corso di "Algebra e Logica" (prof. Fabio Gavarini)

TUTORATO su RELAZIONI, INDUZIONE, SCRITTURA POSIZIONALE

*

1 — Sia ⊢ una relazione in un insieme $E \neq \emptyset$ che sia un "preordine", cioè sia riflessiva e transitiva.

- $(a) \quad \text{Dimostrare che la relazione} \quad \sigma_{\vdash} := \vdash \cap \vdash^{-1} \quad \text{in E} \,, \, \text{descritta esplicitamente da} \\ \quad a \, \sigma_{\vdash} \, b \quad \stackrel{\Delta}{\Longleftrightarrow} \quad (\, a \vdash b \,) \, \wedge \, (\, b \vdash a \,) \, \,, \qquad \forall \, a,b \in E$ è un'equivalenza in \$E\$.
 - (b) Descrivere esplicitamente le singole classi di equivalenza di $\sigma_{{\scriptscriptstyle \vdash}}$.

(N.B.: si tratta soltanto di dimostrare che la definizione di $\overline{\vdash}$ sia ben posta).

- (d) Dimostrare che la relazione \vdash nell'insieme quoziente E/σ_{\vdash} definita in (c) è una relazione d'ordine.
- **2** Applicare l'esercizo 1 qui sopra al caso specifico in cui $E := \mathbb{Z}$ e $\vdash := \mid = \delta_{\mathbb{Z}}$ (la relazione di "divisibilità" in \mathbb{Z}).
 - ${\bf 3}$ Sia E un insieme, e siano $\eta_1\,,\,\eta_2$ due equivalenze in $E\,.$
 - (a) Dimostrare che la relazione $\eta := \eta_1 \cap \eta_2$ in E è una equivalenza.
- (b) Descrivere esplicitamente le classi di equivalenza di $\eta:=\eta_1\cap\eta_2$ in funzione delle classi di equivalenza di η_1 e di η_2 .

4 — Si considerino l'insieme E e i suoi due sottoinsiemi E_+ ed E_- dati da $E:=\{S,P,Q,R\}\;,\;\;E_+:=\{S,P\}\;,\;\;E_-:=\{Q,R\}\;.$ Si consideri anche la funzione

$$f: \mathcal{P}(E) \longrightarrow \mathcal{P}(E_+)$$
, $E' \mapsto f(E') := E' \cap E_+$ $\forall E' \in \mathcal{P}(E)$

e siano \multimap e \preceq le due relazioni in $\mathcal{P}(E)$ definite da

$$E' \multimap E'' \iff f(E') \subseteq f(E'')$$

$$E' \preccurlyeq E'' \iff (E' \multimap E'' \& (E' \cap E_{-}) \supseteq (E'' \cap E_{-})) \qquad \forall E', E'' \in \mathcal{P}(E)$$

- (a) Dimostrare che la funzione f è suriettiva.
- (b) Dimostrare che la funzione f è non iniettiva.
- (c) Dimostrare che la relazione $-\infty$ è riflessiva e transitiva ma non antisimmetrica.
- (d) Dimostrare che la relazione \leq è una relazione d'ordine, e tale ordine non è totale.

- $\mathbf{5}$ Siano A un insieme e $\underline{2}^A$ il corrispondente insieme delle funzioni caratteristiche in A. Dimostrare per induzione che se A possiede n elementi allora 2^A possiede 2^n elementi.
- **6** Sia A un insieme, e sia $\mathcal{P}(A)$ il corrispondente insieme delle parti di A. Dimostrare per induzione che se A possiede n elementi allora $\mathcal{P}(A)$ possiede 2^n elementi.
 - 7 Dimostrare per induzione che per ogni $n \in \mathbb{N}$, $n \geq 4$, vale la disuguaglianza

$$3^n - 5n > 2^n + 4n$$

- 8 Dimostrare per induzione i due fatti seguenti:

 - (a) $\prod_{k=2}^{n} \left(1 \frac{1}{k}\right) = \frac{1}{n} \quad \text{per ogni} \quad n \in \mathbb{N} \quad \text{con } n > 1 ;$ (b) $\prod_{k=1}^{n} \left(1 + \frac{1}{k}\right) = n + 1 \quad \text{per ogni} \quad n \in \mathbb{N} \quad \text{con } n > 0 .$
- 9 Dimostrare per induzione che per ogni $n \in \mathbb{N}$ si ha

$$4^{2n+1} + 3^{n+2} \equiv 0 \pmod{13}$$

- 10 Convertire in base dieci (cioè riscriverli usando la notazione posizionale in base dieci) i numeri n' e n'' espressi da $n' := (7503)_8$ e $n'' := (40213)_5$ rispettivamente in base otto e in base cinque.
- 11 Sia n il numero naturale che in base due è espresso dalla scrittura posizionale $n = (1011000110)_2$. Scrivere n in base quattro.
- 12 Sia n il numero naturale che in base due è espresso dalla scrittura posizionale $n = (11010111011)_2$. Scrivere n in base otto.
- 13 Sia n il numero naturale che in base otto è espresso dalla scrittura posizionale $n = (2351)_8$. Scrivere n in base due e in base quattro.
- 14 Usando la scrittura posizionale in base b = dodici, tramite le dodici cifre (ordinate!) dell'insieme $\{0, 1, 2, 3, \dots, 8, 9, \bot, \land\}$, calcolare — senza passare per la scrittura in base dieci... — la somma $(70 \pm 31 \land 5)_b + (497 \land \pm 0 \land)_b$.
- 15 Usando la scrittura posizionale in base b = quattro, tramite le quattro "cifre" (in ordine crescente!) dell'insieme $\{\lozenge, \clubsuit, \spadesuit, \heartsuit\}$, calcolare la somma

$$S := (\heartsuit \diamondsuit \clubsuit \clubsuit)_b + (\spadesuit \clubsuit \heartsuit \diamondsuit \heartsuit)_b$$