
Curves in Hilbert modular varieties

Erwan Rousseau (j.w.w. Frédéric Touzet)
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Lang-Vojta conjectures

Conjecture

Let X̃ be a projective manifold defined over a number field k and
D = X̃ \ X a normal crossings divisor. If (X̃ ,D) is of log-general type
then for every ring of S-integers OS the set of S-integral points X (OS) is
not Zariski-dense.

An algebraic function field analogue predicts

Conjecture

Let X̃ be a complex projective manifold, D = X̃ \ X a normal crossings
divisor, C̃ a smooth projective curve and S ⊂ C̃ a finite subset. If (X̃ ,D)
is of log-general type then there exists a bound for the degree of the
images of non-constant morphisms C̃ \ S → X .
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Known results

Theorem (Bogomolov, Miyaoka)

Let X be a minimal complex projective surface of general type and
C ⊂ X an irreducible curve of geometric genus g. If c2

1 > c2 then

C .KX ≤ a(2g − 2) + b

where a and b are effective functions of c2
1 and c2.

Theorem (Chen, Pacienza-Rousseau)

Let D ⊂ Pn be a very general hypersurface of degree d ≥ 2n + 1 and
f : C̃ → Pn a finite morphism from a smooth projective curve such that
f (C̃ ) 6⊂ D. Then

(d − 2n) degC (f ∗(O(1)) ≤ 2g(C̃ )− 2 + N1(f ∗D).
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Known results

Remark

X̃ = P2, D a quartic, union of a smooth conic and two lines in
general position (Corvaja-Zannier)

X̃ = P2, D a very general quartic (Turchet)

Theorem (Demailly)

Let X be complex projective Kobayashi hyperbolic manifold. Then there
exists a constant a > 0 such that for every projective curve C and any
finite morphism f : C → X

degC (f ∗KX ) ≤ a(2g − 2).
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Known results

Theorem (Autissier - Chambert-Loir - Gasbarri)

Let X be a compact quotient of a bounded symmetric domain. Then for
any projective curve C and any finite morphism g : C → X ,

degC (f ∗KX ) ≤ dim(X )(2g − 2).
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Hilbert modular varieties

K a totally real number field of degree n.

O the ring of algebraic integers of K .

The Hilbert modular group is ΓK := SL2(O).

ΓK acts on the product of n upper half-planes Hn.

There is a natural compactification of the quotient Hn/ΓK adding
finitely many cusps.

Definition

A non-singular model XK is called a Hilbert modular variety.

Theorem (Rousseau-Touzet)

There is a projective resolution π : X → Hn/ΓK with E the exceptional
divisor, KX the canonical line bundle of X such that if C is a smooth
projective curve and f : C → X a finite morphism such that f (C ) 6⊂ E .
Then

degC (f ∗(KX + E )) ≤ n(2g(C )− 2 + N1(f ∗E )).
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Hilbert modular foliations

dzi = 0 defines a holomorphic codimension-one foliation on Hn.

projecting gives a codimension-one foliation Gi on Hn/Γ.

pulling back to the resolution π : X → Hn/Γ gives the i th

codimension-one holomorphic foliation Fi = π∗Gi on X .

We have the following tangency formula

Theorem

There exists a projective resolution π : X → Hn/Γ such that

N∗F1
⊗ ...⊗ N∗Fn

= KX ⊗O
(
− (n − 1)E

)
Proposition

Let Ec ⊂ E be the hypersurface corresponding to the cusps resolution.
Let C be a germ of analytic curve tangent to Fi passing through p ∈ Ec .
Then C is contained in Ec .
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Hilbert modular foliations

Proof.

The change of coordinates in the resolution of cusps is (locally) given by

zi =
∑
j

aji log uj .

where the coefficients aij are positive real numbers.

In particular the (locally defined) real valued function

g =
∏
j

|uj |aij

is continuous, constant along the leaves of Fi and vanishes precisely on
Ec . Therefore g necessarily vanishes along C, hence C is contained in
Ec .
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Hilbert modular foliations

Proposition

Leaves of Gi are (Brody) hyperbolic.

Proof.

If the leaf avoids orbifold points: trivial.

If the leaf passes through an orbifold point: next lemma.

Lemma

Leaves passing through an orbifold point are quotients of polydisk by
finite groups, in particular they are Stein and hyperbolic.
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Hilbert modular foliations

Proof.

Let us prove that the stabilizer of a leaf Hn−1 in Hn passing through an
orbifold point is finite.

The stabilizer is a commutative group.
Indeed, ΓK = SL(2,O) acts on Hn via the embedding of groups
SL(2,K ) ↪→ SL(2,R)n and the projections pi : SL(2,R)n → SL(2,R)
have restrictions to ΓK which are injective.
If two elements g and h of ΓK are in the stabilizer of a leaf, it means that
the projections gi := pi (g) and hi := pi (h) of g and h on the
corresponding factor of SL(2,R)n have the same fixed point and so
commute.
This implies that g and h must commute.
Now suppose that g is in the stabilizer of the orbifold point, which is
assumed to be non trivial. Then any other element h of the stabilizer of
the leaf commutes with g which means that h is in fact in the stabilizer
of the orbifold point:
the stabilizer of the leaf and of the orbifold point coincide.
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Proof of geometric Lang-Vojta for Hilbert modular varieties

Theorem (Rousseau-Touzet)

There is a projective resolution π : X → Hn/ΓK with E the exceptional
divisor, KX the canonical line bundle of X such that if C is a smooth
projective curve and f : C → X a finite morphism such that f (C ) 6⊂ E .
Then

degC (f ∗(KX + E )) ≤ n(2g(C )− 2 + N1(f ∗E )).

The morphism f : C → X induces a morphism
f ′ : C → P(TX (− log E ))

We have an inclusion f ′∗(O(1)) ↪→ KC (f ∗(E )red)

This gives the algebraic tautological inequality
degC (f ′∗(O(1)) ≤ 2g(C )− 2 + N1(f ∗E ).

We distinguish two cases: either f (C ) is contained in a leaf of a Hilbert
modular foliation or not.
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Proof of geometric Lang-Vojta for Hilbert modular varieties

If f (C ) is not tangent to a Hilbert modular foliation.

Let F be one of the canonical Hilbert modular foliation on X .

To the foliation F is associated a divisor Z ⊂ P(TX (− log E )),
linearly equivalent to O(1) + NF (−E ).

The algebraic tautological inequality gives: degC (f ∗(N∗F (E ))) ≤
degC (f ∗(Z )) + degC (f ′∗(N∗F (E ))) ≤ 2g(C )− 2 + N1(f ∗E ).

Now we use the tangency formula

N∗F1
⊗ ...⊗ N∗Fn

= KX ⊗O
(
− (n − 1)E

)
.

We obtain

degC (f ∗(KX + E )) =
∑
i

degC (f ∗(N∗Fi
(E ))) ≤ n(2g(C )− 2 + N1(f ∗E )).
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Proof of geometric Lang-Vojta for Hilbert modular varieties

If f (C ) is contained in a leaf of a Hilbert modular foliation:

it has to avoid cusps and orbifold points.
Therefore, f (C ) is contained in the smooth part of Hn/Γ.
Let g denote the Bergman metric with Kähler form ω on Hn such that
Ricci(g) = −g and having holomorphic sectional curvature ≤ −1/n.
It descends to a metric on the regular part of Hn/Γ.∫

C
f ∗(ω) = 2π degC (f ∗(KX )).

f ∗(ω) induces a hermitian metric on the canonical line bundle
KC (−Rf ) where Rf is the branching divisor of f .

If Θ denotes its curvature, one has∫
C

Θ = deg(KC (−Rf )) = 2g(C )− 2− deg(Rf ).

From the definition of the holomorphic sectional curvature one has,
Θ ≥ ω

2π.n .

Therefore degC (f ∗(KX )) ≤ n(2g(C )− 2).
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S.M.T. for Hilbert modular varieties

The same proof gives the following Second Main Theorem:

Theorem

Consider a projective resolution π : X → Hn/Γ as above, E the
exceptional divisor, KX the canonical line bundle of X . Let f : C→ X be
a non-constant entire curve such that f (C) is not contained in E . Then

Tf (r ,KX ) + Tf (r ,E ) ≤ nN1(r , f ∗E ) + Sf (r)‖,

where Sf (r) = O(log+ Tf (r)) + o(log r), and ‖ means that the estimate
holds outside some exceptional set of finite measure.

Remark

This generalizes results of Tiba on Hilbert modular surfaces.
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S.M.T. for Hilbert modular varieties

Proof.

Replace the algebraic tautological inequality with the analytic
tautological inequality of McQuillan.

Use hyperbolicity of leaves to exclude the case f : C→ X tangent to
a Hilbert modular foliation F .

Corollary

Let X as above be a Hilbert modular variety of general type. Let
f : C→ X be a non-constant entire curve which ramifies over E with
order at least n, i.e. f ∗E ≥ n supp f ∗E . Then f (C) is contained in E .
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S.M.T. for Hilbert modular varieties

Proof.

If f (C) is not contained in E then

nN1(r , f ∗E ) ≤ N(r , f ∗E ) ≤ Tf (r ,E ) + O(1).

The Second Main Theorem then gives

Tf (r ,KX ) ≤ Sf (r)‖.

Since KX is supposed to be a big line bundle, this gives a
contradiction.

Remark

For all K except a finite number, XK is of general type (Tsuyumine).
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The Green-Griffiths-Lang conjecture

Conjecture (Green-Griffiths-Lang)

Let X be a complex projective variety of general type. Then there exists
a proper algebraic subvariety Z ( X such that every (non-constant)
entire curve f : C→ X satisfies f (C) ⊂ Z .

Theorem (Rousseau-Touzet)

Let n ≥ 2. Then, except finitely many possible exceptions, Hilbert
modular varieties of dimension n satisfy the Green-Griffiths-Lang
conjecture.

Remark

Hilbert modular varieties provide counter-examples to the so-called “jet
differentials” strategy developed (by Bloch, Green-Griffiths, Demailly,
Siu...) to attack the Green-Griffiths-Lang conjecture (Diverio-Rousseau).
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The Green-Griffiths-Lang conjecture

Let g denote the Bergman metric with Kähler form ω on Hn such that
Ricci(g) = −g and having holomorphic sectional curvature ≤ −1/n. It
descends to a (singular) metric on Hn/Γ.

The main point of the proof is to extend it to π : X → Hn/Γ.
The exceptional divisor E splits as E = Ec + Ee .
The metric g has Poincaré growth near E .

Let F be a Hilbert modular form of weight 2l and
ω = dz1 ∧ · · · ∧ dzn.

s := Fω⊗l provides a section s ∈ H0(X \ E ,K⊗lX ).

Consider its norm ||s||2hl with respect to the metric induced by
h = (det g)−1.

Problem

Find conditions on F under which ||s||2b/ln.g will extend as a
pseudo-metric on X for some b > 0 suitably chosen.
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Let F be a Hilbert modular form of weight 2l and
ω = dz1 ∧ · · · ∧ dzn.

s := Fω⊗l provides a section s ∈ H0(X \ E ,K⊗lX ).

Consider its norm ||s||2hl with respect to the metric induced by
h = (det g)−1.

Problem

Find conditions on F under which ||s||2b/ln.g will extend as a
pseudo-metric on X for some b > 0 suitably chosen.

Erwan Rousseau (j.w.w. Frédéric Touzet) Curves in Hilbert modular varieties



The Green-Griffiths-Lang conjecture

Let g denote the Bergman metric with Kähler form ω on Hn such that
Ricci(g) = −g and having holomorphic sectional curvature ≤ −1/n. It
descends to a (singular) metric on Hn/Γ.
The main point of the proof is to extend it to π : X → Hn/Γ.
The exceptional divisor E splits as E = Ec + Ee .

The metric g has Poincaré growth near E .
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pseudo-metric on X for some b > 0 suitably chosen.
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The Green-Griffiths-Lang conjecture

Denote Sm
k the space of Hilbert modular form of weight k and order at

least m, where the order is the vanishing order at the cusps.

Proposition

Let F ∈ Sνl2l and b > 0 then ||s||2b/ln.g extends as a pseudo-metric over
cusps vanishing on Ec if ν > n

b .

Proposition

Let b > 0. There is a constant c depending only on the order of the
stabilizer of the elliptic fixed point such that if F is a Hilbert modular
form of weight 2l vanishing with order c .ln at elliptic fixed points then
||s||2b/ln.g extends as a pseudo-metric over elliptic singularities vanishing
on Ee .

Erwan Rousseau (j.w.w. Frédéric Touzet) Curves in Hilbert modular varieties



The Green-Griffiths-Lang conjecture

Denote Sm
k the space of Hilbert modular form of weight k and order at

least m, where the order is the vanishing order at the cusps.

Proposition

Let F ∈ Sνl2l and b > 0 then ||s||2b/ln.g extends as a pseudo-metric over
cusps vanishing on Ec if ν > n

b .

Proposition

Let b > 0. There is a constant c depending only on the order of the
stabilizer of the elliptic fixed point such that if F is a Hilbert modular
form of weight 2l vanishing with order c .ln at elliptic fixed points then
||s||2b/ln.g extends as a pseudo-metric over elliptic singularities vanishing
on Ee .

Erwan Rousseau (j.w.w. Frédéric Touzet) Curves in Hilbert modular varieties



The Green-Griffiths-Lang conjecture

Denote Sm
k the space of Hilbert modular form of weight k and order at

least m, where the order is the vanishing order at the cusps.

Proposition

Let F ∈ Sνl2l and b > 0 then ||s||2b/ln.g extends as a pseudo-metric over
cusps vanishing on Ec if ν > n

b .

Proposition

Let b > 0. There is a constant c depending only on the order of the
stabilizer of the elliptic fixed point such that if F is a Hilbert modular
form of weight 2l vanishing with order c .ln at elliptic fixed points then
||s||2b/ln.g extends as a pseudo-metric over elliptic singularities vanishing
on Ee .

Erwan Rousseau (j.w.w. Frédéric Touzet) Curves in Hilbert modular varieties



The Green-Griffiths-Lang conjecture

Let F be a Hilbert modular form and 0 < ε < 1/n such that
||s||2(1−nε)/ln.g extends as a pseudo-metric on X vanishing on E .

Proposition

There exists a constant β > 0 such that

g̃ := β.||s||2(1−nε)/ln.g

satisfies the following property: for any holomorphic map f : ∆→ X
from the unit disc equipped with the Poincaré metric gP , we have

f ∗g̃ ≤ gP .
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The Green-Griffiths-Lang conjecture

Corollary

Let dX be the Kobayashi pseudo-distance, β and F a Hilbert modular
form as above. Then g̃ ≤ dX . In particular, the degeneracy locus of dX is
contained in the base locus of these Hilbert modular forms.

Corollary

Let X be a Hilbert modular variety such that there exists a Hilbert
modular form as above. Then X satisfies the strong Green-Griffiths-Lang
conjecture.
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Existence of Hilbert modular forms

We use the following formula due to Tsuyumine

dim Sνkk (ΓK ) ≥ (2−2n+1π−2nd
3/2
K ζK (2)−2n−1νnn−nd

1/2
K hR)kn +O(kn−1)

for even k ≥ 0, where h, dK ,R, ζK denote the class number of K , the
absolute value of the discriminant, the positive regulator and the zeta
function of K .

In particular, there is a modular form F with ord(f )/weight(f ) ≥ ν, if

ν < 2−3π−2n

(
4dK ζK (2)

hR

)1/n

.

Corollary

For n fixed, except for a finite number of K , there is a Hilbert modular
form F such that ||s||2(1−nε)/ln.g extends as a pseudo-metric over cusps.
Moreover as dK tends to infinity, the number of such forms grows at least

with order O(d
3/2
K ).
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Estimation of elliptic fixed points

Corollary

If the number of elliptic fixed points is O(dεK ) for 0 < ε < 3/2, then with
finite exceptions, Hilbert modular varieties of dimension n satisfy the
strong Green-Griffiths-Lang conjecture.

Proposition

For fixed n, the number of equivalence classes of elliptic fixed points is

O(d
1
2 +ε

K ) for every ε > 0.

With finite exceptions, Hilbert modular varieties of dimension n satisfy
the strong Green-Griffiths-Lang conjecture.
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