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Motivations (from Algebraic Statistics)

“Statistical Models are Algebraic Varieties’

Definition

A statistical model is a family of probability distributions on some
state space.

Our state space is finite and denoted by [m] = {1, 2, . . . ,m}

A probability distribution on [m] is a point of the probability simplex

∆m−1 := {(p1, . . . , pm) ∈ Rm :
∑

pi = 1, pi ≥ 0 ∀i}

A statistical model is a subsetM of ∆m−1.
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Definition

Let Θ ⊂ Rd (Θ is called Parameter Space) and

f : Θ → ∆m−1

θ = (θ1, . . . , θd) { (p1(θ), p1(θ), . . . , pm(θ))

a continuous function. Then f(Θ) ⊂ ∆m−1 is a parametric statistical
model.
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Definition

Let Θ ⊂ Rd (Θ is called Parameter Space) and

f : Θ → ∆m−1

θ = (θ1, . . . , θd) { (p1(θ), p1(θ), . . . , pm(θ))

a continuous function. Then f(Θ) ⊂ ∆m−1 is a parametric statistical
model.

Definition

Let p1 = g0
h0
, . . . , pm = gm

hm
, where gi , hi ∈ R[θ1, . . . , θd ]. Then

M := f(Θ) ⊂ ∆m−1 is a parametric algebraic statistical model.
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f : Θ → ∆m−1

We can extend f to
f̃ : Cd → Cm

Definition

The algebraic variety associated toM is VM := f̃(Cd).
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LetM be a parametric algebraic statistical models with map

f : Θ → ∆m−1

We can extend f to
f̃ : Cd → Cm

Definition

The algebraic variety associated toM is VM := f̃(Cd).

Definition

The projective algebraic variety associated toM is

VM := f̂(Pd−1)

where f̂ : Pd−1 → Pm−1
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Consider the following graphical model

X

Y1 Y2 Y3 Ym−2 Ym−1 Ym

k hidden states

a1 + 1 states a2 + 1 states a3 + 1 states am−2 + 1 states am−1 + 1 states am + 1 states

M1 M2 M3 Mm−2 Mm−1 Mm

where Mt si a k × at transition matrix with

(Mt )ij = Prob(X = i → Yt = j)
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Consider the following graphical model

X

Y1 Y2 Y3 Ym−2 Ym−1 Ym

k hidden states

a1 + 1 states a2 + 1 states a3 + 1 states am−2 + 1 states am−1 + 1 states am + 1 states

M1 M2 M3 Mm−2 Mm−1 Mm

where Mt si a k × at transition matrix with

(Mt )ij = Prob(X = i → Yt = j)

The algebraic variety associated to this model is

Sk (Pa1 × Pa2 × · · · × Pam )



Motivations First facts Basic results Tropical approach Star Configurations

Suppose that the state at X is momentarily fixed as k̃ .

For each edge, we have a point

mk̃Yt
=

[
(Mt )k̃1 : · · · : (Mt )k̃ at

]
∈ Pat
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Suppose that the state at X is momentarily fixed as k̃ .

For each edge, we have a point

mk̃Yt
=

[
(Mt )k̃1 : · · · : (Mt )k̃ at

]
∈ Pat

Thus, if we define

P k̃ := mk̃Y1
⊗mk̃Y2

⊗ · · · ×mk̃Ym
∈ Pa1 × Pa2 × · · · × Pam

then P k̃ is a point in the Segre product whose entries (up to
scaling) are the expected frequencies of observing patterns
conditioned by the state at the root being k̃ .
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Suppose that the state at X is momentarily fixed as k̃ .

For each edge, we have a point

mk̃Yt
=

[
(Mt )k̃1 : · · · : (Mt )k̃ at

]
∈ Pat

Thus, if we define

P k̃ := mk̃Y1
⊗mk̃Y2

⊗ · · · ×mk̃Ym
∈ Pa1 × Pa2 × · · · × Pam

then P k̃ is a point in the Segre product whose entries (up to
scaling) are the expected frequencies of observing patterns
conditioned by the state at the root being k̃ .
Summing over all possible states at X , we obtain the joint
distribution

P = P1 + P2 + · · ·+ Pk .

Since we are summing k points on the variety Pa1 × Pa2 × · · · × Pam ,
we obtain P ∈ Sk (Pa1 × Pa2 × · · · × Pam )
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M.A. Cueto, E.A. Tobis and J. Yu, An implicitization challenge for
binary factor analysis, J. Symbolic Comput. 45 (2010), no. 12,
1296–1315.
M.A. Cueto, J. Morton and B. Sturmfels, Geometry of the restricted
Boltzmann machine, Alg. Methods in Statistics and Probability,
AMS, Contemporary Mathematics 516 (2010) 135–153.

where each node represents a binary random variable.
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M.A. Cueto, E.A. Tobis and J. Yu, An implicitization challenge for
binary factor analysis, J. Symbolic Comput. 45 (2010), no. 12,
1296–1315.
M.A. Cueto, J. Morton and B. Sturmfels, Geometry of the restricted
Boltzmann machine, Alg. Methods in Statistics and Probability,
AMS, Contemporary Mathematics 516 (2010) 135–153.

where each node represents a binary random variable.

VM = S1((P1)4) ? S1((P1)4)
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Definition

Let p, q ∈ Pn be two points of coordinates respectively
[a0 : a1 : . . . : an] and [b0 : b1 : . . . : bn]. If aibi , 0 for some i, their
Hadamard product p ? q of p and q, is defined as

p ? q = [a0b0 : a1b1 : . . . : anbn].

If aibi = 0 for all i = 0, . . . , n then we say p ? q is not defined.



Motivations First facts Basic results Tropical approach Star Configurations

Definition

Let p, q ∈ Pn be two points of coordinates respectively
[a0 : a1 : . . . : an] and [b0 : b1 : . . . : bn]. If aibi , 0 for some i, their
Hadamard product p ? q of p and q, is defined as

p ? q = [a0b0 : a1b1 : . . . : anbn].

If aibi = 0 for all i = 0, . . . , n then we say p ? q is not defined.

The Hadamard product of two varieties X ,Y ∈ Pn is

X ? Y = {p ? q : p ∈ X , q ∈ Y , p ? q is defined}.



Motivations First facts Basic results Tropical approach Star Configurations

Definition

Let p, q ∈ Pn be two points of coordinates respectively
[a0 : a1 : . . . : an] and [b0 : b1 : . . . : bn]. If aibi , 0 for some i, their
Hadamard product p ? q of p and q, is defined as

p ? q = [a0b0 : a1b1 : . . . : anbn].

If aibi = 0 for all i = 0, . . . , n then we say p ? q is not defined.

The Hadamard product of two varieties X ,Y ∈ Pn is

X ? Y = {p ? q : p ∈ X , q ∈ Y , p ? q is defined}.

What are the properties of X ? Y w.r.t the properties of X and Y ?
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Our definiton(s)

Definition

Given varieties X ,Y ⊂ Pn we consider the usual Segre product

X × Y ⊂ PN

([a0 : · · · : an], [b0 : · · · : bn]) 7→ [a0b0 : a0b1 : . . . : anbn]

and we denote with zij the coordinates in PN. Let π : PN d Pn be
the projection map from the linear space defined by equations
zii = 0, i = 0, . . . , n. The Hadamard product of X and Y is

X ? Y = π(X × Y),

where the closure is taken in the Zariski topology.
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Consider two ideals I, J ⊂ R = K [x0, . . . , xn]
In the ring K [x0, . . . , xn, y0, . . . , yn, z0, . . . , zn] consider the ideals

I(y) = image of I under the map xi → yi , i = 0, . . . , n
J(z) = image of J under the map xi → zi , i = 0, . . . , n
LI,J = I(y) + J(z) + 〈xi − yizi , i = 0, . . . , n〉.
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Consider two ideals I, J ⊂ R = K [x0, . . . , xn]
In the ring K [x0, . . . , xn, y0, . . . , yn, z0, . . . , zn] consider the ideals

I(y) = image of I under the map xi → yi , i = 0, . . . , n
J(z) = image of J under the map xi → zi , i = 0, . . . , n
LI,J = I(y) + J(z) + 〈xi − yizi , i = 0, . . . , n〉.

Definition

The Hadamard product, I ?R J, of I and J is the ideal,

I ?R J = LI,J ∩ K [x0, . . . , xn].

One has
I(X ? Y) = I(X) ?R I(Y).
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Consider two lines r , s ∈ P3

• If r and s are generic (hence skew), then r ? s is a surface of
degree 2
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Consider two lines r , s ∈ P3

• If r and s are generic (hence skew), then r ? s is a surface of
degree 2

• if r and s are incident , then r ? s is a plane

• if I(r) = (x0, x1) and I(s) = (x0, x2) , then r ? s =
{
[0, 0, 0, 1]

}



Motivations First facts Basic results Tropical approach Star Configurations

Consider two lines r , s ∈ P3

• If r and s are generic (hence skew), then r ? s is a surface of
degree 2

• if r and s are incident , then r ? s is a plane
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Consider two lines r , s ∈ P3

• If r and s are generic (hence skew), then r ? s is a surface of
degree 2

• if r and s are incident , then r ? s is a plane

• if I(r) = (x0, x1) and I(s) = (x0, x2) , then r ? s =
{
[0, 0, 0, 1]

}
• if I(r) = (x0, x1) and I(s) = (x2, x3) , then r ? s is not defined

Moreover, given a projective transformation f : Pn → Pn we can
have

f(X ? Y) , f(X) ? f(Y)
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Basic results

X ? Y is a variety such that dim(X ? Y) ≤ dim(X) + dim(Y)

X ? Y can be empty even if neither X nor Y is empty.
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If X ,Y ,Z ⊂ Pn are varieties, then (X ? Y) ? Z = X ? (Y ? Z).



Motivations First facts Basic results Tropical approach Star Configurations

Basic results

X ? Y is a variety such that dim(X ? Y) ≤ dim(X) + dim(Y)

X ? Y can be empty even if neither X nor Y is empty.

Lemma

If X ,Y ,Z ⊂ Pn are varieties, then (X ? Y) ? Z = X ? (Y ? Z).

Definition

Given a positive integer r and a variety X ⊂ Pn, the r-th Hadamard
power of X is

X?r = X ? X?(r−1),

where X?0 = [1 : · · · : 1].

dim(X?r) ≤ r dim(X) and X?r cannot be empty if X is not empty.
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Let Hi ⊂ P
n, i = 0, . . . , n, be the hyperplane xi = 0 and set

∆i =
⋃

0≤j1<...<jn−i≤n

Hj1 ∩ . . . ∩ Hjn−i .
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∆i =
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Hj1 ∩ . . . ∩ Hjn−i .

dim(∆i) = i

∆i = points having at most i + 1 non-zero coordinates
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Let Hi ⊂ P
n, i = 0, . . . , n, be the hyperplane xi = 0 and set

∆i =
⋃

0≤j1<...<jn−i≤n

Hj1 ∩ . . . ∩ Hjn−i .

dim(∆i) = i

∆i = points having at most i + 1 non-zero coordinates

∆0 is the set of coordinates points
∆n−1 is the union of the coordinate hyperplanes.

∆0 ⊂ ∆1 ⊂ . . . ⊂ ∆n−1 ⊂ ∆n = Pn
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As the definition of Hadamard product involves a closure
operation, it is not trivial to describe all points of X?r .
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As the definition of Hadamard product involves a closure
operation, it is not trivial to describe all points of X?r .

Lemma

If X ∩∆n−i = ∅, then X?r ∩∆n−ri+r−1 = ∅.
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As the definition of Hadamard product involves a closure
operation, it is not trivial to describe all points of X?r .

Lemma

If X ∩∆n−i = ∅, then X?r ∩∆n−ri+r−1 = ∅.

Example (closure is necessary)

Let X ⊂ P2 be the curve x0x1 − x2
2 = 0 and p = [1 : 0 : 2].

p ? X = {x1 = 0}

The point [0 : 0 : 1] cannot be obtained as Hadamard product
p ? x, with x ∈ X.
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Suppose p ∈ Pn \∆n−1, that is, p has no coordinate equal zero.
Let L ⊂ Pn be the linear space of equations

Mx = 0.
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Suppose p ∈ Pn \∆n−1, that is, p has no coordinate equal zero.
Let L ⊂ Pn be the linear space of equations

Mx = 0.

DP =



p0 0 0 · · · 0
0 p1 0 · · · 0
0 0 p2 · · · 0
...

...
...

. . .
...

0 0 0 · · · pn
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Suppose p ∈ Pn \∆n−1, that is, p has no coordinate equal zero.
Let L ⊂ Pn be the linear space of equations

Mx = 0.

DP =



p0 0 0 · · · 0
0 p1 0 · · · 0
0 0 p2 · · · 0
...

...
...

. . .
...

0 0 0 · · · pn


Then p ? L is the linear space of equations

M′x = 0.

where M′ = MDp
−1.
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Terracini’s Lemma Given a general point P ∈ Sk (X), lying in the
subspace 〈P1, . . . ,Pk 〉 spanned by k general points on X , then the
tangent space TSk (X),P to Sk (X) at P is

TSk (X),P = 〈TX ,P1 , . . . ,TX ,Pk 〉.
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Terracini’s Lemma Given a general point P ∈ Sk (X), lying in the
subspace 〈P1, . . . ,Pk 〉 spanned by k general points on X , then the
tangent space TSk (X),P to Sk (X) at P is

TSk (X),P = 〈TX ,P1 , . . . ,TX ,Pk 〉.

Lemma (Hadamard version of Terracini’s Lemma)

Consider varieties X ,Y ⊂ Pn. If p ∈ X and q ∈ Y are general
points, then

Tp?q(X ? Y) = 〈p ? Tq(Y), q ? Tp(X)〉.

Moreover, if p1, . . . , pr ∈ X are general points and p1 ? . . . ? pr is a
general point, then

Tp1?...?pr (X
?r) = 〈p2?. . .?pr ?Tp1(X), . . . , p1?. . .?pr−1?Tpr (X)〉.
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Hadamard powers of a line

Lemma

Let n ≥ 2 and n ≥ r. If L ⊂ Pn is a line such that L ∩∆n−2 = ∅, then

L?r =
⋃
pi∈L

p1 ? . . . ? pr ,

that is, the closure operation is not necessary.
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Hadamard powers of a line

Lemma

Let n ≥ 2 and n ≥ r. If L ⊂ Pn is a line such that L ∩∆n−2 = ∅, then

L?r =
⋃
pi∈L

p1 ? . . . ? pr ,

that is, the closure operation is not necessary.

Theorem

Let L ⊂ Pn, n > 1, be a line. If L ∩∆n−2 = ∅, then L?r ⊂ Pn is a
linear space of dimension min{r , n}.
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If L ∩∆n−2 = ∅ fails in the previous theorem then L?r is still linear,
but possibly of deficient dimension.
Consider, for example, the line L ⊂ P5 of equation

2x0 − x1 = 0

x1 + 3x2 − x4 = 0

3x2 − x3 = 0

16x3 − 12x4 − 3x5 = 0
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If L ∩∆n−2 = ∅ fails in the previous theorem then L?r is still linear,
but possibly of deficient dimension.
Consider, for example, the line L ⊂ P5 of equation

2x0 − x1 = 0

x1 + 3x2 − x4 = 0

3x2 − x3 = 0

16x3 − 12x4 − 3x5 = 0

L?2 :


9x2 − x3 = 0

192x1 + 64x3 − 48x4 − 9x5 = 0

768x0 + 64x3 − 48x4 − 9x5 = 0

L?3 :

27x2 − x3 = 0

8x0 − x1 = 0
L?4 :

81x2 − x3 = 0

16x0 − x1 = 0

and dim(L?r) = 3 for all r ≥ 4.
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Equations of L?r

Proposition

Let L in Pn, n > 1, be a line with L ∩∆n−2 = ∅, and let r < n.

• If L = rowspan
(
a00 a01 . . . a0n

a10 a11 . . . a1n

)
, then

L?r = rowspan


ar

00 ar
01 . . . ar

0n
ar−1

00 a10 ar−1
01 a11 . . . ar−1

0n a1n

. . . . . . . . . . . .

ar
10 ar

11 . . . ar
1n

.
• In terms of Plücker coordinates, if 0 ≤ i0 < i1 < · · · < ir ≤ n,

then

[i0, i1, . . . , ir ]L?r =
∏

0≤j<k≤r

[ij , ik ]L .
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If L ⊂ Pn is a line and r < n then

dim(〈L?r〉) = dim(L?r) = r =

(
r + 1

1

)
− 1 =

(
r + dim(L)

dim(L)

)
− 1
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If L ⊂ Pn is a line and r < n then

dim(〈L?r〉) = dim(L?r) = r =

(
r + 1

1

)
− 1 =

(
r + dim(L)

dim(L)

)
− 1

Example

Let P be the 2-plane in P5 spanned by
[3 : 1 : 4 : 1 : 5 : 9], [2 : 6 : 5 : 3 : 5 : 8] and [9 : 7 : 9 : 3 : 2 : 3].

• dim(P?2) = 4

• deg(P?2) = 3
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If L ⊂ Pn is a line and r < n then

dim(〈L?r〉) = dim(L?r) = r =

(
r + 1

1

)
− 1 =

(
r + dim(L)

dim(L)

)
− 1

Example

Let P be the 2-plane in P5 spanned by
[3 : 1 : 4 : 1 : 5 : 9], [2 : 6 : 5 : 3 : 5 : 8] and [9 : 7 : 9 : 3 : 2 : 3].

• dim(P?2) = 4

• deg(P?2) = 3

• P?2 is singular in codimension 2, with singular locus

{p ? p : p ∈ P}.
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If L ⊂ Pn is a line and r < n then

dim(〈L?r〉) = dim(L?r) = r =

(
r + 1

1

)
− 1 =

(
r + dim(L)

dim(L)

)
− 1

Example

Let P be the 2-plane in P5 spanned by
[3 : 1 : 4 : 1 : 5 : 9], [2 : 6 : 5 : 3 : 5 : 8] and [9 : 7 : 9 : 3 : 2 : 3].

• dim(P?2) = 4

• deg(P?2) = 3

• P?2 is singular in codimension 2, with singular locus

{p ? p : p ∈ P}.

• dim(〈P?2〉) = 5 =
(2+dim(P)

dim(P)

)
− 1
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Lemma

Let L ⊂ Pn be a generic linear space of dimension m. Then the
linear span 〈L?r〉 has dimension min(

(
m+r

r

)
− 1, n).

Let L = 〈p0, p1, . . . , pm〉 and correspondingly write:

L = rowspan


a00 a01 . . . a0n

a10 a11 . . . a1n

. . . . . . . . . . . .

am0 am1 . . . amn

 .
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Lemma

Let L ⊂ Pn be a generic linear space of dimension m. Then the
linear span 〈L?r〉 has dimension min(

(
m+r

r

)
− 1, n).

Let L = 〈p0, p1, . . . , pm〉 and correspondingly write:

L = rowspan


a00 a01 . . . a0n

a10 a11 . . . a1n

. . . . . . . . . . . .

am0 am1 . . . amn

 .
〈L?r〉 = 〈p?r0

0 ?p?r1
1 ?. . .?p?rm

m : ri ∈ Z≥0 and r0 + r1 + . . .+ rm = r〉,

L? = rowspan


ar

00 ar
01 . . . ar

0n
. . . . . . . . . . . .∏
ari

i0
∏

ari
i1 . . .

∏
ari

im
. . . . . . . . . . . .

ar
m0 ar

m1 . . . ar
mn


.
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The tropical approach

Given an irreducible variety X ⊂ Pn not contained in ∆n−1, let
I ⊂ C[x±0 , . . . , x

±
n ] be the defining ideal of X .

The tropicalization of X is the set

trop(X) = {w ∈ Rn : inw(I) contains no monomial}

where
inw(I) = 〈inw(f) : f ∈ I〉

and inw(f) is the sum of all nonzero terms of f
∑
α cαxα such that

α · w is maximum.

It is the support of a pure polyhedral subfan of the Gröbner fan of I.
That subfan has positive integer multiplicities attached to its facets,
and these balance along ridges.
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Tropical geometry provides powerful tools to study Hadamard
products, because of the following connection.

Lemma (Maclagan-Sturmfels, 2015)

The tropicalization of the Hadamard products of two varieties is the
Minkowski sum of their tropicalizations. In symbols, if X ,Y ⊂ Pn

are irreducible varieties, then

trop(X ? Y) = trop(X) + trop(Y),

as weighted balanced fans.
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Theorem

Let L1, L2, . . . , Lr ⊂ P
n be generic linear spaces of dimensions

m1,m2, . . . ,mr , respectively. Set

m = m1 + m2 + ... + mr

and

d =

(
m1 + m2 + . . . + mr

m1, m2, . . . , mr

)
.

Assume m < n. Then L1 ? L2 ? . . . ? Lr has dimension m and
degree d if Li are pairwise distinct

d
r! if Li are the same.

In full generality, when Li form a multiset with multiplicites r1, . . . , rk ,
the dimension is m and the degree is d

(r1!) ... (rk !)
.
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trop(Li) equals the standard tropical linear space Λmi of dimension
mi

trop(Li) = Λmi =
⋃

0≤j1<...<jmi≤n

pos(ej1 , . . . , ejmi
).
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pos(ej1 , . . . , ejmi
).

trop(L1) + . . . + trop(Lr) has support the same as Λm,

L1 × . . . × Lr d L1 ? . . . ? Lr

is generically (r1!) · · · (rk !) to 1 (r1 + · · ·+ rk = r).

trop(L1 ? . . . ? Lr) =
d

(r1!) . . . (rk !)
Λm.
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trop(Li) equals the standard tropical linear space Λmi of dimension
mi

trop(Li) = Λmi =
⋃

0≤j1<...<jmi≤n

pos(ej1 , . . . , ejmi
).

trop(L1) + . . . + trop(Lr) has support the same as Λm,

L1 × . . . × Lr d L1 ? . . . ? Lr

is generically (r1!) · · · (rk !) to 1 (r1 + · · ·+ rk = r).

trop(L1 ? . . . ? Lr) =
d

(r1!) . . . (rk !)
Λm.

deg(L1 ? . . . ? Lr) = mult0
(
trop(L1 ? . . . ? Lr) ∩ st Λn−m

)
= mult0

( d
(r1!) . . . (rk !)

Λm ∩ st Λn−m

)
=

d
(r1!) . . . (rk !)

.
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Star Configurations

Definition

A set of
(
m
r

)
points X ⊂ Pn is a star configuration if there exist linear

spaces H1, . . . ,Hm ⊂ M ⊂ Pn such that:

• r = dim M = dim Hi + 1.

• Hi are in linear general position in M.

• X =
⋃

1≤i1<...<ir≤m Hi1 ∩ . . . ∩ Hir .
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Star Configurations

Definition

A set of
(
m
r

)
points X ⊂ Pn is a star configuration if there exist linear

spaces H1, . . . ,Hm ⊂ M ⊂ Pn such that:

• r = dim M = dim Hi + 1.

• Hi are in linear general position in M.

• X =
⋃

1≤i1<...<ir≤m Hi1 ∩ . . . ∩ Hir .
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Let 0 , I ⊂ R = k [x0, . . . , xn], be a homogeneous ideal. We define
the m−th symbolic power of I to be

I(m) = R ∩
⋂

P∈Ass(I)

ImRP .

Containment Problem: Given an ideal I, for which pairs (m, r) we
have I(m) ⊆ Ir ?



Motivations First facts Basic results Tropical approach Star Configurations

Let 0 , I ⊂ R = k [x0, . . . , xn], be a homogeneous ideal. We define
the m−th symbolic power of I to be

I(m) = R ∩
⋂

P∈Ass(I)

ImRP .

Containment Problem: Given an ideal I, for which pairs (m, r) we
have I(m) ⊆ Ir ?

Theorem (Ein-Lazarsfeld-Smith, 2001,Hochster-Huneke,
2002)

If the codimension of I is e then

I(er) ⊂ Ir .
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Let 0 , I ⊂ R = k [x0, . . . , xn], be a homogeneous ideal. We define
the m−th symbolic power of I to be

I(m) = R ∩
⋂

P∈Ass(I)

ImRP .

Containment Problem: Given an ideal I, for which pairs (m, r) we
have I(m) ⊆ Ir ?

Theorem (Ein-Lazarsfeld-Smith, 2001,Hochster-Huneke,
2002)

If the codimension of I is e then

I(er) ⊂ Ir .

Theorem (B, Harbourne, 2010)

The bound of ELS-HH is sharp for every e and every n.
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Given I ⊂ k [x0, . . . xN] we define

α(I) = min{t : It , ∅}



Motivations First facts Basic results Tropical approach Star Configurations

Given I ⊂ k [x0, . . . xN] we define

α(I) = min{t : It , ∅}

Chudnovsky type conjecture: Let I ⊂ k [x0, . . . xN] be the ideal of
a finite set S of points in PN. Then

α(I(m))

m
=
α(I) + N − 1

N
.

if and only if S is a star configuration or contained in a hyperplane
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Given I ⊂ k [x0, . . . xN] we define

α(I) = min{t : It , ∅}

Chudnovsky type conjecture: Let I ⊂ k [x0, . . . xN] be the ideal of
a finite set S of points in PN. Then

α(I(m))

m
=
α(I) + N − 1

N
.

if and only if S is a star configuration or contained in a hyperplane

• N = 2 B, Chiantini, 2011

• N = 3 Bauer, Szemberg, 2013

• N ≥ 4 still open
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Definition

Let Z ⊂ Pn be a finite set of points. The r−th square-free
Hadamard power of Z is

Z?r = {p1 ? . . . ? pr : pi ∈ Z and pi , pj for i , j}.
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Definition

Let Z ⊂ Pn be a finite set of points. The r−th square-free
Hadamard power of Z is

Z?r = {p1 ? . . . ? pr : pi ∈ Z and pi , pj for i , j}.

Lemma

Let L ⊂ Pn be a line, Z ⊂ L be a set of m points and r ≤ n. If
L ∩∆n−2 = ∅ and Z ∩∆n−1 = ∅, then Z?r is a set of

(
m
r

)
points.
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Lemma

Let L ⊂ Pn be a line, let pi ∈ L \∆n−1, 1 ≤ i ≤ m, be m distinct
points, and r ≤ n. Set M = L?r and Hi = pi ? L?(r−1),1 ≤ i ≤ m. If
L ∩∆n−2 = ∅, then whenever i1, . . . , ij are distinct:

• Hi1 ∩ . . . ∩ Hij = pi1 ? . . . ? pij ? L?(r−j), for j ≤ r.

• Hi1 ∩ . . . ∩ Hij = ∅, for r < j.

In particular, the linear spaces Hi are in linear general position in
M.
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Lemma

Let L ⊂ Pn be a line, let pi ∈ L \∆n−1, 1 ≤ i ≤ m, be m distinct
points, and r ≤ n. Set M = L?r and Hi = pi ? L?(r−1),1 ≤ i ≤ m. If
L ∩∆n−2 = ∅, then whenever i1, . . . , ij are distinct:

• Hi1 ∩ . . . ∩ Hij = pi1 ? . . . ? pij ? L?(r−j), for j ≤ r.

• Hi1 ∩ . . . ∩ Hij = ∅, for r < j.

In particular, the linear spaces Hi are in linear general position in
M.

Theorem

Let L ⊂ Pn be a line, Z ⊂ L be a set of m points and r ≤ min{m, n}.
If L ∩∆n−2 = ∅ and Z ∩∆n−1 = ∅, then Z?r is a star configuration
in M = L?r .
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L :

x0 − 2x2 + x3 = 0

x1 − 5x2 + x3 = 0

Z

p1 = [1 : 1 : 2 : 3]
p2 = [1 : 2 : 1 : 1]
p3 = [2 : 3 : 3 : 4]
p4 = [3 : 4 : 5 : 7]
p5 = [3 : 5 : 4 : 5]
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Z?2
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p1 ? p3 = [2 : 3 : 6 : 12]
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p2 ? p5 = [3 : 10 : 4 : 5]
p3 ? p4 = [6 : 12 : 15 : 28]
p3 ? p5 = [6 : 15 : 12 : 20]
p4 ? p5 = [9 : 20 : 20 : 35]

L?2 : 15x0 − 2x1 − 10x2 + 3x3 = 0
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p1 = [1 : 1 : 2 : 3]
p2 = [1 : 2 : 1 : 1]
p3 = [2 : 3 : 3 : 4]
p4 = [3 : 4 : 5 : 7]
p5 = [3 : 5 : 4 : 5]

p1?L :

x0 − x2 + 1
3x3 = 0

x1 −
5
2x2 + 1

3x3 = 0

Z?2

p1 ? p2 = [1 : 2 : 2 : 3]
p1 ? p3 = [2 : 3 : 6 : 12]
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L :

x0 − 2x2 + x3 = 0

x1 − 5x2 + x3 = 0

Z

p1 = [1 : 1 : 2 : 3]
p2 = [1 : 2 : 1 : 1]
p3 = [2 : 3 : 3 : 4]
p4 = [3 : 4 : 5 : 7]
p5 = [3 : 5 : 4 : 5]

Z?3

p1 ? p2 ? p3 = [1 : 3 : 3 : 6]
p1 ? p2 ? p4 = [3 : 8 : 10 : 21]
p1 ? p2 ? p5 = [3 : 10 : 8 : 15]
p1 ? p3 ? p4 = [1 : 2 : 5 : 24]
p1 ? p3 ? p5 = [2 : 5 : 8 : 20]
p1 ? p4 ? p5 = [9 : 20 : 40 : 105]
p2 ? p3 ? p4 = [6 : 24 : 15 : 28]
p2 ? p3 ? p5 = [3 : 15 : 6 : 10]
p2 ? p4 ? p5 = [9 : 40 : 20 : 35]
p3 ? p4 ? p5 = [9 : 30 : 30 : 70]

L?2 : 15x0 − 2x1 − 10x2 + 3x3 = 0
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L :

x0 − 2x2 + x3 = 0

x1 − 5x2 + x3 = 0

Z

p1 = [1 : 1 : 2 : 3]
p2 = [1 : 2 : 1 : 1]
p3 = [2 : 3 : 3 : 4]
p4 = [3 : 4 : 5 : 7]
p5 = [3 : 5 : 4 : 5]

Z?3

p1 ? p2 ? p3 = [1 : 3 : 3 : 6]
p1 ? p2 ? p4 = [3 : 8 : 10 : 21]
p1 ? p2 ? p5 = [3 : 10 : 8 : 15]
p1 ? p3 ? p4 = [1 : 2 : 5 : 24]
p1 ? p3 ? p5 = [2 : 5 : 8 : 20]
p1 ? p4 ? p5 = [9 : 20 : 40 : 105]
p2 ? p3 ? p4 = [6 : 24 : 15 : 28]
p2 ? p3 ? p5 = [3 : 15 : 6 : 10]
p2 ? p4 ? p5 = [9 : 40 : 20 : 35]
p3 ? p4 ? p5 = [9 : 30 : 30 : 70]

p1 ? L?2 : 15x0 − 2x1 − 5x2 + x3 = 0
p2 ? L?2 : 15x0 − x1 − 10x2 + 3x3 = 0
p3 ? L?2 : 15

2 x0 −
2
3x1 −

10
3 x2 + 3

4x3 = 0
p4 ? L?2 : 5x0 −

1
2x1 − 2x2 + 3

7x3 = 0
p5 ? L?2 : 5x0 −

2
5x1 −

5
2x2 + 3

5x3 = 0
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Thank for your attention
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