ALGEBRA e LOGICA

CdL in Ingegneria Informatica

prof. Fabio GAVARINI

a.a. 2016–2017 — Sessione Estiva, I appello Esame scritto del 5 Luglio 2017

.....

N.B.: compilare il compito in modo <u>sintetico</u> ma **esauriente**, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

[1] (a) Si consideri il seguente polinomio booleano

 $P(x,y,z,w) := \left(\left(w \wedge y' \right) \vee \left(z' \wedge w'' \wedge x \wedge y' \right) \right)' \vee \left(y' \wedge \left(w' \vee \left(z' \wedge 1'' \wedge x \right) \right) \right)'$ nelle quattro variabili booleane x,y,z,w.

- (a) Calcolare la Forma Normale Disgiuntiva del polinomio P(x, y, z, w).
- (b) Calcolare la somma di tutti gli implicanti primi del polinomio P(x, y, z, w).
- (c) Calcolare una forma minimale del polinomio P(x, y, z, w).
- [2] Dimostrare per induzione che per ogni $n \in \mathbb{N}$, $n \geq 4$, vale la disuguaglianza

$$3^n - 5n > 2^n + 4n$$

 ${\bf [3]}$ Si consideri in ${\mathbb Z}$ la relazione " \sim " definita da

$$u \sim v \iff 3u^2 + 7v^2 - 12 \equiv 8u + 2v + 28 \pmod{5} \qquad \forall u, v \in \mathbb{Z}$$

- (a) Dimostrare che \sim è una relazione di equivalenza.
- (b) Data la funzione $f: \mathbb{Z} \longrightarrow \mathbb{Z}_5$, $x \mapsto f(x) := \overline{x} (\overline{x} \overline{1})$, dimostrare che $u \sim v \iff f(u) = f(v)$ $\forall u, v \in \mathbb{Z}$
- (c) Descrivere esplicitamente la classe di $\sim\!\!-$ equivalenza di 1 .
- (d) Descrivere esplicitamente la classe di $\sim\!\!-$ equivalenza di $3\,.$
- (e) Descrivere esplicitamente tutte le classi di \sim -equivalenza in \mathbb{Z} .

(continua...)

[4] Sia $\mathcal{P}(\{S, P, Q, R\})$ l'insieme delle parti dell'insieme $\{S, P, Q, R\}$ e " \supseteq " la consueta relazione di "inclusione inversa" in $\mathcal{P}(\{S, P, Q, R\})$, definita da $\mathcal{A} \supseteq \mathcal{B}$ se e soltanto se \mathcal{A} contiene \mathcal{B} — per ogni $\mathcal{A}, \mathcal{B} \in \mathcal{P}(\{S, P, Q, R\})$.

Sia poi $D_{60} := \{ d \in \mathbb{N} \mid d \text{ è divisore di } 60 \}$ l'insieme dei divisori di 60, e sia " | " la consueta relazione di divisibilità in D_{60} .

Nell'insieme $E := \mathcal{P}(\{S, P, Q, R\}) \times D_{60}$ prodotto cartesiano di $\mathcal{P}(\{S, P, Q, R\})$ con D_{60} consideriamo la relazione \leq definita da

$$(\mathcal{A},d) \preceq (\mathcal{B},q) \iff \mathcal{A} \supseteq \mathcal{B}, d|q$$

per ogni $(\mathcal{A}, d), (\mathcal{B}, q) \in \mathcal{P}(\{S, P, Q, R\}) \times D_{60} =: E$.

- (a) Dimostrare che \leq è una relazione d'ordine in E.
- (b) Esiste un minimo nell'insieme ordinato $(E; \leq)$? In caso negativo, spiegare perché; in caso affermativo, precisare quale sia tale minimo.
- (c) Esiste un massimo nell'insieme ordinato $(E; \preceq)$? In caso negativo, spiegare perché; in caso affermativo, precisare quale sia tale massimo.
- (d) Dimostrare che l'insieme ordinato $(E; \leq)$ è un reticolo, precisando come siano fatte le operazioni " $\vee := \sup$ " e " $\wedge := \inf$ " in tale reticolo.
- (e) Determinare se esista una \vee -fattorizzazione in \vee -irriducibili per l'elemento $(\{S,Q\},30)$ nel reticolo $(E;\preceq)$. In caso negativo, si spieghi perché una tale \vee -fattorizzazione non esista; in caso affermativo, si determini esplicitamente una tale \vee -fattorizzazione.
- [5] Siano \mathbb{Z}_{11} e \mathbb{Z}_{12} i consueti anelli di classi di congruenza modulo 11 e modulo 12 rispettivamente, con le consuete operazioni di somma e prodotto.
- (a) Calcolare esplicitamente gli insiemi di elementi invertibili $U(\mathbb{Z}_{11})$ e $U(\mathbb{Z}_{12})$ in \mathbb{Z}_{11} e in \mathbb{Z}_{12} rispettivamente.
- (b) Calcolare esplicitamente l'insieme di tutte le soluzioni in \mathbb{Z} dell'equazione congruenziale $45\,x \equiv -135 \pmod{12}$.
- (c) Per entrambi i valori q=11 e q=12, determinare se esista un elemento $\overline{z}\in\mathbb{Z}_q\setminus\left\{\overline{0}\right\}$ tale che $\overline{z}^n=\overline{0}$ per qualche esponente $n\in\mathbb{N}$. In caso negativo, si spieghi il perché; in caso affermativo, si determinino esplicitamente un tale elemento \overline{z} e un esponente n tali che $\overline{z}^n=\overline{0}$.