che soddisfino una delle seguenti proprietà: la cardinalità di E è finita oppure la cardinalità di $\mathbb{N} \setminus E$ è finita.

Dimostrare che $\left(\mathcal{P}^f_{cof}(\mathbb{N}), \cup, \cap\right)$ è un'algebra di Boole.